JP2004168643A - Polypropylene fiber for cement reinforcement - Google Patents

Polypropylene fiber for cement reinforcement Download PDF

Info

Publication number
JP2004168643A
JP2004168643A JP2003368595A JP2003368595A JP2004168643A JP 2004168643 A JP2004168643 A JP 2004168643A JP 2003368595 A JP2003368595 A JP 2003368595A JP 2003368595 A JP2003368595 A JP 2003368595A JP 2004168643 A JP2004168643 A JP 2004168643A
Authority
JP
Japan
Prior art keywords
cement
polypropylene fiber
fiber
treatment
polypropylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003368595A
Other languages
Japanese (ja)
Inventor
Masuo Yabuki
増男 矢吹
Kazumasa Nakajima
和政 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hagiwara Industries Inc
Original Assignee
Hagiwara Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hagiwara Industries Inc filed Critical Hagiwara Industries Inc
Priority to JP2003368595A priority Critical patent/JP2004168643A/en
Publication of JP2004168643A publication Critical patent/JP2004168643A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyolefin resin fiber for cement reinforcement to which hydrophilicity can be imparted, and which has excellent adhesive properties with a cement matrix, can reinforce a cement molding, and can improve the bending strength and impact strength of the cement molding. <P>SOLUTION: A polypropylene fiber is subjected to surface oxidation treatment, and the wetting index of the surface is controlled to ≥38 dyn/cm, so that the polyolefin resin fiber for cement reinforcement is obtained to which excellent affinity can be imparted to the interface between the polypropylene fiber and cement, and which has excellent adhesive properties with the cement matrix, can reinforce a cement molding, and can improve the bending strength and impact strength of the cement molding. <P>COPYRIGHT: (C)2004,JPO

Description

本発明は、コンクリートやモルタルの補強効果に優れたセメント補強用ポリプロピレン繊維に関するものである。   TECHNICAL FIELD The present invention relates to a polypropylene fiber for cement reinforcement having an excellent reinforcing effect for concrete and mortar.

セメント成形品の補強材として長年使用されていたアスベストの代わりに、合成樹脂繊維として、例えば、ポリビニルアルコール樹脂、ポリオレフィン樹脂、ポリアクリロニトリル樹脂、ポリアミド樹脂等が用いられている。
しかしながら、セメント成形品の養生は寸法安定性向上、養生時間の短縮等の目的でオートクレーブで行うことが近年は増加しており、こうしたオートクレーブ養生を行う場合には、ポリオレフィン系以外の繊維は耐熱アルカリ性の不足から劣化してしまうために補強繊維として用いることができなかった。
これらのことより、ポリオレフィン樹脂繊維は、耐熱アルカリ性があるため多用されているが、ポリオレフィン樹脂は、その分子構造内に親水性基やセメントとの接着性に有効な官能基がほとんど存在しないため、セメントマトリックスとの接着性が極めて悪く、ポリオレフィン樹脂繊維で補強したセメント成形体を破壊すると容易に繊維が引き抜けてしまい、繊維の引き抜き抵抗による衝撃強度や曲げ破壊エネルギーの増大は認められても、曲げ強度を大きく向上させるには至らない欠点があった。
Instead of asbestos, which has been used for many years as a reinforcing material for cement molded products, for example, polyvinyl alcohol resin, polyolefin resin, polyacrylonitrile resin, polyamide resin and the like are used as synthetic resin fibers.
However, in recent years, the curing of cement molded products has been increasing in autoclaves for the purpose of improving dimensional stability, shortening the curing time, etc. When such autoclave curing is performed, fibers other than polyolefin fibers are resistant to heat and alkali. However, it could not be used as a reinforcing fiber because it was deteriorated due to the shortage.
From these facts, polyolefin resin fibers are often used because of their heat-resistant alkali resistance, but polyolefin resins have few hydrophilic groups or functional groups effective for adhesion to cement in their molecular structure, Adhesion to the cement matrix is extremely poor, and when the cement molded body reinforced with polyolefin resin fibers is broken, the fibers are easily pulled out, and even if the impact strength and bending fracture energy due to the fiber pull-out resistance are increased, There is a disadvantage that the bending strength cannot be greatly improved.

かかるポリオレフィン樹脂繊維のセメントとの親和性を改良するために、界面活性剤、例えば、ノルマルアルキルホスフェートアルカリ金属塩からなる界面活性剤、または、ポリオキシアルキレンアルキルフェニルエーテルリン酸エステルとポリオキシアルキレン脂肪酸エステルからなる界面活性剤等をそれぞれ塗布する方法が提案されている(例えば、特許文献1,2)。
しかしながら、上記提案の界面活性剤はポリオレフィン系樹脂繊維との接着性がないため、セメントマトリックスと界面活性剤が接着したとしても、繊維とマトリックス間で十分接着力が得られないという欠点があった。
In order to improve the affinity of the polyolefin resin fiber with the cement, a surfactant, for example, a surfactant comprising an alkali metal salt of a normal alkyl phosphate, or a polyoxyalkylene alkylphenyl ether phosphate and a polyoxyalkylene fatty acid A method of applying a surfactant or the like made of an ester has been proposed (for example, Patent Documents 1 and 2).
However, since the surfactants proposed above do not have an adhesive property with polyolefin resin fibers, even if the cement matrix and the surfactant are adhered, there is a disadvantage that sufficient adhesive strength cannot be obtained between the fibers and the matrix. .

特開平5−170497号公報(1頁)JP-A-5-170497 (1 page) 特開平10−236855号公報(1頁)JP-A-10-236855 (page 1)

本発明は、上記のような従来技術の問題点を解消するためになされたもので、
ポリオレフィン樹脂繊維に対して親水性を付与でき、セメントマトリックスとの接着性に優れ、セメント成形物を強化することができ、セメント成形物の曲げ強度や衝撃強度を向上させるセメント強化用ポリオレフィン樹脂繊維を提供することを目的とする。
The present invention has been made in order to solve the above-described problems of the prior art,
Polyolefin resin fibers for cement reinforcement, which can impart hydrophilicity to polyolefin resin fibers, have excellent adhesion to the cement matrix, can strengthen cement molded products, and improve the bending strength and impact strength of cement molded products. The purpose is to provide.

本発明は、上記課題を技術的に解決するために、ポリオレフィン樹脂繊維に対して表面酸化処理し、その表面の濡れ指数を特定値以上にすることにより、上記目的が達成できることを見出し、本発明を完成するに至った。
すなわち、本発明の要旨は、ポリプロピレン繊維表面を表面酸化処理し、その表面の濡れ指数を38dyn/cm以上にしてなることを特徴とするセメント強化用ポリプロピレン繊維、存する。
The present invention has been found to achieve the above object by technically solving the above-mentioned problems by subjecting a polyolefin resin fiber to a surface oxidation treatment and setting the surface wetting index to a specific value or more. Was completed.
That is, the gist of the present invention resides in a polypropylene fiber for cement reinforcement, characterized in that the surface of a polypropylene fiber is subjected to a surface oxidation treatment so that the surface has a wettability index of 38 dyn / cm or more.

本発明のセメント強化用ポリプロピレン繊維は、ポリプロピレン繊維に対し、表面酸化処理を行い、その表面の濡れ指数を特定値以上にすることにより、ポリプロピレン繊維とセメントとの界面における優れた親和性を付与でき、セメントマトリックスとの接着性に優れ、セメント成形物を強化することができ、セメント成形物の曲げ強度、衝撃強度に優れたセメント成形物の製造が可能となるポリプロピレン繊維を得ることができる。   The polypropylene fiber for cement reinforcement of the present invention is capable of imparting excellent affinity at the interface between the polypropylene fiber and the cement by subjecting the polypropylene fiber to a surface oxidation treatment and setting the surface wetting index to a specific value or more. It is possible to obtain a polypropylene fiber which has excellent adhesiveness to a cement matrix, can strengthen a cement molded product, and can produce a cement molded product excellent in bending strength and impact strength of the cement molded product.

本発明に用いられるポリプロピレンとは、プロピレン単独重合体、エチレンープロピレンブロック共重合体あるいはランダム共重合体などの公知のポリプロピレン共重合体またはそれらの混合物を使用することができるが、これらの内でも高強度、耐熱性を要求されるセメント強化用としてはプロピレン単独重合体が望ましく、特にアイソタクチックペンタッド率0.95以上のものを選択することが望ましい。
ここでアイソタクチックペンタッド分率とは、A.Zambelli 等によって Macromolecules 6 925(1973) に発表された、13C−NMRを使用して測定されるポリプロピレン分子内のペンタッド単位でのアイソタクチック分率を意味する。
上記ポリプロピレンのメルトフローレート(以下、MFRと略す)は0.1〜50g/10分、好ましくは1〜40g/10分、さらに好ましくは5〜30g/10分の範囲から選択するのがよい。
The polypropylene used in the present invention may be a propylene homopolymer, a known polypropylene copolymer such as an ethylene-propylene block copolymer or a random copolymer, or a mixture thereof. For cement reinforcement requiring high strength and heat resistance, propylene homopolymer is desirable, and it is particularly desirable to select one having an isotactic pentad ratio of 0.95 or more.
Here, the isotactic pentad fraction is defined as the isotactic pentad fraction in a pentad unit in a polypropylene molecule measured using 13C-NMR, which is disclosed in Macromolecules 6 925 (1973) by A. Zambelli et al. Means rate.
The polypropylene may have a melt flow rate (hereinafter abbreviated as MFR) of 0.1 to 50 g / 10 min, preferably 1 to 40 g / 10 min, and more preferably 5 to 30 g / 10 min.

ポリプロピレン繊維の製造方法としては、公知の溶融紡糸方法を採用できるが、高倍率の延伸処理の可能な連糸形状ダイスを用いて紡糸を行なうポリプロピレン繊維がより好ましい。この方法はポリプロピレンを連糸形状ダイスから溶融押出し、次に押出された連糸形状テープのまま延伸処理を施し繊維を形成する。
連糸形状ダイスは少なくとも2個のノズルをシリーズに連結した形状を有しているが、通常5〜20個、好ましくは10〜15個のノズルを連結した形状である。
As a method for producing the polypropylene fiber, a known melt-spinning method can be employed, but a polypropylene fiber which is spun using a continuous yarn-shaped die capable of a high-magnification drawing treatment is more preferable. In this method, polypropylene is melt-extruded from a continuous-thread-shaped die, and then subjected to a drawing treatment with the extruded continuous-thread-shaped tape to form fibers.
The continuous thread-shaped die has a shape in which at least two nozzles are connected in series, but usually has a shape in which 5 to 20, preferably 10 to 15 nozzles are connected.

ポリプロピレン繊維の延伸処理はポリプロピレンの融点以下、軟化点以上の温度下に行われるが、加熱方式としては、熱ロール式、熱板式、赤外線式、熱風式等いずれの方式も採用でき、これらの内では内部から電熱加熱されたコンベックス状熱板上で加熱される熱板式が高速生産性、安定性の上で好ましい。
加熱されたポリプロピレン繊維は、前後ロールの周速度差により延伸を行う。延伸倍率は通常3〜20倍、好ましくは5〜15倍、さらに好ましくは8〜12倍の範囲である。
延伸された繊維の引張強度は5g/dt以上でらり、好ましくは7g/dt以上である。引張強度が5g/dt未満では、補強効果が不十分となる。
The drawing process of the polypropylene fiber is performed at a temperature equal to or lower than the melting point of the polypropylene and equal to or higher than the softening point. As a heating method, any method such as a hot roll method, a hot plate method, an infrared method, and a hot air method can be adopted. In this case, a hot plate type in which heating is performed on a convex hot plate heated from the inside by electroheating is preferred in terms of high-speed productivity and stability.
The heated polypropylene fiber is drawn by a peripheral speed difference between the front and rear rolls. The stretching ratio is usually in the range of 3 to 20 times, preferably 5 to 15 times, more preferably 8 to 12 times.
The drawn fiber has a tensile strength of 5 g / dt or more, preferably 7 g / dt or more. If the tensile strength is less than 5 g / dt, the reinforcing effect becomes insufficient.

形成されるポリプロピレン繊維の単糸繊度は、通常5〜200デシテクス(dtと略す)未満、好ましくは5〜100dtの範囲であり、さらに好ましくは10〜60dtの範囲である。上記単糸繊度が5dt未満では、繊維が細すぎて分散が不均一になり、また、あまり大きいと、セメントとの接触面積が減少し補強効果が劣る。   The single fiber fineness of the formed polypropylene fiber is generally less than 5 to 200 dtex (abbreviated as dt), preferably in the range of 5 to 100 dt, and more preferably in the range of 10 to 60 dt. If the single yarn fineness is less than 5 dt, the fibers are too fine and the dispersion becomes non-uniform. If too large, the contact area with cement is reduced and the reinforcing effect is poor.

本発明においては、上記ポリプロピレン繊維表面に対して、表面酸化処理を施してなり、その表面の濡れ指数が38dyn/cm以上、好ましくは40〜70dyn/cmの範囲にすることを特徴とする。表面の濡れ指数が38dyn/cm未満では、ポリオレフィン樹脂繊維に対して親水性を十分付与させることができず、セメント成形物の曲げ強度や衝撃強度を向上させることができない。表面酸化処理としては、コロナ放電処理、プラズマ処理、フレームプラズマ処理、電子線照射処理、紫外線照射処理より選ばれた少なくとも一種の処理方法であり、コロナ放電処理またはプラズマ処理が好ましい。   The present invention is characterized in that the surface of the polypropylene fiber is subjected to a surface oxidation treatment, and the surface has a wetting index of 38 dyn / cm or more, preferably 40 to 70 dyn / cm. When the surface wetting index is less than 38 dyn / cm, the hydrophilicity cannot be sufficiently imparted to the polyolefin resin fiber, and the bending strength and impact strength of the cement molded product cannot be improved. The surface oxidation treatment is at least one treatment method selected from a corona discharge treatment, a plasma treatment, a flame plasma treatment, an electron beam irradiation treatment, and an ultraviolet irradiation treatment, and is preferably a corona discharge treatment or a plasma treatment.

コロナ放電処理は、通常用いられている処理条件、例えば、電極先端と被処理基布間の距離0.2〜5mmの条件で、その処理量としては、ポリプロピレン繊維1m当たり5w・分以上、好ましくは5〜200W・分/mの範囲、さらに好ましくは10〜180W・分 の範囲である。5W・分/m 未満では、コロナ放電処理の効果が不十分で、上記繊維表面の濡れ指数を上記範囲内にすることができず、セメント成形物の曲げ強度や衝撃強度を向上させることができない。 The corona discharge treatment is carried out under commonly used treatment conditions, for example, at a distance of 0.2 to 5 mm between the electrode tip and the base cloth to be treated. The treatment amount is 5 w · min or more per 1 m 2 of polypropylene fiber, Preferably it is in the range of 5 to 200 W · min / m 2 , more preferably in the range of 10 to 180 W · min. If it is less than 5 W · min / m 2 , the effect of the corona discharge treatment is insufficient, and the wetting index of the fiber surface cannot be within the above range, and the bending strength and impact strength of the cement molded product can be improved. Can not.

プラズマ処理工程は、アルゴン、ヘリウム、クリプトン、ネオン、キセノン、水素、窒素、酸素、オゾン、一酸化炭素、二酸化炭素、二酸化硫黄等の単体ガスまたはこれらの混合ガス、例えば、酸素濃度5〜15容量%を含有する酸素と窒素の混合ガスを大気圧近傍の圧力下で、対向電極間に電圧を印加してプラズマ放電を発生させることによって、プラズマジェットで電子的に励起せしめた後、帯電粒子を除去し、電気的に中性とした励起混合ガスを、プラスチック基材の表面に吹きつけることにより実施できる。プラズマ処理条件としては、例えば、処理するプラスチック基材が通過する電極間の距離は、基材の厚み、印加電圧の大きさ、混合ガスの流量等に応じて適宜決定されるが、通常1〜50mm、好ましくは2〜30mmの範囲であり、上記電極間に印加する電圧は印加した際の電界強度が1〜40kv/cmとなるように印加するのが好ましく、その際の交流電源の周波数は、1〜100kHzの範囲である。   The plasma treatment step is a simple gas such as argon, helium, krypton, neon, xenon, hydrogen, nitrogen, oxygen, ozone, carbon monoxide, carbon dioxide, sulfur dioxide or a mixed gas thereof, for example, having an oxygen concentration of 5 to 15 volumes. % Of a mixed gas of oxygen and nitrogen containing hydrogen, by applying a voltage between the opposed electrodes under a pressure near the atmospheric pressure to generate a plasma discharge, thereby electronically exciting the mixed particles with a plasma jet. The removal can be carried out by spraying the removed and electrically neutralized excited gas mixture onto the surface of the plastic substrate. As the plasma processing conditions, for example, the distance between the electrodes through which the plastic substrate to be processed passes is appropriately determined according to the thickness of the substrate, the magnitude of the applied voltage, the flow rate of the mixed gas, and the like. 50 mm, preferably in the range of 2 to 30 mm, and the voltage applied between the electrodes is preferably applied so that the electric field strength when applied is 1 to 40 kv / cm. , 1 to 100 kHz.

フレームプラズマ処理工程は、天然ガスやプロパンを燃焼させた時に生じる火炎内のイオン化したプラズマを、プラスチック基材の表面に吹きつけることにより実施できる。   The flame plasma treatment step can be performed by spraying ionized plasma in a flame generated when natural gas or propane is burned onto the surface of the plastic substrate.

電子線照射処理工程は、プラスチック基材の表面に、電子線加速器により発生させた電子線を照射することにより行われる。電子線照射装置としては、例えば、線状のフィラメントからカーテン状に均一な電子線を照射できる装置「エレクトロカーテン」(商品名)を使用することができる。   The electron beam irradiation step is performed by irradiating the surface of the plastic substrate with an electron beam generated by an electron beam accelerator. As the electron beam irradiation apparatus, for example, an apparatus “electro curtain” (trade name) that can irradiate a uniform electron beam in a curtain shape from a linear filament can be used.

紫外線照射処理工程は、たとえば200〜400mμの波長の紫外線を、プラスチック基材の表面に照射することにより実施される。   The ultraviolet irradiation step is performed, for example, by irradiating the surface of the plastic substrate with ultraviolet light having a wavelength of 200 to 400 mμ.

上記で得られたポリプロピレン繊維は、所定長さにカットされる。カットされる繊維長は3〜30mmの範囲であり、好ましくは5〜15mmの範囲である。繊維長が3mm未満では、セメントからの抜けが生じ、30mmを越えると分散性が不良となるので、好ましくない。   The polypropylene fiber obtained above is cut to a predetermined length. The fiber length to be cut is in the range of 3 to 30 mm, preferably in the range of 5 to 15 mm. If the fiber length is less than 3 mm, it will fall out of the cement, and if it exceeds 30 mm, the dispersibility will be poor.

上記ポリプロピレン繊維には、本発明の主旨を逸脱しない範囲において、酸化防止剤、滑剤、紫外線吸収剤、帯電防止剤、無機充填材、有機充填材、架橋剤、発泡剤、核剤等の添加剤を配合してもよい。   In the polypropylene fiber, additives such as an antioxidant, a lubricant, an ultraviolet absorber, an antistatic agent, an inorganic filler, an organic filler, a crosslinking agent, a foaming agent, a nucleating agent, etc., within a range not departing from the gist of the present invention. May be blended.

本発明のポリプロピレン繊維を混合し得るセメントとしては、ポルトランドセメント、白色ッポルトランドセメント、アルミナセメント等の水硬性セメントまたは石膏、石灰等の気硬性セメント等のセメント類を挙げることができる。
上記ポリプロピレン繊維の配合量は、セメントに対して0.1〜10重量%、好ましくは0.5〜5重量%である。配合量が0.1重量%未満では補強効果が劣り、10重量%以上では均一な分散が困難である上に、曲げ強度が低下するので、好ましくない。
Examples of the cement to which the polypropylene fiber of the present invention can be mixed include cements such as hydraulic cements such as Portland cement, white Portland cement and alumina cement, and air-hardening cements such as gypsum and lime.
The blending amount of the polypropylene fiber is 0.1 to 10% by weight, preferably 0.5 to 5% by weight based on the cement. If the amount is less than 0.1% by weight, the reinforcing effect is inferior. If the amount is more than 10% by weight, uniform dispersion is difficult, and the bending strength is undesirably reduced.

本発明のポリプロピレン繊維をセメントに混合する方法としては、セメント粉体にポリプロピレン繊維を分散する方法、セメントスラリー中にポリプロピレン繊維を分散するプレミックス法、セメントとポリプロピレン繊維および水を同時に吹き付けるスプレーアップ法などの公知の方法を用いることができる。これらの方法によって得られたセメントスラリーを、用途により抄造成形法、押出成形法、注入成形法等公知の成形法にしたがって成形し、常温で数十日間大気中または水中に放置する自然養生法または2〜3日常温で放置後100〜200℃の温度で処理されるオートクレーブ養生法により養生硬化しセメント成形品とする。   As a method of mixing the polypropylene fiber of the present invention with cement, a method of dispersing polypropylene fiber in cement powder, a premix method of dispersing polypropylene fiber in cement slurry, a spray-up method of simultaneously spraying cement, polypropylene fiber and water A known method such as the above can be used. The cement slurry obtained by these methods is molded according to a known molding method such as a paper forming method, an extrusion molding method, an injection molding method, or the like according to the application, and is left in the air or water at room temperature for several tens days, or a natural curing method. After curing at a daily temperature of 2 to 3 and curing at a temperature of 100 to 200 ° C., the composition is cured by an autoclave curing method to obtain a cement molded product.

本発明のポリプロピレン繊維を用いて製造されるセメント成形品の用途としては、あらゆるセメント製品にわたるものであるが、例えば建造物の壁材、床材コンクリート、仕上げモルタル、防水コンクリート、スレート屋根材等、あるいは土木関係部材としては道路、滑走路等の舗装、道路標識、側溝等の道路部材、下水管、ケーブルダクト等のパイプ類、漁礁、護岸ブロック、テトラポット等、その他各種構築物として枕木、ベンチ、フラワーポット等に使用できる。   The use of the cement molded article manufactured by using the polypropylene fiber of the present invention includes all kinds of cement products.For example, a building wall material, a floor concrete, a finishing mortar, a waterproof concrete, a slate roof material, etc. Or, as civil engineering related members, roads, pavement such as runways, road signs, road members such as gutters, pipes such as sewer pipes, cable ducts, fishing reefs, seawalls, tetrapots, etc. It can be used for flower pots and the like.

以下、実施例により、さらに詳細に説明する。
実施例1:
ポリプロピレン(MFR=1.0g/10分)を押出機に供給し、樹脂温度230℃で、2mmφ×10孔の連糸形状ノズルから押出し、熱板接触式延伸法で延伸温度130℃、アニーリング温度135℃、延伸倍率12倍に延伸した。得られた延伸糸の単糸繊度は50dtであった。
この延伸糸の表面に表面酸化処理としてコロナ放電処理をポリプロピレン延伸糸表面1m当たり20w・分で処理を行った。得られたポリプロピレン延伸糸表面の濡れ指数は、42dyn/cmであった。
上記ポリプロピレン延伸糸を10mm長になるようにカットし、短繊維を得た。
セメント成形品の成形はJISR5201に準拠して行った。すなわちポルトランドセメント100重量部と標準砂200重量部とを十分混合し、上記配合物を5重量部添加し、水65重量部を加えて全体が均一になるように混練した後、40mm×40mm×160mmの型枠に流し込み、大気中、常温で48時間放置した後、オートクレーブ中で165℃、20時間養生を行った。
得られた成形物の曲げ強度は26.0MPa、シャルピ衝撃強度は9.5KJ/m、分散性は良好であった。
Hereinafter, an example will be described in more detail.
Example 1
Polypropylene (MFR = 1.0 g / 10 min) is fed to an extruder, extruded at a resin temperature of 230 ° C. from a continuous yarn nozzle having a diameter of 2 mm × 10 holes, drawn at a hot plate contact drawing method at a drawing temperature of 130 ° C., and at an annealing temperature. The film was stretched at 135 ° C. and a stretching ratio of 12 times. The single yarn fineness of the obtained drawn yarn was 50 dt.
The surface of the drawn yarn was subjected to a corona discharge treatment as a surface oxidation treatment at a rate of 20 w · min / m 2 of the drawn polypropylene yarn surface. The obtained polypropylene drawn yarn had a wetting index of 42 dyn / cm on the surface.
The drawn polypropylene yarn was cut to a length of 10 mm to obtain short fibers.
The molding of the cement molded product was performed according to JISR5201. That is, 100 parts by weight of Portland cement and 200 parts by weight of standard sand are sufficiently mixed, 5 parts by weight of the above composition is added, and 65 parts by weight of water are added and kneaded so that the whole becomes uniform, and then 40 mm × 40 mm × The mixture was poured into a 160 mm formwork, left in the air at room temperature for 48 hours, and then cured in an autoclave at 165 ° C. for 20 hours.
The obtained molded product had a bending strength of 26.0 MPa, a Charpy impact strength of 9.5 KJ / m 2 , and a good dispersibility.

(試験方法)
(1)MFR:JISK6922−1準拠
(2)曲げ強度:JISA1408準拠
(3)シャルピー衝撃強度:JISB7722準拠
(4)分散性評価:ポリプロピレン繊維とセメントを混練しセメントスラリーを作成し、表面の状態を目視により評価した。
(Test method)
(1) MFR: Conforms to JIS K692-1 (2) Flexural strength: Conforms to JIS A1408 (3) Charpy impact strength: Conforms to JIS B7722 (4) Dispersibility evaluation: A polypropylene fiber and cement are kneaded to prepare a cement slurry. It was evaluated visually.

実施例2:
コロナ放電処理をポリプロピレン延伸糸表面1m当たり30w・分で処理し、得られたポリプロピレン延伸糸表面の濡れ指数が45dyn/cmとしたこと以外は、実施例1と同様にして行った。
得られた成形物の曲げ強度は26.5MPa、シャルピ衝撃強度は9.8KJ/m、分散性は良好であった。
Example 2:
The same procedure as in Example 1 was carried out except that the corona discharge treatment was performed at a rate of 30 w · min per 1 m 2 of the drawn polypropylene yarn surface, and the wetness index of the obtained drawn polypropylene yarn surface was 45 dyn / cm.
The bending strength of the obtained molded product was 26.5 MPa, the Charpy impact strength was 9.8 KJ / m 2 , and the dispersibility was good.

比較例1
表面処理剤として、ポリオキシエチレンノニルフェニルエーテルリン酸エステル(HLB=8.0)50重量%とポリオキシエチレンオレイン酸エステル(HLB=9.0)50重量%を混合した表面処理剤水溶液を作成し、浸漬処理後、乾燥して表面処理剤1重量%を塗布させたこと以外は、実施例1と同様にして行った。
得られた成形物の曲げ強度は19.0MPa、シャルピー衝撃強度は6.5KJ/m、繊維の分散性は良好であった。
Comparative Example 1
As the surface treating agent, an aqueous solution of the surface treating agent was prepared by mixing 50% by weight of polyoxyethylene nonylphenyl ether phosphate (HLB = 8.0) and 50% by weight of polyoxyethylene oleate (HLB = 9.0). Then, the same procedure as in Example 1 was carried out except that the immersion treatment was followed by drying and application of 1% by weight of a surface treatment agent.
The bending strength of the obtained molded product was 19.0 MPa, the Charpy impact strength was 6.5 KJ / m 2 , and the fiber dispersibility was good.

比較例2
表面処理剤として、ポリオキシエチレンノニルフェニルエーテルリン酸エステル(HLB=8.0)70重量%とポリオキシエチレンオレイン酸エステル(HLB=9.0)30重量%を混合して表面処理剤水溶液を作成し、浸漬処理後、乾燥して表面処理剤1重量%を塗布させたこと以外は実施例1と同様にセメント成形品を成形した。
得られた成形物の曲げ強度は16.5MPa、シャルピー衝撃強度は3.5KJ/m、繊維の分散性は不良であった。
Comparative Example 2
As a surface treatment agent, 70% by weight of polyoxyethylene nonylphenyl ether phosphate (HLB = 8.0) and 30% by weight of polyoxyethylene oleate (HLB = 9.0) were mixed to form an aqueous solution of the surface treatment agent. A cement molded product was formed in the same manner as in Example 1 except that it was prepared, dipped, dried and coated with 1% by weight of a surface treating agent.
The obtained molded product had a bending strength of 16.5 MPa, a Charpy impact strength of 3.5 KJ / m 2 , and poor fiber dispersibility.

比較例3
表面処理剤として、ポリオキシエチレンノニルフェニルエーテルリン酸エステル(HLB=8.0)30重量%とポリオキシエチレンオレイン酸エステル(HLB=9.0)70重量%を混合して表面処理剤水溶液を作成し、浸漬処理後、乾燥して表面処理剤1重量%を塗布させたこと以外は実施例1と同様にセメント成形品を成形した。
得られた成形物の曲げ強度は17.5MPa、シャルピー衝撃強度は2.8KJ/m、繊維の分散性はやや不良であった。
Comparative Example 3
As a surface treatment agent, 30% by weight of polyoxyethylene nonylphenyl ether phosphate (HLB = 8.0) and 70% by weight of polyoxyethylene oleate (HLB = 9.0) were mixed to form an aqueous solution of the surface treatment agent. A cement molded product was formed in the same manner as in Example 1 except that it was prepared, dipped, dried and coated with 1% by weight of a surface treating agent.
The bending strength of the obtained molded product was 17.5 MPa, the Charpy impact strength was 2.8 KJ / m 2 , and the dispersibility of the fiber was slightly poor.

Claims (2)

ポリプロピレン繊維表面を表面酸化処理し、その表面の濡れ指数を38dyn/cm以上にしてなることを特徴とするセメント強化用ポリプロピレン繊維。   A polypropylene fiber for cement reinforcement, characterized in that the surface of the polypropylene fiber is subjected to a surface oxidation treatment so that the surface has a wetting index of 38 dyn / cm or more. 表面酸化処理はコロナ放電処理またはプラズマ処理であり、その処理後のポリプロピレン繊維表面の濡れ指数が40〜70dyn/cmの範囲である請求項1に記載のセメント強化用ポリプロピレン繊維。 The polypropylene fiber for cement reinforcement according to claim 1, wherein the surface oxidation treatment is a corona discharge treatment or a plasma treatment, and the wettability index of the surface of the polypropylene fiber after the treatment is in a range of 40 to 70 dyn / cm.
JP2003368595A 2002-10-30 2003-10-29 Polypropylene fiber for cement reinforcement Pending JP2004168643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003368595A JP2004168643A (en) 2002-10-30 2003-10-29 Polypropylene fiber for cement reinforcement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002315980 2002-10-30
JP2003368595A JP2004168643A (en) 2002-10-30 2003-10-29 Polypropylene fiber for cement reinforcement

Publications (1)

Publication Number Publication Date
JP2004168643A true JP2004168643A (en) 2004-06-17

Family

ID=32715810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003368595A Pending JP2004168643A (en) 2002-10-30 2003-10-29 Polypropylene fiber for cement reinforcement

Country Status (1)

Country Link
JP (1) JP2004168643A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133763A1 (en) * 2011-03-31 2012-10-04 ダイワボウホールディングス株式会社 Fibers for reinforcing cured article and cured article using same
US10131579B2 (en) 2015-12-30 2018-11-20 Exxonmobil Research And Engineering Company Polarity-enhanced ductile polymer fibers for concrete micro-reinforcement
US10717673B2 (en) 2015-12-30 2020-07-21 Exxonmobil Research And Engineering Company Polymer fibers for concrete reinforcement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238349A (en) * 1988-07-29 1990-02-07 Nippon Steel Corp Drawn polyethylene improved in adhesion
JPH11116297A (en) * 1997-10-07 1999-04-27 Hagiwara Kogyo Kk Polypropylene fiber for reinforcing cement and executing method of spraying concrete using the same
JP2000302494A (en) * 1999-04-15 2000-10-31 Hagihara Industries Inc Cement reinforcing fiber
JP2001058858A (en) * 1999-08-20 2001-03-06 Daiwabo Co Ltd Polyolefin-based fiber for cement reinforcement and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238349A (en) * 1988-07-29 1990-02-07 Nippon Steel Corp Drawn polyethylene improved in adhesion
JPH11116297A (en) * 1997-10-07 1999-04-27 Hagiwara Kogyo Kk Polypropylene fiber for reinforcing cement and executing method of spraying concrete using the same
JP2000302494A (en) * 1999-04-15 2000-10-31 Hagihara Industries Inc Cement reinforcing fiber
JP2001058858A (en) * 1999-08-20 2001-03-06 Daiwabo Co Ltd Polyolefin-based fiber for cement reinforcement and its production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133763A1 (en) * 2011-03-31 2012-10-04 ダイワボウホールディングス株式会社 Fibers for reinforcing cured article and cured article using same
US9903053B2 (en) 2011-03-31 2018-02-27 Daiwabo Holdings Co., Ltd. Fibers for reinforcing cured article and cured article using same
US10131579B2 (en) 2015-12-30 2018-11-20 Exxonmobil Research And Engineering Company Polarity-enhanced ductile polymer fibers for concrete micro-reinforcement
US10717673B2 (en) 2015-12-30 2020-07-21 Exxonmobil Research And Engineering Company Polymer fibers for concrete reinforcement

Similar Documents

Publication Publication Date Title
WO2006016499A1 (en) Thermoplastic resin fibers for the reinforcement of cement
KR101414431B1 (en) Method for funtionalising a polymer fibre surface area
TW200533626A (en) Polypropylene fiber for reinforcing cement, and cement moldings, executing method of concrete structures and method of spraying concrete using the fiber
JP3351724B2 (en) Polypropylene fiber for cement reinforcement and construction method of shotcrete using the same
CZ277749B6 (en) Fiber-reinforced composite material
JP5723482B2 (en) Cement reinforcing fiber and hardened cement body using the same
JP6632622B2 (en) Surface modified polyolefin fiber
JP2004168643A (en) Polypropylene fiber for cement reinforcement
JP4358645B2 (en) Polyolefin short fiber for cement reinforcement and cement-based molded body using the same
JP2006096565A (en) Cement-reinforcing fiber
JP2020501029A (en) Distributed fiber mat formation
KR20010104575A (en) Twist-form reinforcement-fiber and method of preparing the same
JP3569460B2 (en) Cement reinforcing fiber
JP2006151792A (en) Polypropylene fiber for reinforcing cement and cement formed body obtained by using the same
JPH0986984A (en) Polypropylene fiber for cement reinforcement
JP2004059385A (en) Polypropylene fiber for reinforcing cement
JP3149248U (en) Polypropylene fiber for cement reinforcement
JP2004168645A (en) Polypropylene fiber for cement reinforcement
JP2000256048A (en) Polypropylene flat yarn for reinforcing cement
JP3517330B2 (en) Polypropylene fiber for cement reinforcement
JP6445400B2 (en) Polyvinyl alcohol fiber for reinforcing mortar concrete, and mortar concrete containing the same
JP2004149356A (en) Cement-reinforcing polypropylene fiber
JP2006103993A (en) Bundled fiber of thermoplastic resin for cement reinforcement
JP2004175574A (en) Polypropylene fiber for reinforcing cement
JP2000212826A (en) Cement reinforcing fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407