JP4560310B2 - Method for manufacturing substrate of group III nitride crystal - Google Patents

Method for manufacturing substrate of group III nitride crystal Download PDF

Info

Publication number
JP4560310B2
JP4560310B2 JP2004059231A JP2004059231A JP4560310B2 JP 4560310 B2 JP4560310 B2 JP 4560310B2 JP 2004059231 A JP2004059231 A JP 2004059231A JP 2004059231 A JP2004059231 A JP 2004059231A JP 4560310 B2 JP4560310 B2 JP 4560310B2
Authority
JP
Japan
Prior art keywords
crystal
group iii
plane
iii nitride
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004059231A
Other languages
Japanese (ja)
Other versions
JP2005247625A (en
Inventor
浩和 岩田
正二 皿山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004059231A priority Critical patent/JP4560310B2/en
Publication of JP2005247625A publication Critical patent/JP2005247625A/en
Application granted granted Critical
Publication of JP4560310B2 publication Critical patent/JP4560310B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、III族窒化物の基板の製造法に関する。 The present invention relates to the production how the substrate of the Group III nitride.

従来、例えば特許文献1に示されているように、アルカリ金属を含む融液中でIII族金属と窒素を反応させてIII族窒化物結晶を成長させるIII族窒化物の結晶成長方法(すなわち、フラックス法)が知られている。
特開平2003−292400号公報
Conventionally, as shown in, for example, Patent Document 1, a group III nitride crystal growth method for growing a group III nitride crystal by reacting a group III metal and nitrogen in a melt containing an alkali metal (that is, Flux method) is known.
JP-A-2003-292400

しかしながら、従来のフラックス法では、転位密度の低いIII族窒化物結晶を結晶成長させることが難しいという問題があった。 However, in the conventional flux method, there is a problem that the low III-nitride crystal dislocation density have difficulty be grown.

具体的に、例えば種結晶を用いてIII族窒化物結晶を成長させる場合、種結晶に用いることのできるIII族窒化物結晶は必ずしも転位密度の低いものばかりではなかった。   Specifically, for example, when a group III nitride crystal is grown using a seed crystal, the group III nitride crystal that can be used for the seed crystal is not always low in dislocation density.

また、転位密度が低くない種結晶を用いても、転位密度の低いIII族窒化物結晶を結晶成長することは難しかった。 Further, even when using a seed crystal dislocation density is not lower, it was not difficult to crystal growth with low III-nitride crystal dislocation density.

本発明は、転位密度の低い高品質なIII族窒化物結晶の基板を作製することの可能なIII族窒化物の結晶の基板の製造方法を提供することを目的としている。 The present invention aims at providing a method for manufacturing a substrate for crystals of possible III-nitride of making a low quality Group III nitride crystal substrate dislocation density.

上記目的を達成するために、請求項1記載の発明は、III族窒化物結晶の基板の製造方法であって、少なくともアルカリ金属とIII族金属と窒素が溶解した融液からIII族窒化物結晶を成長させる際に種結晶に対して、基板の主面とはならない{10−11}面を成長面として形成しながらIII族窒化物結晶を成長する工程と、前記III族窒化物結晶のうち前記種結晶よりも低転位密度である部分を加工して特定の結晶面を前記主面とする基板を作製する工程とを含むことを特徴としている。 In order to achieve the above object, the invention according to claim 1 is a method for producing a group III nitride crystal substrate, wherein at least an alkali metal, a group III metal and nitrogen are dissolved in a group III nitride crystal. Growing a group III nitride crystal while forming a {10-11} plane that is not the main surface of the substrate as a growth surface with respect to the seed crystal, and among the group III nitride crystals, it is characterized by a step of preparing a substrate to the main surface of the specified crystal plane be processed portions that are low dislocation density than the seed crystal.

また、請求項2記載の発明は、請求項1記載のIII族窒化物の結晶の基板の製造方法において、前記種結晶は六角推結晶であることを特徴としている。 According to a second aspect of the present invention, in the method for manufacturing a group III nitride crystal substrate according to the first aspect , the seed crystal is a hexagonal crystal .

また、請求項3記載の発明は、請求項1記載のIII族窒化物の結晶の基板の製造方法において、 前記種結晶は板状結晶であることを特徴としている。 According to a third aspect of the present invention, in the method for producing a group III nitride crystal substrate according to the first aspect , the seed crystal is a plate crystal .

請求項1記載の発明によれば、III族窒化物結晶の基板の製造方法であって、少なくともアルカリ金属とIII族金属と窒素が溶解した融液からIII族窒化物結晶を成長させる際に種結晶に対して、基板の主面とはならない{10−11}面を成長面として形成しながらIII族窒化物結晶を成長する工程と、前記III族窒化物結晶のうち前記種結晶よりも低転位密度である部分を加工して特定の結晶面を前記主面とする基板を作製する工程とを含むので、種結晶に{10−11}面を成長面として形成しながらIII族窒化物を結晶成長することで、種結晶の転位密度が大きい場合においても、{10−11}面以外の結晶面への転位の伝播を抑制しながら結晶成長する事ができる。従って、転位密度の大きな種結晶を使用しても、例えば、低転位密度の(0001)面を有する結晶を容易に作製することができる。そして、III族窒化物結晶を加工して作製した特定の結晶面(例えば(0001)面)を主面とする基板であるので、所望とする特定の結晶面(例えば(0001)面)の貫通転位密度が少ない高品質のIII族窒化物結晶の基板を提供することができる。 According to the first aspect of the present invention, there is provided a method for producing a group III nitride crystal substrate, wherein seeds are grown when a group III nitride crystal is grown from a melt in which at least an alkali metal, a group III metal, and nitrogen are dissolved. A step of growing a group III nitride crystal while forming a {10-11} plane which is not the main surface of the substrate as a growth surface with respect to the crystal, and the group III nitride crystal is lower than the seed crystal. since a specific crystal plane by processing the portion which is dislocation density and a step of preparing a substrate for said main surface, a group III nitride while forming a {10-11} plane in the seed crystal as the growth surface By growing the crystal, even when the dislocation density of the seed crystal is large, the crystal can be grown while suppressing the propagation of the dislocation to the crystal plane other than the {10-11} plane. Therefore, even if a seed crystal having a high dislocation density is used, for example, a crystal having a (0001) plane with a low dislocation density can be easily produced. And since it is a board | substrate which makes the principal surface the specific crystal plane (for example, (0001) plane) produced by processing a group III nitride crystal, penetration of the desired specific crystal plane (for example, (0001) plane) It is possible to provide a high-quality group III nitride crystal substrate having a low dislocation density.

以下、本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

本発明は、少なくともアルカリ金属とIII族金属と窒素が溶解した融液からIII族窒化物結晶を成長させる結晶成長方法において、特定の結晶面(例えば(0001)面)以外の結晶面を成長面として形成しながら結晶成長することを特徴としている。 This onset Ming, grown in at least an alkali metal and the group III metal and the crystal growth method of the nitrogen from the dissolved melt for growing the Group III nitride crystal, the crystal plane other than the specific crystal plane (e.g., (0001)) It is characterized by crystal growth while forming as a plane.

上記の構成によれば、少なくともアルカリ金属とIII族金属と窒素が溶解した融液からIII族窒化物結晶を成長させる結晶成長方法において、特定の結晶面(例えば(0001)面)以外の結晶面を成長面として形成しながら結晶成長するので、転位密度の低い高品質なIII族窒化物結晶を作製することができる。 According to the above configuration, in a crystal growth method for growing a group III nitride crystal from a melt in which at least an alkali metal, a group III metal, and nitrogen are dissolved, a crystal plane other than a specific crystal plane (for example, (0001) plane) Since the crystal is grown while forming as a growth surface, a high-quality group III nitride crystal having a low dislocation density can be produced.

すなわち、転位は成長面に向かって伝播する傾向があるので、所望とする特定の結晶面(例えば(0001)面)以外の結晶面を成長面として形成しながら成長すると、特定の結晶面(例えば(0001)面)には転位が伝播し難い。従って、第1の形態では、所望とする特定の結晶面(例えば(0001)面)が低転位密度である結晶を作製することができる。   In other words, since dislocations tend to propagate toward the growth plane, when growing while forming a crystal plane other than the desired specific crystal plane (for example, (0001) plane) as the growth plane, a specific crystal plane (for example, Dislocations hardly propagate to (0001) plane. Therefore, in the first embodiment, it is possible to produce a crystal whose desired specific crystal plane (for example, (0001) plane) has a low dislocation density.

また、本発明は、上記の構成において、特定の結晶面以外の結晶面として、{10−11}面を成長面として形成しながらIII族窒化物を結晶成長することを特徴としている。 Further, the present invention is characterized in that, in the above configuration, the group III nitride is crystal-grown while forming a {10-11} plane as a growth plane as a crystal plane other than the specific crystal plane.

上記によれば、特定の結晶面以外の結晶面として、{10−11}面を成長面として形成しながらIII族窒化物を結晶成長するので、{10−11}面以外の結晶面への転位の伝播を抑制しながら結晶成長する事が容易に行える。従って、例えば、低転位密度の(0001)面を有する結晶を容易に作製することができる。 According to the above, since the group III nitride crystal is grown while forming the {10-11} plane as a growth plane as a crystal plane other than the specific crystal plane, the crystal plane other than the {10-11} plane is grown. Crystal growth can be easily performed while suppressing the propagation of dislocations. Therefore, for example, a crystal having a (0001) plane with a low dislocation density can be easily produced.

ここで、{10−11}面は、フラックス法の条件を適切に選ぶことによって、容易に形成することができる。   Here, the {10-11} plane can be easily formed by appropriately selecting the conditions of the flux method.

この{10−11}面を成長面として形成しながら結晶成長を行うと、{10−11}面以外の結晶面への転位の伝播を抑制しながら結晶成長する事が容易に行える。従って、例えば、低転位密度の(0001)面を有する結晶を容易に作製することができる。   When crystal growth is performed while forming this {10-11} plane as a growth plane, crystal growth can be easily performed while suppressing the propagation of dislocations to crystal planes other than the {10-11} plane. Therefore, for example, a crystal having a (0001) plane with a low dislocation density can be easily produced.

また、本発明は、上記の構成において、種結晶に{10−11}面を成長面として形成しながらIII族窒化物を結晶成長することを特徴としている。 Further, the present invention is characterized in that, in the above-described configuration , the group III nitride is crystal-grown while forming a {10-11} plane as a growth surface in the seed crystal.

この構成によれば、種結晶に{10−11}面を成長面として形成しながらIII族窒化物を結晶成長するので、種結晶の転位密度が大きい場合においても、{10−11}面以外の結晶面への転位の伝播を抑制しながら結晶成長する事ができる。従って、転位密度の大きな種結晶を使用しても、例えば、低転位密度の(0001)面を有する結晶を容易に作製することができる。 According to this configuration, since the group III nitride crystal is grown while forming the {10-11} plane as a growth surface in the seed crystal, even if the dislocation density of the seed crystal is high, other than the {10-11} plane Crystal growth can be achieved while suppressing the propagation of dislocations to the crystal plane. Therefore, even if a seed crystal having a high dislocation density is used, for example, a crystal having a (0001) plane with a low dislocation density can be easily produced.

図1,図2には、種結晶として、{10−11}面を有する六角錐結晶1を用いて、III族窒化物結晶を結晶成長する場合が示されている。なお、図2は図1の断面図である。   1 and 2 show a case where a group III nitride crystal is grown using a hexagonal pyramid crystal 1 having a {10-11} plane as a seed crystal. 2 is a cross-sectional view of FIG.

また、図3には、種結晶として、(0001)面を主面とする板状結晶2を用いて、III族窒化物結晶を結晶成長する場合が示されている。   FIG. 3 shows a case where a group III nitride crystal is grown using a plate crystal 2 having a (0001) plane as a main surface as a seed crystal.

図2,図3のいずれの場合も、成長したIII族窒化物結晶の結晶上部A,Bは、転位が伝播しにくく、転位密度が低くなっている(低転位密度となっている)。   In both cases of FIGS. 2 and 3, the crystal tops A and B of the grown group III nitride crystal are less likely to propagate dislocations and have a low dislocation density (low dislocation density).

上記したいずれかの結晶製造方法で作製されたIII族窒化物結晶が得られる。A group III nitride crystal produced by any of the above-described crystal production methods is obtained.

また、上記の結晶製造方法で作製されたIII族窒化物結晶であれば、所望とする特定の結晶面(例えば(0001)面)の貫通転位密度が少ない高品質のIII族窒化物結晶を提供することができる。 Further, if the above Symbol of crystal manufacturing method III nitride made with crystals, a specific crystal plane (e.g. (0001) plane) of the threading dislocation density is less high-quality group III-nitride crystal to a desired Can be provided.

具体的に、種結晶として、{10−11}面を有する六角錐結晶1を用いて結晶成長したIII族窒化物結晶は、図2に示すように、結晶上部Aが低転位密度となっている。また、種結晶として、(0001)面を主面とする板状結晶2を用いて結晶成長したIII族窒化物結晶は、図3に示すように、結晶上部Bが低転位密度となっている。   Specifically, a group III nitride crystal grown using a hexagonal pyramid crystal 1 having a {10-11} plane as a seed crystal has a low dislocation density in the upper portion A of the crystal as shown in FIG. Yes. In addition, as shown in FIG. 3, a group III nitride crystal grown using a plate-like crystal 2 having a (0001) plane as a main surface as a seed crystal has a low dislocation density in the upper part B of the crystal. .

本発明は、上記により得られたIII族窒化物結晶を加工して作製した特定の結晶面(例えば(0001)面)を主面とする基板であることを特徴としている。 The present invention is characterized in that it is a substrate whose principal surface is a specific crystal plane (for example, (0001) plane) produced by processing a group III nitride crystal obtained as described above .

また、この発明によれば、上記のIII族窒化物結晶を加工して作製した特定の結晶面(例えば(0001)面)を主面とする基板であるので、所望とする特定の結晶面(例えば(0001)面)の貫通転位密度が少ない高品質のIII族窒化物結晶の基板を提供することができる。 Further, according to the present invention, since the substrate has a specific crystal plane (for example, (0001) plane) produced by processing the group II / II nitride crystal as described above, the specific crystal plane desired A high-quality group III nitride crystal substrate having a low threading dislocation density (for example, (0001) plane) can be provided.

具体的に、例えば図2に示すように結晶成長したIII族窒化物結晶を、図4に示すような破線Cの部分(図4の例では、結晶の上部A付近を通る(0001)面)で切断し、これを図5に示すような特定の結晶面((0001)面)を主面とする基板(低転位密度基板)とすることができる。   Specifically, for example, a group III nitride crystal grown as shown in FIG. 2 is shown in a portion indicated by a broken line C as shown in FIG. 4 (in the example of FIG. 4, it passes through the vicinity of the upper part A of the crystal (0001) plane). This can be cut into a substrate (low dislocation density substrate) having a specific crystal plane ((0001) plane) as a main surface as shown in FIG.

本発明により得られたIII族窒化物結晶の特定の結晶面(例えば(0001)面)上、または、基板上に半導体デバイスを作製することができる A semiconductor device can be manufactured on a specific crystal plane (for example, (0001) plane) of the group III nitride crystal obtained by the present invention or on a substrate .

上記の構成によれば、III族窒化物結晶の特定の結晶面(例えば(0001)面)上、または、基板上に作製された半導体デバイスであるので、高性能,高信頼性の半導体デバイスを提供することができる。 According to the above configuration, since the semiconductor device is manufactured on a specific crystal plane (for example, (0001) plane) of a group III nitride crystal or on a substrate, a high-performance and high-reliability semiconductor device can be obtained. Can be provided.

図6には、図4のIII族窒化物結晶を破線Cの部分で切断,研磨して形成した低転位密度の(0001)面基板(図5の基板)上に作製したデバイスの一例が示されている。このデバイスは、低転位密度の(0001)面基板(図5の基板)上に作製されているので、高性能,高信頼性のものとなる。   FIG. 6 shows an example of a device fabricated on a low dislocation density (0001) plane substrate (substrate of FIG. 5) formed by cutting and polishing the group III nitride crystal of FIG. Has been. Since this device is fabricated on a (0001) plane substrate (substrate in FIG. 5) having a low dislocation density, it has high performance and high reliability.

実施例1では、アルカリ金属としてNa(ナトリウム)を用い、III族金属原料としてGa(ガリウム)を用い、窒素原料として窒素ガスを使用し、(0001)面を主面とするGaN種結晶に、III族窒化物としてGaNを結晶成長させた。なお、ここで、Na,Gaはあらかじめ混合融液として融液保持容器中に保持し、窒素を気相から融液中に溶解してGaNを結晶成長させた。   In Example 1, Na (sodium) is used as an alkali metal, Ga (gallium) is used as a Group III metal raw material, nitrogen gas is used as a nitrogen raw material, and a GaN seed crystal having a (0001) plane as a main surface, GaN was grown as a group III nitride. Here, Na and Ga were previously held in a melt holding container as a mixed melt, and nitrogen was dissolved from the gas phase into the melt to grow GaN crystals.

図7は実施例1に用いられる結晶製造装置の構成例を示す図である。 FIG. 7 is a diagram illustrating a configuration example of the crystal manufacturing apparatus used in the first embodiment.

図7の結晶製造装置は、ステンレス製の閉じた形状の反応容器11内に、アルカリ金属とIII族金属を含む融液22を保持し、結晶成長を行なうための融液保持容器12が設けられている。 The crystal manufacturing apparatus of FIG. 7 is provided with a melt holding vessel 12 for holding a melt 22 containing an alkali metal and a group III metal in a closed reaction vessel 11 made of stainless steel and performing crystal growth. ing.

この融液保持容器12は反応容器11から取り外すことができる。また、融液保持容器12の材質はBNである。   The melt holding container 12 can be removed from the reaction container 11. The material of the melt holding container 12 is BN.

また、反応容器11の内部空間19に窒素原料となる窒素(N)ガスを充満させ、かつ反応容器11内の窒素(N)圧力を調整することを可能にするガス供給管14が反応容器11を貫通して装着されている。 Also, nitrogen (N 2) as a nitrogen source in the interior space 19 of the reaction vessel 11 is filled with gas, and nitrogen in the reaction vessel 11 (N 2) gas supply pipe 14 which allows to adjust the pressure reaction The container 11 is mounted through.

窒素ガスの圧力は圧力制御装置16で調整する事ができる。   The pressure of the nitrogen gas can be adjusted by the pressure control device 16.

また、反応容器11内の全圧力は圧力計18でモニターされる。   The total pressure in the reaction vessel 11 is monitored with a pressure gauge 18.

また、反応容器11の外側にはヒーター13が設置されている。   A heater 13 is installed outside the reaction vessel 11.

また、反応容器11は、バルブ21の部分で結晶成長装置から取り外すことが可能であり、反応容器11の部分のみをグローブボックスに入れて作業することができる。   The reaction vessel 11 can be removed from the crystal growth apparatus at the valve 21 portion, and only the reaction vessel 11 portion can be put into the glove box for operation.

以下に、図7の結晶製造装置を使用した実施例1でのGaNの結晶成長方法を説明する。 Below, the crystal growth method of GaN in Example 1 using the crystal manufacturing apparatus of FIG. 7 is demonstrated.

まず、反応容器11をバルブ21の部分で結晶成長装置から分離し、Ar雰囲気のグローブボックスに入れる。   First, the reaction vessel 11 is separated from the crystal growth apparatus at the valve 21 and placed in a glove box in an Ar atmosphere.

次いで、BN製の融液保持容器12に、(0001)面を主面とするGaN種結晶24とガリウム(Ga)とナトリウム(Na)を入れる。   Next, a GaN seed crystal 24 having a (0001) plane as a main surface, gallium (Ga), and sodium (Na) are placed in the melt holding container 12 made of BN.

次いで、融液保持容器12を融液保持容器保持台20に置き、反応容器11内に設置する。   Next, the melt holding container 12 is placed on the melt holding container holding stand 20 and installed in the reaction container 11.

次いで、反応容器11を密閉し、バルブ21を閉じ、反応容器11内部を外部雰囲気と遮断する。   Next, the reaction vessel 11 is sealed, the valve 21 is closed, and the inside of the reaction vessel 11 is shut off from the external atmosphere.

次いで、反応容器11をグローブボックスから出し、結晶成長装置に組み込む。   Next, the reaction vessel 11 is taken out of the glove box and incorporated in the crystal growth apparatus.

すなわち、反応容器11をヒーター13がある所定の位置に設置し、バルブ21の部分で窒素のガス供給ライン14に接続する。   That is, the reaction vessel 11 is installed at a predetermined position with the heater 13 and connected to the nitrogen gas supply line 14 at the valve 21 portion.

次いで、バルブ15,21を開け、反応容器11内に窒素ガスを入れる。このとき、圧力制御装置16で窒素圧力を1MPaにした。この圧力は、実施例1で使用した装置において、結晶成長温度(775℃)に昇温したときに、反応容器11内の全圧が1.5MPaになる圧力である。   Next, the valves 15 and 21 are opened, and nitrogen gas is introduced into the reaction vessel 11. At this time, the nitrogen pressure was set to 1 MPa by the pressure control device 16. This pressure is a pressure at which the total pressure in the reaction vessel 11 becomes 1.5 MPa when the temperature is raised to the crystal growth temperature (775 ° C.) in the apparatus used in Example 1.

次いで、バルブ15とバルブ21を閉じる。これにより、反応容器11は密閉される。   Next, the valve 15 and the valve 21 are closed. Thereby, the reaction container 11 is sealed.

次いで、ヒーター13に通電し、融液22を室温(27℃)から結晶成長温度まで1時間で昇温する。結晶成長温度は775℃とした。   Next, the heater 13 is energized to raise the temperature of the melt 22 from room temperature (27 ° C.) to the crystal growth temperature in one hour. The crystal growth temperature was 775 ° C.

昇温に追随して密閉された反応容器11内の圧力は上昇し、結晶成長温度775℃に達した時の反応容器11内の全圧は1.5MPaになった。   The pressure in the sealed reaction vessel 11 increased following the temperature increase, and the total pressure in the reaction vessel 11 when the crystal growth temperature reached 775 ° C. became 1.5 MPa.

この状態で500時間保持した後、室温まで降温する。   After holding in this state for 500 hours, the temperature is lowered to room temperature.

結晶成長終了後、反応容器11を開けると、種結晶24上に{10−11}面で形成された六角錐状のGaN23が成長していた。 When the reaction vessel 11 was opened after the completion of crystal growth, hexagonal pyramid-shaped GaN 23 formed on the {10-11} plane was growing on the seed crystal 24.

成長したGaN結晶23は、結晶上部の欠陥密度がエッチピット密度評価で10cm−2以下であった。 GaN crystal 23 was grown, the defect density of the crystal top was 10 6 cm -2 or less in the etch pit density evaluation.

本発明は、光ディスク用青紫色光源、紫外光源(全面)、電子写真用青紫色光源、III族窒化物電子デバイスなどに利用可能である。   The present invention can be used for a blue-violet light source for optical disks, an ultraviolet light source (entire surface), a blue-violet light source for electrophotography, a group III nitride electronic device, and the like.

種結晶として、{10−11}面を有する六角錐結晶を用いて、III族窒化物結晶を結晶成長する場合を示す図である。It is a figure which shows the case where a group III nitride crystal is crystal-grown using the hexagonal pyramid crystal which has a {10-11} plane as a seed crystal. 種結晶として、{10−11}面を有する六角錐結晶を用いて、III族窒化物結晶を結晶成長する場合を示す図である。It is a figure which shows the case where a group III nitride crystal is crystal-grown using the hexagonal pyramid crystal which has a {10-11} plane as a seed crystal. 種結晶として、(0001)面を主面とする板状結晶を用いて、III族窒化物結晶を結晶成長する場合を示す図である。It is a figure which shows the case where a group III nitride crystal is crystal-grown using the plate-like crystal which makes (0001) plane the main surface as a seed crystal. 図2の結晶を切断する位置Cを示す図である。It is a figure which shows the position C which cut | disconnects the crystal | crystallization of FIG. 図2の結晶を図4の位置Cで切断して作製した基板を示す図である。FIG. 5 is a diagram showing a substrate manufactured by cutting the crystal of FIG. 2 at a position C in FIG. 4. 図5の基板上に作製した半導体デバイスを示す図である。It is a figure which shows the semiconductor device produced on the board | substrate of FIG. 実施例1に用いられる結晶製造装置の構成例を示す図である。1 is a diagram illustrating a configuration example of a crystal manufacturing apparatus used in Example 1. FIG.

1,2 種結晶
11 反応容器
12 融液保持容器
13 ヒーター
14 ガス供給管
15,21 バルブ
16 圧力制御装置
18 圧力計
23 GaN
24 種結晶
1, 2 Seed crystal 11 Reaction vessel 12 Melt holding vessel 13 Heater 14 Gas supply pipe 15, 21 Valve 16 Pressure control device 18 Pressure gauge 23 GaN
24 seed crystals

Claims (3)

III族窒化物結晶の基板の製造方法であって、
少なくともアルカリ金属とIII族金属と窒素が溶解した融液からIII族窒化物結晶を成長させる際に種結晶に対して、基板の主面とはならない{10−11}面を成長面として形成しながらIII族窒化物結晶を成長する工程と、
前記III族窒化物結晶のうち前記種結晶よりも低転位密度である部分を加工して特定の結晶面を前記主面とする基板を作製する工程とを含むことを特徴とするIII族窒化物の結晶の基板の製造方法。
A method for producing a group III nitride crystal substrate, comprising:
When a group III nitride crystal is grown from a melt in which at least an alkali metal, a group III metal, and nitrogen are dissolved, a {10-11} plane that is not the main surface of the substrate is formed as a growth surface with respect to the seed crystal. While growing a group III nitride crystal,
III-nitride, which comprises a step of preparing a substrate for said group III said major surface a specific crystal plane be processed portions that are low dislocation density than the seed crystal of the nitride crystal Method for manufacturing a crystal substrate.
請求項1記載のIII族窒化物の結晶の基板の製造方法において、前記種結晶は六角推結晶であることを特徴とするIII族窒化物の結晶の基板の製造方法。   2. The method for manufacturing a group III nitride crystal substrate according to claim 1, wherein the seed crystal is a hexagonal crystal. 請求項1記載のIII族窒化物の結晶の基板の製造方法において、前記種結晶は板状結晶であることを特徴とするIII族窒化物の結晶の基板の製造方法。   2. The method for producing a group III nitride crystal substrate according to claim 1, wherein the seed crystal is a plate crystal.
JP2004059231A 2004-03-03 2004-03-03 Method for manufacturing substrate of group III nitride crystal Expired - Fee Related JP4560310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004059231A JP4560310B2 (en) 2004-03-03 2004-03-03 Method for manufacturing substrate of group III nitride crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004059231A JP4560310B2 (en) 2004-03-03 2004-03-03 Method for manufacturing substrate of group III nitride crystal

Publications (2)

Publication Number Publication Date
JP2005247625A JP2005247625A (en) 2005-09-15
JP4560310B2 true JP4560310B2 (en) 2010-10-13

Family

ID=35028482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004059231A Expired - Fee Related JP4560310B2 (en) 2004-03-03 2004-03-03 Method for manufacturing substrate of group III nitride crystal

Country Status (1)

Country Link
JP (1) JP4560310B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4856934B2 (en) * 2005-11-21 2012-01-18 株式会社リコー GaN crystal
EP1982351A4 (en) * 2006-01-20 2010-10-20 Univ California Method for improved growth of semipolar (al,in,ga,b)n
US8545626B2 (en) 2008-03-03 2013-10-01 Mitsubishi Chemical Corporation Nitride semiconductor crystal and its production method
JP5328682B2 (en) 2010-01-13 2013-10-30 日立電線株式会社 Method for producing group III nitride crystal and method for producing group III nitride semiconductor substrate
JP5699493B2 (en) * 2010-08-31 2015-04-08 株式会社リコー Method for producing group III nitride single crystal
JP5328999B2 (en) * 2013-02-22 2013-10-30 日立電線株式会社 Method for manufacturing group III nitride semiconductor substrate
JP6186763B2 (en) * 2013-03-08 2017-08-30 株式会社リコー Method for producing group 13 nitride crystal, method for producing group 13 nitride crystal substrate, and group 13 nitride crystal substrate
JP6398213B2 (en) * 2014-02-13 2018-10-03 株式会社リコー Method for producing group 13 nitride crystal
JP6337526B2 (en) * 2014-03-10 2018-06-06 株式会社リコー Method for producing group 13 nitride crystal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206198A (en) * 2002-01-10 2003-07-22 Ricoh Co Ltd Method and apparatus for growing group iii nitride crystal
JP2003292400A (en) * 2002-01-29 2003-10-15 Ricoh Co Ltd Group iii nitride crystal growth method, group iii nitride crystal growth apparatus, group iii nitride crystal, and semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206198A (en) * 2002-01-10 2003-07-22 Ricoh Co Ltd Method and apparatus for growing group iii nitride crystal
JP2003292400A (en) * 2002-01-29 2003-10-15 Ricoh Co Ltd Group iii nitride crystal growth method, group iii nitride crystal growth apparatus, group iii nitride crystal, and semiconductor device

Also Published As

Publication number Publication date
JP2005247625A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
JP6578570B2 (en) Method for producing group III nitride semiconductor crystal substrate
US9096950B2 (en) Nitride crystal and method for producing the same
US9670594B2 (en) Group III nitride crystals, their fabrication method, and method of fabricating bulk group III nitride crystals in supercritical ammonia
JP4560310B2 (en) Method for manufacturing substrate of group III nitride crystal
KR20190133274A (en) Iii-n single crystals
US9790617B2 (en) Group III nitride bulk crystals and their fabrication method
JP6526811B2 (en) Method of processing a group III nitride crystal
JP2012197194A (en) Method for producing group 13 nitride crystal, method for producing group 13 nitride crystal substrate, the group 13 nitride crystal and the group 13 nitride crystal substrate
JP2006290677A (en) Method for manufacturing nitride-based compound semiconductor crystal and method for manufacturing nitride-based compound semiconductor substrate
JP4278330B2 (en) Group III nitride crystal production method and group III nitride crystal production apparatus
JP2012051746A (en) Method for producing group iii nitride single crystal
JP2018043893A (en) Method for manufacturing group 13 nitride crystal and method for manufacturing group 13 nitride crystal substrate
JP4271408B2 (en) Group III nitride crystal production method
WO2019017043A1 (en) Single-crystal aln production method and single-crystal aln
WO2010084681A1 (en) Group iiib nitride crystal manufacturing method
JP2011046548A (en) Template, method for producing the template, crystal grown using the template, and method and apparatus for producing the crystal
JP2003095790A (en) Method of preparing seed crystal of zinc oxide and method of growing single crystal of zinc oxide
WO2024004961A1 (en) Method of reusing sam substrate
JP5883912B2 (en) Nitride crystal and method for producing the same
JP2018016497A (en) Method for manufacturing group iii nitride semiconductor
WO2015179852A1 (en) Group iii nitride bulk crystals and their fabrication method
JP2005015316A (en) Method of growing artificial quartz crystal
JP4640943B2 (en) Group III nitride crystal manufacturing method
JP2016172692A (en) Nitride crystal and production method thereof
JP2015078121A (en) Nitride crystal and its production method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090730

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100726

R150 Certificate of patent or registration of utility model

Ref document number: 4560310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees