JP4558859B2 - Manufacturing method of polyolefin fiber for cement reinforcement - Google Patents
Manufacturing method of polyolefin fiber for cement reinforcement Download PDFInfo
- Publication number
- JP4558859B2 JP4558859B2 JP23473799A JP23473799A JP4558859B2 JP 4558859 B2 JP4558859 B2 JP 4558859B2 JP 23473799 A JP23473799 A JP 23473799A JP 23473799 A JP23473799 A JP 23473799A JP 4558859 B2 JP4558859 B2 JP 4558859B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- treatment
- amount
- cement
- polyolefin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B20/00—Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
- C04B20/10—Coating or impregnating
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00034—Physico-chemical characteristics of the mixtures
- C04B2111/00198—Characterisation or quantities of the compositions or their ingredients expressed as mathematical formulae or equations
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Description
【0001】
【発明の属する技術分野】
本発明はセメント製品全般において補強するためのセメント補強用ポリオレフィン系繊維に関するものであり、さらに詳しくは、スラリー溶液中に繊維を投入、攪拌して分散させた場合に繊維がスラリー溶液表面に浮遊(浮種現象)することのないセメント補強用ポリオレフィン系繊維に関する。
【0002】
【従来の技術】
従来より、石綿に替わりセメント補強用繊維としてガラス繊維等の無機繊維、あるいはナイロン、ビニロン、ポリプロピレン等の合成繊維が提案されており、なかでもポリプロピレン繊維等のポリオレフィン系繊維は、他の繊維に比べて加熱下において優れた耐アルカリ性および強度を示すので、セメント製品としたときの耐衝撃性に優れており、広く使用されている。
【0003】
しかし、ポリオレフィン系繊維は本来、疎水性が大きく比重が小さいためにスラリー溶液中で均一に分散しにくく、スラリー溶液表面に浮遊し易いという問題があり、セメント補強用繊維の浮種現象はセメント成型体の品質のみならず、その製造工程においても種々の問題の要因となるものである。そこでこれらの問題を解決するべく、ポリオレフィン系繊維を親水化する様々な試みがなされている。例えば、本出願人による特開平7−10620号公報では、ポリプロピレン繊維表面に繊維処理剤としてラリウルホスフェートカリウム塩等の燐酸系塩を付着させることにより、繊維とセメントとの親和性が向上し、セメント中の繊維が均一に分散しやすくしている。また、特公平5−87460号公報のように、幹枝形状のチョップドフィラメントタイプのポリプロピレンフィルム繊維において、開裂分繊する前のフィルムの状態でコロナ放電処理を施し、セメントマトリックスとの密着性を向上させている。
【0004】
さらに、ポリオレフィン系繊維そのものの比重を大きくさせる試みもなされており、例えば、特開昭47−34832号公報においては高比重の酸化鉛を混合した熱可塑性樹脂から製造されるモノフィラメントが開示されており、また特開平4−74741号公報のように高融点熱可塑性樹脂繊維の全面または一部を低融点合成樹脂でもって被覆し、低融点合成樹脂層に無機微粒子を接着または付着させることにより、繊維の見掛けの比重を大きくし、セメント中の繊維が均一に分散しやすくしている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記の親水化、あるいは高比重ポリオレフィン系繊維には以下の問題点がある。例えば、特開平7−10620号公報においては、界面活性剤等の繊維処理剤によって繊維表面を処理し親水化しても、スラリー中に長い間滞留すると繊維処理剤が脱落してしまい、親水性がなくなってしまい、繊維は浮遊し易くなり、これが浮種現象となる。また特公平5−87460号公報においては、フィルムの状態でコロナ放電処理を施した後、フィルムを開裂分繊して細化しているため、細化したフィルム断面のフィブリル部においてはコロナ放電処理されていない未処理部分があり、その未処理部分の占める表面積割合は細化の度合いによって異なるが、繊維表面全体がコロナ放電処理による親水化の効果が得られず、繊維は浮遊し易くなる。
【0006】
また、特開昭47−34832号公報、および特開平4−74741号公報においては、浮種現象は起こり難いが、無機微粒子や金属酸化物を混合あるいは付着させるため、繊維の強度やヤング率が小さく、得られるセメント成型体の耐衝撃性等の品質が損なわれる。
したがって、スラリー溶液中で繊維が溶液表面に浮遊することのないセメント補強用ポリオレフィン系繊維が未だ得られていないのが実情である。本発明はかかる実情を鑑みてなされたものであり、スラリー溶液中で浮種現象の生じないセメント補強用ポリオレフィン系繊維を提供するものである。
【0007】
【課題を解決するための手段】
本発明のセメント補強用ポリオレフィン系繊維は、繊維長が2〜20mmであり、繊維表面に繊維処理剤が付着したポリオレフィン系繊維であって、繊維表面における酸素元素量と炭素元素量の比(O/C)Aが0.10〜0.37であり、かつ繊維処理剤を減量した後の繊維表面における酸素元素量と炭素元素量の比(O/C)Wが0.10〜0.37であることを特徴とする。かかる構成を採ることにより、スラリー溶液中に繊維を投入、攪拌して分散させた時、繊維表面にセメント系粒子が均一に付着し易く、繊維がスラリー溶液の液面に浮遊することなく、中間浮遊もしくは完全に沈降するセメント補強用に好適なポリオレフィン系繊維が得られる。
【0008】
また、本発明のセメント補強用ポリオレフィン系繊維は、下記式(1)で示される繊維処理剤減量前後における酸素元素量と炭素元素量の比の減少率が60%以下であることが望ましい。
減少率=[{(O/C)A − (O/C)W }×100]/(O/C)A ・・・(1)
【0009】
そして、本発明のセメント補強用ポリオレフィン系繊維は、ポリオレフィン系樹脂を溶融紡糸し、温水、湿熱、あるいは、乾熱中で延伸した延伸糸束を水分率5%以下に調整した後、フィードロールに沿って延伸糸束の厚みを3mm以下に拡げ、10m/min 以上の速度で走行させながら、1.0〜1.2倍の緊張状態でコロナ放電処理、常圧プラズマ処理、オゾン水溶液処理のうちいずれかの表面改質処理を施した後、繊維表面に繊維処理剤を付着させることにより製造できる。さらに、前記コロナ放電処理は、繊維表面全体に施され、かつ1回当たりの放電量が少なくとも50W/m2/minであることが望ましい。
以下、本発明の内容を具体的に説明する。
【0010】
本発明に用いられるポリオレフィン系繊維は、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリブテン−1等のポリオレフィン重合体もしくは共重合体が用いられ、なかでもセメント補強用繊維の繊維表面はセメント成型の際にオートクレーブ養生などで高温に曝されるため、できるだけ高融点成分で構成されることが望ましく、ポリプロピレンもしくはポリメチルペンテンが最も好ましい。また本発明のセメント補強用繊維の繊維形態は、単一繊維または複合繊維のいずれであってもよく、複合繊維は鞘芯型、並列型、分割型のいずれであっても差し支えない。
【0011】
また、本発明のセメント補強用ポリオレフィン系繊維の繊度は、セメントの成型法やセメント曲げ強度、衝撃強度等に応じて適宜決定すればよいが、0.5〜90dtexが好ましい。一般に繊度が細いと繊維の表面積が大きくなるため、繊維表面の親水基等がスラリー溶液に接触し易くなり、浮種が少なくなる傾向にある。
【0012】
繊維長は、2〜20mmが好ましい。繊維長が2mm未満であると、セメントの補強効果に劣り、20mmを超えると、スラリー調製時に繊維同士が絡み易く、分繊し難いため、補強効果が十分とはいえないからである。
【0013】
本発明のセメント補強用ポリオレフィン系繊維において、繊維表面に親水性の官能基が導入される。導入される親水性の官能基としては、例えば、−CH−O−、−CO−、−COO−などが挙げられるが、繊維表面における酸素元素量と炭素元素量の比(O/C)Aが0.11〜0.40であり、かつ繊維処理剤を減量した後の繊維表面における酸素元素量と炭素元素量の比(O/C)Wが0.06〜0.33を満たすことにより、浮種現象のないポリオレフィン系繊維となす。より好ましい(O/C)Aは0.20〜0.30であり、かつ(O/C)Wは0.15〜0.25である。ここで、繊維処理剤を減量した後のポリオレフィン系繊維とは、繊維処理剤が付着した元の繊維を多量の水により洗浄し、エタノールで残りの付着物を抽出し、抽出前後の重量から算出した抽出量が0.05%以下となるまで洗浄したものをいう。
【0014】
そして、繊維表面における酸素元素量と炭素元素量の比(O/C)A、および繊維処理剤を減量した後の繊維表面における酸素元素量と炭素元素量の比(O/C)Wは、株式会社島津製作所製のESCA−3300を用い、繊維の表面元素組成分析を行い、測定したものである。試料は両面テープの片面に、約1100dtexの延伸糸束を引き揃えて並べて貼り付けた。測定条件としては、線源はMg/Al、出力8kW、30mAとし、測定面積50mm2 、繊維表面からの深度10nmで繊維表面に存在するオレフィン主鎖および側鎖の全炭素元素、および官能基の割合を測定した。(O/C)Aが0.11、(O/C)Wが0.06未満であると、セメント系粒子の付着が少なく、浮種が解消されないだけでなく、セメント補強効果も低下する。また、(O/C)Aが0.40、(O/C)Wが0.33を超えると、繊維強力の劣化が大きく、セメント補強効果も低下する。
【0015】
さらに、本発明のセメント補強用ポリオレフィン系繊維において、前記式(1)で示される繊維処理剤減量前後における酸素元素量と炭素元素量の比の減少率が60%以下であることが好ましい。より好ましくは、30%以下である。繊維処理剤減量前後における酸素元素量と炭素元素量の比の減少率が60%を超えると、セメント系粒子の付着性に対して、繊維処理剤への依存の度合いが大きくなるため、例えば、湿式抄造法において初期(初回)はセメント系粒子の付着量が多く、分散性に優れているが、さらに繰り返し、回収、再利用された場合には、セメント系粒子の付着量が減少し、スラリー溶液表面に浮遊(浮種)してしまうからである。
【0016】
前記繊維表面における酸素元素量と炭素元素量の比(O/C)Wを得る方法として、繊維処理剤付着前および/または後に表面改質することが好ましく、この方法によれば、スラリー溶液中に分散しているセメント系粒子の付着性が向上するのである。特に、表面改質は、繊維処理剤が繊維重量あたり0.1重量%以下の状態で施すと、耐久親水性が向上する点で好ましい。より好ましくは、繊維処理剤が繊維重量あたり0.05重量%以下である。表面改質処理は、公知の処理方法の中から適宜選定すればよく、例えば、コロナ放電処理、プラズマ処理、オゾン水溶液処理、フッ素化処理、紫外線照射、あるいはスルホン化処理等が挙げられる。また、これらの処理を組み合わせても何ら支障はない。なかでも本発明においては、安全性やコストの面からコロナ放電処理、常圧プラズマ処理、もしくはオゾン水溶液処理が特に好ましい。そして、コロナ放電処理、常圧プラズマ処理、オゾン水溶液処理など表面改質処理を施すことにより、ポリオレフィン系繊維表面に水酸基等の酸素元素が導入され、繊維表面に気泡が付着し難く、スラリー溶液中に分散しているセメント系粒子が付着し易くなる。
【0017】
また、本発明のポリオレフィン系繊維に付着させる繊維処理剤は、繊維表面における酸素元素量と炭素元素量の比(O/C)Aが0.11〜0.40を満たすものであれば特に限定されるものではなく、通常用いられる様々な繊維処理剤、例えばノルマルアルキルホスフェートアルカリ金属塩としては、ノルマルアルキルホスフェートカリウムまたはノルマルアルキルホスフェートナトリウムであって、炭素数8のオクチルアルキルホスフェートカリウムまたはナトリウム、炭素数10のデシルアルキルホスフェートカリウムまたはナトリウム、炭素数12のラウリルアルキルホスフェートカリウムまたはナトリウム、炭素数13のトリデシルアルキルホスフェートカリウムまたはナトリウム、炭素数14のミリスチルアルキルホスフェートカリウムまたはナトリウム、炭素数16のセチルアルキルホスフェートカリウムまたはナトリウム、炭素数18のステアリルアルキルホスフェートカリウムまたはナトリウムを挙げることができる。さらに燐酸系塩を付着させてもよく、例えば燐酸カリウム、燐酸ナトリウム、燐酸カルシウム、燐酸水素二カリウム、燐酸水素二ナトリウム、燐酸二水素カリウム、燐酸二水素ナトリウム、燐酸二水素カルシウム、ピロ燐酸カリウム、ピロ燐酸ナトリウム、ピロ燐酸カルシウム、ピロ燐酸二水素カリウム、ピロ燐酸二水素ナトリウム、メタ燐酸カリウム、メタ燐酸ナトリウム、トリポリ燐酸カリウム、トリポリ燐酸ナトリウム等を挙げることができ、これらを2種以上混合してもよい。
【0018】
また、上記の繊維処理剤以外にも、水溶性集束剤を付与して延伸糸束を集束してもよい。例えば、コーンスターチ、フノリ、カゼイン、タピオカ、植物性小麦澱粉、馬鈴薯澱粉、植物性ガム類、アルファ澱粉、澱粉誘導体の酢酸澱粉、燐酸澱粉、酵素性澱粉、カチオン化澱粉、焙焼澱粉、カルボキシメチルスターチ、カルボキシエチルスターチ、ヒドロキシエチルスターチ、陽性澱粉、シアノエチル化澱粉、ジアルデヒドデンプン、更に、セルロース誘導体としては、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、アルギン酸ソーダ、あるいは、ポリビニルアルコール、ポリアクリル酸等を挙げることができる。
【0019】
上記の繊維処理剤は、繊維重量に対して0.1〜0.5重量%繊維表面に付着させることが好ましい。繊維処理剤の付与方法としては、浸漬法、スプレー法、コーティング法の何れでもよい。0.1重量%未満であると、延伸糸束の集束が困難となり、所定の繊維長に切断するときやセメント成型時の取り扱いが困難となる。0.5重量%を超えると、コスト高となる。
【0020】
次に、本発明のセメント補強用ポリオレフィン系繊維の製造方法について説明する。本発明のセメント補強用ポリオレフィン系繊維は、まずポリオレフィン系樹脂は、公知の溶融紡糸法により紡糸される。得られた紡糸フィラメントは、温水、湿熱、あるいは乾熱中で所定の倍率に延伸されて延伸糸束を得る。次いで、表面改質処理をコロナ放電処理やプラズマ処理などのように繊維に対して非接触で実施する場合、水分率5%以下に調整した55000〜1450000dtexの延伸糸束を10m/min 以上の速度で走行させながら、1.0〜1.2倍の緊張状態で表面改質処理を施すとよい。このとき延伸糸束はフィードロールに沿って均一に薄膜状に薄く拡げる必要があり、特に延伸糸束の厚みはできるだけ薄い方が効率よく表面改質処理できるため、3mm以下、好ましくは1mm以下とするとよい。そして、表面改質処理は延伸糸束の両面を少なくとも1回処理される。表面改質処理が片面だけであると、繊維表面への酸素元素の導入が不均一となり、スラリー溶液中に分散しているセメント系粒子の付着性が不十分なだけでなく、付着斑となるからである。
【0021】
例えば、表面改質処理をコロナ放電処理で実施する場合、コロナ放電処理における1回当たりの放電量は、少なくとも50W/m2/minであることが好ましく、総放電量は100〜5000W/m2/minであることが好ましい。より好ましい放電量は、250〜5000W/m2/minである。放電量が50W/m2/min未満、あるいは総放電量が100W/m2/min未満であると、酸素元素量が不十分となり、5000W/m2/minを超えると、過剰処理となり高コストであるとともに繊維表面の劣化が生じて、セメント強力にも影響を与える。
【0022】
また、表面改質処理を常圧プラズマ処理で実施する場合は、電圧50〜250kV、周波数500〜3000ppsで処理するとよい。常圧プラズマ処理であると、低電圧で処理できるので、繊維の劣化が少なく都合がよい。
【0023】
表面改質処理をオゾン水溶液処理で実施する場合は、通常の水あるいは過酸化水素水等の水溶液中にオゾンを吹き込んで処理するとよい。このとき、オゾン濃度は、5ppm以上、好ましくは15ppm以上であると都合がよい。
【0024】
さらに、表面改質処理中および処理後の繊維には熱を与えないことが好ましく、熱を与えるとしても130℃以下の熱が好ましい。130℃を超えると、酸素を導入した官能基が繊維表面から内部へと移動しセメント系粒子の付着性が低下するためである。
【0025】
そして、表面改質処理後に繊維処理剤を所定量付着させ、アニーリング処理、乾燥、あるいは湿潤状態のままで所定の繊維長に切断されて、乾燥状態の集束繊維、あるいは湿潤状態の短繊維を得る。
【0026】
このようにして得られたセメント補強用ポリオレフィン系繊維において、繊維処理剤減量前および後の粒子付着率は、20%以上であることが好ましい。より好ましくは35%以上、さらに好ましくは50%以上である。粒子付着率とは、繊維とセメント系粒子の親和性を表す指標であり、以下のように測定できる。
(粒子付着率)
セメント補強用繊維1g(投入前の繊維重量WB)、ブレーン値3000のセメント系粒子5g、水1リットルを容量約1.3リットルの市販ミキサーへ投入し、回転数4000rpm で10秒間撹拌し、10分間静置した後、繊維を全量取り出し、投入後の繊維重量WAを秤量し、下記式(2)で算出した。
粒子付着率(%)=[{WB−WA}×100]/WA ・・・(2)
ここでいうブレーン値とは、セメント系粒子1gあたりの全粒子の表面積の合計をいい、ブレーン値3000は、1gあたりに表面積の合計が3000cm2の粒子群のことである。
そして、粒子付着率が20%未満であると、セメント系粒子との馴染みが悪いため、繊維表面に気泡が付着し易くなって、スラリー溶液表面に繊維が浮遊(浮種)してしまうからである。
【0027】
本発明のポリオレフィン系繊維は、普通ポルトランドセメント、高炉セメント、シリカセメント、アルミナセメント等の補強に適用することができ、また半水石膏、2水石膏とスラグあるいはこれらを上記セメントと混合して使用する際にも用いることができ、モルタル用はもちろんのこと湿式抄造法、流込方式、押出成型法で自然養生、蒸気養生、オートクレーブ養生といかなる製法にも適用することができる。
【0028】
【実施例】
以下、本発明の内容を実施例を挙げて説明する。なお、繊維強度、伸度は以下のように測定した。
【0029】
[繊維強度、伸度]
JIS L 1013における引張強さおよび伸び率に準ずる。
【0030】
[実施例1]
樹脂として融点165℃のポリプロピレン樹脂を用いて、紡糸温度270℃、引取速度500m/min で溶融紡糸し、8dtexの紡糸フィラメントを得た。前記紡糸フィラメントを150℃で4倍に乾式延伸して延伸糸束とし、水分率0%の延伸糸束を10m/min の速度で走行させながら、1.05倍の緊張状態を保ち、均一に薄膜状に厚み1mmに拡げた状態で室温25℃の雰囲気下でコロナ放電処理機を通し、両面にそれぞれ放電量1026W/m2/minを与えて、繊維表面にコロナ放電処理を施した。その後、ラウリルホスフェートカリウム塩を主体とする繊維処理剤を含む25℃のオイルバス槽に延伸糸束を浸漬して、繊維処理剤を0.3重量%付着させ、切断することにより繊度2.2dtex、繊維長6mmのセメント補強用ポリプロピレン繊維となした。
【0031】
[実施例2]
放電量をそれぞれ71W/m2/minとした以外は実施例1と同様として、セメント補強用ポリプロピレン繊維を得た。
【0032】
[実施例3]
実施例1の樹脂を用いて、紡糸温度270℃、引取速度500m/min で溶融紡糸し、65dtexの紡糸フィラメントを得た。前記紡糸フィラメントを150℃で5倍に乾式延伸して、繊度13.2dtex、繊維長10mmとした以外は実施例1と同様として、セメント補強用ポリプロピレン繊維を得た。
【0033】
[実施例4]
表面改質処理として、延伸糸束に電圧60kV、周波数1000pps の常圧プラズマ処理を用いた以外は実施例1と同様として、セメント補強用ポリプロピレン繊維を得た。
【0034】
[比較例1]
コロナ放電処理を施さなかった以外は実施例1と同様として、ポリプロピレン繊維を得た。
【0035】
[比較例2]
放電量をそれぞれ25W/m2/minのコロナ放電処理を施した以外は実施例1と同様として、ポリプロピレン繊維を得た。
【0036】
[比較例3]
現存の20μmのポリプロピレンフィルムを用いて実施例1と同様のコロナ放電処理を施し、80μmの幅にフィブリル化した後、6mmに切断し、ポリプロピレンフィブリル化繊維を得た。
実施例1〜4、および比較例1〜3の繊維物性を表1に示す。
【0037】
【表1】
【0038】
実施例1〜4において、初期(初回)は主として繊維表面に付着した繊維処理剤が作用し、スラリー溶液中で均一に分散していた。そして、スラリー溶液を回収、再利用した際、回収タンク中の白水においても液表面に浮種は発生しなかった。一方、比較例1、2において、初期のスラリー溶液中での分散性は若干の浮種が生じた程度であったが、回収タンク中の白水においてはかなりの浮種が発生していた。また、比較例3は、繊維表面全体がコロナ放電処理されていないためか、浮種は解消されなかった。
【0039】
【発明の効果】
本発明のセメント補強用ポリオレフィン系繊維は、繊維処理剤の減量前および減量後の繊維表面における酸素元素量と炭素元素量の比を所定の範囲とすることにより、セメントスラリー溶液との親和性に優れ、繊維表面にセメント系粒子が付着し易く、セメントボード製造工程で回収された白水タンクにおいて繊維が白水表面に浮遊することなく白水中に中間浮遊もしくは完全沈降し、白水再利用時に再び繊維がセメント製造工程に戻るとともに白水上澄み液をセメント製造工程の洗浄水として使用するときに浮遊した繊維が洗浄水配管に詰まるということもなく、投入した繊維が効率よく使用できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polyolefin fiber for cement reinforcement to reinforce in general cement products. More specifically, the fiber floats on the surface of a slurry solution when the fiber is put into a slurry solution and dispersed by stirring. The present invention relates to a polyolefin fiber for cement reinforcement which does not cause floating phenomenon.
[0002]
[Prior art]
Conventionally, instead of asbestos, inorganic fibers such as glass fibers or synthetic fibers such as nylon, vinylon, and polypropylene have been proposed as cement reinforcing fibers, and in particular, polyolefin fibers such as polypropylene fibers are compared to other fibers. Since it exhibits excellent alkali resistance and strength under heating, it has excellent impact resistance when used as a cement product and is widely used.
[0003]
However, polyolefin fibers are inherently hydrophobic and have a low specific gravity, so they are difficult to disperse uniformly in the slurry solution and easily float on the surface of the slurry solution. Not only the quality of the body but also the manufacturing process causes various problems. In order to solve these problems, various attempts have been made to make the polyolefin fibers hydrophilic. For example, in Japanese Patent Application Laid-Open No. 7-10620 by the present applicant, the affinity between the fiber and the cement is improved by attaching a phosphate salt such as Lariul phosphate potassium salt as a fiber treatment agent to the polypropylene fiber surface, The fibers in the cement are easily dispersed uniformly. In addition, as disclosed in Japanese Patent Publication No. 5-87460, a chopped filament type polypropylene film fiber having a trunk branch shape is subjected to a corona discharge treatment in the state of a film before splitting to improve adhesion with a cement matrix. ing.
[0004]
Furthermore, attempts have been made to increase the specific gravity of polyolefin fibers themselves. For example, JP-A-47-34832 discloses a monofilament produced from a thermoplastic resin mixed with high specific gravity lead oxide. Further, as disclosed in JP-A-4-74741, the entire surface or a part of the high-melting point thermoplastic resin fiber is coated with a low-melting point synthetic resin, and inorganic fine particles are adhered or adhered to the low-melting point synthetic resin layer, thereby The apparent specific gravity is increased to facilitate uniform dispersion of the fibers in the cement.
[0005]
[Problems to be solved by the invention]
However, the hydrophilized or high specific gravity polyolefin fibers have the following problems. For example, in Japanese Patent Application Laid-Open No. 7-10620, even if the fiber surface is treated with a fiber treatment agent such as a surfactant to make it hydrophilic, if the fiber stays in the slurry for a long time, the fiber treatment agent falls off and the hydrophilicity is increased. It disappears, and the fiber tends to float, which becomes a floating seed phenomenon. In Japanese Patent Publication No. 5-87460, the corona discharge treatment is performed in the state of the film, and then the film is cleaved and finely divided so that the fibril portion of the thinned film cross section is subjected to the corona discharge treatment. There are untreated parts, and the surface area ratio occupied by the untreated parts varies depending on the degree of thinning, but the entire fiber surface cannot be hydrophilized by corona discharge treatment, and the fibers tend to float.
[0006]
In JP-A-47-34832 and JP-A-4-74741, the floating phenomenon is unlikely to occur. However, since inorganic fine particles and metal oxide are mixed or adhered, the strength and Young's modulus of the fiber are low. The quality such as impact resistance of the resulting cement molded body is small.
Therefore, the actual situation is that a polyolefin fiber for cement reinforcement in which the fiber does not float on the solution surface in the slurry solution has not yet been obtained. This invention is made | formed in view of this situation, and provides the polyolefin fiber for cement reinforcement which does not produce a floating type phenomenon in a slurry solution.
[0007]
[Means for Solving the Problems]
The polyolefin fiber for cement reinforcement of the present invention is a polyolefin fiber having a fiber length of 2 to 20 mm and having a fiber treatment agent attached to the fiber surface, and the ratio of the amount of oxygen element to the amount of carbon element (O / C) A is 0.10 to 0.37, and the ratio of oxygen element amount to carbon element amount on the fiber surface after reducing the fiber treatment agent (O / C) W is 0.10 to 0.37. It is characterized by being. By adopting such a configuration, when the fibers are put into the slurry solution and dispersed by stirring, the cementitious particles easily adhere uniformly to the fiber surface, and the fibers do not float on the liquid surface of the slurry solution. A polyolefin fiber suitable for cement reinforcement which floats or settles completely is obtained.
[0008]
In the polyolefin fiber for cement reinforcement of the present invention, it is desirable that the reduction rate of the ratio of the oxygen element amount and the carbon element amount before and after the fiber treatment agent reduction represented by the following formula (1) is 60% or less.
Reduction rate = [{(O / C) A − (O / C) W } × 100] / (O / C) A (1)
[0009]
The polyolefin fiber for cement reinforcement according to the present invention is obtained by melt spinning a polyolefin resin and adjusting a drawn yarn bundle drawn in hot water, wet heat, or dry heat to a moisture content of 5% or less, and then along the feed roll. While extending the thickness of the drawn yarn bundle to 3 mm or less and running at a speed of 10 m / min or more, any of corona discharge treatment, atmospheric pressure plasma treatment, and aqueous ozone treatment in a tension state of 1.0 to 1.2 times After performing such surface modification treatment, it can be produced by attaching a fiber treatment agent to the fiber surface. Furthermore, it is desirable that the corona discharge treatment is performed on the entire fiber surface and the discharge amount per one time is at least 50 W / m 2 / min.
The contents of the present invention will be specifically described below.
[0010]
The polyolefin fiber used in the present invention is a polyolefin polymer or copolymer such as polyethylene, polypropylene, polymethylpentene, and polybutene-1, and the fiber surface of the cement reinforcing fiber is an autoclave during cement molding. Since it is exposed to a high temperature during curing, it is desirable that it is composed of a component having a high melting point as much as possible, and polypropylene or polymethylpentene is most preferable. The fiber form of the cement reinforcing fiber of the present invention may be either a single fiber or a composite fiber, and the composite fiber may be any of a sheath core type, a parallel type, and a split type.
[0011]
Further, the fineness of the polyolefin fiber for cement reinforcement of the present invention may be appropriately determined according to the cement molding method, cement bending strength, impact strength, etc., but is preferably 0.5 to 90 dtex. In general, when the fineness is small, the surface area of the fiber increases, so that the hydrophilic group on the fiber surface is likely to come into contact with the slurry solution, and the floating species tends to decrease.
[0012]
The fiber length is preferably 2 to 20 mm. If the fiber length is less than 2 mm, the reinforcing effect of the cement is inferior. If the fiber length exceeds 20 mm, the fibers are easily entangled during slurry preparation and are difficult to separate, so that the reinforcing effect is not sufficient.
[0013]
In the polyolefin fiber for cement reinforcement of the present invention, a hydrophilic functional group is introduced on the fiber surface. Examples of the hydrophilic functional group to be introduced include —CH—O—, —CO—, —COO—, and the ratio of the amount of oxygen element to the amount of carbon element on the fiber surface (O / C) A Is 0.11 to 0.40, and the ratio of the amount of oxygen element to the amount of carbon element (O / C) W on the fiber surface after reducing the amount of the fiber treating agent satisfies 0.06 to 0.33. , And polyolefin fiber without floating phenomenon. More preferable (O / C) A is 0.20 to 0.30, and (O / C) W is 0.15 to 0.25. Here, the polyolefin fiber after reducing the amount of the fiber treatment agent is calculated from the weight before and after extraction by washing the original fiber with the fiber treatment agent with a large amount of water and extracting the remaining deposits with ethanol. What was washed until the extracted amount became 0.05% or less.
[0014]
And the ratio of oxygen element amount and carbon element amount on the fiber surface (O / C) A , and the ratio of oxygen element amount and carbon element amount on the fiber surface after reducing the fiber treatment agent (O / C) W , The surface element composition analysis of the fiber was performed and measured using ESCA-3300 manufactured by Shimadzu Corporation. The sample was affixed to one side of a double-sided tape with a drawn yarn bundle of about 1100 dtex aligned. As the measurement conditions, the radiation source was Mg / Al, the output was 8 kW, 30 mA, the measurement area was 50 mm 2 , the total carbon elements of the olefin main chain and side chain existing on the fiber surface at a depth of 10 nm from the fiber surface, and the functional groups The percentage was measured. (O / C) A 0.11, the (O / C) W is less than 0.06, less adhesion of cementitious particles,浮種not only persists, also decreases cement reinforcing effect. If (O / C) A is 0.40 and (O / C) W exceeds 0.33, the fiber strength is greatly deteriorated and the cement reinforcing effect is also lowered.
[0015]
Furthermore, in the polyolefin fiber for cement reinforcement of the present invention, it is preferable that the reduction rate of the ratio of the oxygen element amount and the carbon element amount before and after the fiber treatment agent reduction represented by the formula (1) is 60% or less. More preferably, it is 30% or less. When the rate of decrease in the ratio of the amount of oxygen element and the amount of carbon element before and after the fiber treatment agent is reduced exceeds 60%, the degree of dependence on the fiber treatment agent increases with respect to the adhesion of cementitious particles. In the wet papermaking method, the initial amount (first time) has a large amount of cementitious particles and is excellent in dispersibility. However, when it is repeatedly and collected and reused, the amount of cementitious particles decreases and the slurry This is because it floats on the surface of the solution.
[0016]
As a method for obtaining the ratio of oxygen element amount and carbon element amount (O / C) W on the fiber surface, it is preferable to modify the surface before and / or after the fiber treatment agent is attached. This improves the adhesion of cementitious particles dispersed in the particles. In particular, it is preferable that the surface modification is performed when the fiber treatment agent is applied in a state of 0.1% by weight or less per weight of the fiber because durability hydrophilicity is improved. More preferably, the fiber treatment agent is 0.05% by weight or less per fiber weight. The surface modification treatment may be appropriately selected from known treatment methods, and examples thereof include corona discharge treatment, plasma treatment, ozone aqueous solution treatment, fluorination treatment, ultraviolet irradiation, and sulfonation treatment. Moreover, there is no problem even if these processes are combined. Among these, in the present invention, corona discharge treatment, atmospheric pressure plasma treatment, or ozone aqueous solution treatment is particularly preferable from the viewpoint of safety and cost. Then, by applying surface modification treatment such as corona discharge treatment, atmospheric pressure plasma treatment, and aqueous ozone treatment, oxygen elements such as hydroxyl groups are introduced to the surface of the polyolefin fiber, and bubbles do not easily adhere to the fiber surface. The cementitious particles dispersed in the particles are likely to adhere.
[0017]
Further, the fiber treatment agent attached to the polyolefin-based fiber of the present invention is particularly limited as long as the ratio of oxygen element amount to carbon element amount (O / C) A on the fiber surface satisfies 0.11 to 0.40. However, various commonly used fiber treating agents, such as normal alkyl phosphate alkali metal salts, are normal alkyl phosphate potassium or normal alkyl phosphate sodium, octyl alkyl phosphate potassium or sodium having 8 carbon atoms, carbon, Decylalkyl phosphate potassium or sodium having several tens of carbons, lauryl alkyl phosphate potassium or sodium having 12 carbons, tridecyl alkyl phosphate potassium or sodium having 13 carbons, myristyl alkyl phosphate potassium having 14 carbons Examples thereof include sodium, potassium or sodium cetyl alkyl phosphate having 16 carbon atoms, and potassium or sodium stearyl alkyl phosphate having 18 carbon atoms. Further, a phosphate salt may be attached, such as potassium phosphate, sodium phosphate, calcium phosphate, dipotassium hydrogen phosphate, disodium hydrogen phosphate, potassium dihydrogen phosphate, sodium dihydrogen phosphate, calcium dihydrogen phosphate, potassium pyrophosphate, Examples include sodium pyrophosphate, calcium pyrophosphate, potassium dihydrogen pyrophosphate, sodium dihydrogen pyrophosphate, potassium metaphosphate, sodium metaphosphate, potassium tripolyphosphate, sodium tripolyphosphate, and the like. Also good.
[0018]
In addition to the above fiber treatment agent, a drawn yarn bundle may be bundled by applying a water-soluble sizing agent. For example, corn starch, funori, casein, tapioca, vegetable wheat starch, potato starch, vegetable gums, alpha starch, starch derivative acetate starch, phosphate starch, enzymatic starch, cationized starch, roasted starch, carboxymethyl starch Carboxyethyl starch, hydroxyethyl starch, positive starch, cyanoethylated starch, dialdehyde starch, and cellulose derivatives such as methylcellulose, ethylcellulose, hydroxyethylcellulose, carboxymethylcellulose, sodium alginate, polyvinyl alcohol, polyacrylic acid, etc. Can be mentioned.
[0019]
The fiber treatment agent is preferably attached to the fiber surface in an amount of 0.1 to 0.5% by weight based on the fiber weight. As a method for applying the fiber treatment agent, any of an immersion method, a spray method, and a coating method may be used. If it is less than 0.1% by weight, it is difficult to converge the drawn yarn bundle, and handling at the time of cutting to a predetermined fiber length or cement molding becomes difficult. If it exceeds 0.5% by weight, the cost increases.
[0020]
Next, the manufacturing method of the polyolefin fiber for cement reinforcement of this invention is demonstrated. In the polyolefin fiber for cement reinforcement of the present invention, a polyolefin resin is first spun by a known melt spinning method. The obtained spinning filament is drawn at a predetermined magnification in warm water, wet heat, or dry heat to obtain a drawn yarn bundle. Next, when the surface modification treatment is carried out in a non-contact manner on the fiber, such as corona discharge treatment or plasma treatment, a stretched yarn bundle of 55000 to 1450,000 dtex adjusted to a moisture content of 5% or less is at a speed of 10 m / min or more The surface modification treatment is preferably performed in a tension state of 1.0 to 1.2 times while traveling at a high speed. At this time, the drawn yarn bundle needs to be spread thinly and uniformly along the feed roll, and in particular, the thinner the drawn yarn bundle, the more efficiently the surface modification treatment can be performed, so that it is 3 mm or less, preferably 1 mm or less. Good. In the surface modification treatment, both sides of the drawn yarn bundle are treated at least once. If the surface modification treatment is only on one side, the introduction of oxygen element to the fiber surface becomes non-uniform, and the adhesion of the cementitious particles dispersed in the slurry solution is not only insufficient, but also adhesion spots Because.
[0021]
For example, when the surface modification treatment is carried out by corona discharge treatment, the discharge amount per time in the corona discharge treatment is preferably at least 50 W / m 2 / min, and the total discharge amount is 100 to 5000 W / m 2. / min is preferred. A more preferable discharge amount is 250 to 5000 W / m 2 / min. If the discharge amount is less than 50 W / m 2 / min, or if the total discharge amount is less than 100 W / m 2 / min, the amount of oxygen element is insufficient, and if it exceeds 5000 W / m 2 / min, excessive treatment results in high cost. At the same time, the fiber surface deteriorates, affecting the cement strength.
[0022]
Further, when the surface modification treatment is performed by atmospheric pressure plasma treatment, the treatment may be performed at a voltage of 50 to 250 kV and a frequency of 500 to 3000 pps. The atmospheric pressure plasma treatment is convenient because it can be treated at a low voltage, and there is little deterioration of the fiber.
[0023]
When the surface modification treatment is performed by an aqueous ozone treatment, ozone may be blown into a normal aqueous solution such as water or hydrogen peroxide solution. At this time, the ozone concentration is conveniently 5 ppm or more, preferably 15 ppm or more.
[0024]
Furthermore, it is preferable not to give heat to the fibers during and after the surface modification treatment, and even if heat is given, heat of 130 ° C. or less is preferred. This is because when the temperature exceeds 130 ° C., the functional group into which oxygen is introduced moves from the fiber surface to the inside, and the adhesion of the cementitious particles decreases.
[0025]
Then, after the surface modification treatment, a predetermined amount of a fiber treatment agent is attached, and the fiber is cut into a predetermined fiber length while being annealed, dried, or wet to obtain a dried concentrated fiber or a wet short fiber. .
[0026]
In the thus obtained polyolefin fiber for cement reinforcement, the particle adhesion rate before and after the fiber treatment agent is reduced is preferably 20% or more. More preferably, it is 35% or more, More preferably, it is 50% or more. The particle adhesion rate is an index representing the affinity between fibers and cementitious particles, and can be measured as follows.
(Particle adhesion rate)
Cement reinforcing fiber 1 g (fiber weight W B of predose), was charged cementitious particles 5g of Blaine value 3000, 1 liter of water to commercially available mixer having a volume of about 1.3 liters and stirred for 10 seconds at a rotation speed of 4000 rpm, after standing 10 minutes, the fiber was removed the total amount, were weighed fiber weight W a post on, was calculated by the following formula (2).
Particle adhesion rate (%) = [{W B −W A } × 100] / W A (2)
Here, the brain value refers to the total surface area of all particles per gram of cementitious particles, and the brain value 3000 is a group of particles having a total surface area of 3000 cm 2 per gram.
And if the particle adhesion rate is less than 20%, the familiarity with the cement-based particles is poor, so that bubbles easily adhere to the fiber surface, and the fibers float (float) on the slurry solution surface. is there.
[0027]
The polyolefin fiber of the present invention can be applied to reinforcement of ordinary Portland cement, blast furnace cement, silica cement, alumina cement, etc., and also used hemihydrate gypsum, dihydrate gypsum and slag, or a mixture thereof with the above cement In addition to mortar use, it can be applied to any production method such as natural curing, steam curing, and autoclave curing as well as wet papermaking, pouring, and extrusion methods.
[0028]
【Example】
Hereinafter, the contents of the present invention will be described with reference to examples. Fiber strength and elongation were measured as follows.
[0029]
[Fiber strength and elongation]
Conforms to tensile strength and elongation in JIS L 1013.
[0030]
[Example 1]
Using a polypropylene resin having a melting point of 165 ° C. as the resin, melt spinning was performed at a spinning temperature of 270 ° C. and a take-up speed of 500 m / min to obtain an 8 dtex spun filament. The spinning filament is dry-drawn 4 times at 150 ° C. to obtain a drawn yarn bundle, and a drawn yarn bundle having a moisture content of 0% is run at a speed of 10 m / min while maintaining a tension state of 1.05 times and uniformly. The fiber surface was subjected to corona discharge treatment by passing it through a corona discharge treatment machine in an atmosphere at room temperature of 25 ° C. in a state where the thickness was increased to 1 mm in a thin film state, and applying a discharge amount of 1026 W / m 2 / min to both surfaces. Thereafter, the drawn yarn bundle is dipped in an oil bath tank at 25 ° C. containing a fiber treatment agent mainly composed of lauryl phosphate potassium salt, and the fiber treatment agent is attached by 0.3% by weight and cut to a fineness of 2.2 dtex. This was a polypropylene fiber for cement reinforcement with a fiber length of 6 mm.
[0031]
[Example 2]
A cement-reinforced polypropylene fiber was obtained in the same manner as in Example 1 except that the discharge amount was 71 W / m 2 / min.
[0032]
[Example 3]
Using the resin of Example 1, melt spinning was performed at a spinning temperature of 270 ° C. and a take-up speed of 500 m / min to obtain a 65 dtex spun filament. Cement-reinforced polypropylene fibers were obtained in the same manner as in Example 1 except that the spun filament was dry-drawn 5 times at 150 ° C. to obtain a fineness of 13.2 dtex and a fiber length of 10 mm.
[0033]
[Example 4]
As a surface modification treatment, a cement reinforcing polypropylene fiber was obtained in the same manner as in Example 1 except that a normal pressure plasma treatment with a voltage of 60 kV and a frequency of 1000 pps was used for the drawn yarn bundle.
[0034]
[Comparative Example 1]
A polypropylene fiber was obtained in the same manner as in Example 1 except that the corona discharge treatment was not performed.
[0035]
[Comparative Example 2]
A polypropylene fiber was obtained in the same manner as in Example 1 except that the corona discharge treatment was performed at a discharge amount of 25 W / m 2 / min.
[0036]
[Comparative Example 3]
A corona discharge treatment similar to that of Example 1 was performed using an existing 20 μm polypropylene film, fibrillated to a width of 80 μm, and then cut to 6 mm to obtain polypropylene fibrillated fibers.
Table 1 shows the fiber properties of Examples 1 to 4 and Comparative Examples 1 to 3.
[0037]
[Table 1]
[0038]
In Examples 1 to 4, in the initial stage (first time), the fiber treatment agent adhered mainly to the fiber surface acted and was uniformly dispersed in the slurry solution. When the slurry solution was recovered and reused, no floating species was generated on the surface of the white water in the recovery tank. On the other hand, in Comparative Examples 1 and 2, the initial dispersibility in the slurry solution was such that some floating seeds were generated, but considerable floating seeds were generated in the white water in the recovery tank. In Comparative Example 3, the floating type was not eliminated because the entire fiber surface was not subjected to corona discharge treatment.
[0039]
【The invention's effect】
The polyolefin fiber for cement reinforcement of the present invention has an affinity for the cement slurry solution by adjusting the ratio of the oxygen element amount and the carbon element amount on the fiber surface before and after the fiber treatment agent is reduced to a predetermined range. Excellent, cement particles easily adhere to the fiber surface, and in the white water tank collected in the cement board manufacturing process, the fiber floats or settles completely in the white water without floating on the white water surface. When returning to the cement manufacturing process and using the white water supernatant as cleaning water in the cement manufacturing process, the fibers that have floated are not clogged in the cleaning water piping, and the input fibers can be used efficiently.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23473799A JP4558859B2 (en) | 1999-08-20 | 1999-08-20 | Manufacturing method of polyolefin fiber for cement reinforcement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23473799A JP4558859B2 (en) | 1999-08-20 | 1999-08-20 | Manufacturing method of polyolefin fiber for cement reinforcement |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001058858A JP2001058858A (en) | 2001-03-06 |
JP4558859B2 true JP4558859B2 (en) | 2010-10-06 |
Family
ID=16975578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23473799A Expired - Fee Related JP4558859B2 (en) | 1999-08-20 | 1999-08-20 | Manufacturing method of polyolefin fiber for cement reinforcement |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4558859B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104652131A (en) * | 2015-01-23 | 2015-05-27 | 北京京阳环保工程有限公司 | Bioactive carbon fiber, composite ecological film packing component comprising bioactive carbon fiber and preparation method of bioactive carbon fiber |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4860828B2 (en) * | 2001-02-01 | 2012-01-25 | ダイワボウホールディングス株式会社 | Polyolefin fiber for cement reinforcement and method for producing the same |
JP4970675B2 (en) * | 2001-09-14 | 2012-07-11 | ダイワボウホールディングス株式会社 | Polyolefin fiber for cement reinforcement and method for producing the same |
JP2004168643A (en) * | 2002-10-30 | 2004-06-17 | Hagihara Industries Inc | Polypropylene fiber for cement reinforcement |
EP1580173A4 (en) * | 2002-10-30 | 2007-05-09 | Hagihara Ind | Polypropylene fiber for cement reinforcement, molded cement made with the fiber, method of constructing concrete structure, and method of spray concreting |
ITMI20040362A1 (en) * | 2004-02-27 | 2004-05-27 | Ruredil Spa | COMPOSITION AND METHOD TO IMPROVE THE GEOTECHNICAL CHARACTERISTICS OF THE SOILS |
JP2006096565A (en) * | 2004-03-31 | 2006-04-13 | Hagihara Industries Inc | Cement-reinforcing fiber |
JP5723482B2 (en) | 2012-02-29 | 2015-05-27 | ダイワボウホールディングス株式会社 | Cement reinforcing fiber and hardened cement body using the same |
JP2014071388A (en) * | 2012-09-28 | 2014-04-21 | Dainippon Printing Co Ltd | Screen, image display system, and method for manufacturing screen |
BR112017011062B1 (en) * | 2014-11-27 | 2021-11-16 | Construction Research & Technology Gmbh | SURFACE MODIFIED POLYOLEFIN FIBERS |
US10717673B2 (en) | 2015-12-30 | 2020-07-21 | Exxonmobil Research And Engineering Company | Polymer fibers for concrete reinforcement |
US10131579B2 (en) | 2015-12-30 | 2018-11-20 | Exxonmobil Research And Engineering Company | Polarity-enhanced ductile polymer fibers for concrete micro-reinforcement |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03501393A (en) * | 1987-09-30 | 1991-03-28 | ダナクロン アクティーゼルスカブ | Reinforcing fiber and method for producing the reinforcing fiber |
JPH04502142A (en) * | 1988-12-14 | 1992-04-16 | セムファイバー エー/エス | Fibers and materials using fibers |
JPH08311765A (en) * | 1995-05-12 | 1996-11-26 | Mitsubishi Chem Corp | Polyolefin nonwoven fabric |
JPH10130947A (en) * | 1996-10-31 | 1998-05-19 | Kanegafuchi Chem Ind Co Ltd | Polyolefin-based fiber excellent in hydrophilicity and its production |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63211375A (en) * | 1987-02-26 | 1988-09-02 | 三井化学株式会社 | Production of permanent hydrophilic nonwoven fabric |
-
1999
- 1999-08-20 JP JP23473799A patent/JP4558859B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03501393A (en) * | 1987-09-30 | 1991-03-28 | ダナクロン アクティーゼルスカブ | Reinforcing fiber and method for producing the reinforcing fiber |
JPH04502142A (en) * | 1988-12-14 | 1992-04-16 | セムファイバー エー/エス | Fibers and materials using fibers |
JPH08311765A (en) * | 1995-05-12 | 1996-11-26 | Mitsubishi Chem Corp | Polyolefin nonwoven fabric |
JPH10130947A (en) * | 1996-10-31 | 1998-05-19 | Kanegafuchi Chem Ind Co Ltd | Polyolefin-based fiber excellent in hydrophilicity and its production |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104652131A (en) * | 2015-01-23 | 2015-05-27 | 北京京阳环保工程有限公司 | Bioactive carbon fiber, composite ecological film packing component comprising bioactive carbon fiber and preparation method of bioactive carbon fiber |
Also Published As
Publication number | Publication date |
---|---|
JP2001058858A (en) | 2001-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4558859B2 (en) | Manufacturing method of polyolefin fiber for cement reinforcement | |
JP2688434B2 (en) | Fiber for reinforcement | |
EP0062491B1 (en) | Polymers in matrix reinforcement | |
EP0150513B1 (en) | High-tenacity, fine-denier polyvinyl alcohol fiber and a method for production thereof | |
TWI554483B (en) | A hardened hardening body reinforcing fiber and a hydraulic hardened body using the same | |
WO2013129323A1 (en) | Fiber for reinforcing cement, and cured cement produced using same | |
DK157447B (en) | FIBER REINFORCED HYDRAULIC HARDWARE MATERIALS | |
JP4860828B2 (en) | Polyolefin fiber for cement reinforcement and method for producing the same | |
EP1044939A1 (en) | Shaped fibrous cement products and reinforcement fibers for such products and method for treating such fibers | |
JP4970675B2 (en) | Polyolefin fiber for cement reinforcement and method for producing the same | |
FR2813300A1 (en) | PROCESS FOR THE PREPARATION OF MINERAL COMPOUNDS, COMPOUNDS OBTAINED, AND THEIR USE IN THERMOPLASTIC MATERIALS | |
JP2004190201A (en) | Carbon fiber bundle and chopped carbon fiber bundle for fiber reinforced resins expressing high conductivity and carbon fiber reinforced resin composition | |
JP3980762B2 (en) | Polyolefin fiber bundle for cement reinforcement | |
JPH072554A (en) | Bundled fiber for reinforcing cement | |
JP2000199183A (en) | Acrylonitrile fiber for producing carbon fiber | |
JP3348971B2 (en) | Bundled fiber for cement reinforcement | |
JP3847148B2 (en) | Cement reinforcing fiber | |
FR2479280A1 (en) | SYNTHETIC POLYVINYL ALCOHOL FIBERS FOR REINFORCING CEMENT PRODUCTS AND PROCESS FOR THEIR MANUFACTURE | |
JPH01260017A (en) | High-strength water-disintegrable type polyvinyl alcohol based conjugate fiber | |
JP2867087B2 (en) | Polypropylene fiber and fiber reinforced cement molding | |
JP4744676B2 (en) | Cement reinforcing composite fiber | |
JPS6244066B2 (en) | ||
JP3080686B2 (en) | Thermoplastic synthetic fiber for cement reinforcement | |
EP1362937A1 (en) | Process for the production of shaped fibrous cement products and reinforcement fibres for such products | |
JP2565517B2 (en) | Fiber reinforced hydraulic molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050630 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080930 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091027 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100713 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100722 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4558859 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130730 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |