WO2006016499A1 - Thermoplastic resin fibers for the reinforcement of cement - Google Patents

Thermoplastic resin fibers for the reinforcement of cement Download PDF

Info

Publication number
WO2006016499A1
WO2006016499A1 PCT/JP2005/014072 JP2005014072W WO2006016499A1 WO 2006016499 A1 WO2006016499 A1 WO 2006016499A1 JP 2005014072 W JP2005014072 W JP 2005014072W WO 2006016499 A1 WO2006016499 A1 WO 2006016499A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
thermoplastic resin
cement
resin fiber
sulfonic acid
Prior art date
Application number
PCT/JP2005/014072
Other languages
French (fr)
Japanese (ja)
Inventor
Kazumasa Nakashima
Michio Okuhira
Original Assignee
Hagihara Industries Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hagihara Industries Inc. filed Critical Hagihara Industries Inc.
Publication of WO2006016499A1 publication Critical patent/WO2006016499A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0616Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0625Polyalkenes, e.g. polyethylene
    • C04B16/0633Polypropylene
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/144Alcohols; Metal alcoholates
    • D06M13/148Polyalcohols, e.g. glycerol or glucose
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/244Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus
    • D06M13/248Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus with compounds containing sulfur
    • D06M13/256Sulfonated compounds esters thereof, e.g. sultones
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds

Definitions

  • the present invention relates to a thermoplastic resin fiber for cement reinforcement having an excellent reinforcing effect for concrete or mortar.
  • the concrete mixed with steel fibers is difficult to transport and mix with the material because the specific gravity of steel fibers is as high as 7.8, and in sprayed concrete, it falls due to rebounding during spraying. It has been pointed out that there is a high risk of injury due to trampling of the damaged steel fibers, and that the steel fibers are glaring.
  • the concrete mixed with polybulualcohol fiber has water absorbency, and when the fiber is alkali and high in temperature, it hydrolyzes, and the slump is significantly reduced compared to the fiber not mixed with fiber. This tends to cause inconveniences such as the need to increase the unit water volume to secure the slump required for spraying.
  • Patent Document 2 In order to solve such problems, in recent years, there have been attempts to use polyolefin fibers instead of steel fibers and polyvinyl alcohol fibers for reasons such as good formability, light weight, and low cost (for example, Patent Document 2).
  • Polyolefin fibers are generally single yarns, bundled yarns, or split yarn short fibers having a fineness of lOOdt or less and a fiber length of 5 mm or less. This fiber shape force is also a property, and a fiber lump called a fiber ball is formed with short fibers with low fineness. However, if the fineness is increased to improve the dispersibility, the fiber will be pulled out if the adhesion to the cement is poor and bending stress is applied. There is a tendency that a sufficient reinforcing effect cannot be obtained.
  • Patent Document 1 Japanese Patent Publication No. 1-40786 (1 page)
  • Patent Document 2 JP-A-9 86984 (2 pages)
  • Patent Document 3 Japanese Patent Laid-Open No. 11 116297 (2 pages)
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-168645 (2 pages)
  • the present invention was made in order to solve the problems of the prior art as described above, and can permanently impart hydrophilicity to thermoplastic resin, particularly polypropylene-based resin fiber, Seme It is an object of the present invention to provide a cement-reinforced thermoplastic resin or polypropylene-based resin fiber that has good dispersibility with the cement and physical bond with the cement and improves the bending toughness of the cement molded product.
  • the present invention performs surface oxidation treatment on a thermoplastic resin fiber, in particular, a polypropylene resin fiber, and coats the oxidized surface with a specific surface treatment agent.
  • a thermoplastic resin fiber in particular, a polypropylene resin fiber
  • coats the oxidized surface with a specific surface treatment agent.
  • the first gist of the present invention is that the surface of the thermoplastic resin fiber is subjected to surface oxidation treatment, and the sulfonic acid compound, polyols and polycarboxylic acid compound force are also selected on the surface.
  • a thermoplastic resin fiber for cement reinforcement characterized by adhering 0.1 to 5% by weight of at least one kind of compound
  • the second gist is that the fiber is spun from polypropylene-based resin.
  • a surface oxidation treatment is applied to the fiber surface, and at least one selected compound or mixture of two or more selected sulfonic acid compounds, polycarboxylic acids and polyols is adhered to the surface by 0.1 to 5% by weight.
  • the characteristic feature is polypropylene fiber for cement reinforcement.
  • thermoplastic resin fiber for cement reinforcement of the present invention is subjected to surface oxidation treatment on the surface of the fiber of the thermoplastic resin, in particular, the surface of the polypropylene fiber, and is then used as a surface treatment liquid.
  • the hydrophilicity imparted by the oxidation treatment of the fiber surface by applying a specific amount of at least one compound of a compound, a polyol complex or a polycarboxylic acid compound and applying it by drying.
  • the thermoplastic resin used in the present invention is not particularly limited, but is not limited to polyolefin resin, polychlorinated bur, polyester, polyamide, polybulal alcohol, poly Examples thereof include styrene.
  • polyolefin resin include high-density polyethylene, medium-density polyethylene, linear low-density polyethylene, ethylene-a-olefin copolymer produced using a meta-octane catalyst, polypropylene-based resin, and polybutene. 1.
  • Poly-4-methylpentene 1 ethylene acetate butyl copolymer, ethylene acrylate ethyl copolymer, maleic anhydride modified polyolefin, etc. are used, but power polypropylene-based resin is preferred.
  • polyester polyethylene terephthalate, polybutylene terephthalate, or the like is used.
  • polypropylene-based resin a polypropylene copolymer such as a propylene homopolymer, an ethylene-propylene block copolymer or a random copolymer, or a mixture thereof can be used.
  • propylene homopolymers are particularly desirable for cement reinforcement where high strength and heat resistance are required, and it is particularly desirable to select those having an isotactic pentad ratio of 0.95 or more.
  • This polypropylene resin melt melt rate (hereinafter abbreviated as MFR) is selected in the range of 0.1 to 30 g / 10 min, preferably l to 10 g / 10 min in terms of continuous and stable productivity. It is good.
  • polystyrene resin may be added to the polypropylene-based resin as necessary.
  • Other polyolefins here include high-density polyethylene, linear low-density polyethylene, low-density polyethylene, ethylene acetate butyl copolymer, ethylene alkyl acrylate copolymer, and other polyethylene-based resins, polybutene 1, etc. is there.
  • a form of drawn yarn that also has thermoplastic resin fiber strength a flat yarn obtained by slitting a film, a split yarn obtained by splitting a flat yarn, a monofilament obtained by drawing a filament that also extrudes a spinning nozzle force, The ability to use multi-filaments with converged low-definition filaments. Flat yarns and monofilaments are preferred.
  • thermoplastic resin The case where polypropylene-based resin is used as the thermoplastic resin is described in detail below.
  • a film is formed by a T-die method or an inflation method, and a formed film (hereinafter, undrawn) is used. (Referred to as film) is slit and then stretched, and then heat treated to form a flat yarn. Stretching is performed at a temperature below the melting point of polypropylene and above the softening point. Heating methods include hot roll type, hot plate type, infrared type, hot air. Any of these methods can be employed, and among these, the hot roll method is preferable in view of stretching efficiency, high-speed productivity, and stability.
  • the slit polypropylene film is heated and stretched by the difference in peripheral speed between the front and rear rolls.
  • the draw ratio is 5 times or more, preferably 7 to 15 times, more preferably 9 to 13 times.
  • the production method is not particularly limited, and a production technique for extruding a circular, elliptical, irregular, or other continuous yarn-shaped die force filament is used. Can be adopted.
  • a composite monofilament having a polypropylene high-melting component as a core layer and a polypropylene low-melting component as a sheath layer can also be used as the monofilament structure.
  • polypropylene of each layer is melt-kneaded with an extruder, and a core layer made of a high melting point component is supplied from a central discharge hole of a die in which two layers of discharge holes are provided on a substantially concentric circle.
  • a composite monofilament is obtained by extruding and coating a sheath layer having a melting point component force.
  • the substantial strength depends on the physical properties of the core layer, it is preferable to use a propylene homopolymer, a isotactic polypropylene or the like as the high melting point component, while propylene ethylene propylene is used as the low melting point component. Copolymers, random copolymers and syndiotactic polypropylene are preferred.
  • the monofilament is subjected to heat stretching and heat relaxation treatment, and the rigidity of the filament is increased by this heat treatment to obtain a polypropylene monofilament suitable for cement reinforcement having a small elongation.
  • This hot drawing is performed at a temperature below the melting point of polypropylene and above the softening point. Usually, the drawing temperature is 90 to 150 ° C, and the draw ratio is usually 5 to 12 times, preferably? ⁇ 9 times.
  • the hot stretching method methods such as a hot roll method, a hot plate method, an infrared irradiation method, a hot air oven method, and a hot water method can be adopted.
  • the tensile strength of the flat yarn or filament of polypropylene is 5 g / d or more, and preferably 6 g / d or more. Further, the tensile elongation is 20% or less, preferably 15% or less. If the tensile strength and tensile elongation are outside these ranges, the strength as a polypropylene fiber for cement reinforcement is insufficient, which is preferable!
  • the single yarn fineness of the formed flat yarn or filament of polypropylene is in the range of 5 to 10,00 Odt, preferably in the range of 200 to 6,500 dt.
  • the single yarn fineness is less than 200 dt, the fibers are too thin and the dispersion in the concrete mixture is uneven and tends to become fiber balls, which causes problems in terms of workability and reinforcement.
  • the single yarn fineness exceeds 10,000 dt The contact area of the fiber with the concrete admixture is reduced, and it tends to be pulled out with respect to bending stress.
  • the flat yarn or filament of polypropylene needs to have irregularities on the surface as the next step of hot drawing.
  • the contact area between the fiber and the concrete can be increased, and the reinforcing effect can be enhanced by suppressing the pull-out of the fiber after the concrete is hardened.
  • Examples of a method for forming irregularities on the surface include a method of embossing a flat yarn or a filament. Embossing is performed by passing a flat yarn or filament through an embossing roll before or after stretching, so that unevenness is continuously formed in the longitudinal direction of the flat yarn or filament.
  • the shape such as the length and depth of the emboss may be arbitrary, but the average flatness ratio of the fiber cross section by crushing is in the range of 1.5 / 1 to 7/1, preferably 1.8 / 1 to It needs to be 7/1.
  • This average flatness is a numerical value showing the average ratio of width and height in the cross-sections of various shaped shapes. If the average flatness is less than 1.5 / 1, While there are few uneven shapes, there is no difference in the reinforcing effect from smooth surface fibers.On the other hand, when the average flatness ratio exceeds 7/1, strength deterioration due to shaping is significant. Dispersibility in concrete tends to be poor, which is a problem.
  • the polypropylene fiber includes an antioxidant, a lubricant, an ultraviolet absorber, an antistatic agent, an inorganic filler, an organic filler, a crosslinking agent, a foaming agent, a nucleating agent and the like without departing from the gist of the present invention. These additives may be blended.
  • the surface of the polypropylene fiber is subjected to a surface oxidation treatment, and the surface has a wet tension of 40 mN / m or more, preferably 40 to 70 mN / m. And If the surface wetting tension is less than 40 mN / m, hydrophilicity cannot be sufficiently imparted to the polyolefin resin fiber, and the bending strength and impact strength of the cement molded product cannot be increased. It cannot be improved.
  • the wetting tension is a value based on “JIS K 6768 Wetting Tension Test Method”.
  • the surface oxidation treatment is at least one treatment method selected from corona discharge treatment, plasma treatment, flame plasma treatment, electron beam irradiation treatment, and ultraviolet irradiation treatment, and corona discharge treatment and plasma treatment are preferred.
  • Corona discharge treatment is a treatment condition that is usually used, for example, a distance of 0.2 to 5 mm between the electrode tip and the substrate to be treated.
  • the treatment amount is 10 W 'min or more per lm 2 of polypropylene fiber.
  • the range is preferably 10 to 200 W. min, and more preferably 10 to 180 W. min. If it is less than 10 W 'min / m 2 , the effect of corona discharge treatment is insufficient, the wetting tension of the fiber surface cannot be within the above range, and the bending strength and impact strength of the cement molded product are improved. I can't.
  • the plasma treatment step is performed by using a single gas such as argon, helium, krypton, neon, xenon, hydrogen, nitrogen, oxygen, ozone, carbon monoxide, carbon dioxide, sulfur dioxide or a mixed gas thereof, for example,
  • a plasma jet is generated electronically by generating a plasma discharge by applying a voltage between counter electrodes under a pressure close to atmospheric pressure with a mixed gas of oxygen and nitrogen containing an oxygen concentration of 5 to 15% by volume. After excitation, the charged particles are removed, and an electrically neutral excitation mixed gas is sprayed onto the surface of the plastic substrate.
  • the distance between the electrodes through which the plastic substrate to be treated passes is a force that is appropriately determined according to the thickness of the substrate, the magnitude of the applied voltage, the flow rate of the mixed gas, etc.
  • it is in the range of 2 to 30 mm
  • the voltage applied between the electrodes is preferably applied so that the electric field strength at the time of application is 40 kV / cm.
  • the frequency of the AC power supply at that time is l is in the range of 100kHz.
  • the flame plasma treatment step can be carried out by blowing ionized plasma in a flame generated when natural gas or propane is burned onto the surface of the plastic substrate.
  • the electron beam irradiation treatment step is performed by irradiating the surface of the plastic substrate with an electron beam generated by an electron beam accelerator.
  • an electron beam irradiation device for example, a device that can irradiate a uniform electron beam in the form of a curtain from a linear filament "elect mouth curtain" ( Product name) can be used.
  • the ultraviolet irradiation treatment step is carried out, for example, by irradiating the surface of the plastic substrate with ultraviolet rays having a wavelength of 200 to 400 ⁇ m.
  • the surface treatment agent used in the present invention is mainly composed of at least one compound of a sulfonic acid compound, a polyol, or a polycarbonate compound, and one or two of these compounds The above is used.
  • sulfonic acid compounds include ligne sulfonic acid compounds, naphthalene sulfonic acid formalin condensates, melamine sulfonic acid formalin condensates, anthracene sulfonic acid formalin condensates, and aromatic amino sulfonic acid compounds.
  • polyols examples include neopentyl glycol, pentaerythritol, neopentyl darlicol hydroxyhydroxyphosphate or derivatives thereof, hexanediol or pentanediol.
  • Polycarboxylic acid compounds include styrene maleic anhydride copolymers and partially esterified products thereof, aryl ether maleic anhydride copolymers and derivatives thereof, vinyl ether maleic anhydride copolymers and derivatives thereof, ( (Branched) pentyl ether maleic anhydride copolymer and derivatives thereof, (meth) acrylic acid (meth) acrylic acid ester copolymers and derivatives thereof.
  • water-reducing agents and high-performance water-reducing agents used for the purpose of imparting high fluidity to ready-mixed concrete for example, water-reducing agents from the Phenoris series of NEMBEE, Leo Build SP series of high-performance water reducing agents and the like can be mentioned, and these can be suitably used as the surface treatment agent of the present invention.
  • the method of attaching the surface treatment agent to the polypropylene fiber is generally performed by a method of applying the surface treatment agent to the polypropylene fiber.
  • a coating method Dip coating method (dipping method) in which polypropylene fiber is dipped in surface treatment solution, spray coating method in which surface treatment solution is sprayed onto polypropylene fiber, and applied to polypropylene fiber using brush coating or roll coater
  • dipping method in which polypropylene fiber is dipped in surface treatment solution
  • spray coating method in which surface treatment solution is sprayed onto polypropylene fiber, and applied to polypropylene fiber using brush coating or roll coater
  • Examples thereof include a method of applying a surface treating agent solution, a knot dry method and the like, and among these, a dip coating method is preferable.
  • the surface treatment agent is applied to the polypropylene fiber and then dried.
  • the drying temperature is usually 10 ° C or higher, preferably 20 to 90 ° C, more preferably 30 to 90 ° C. It is a range. When the drying temperature is 30 to 90 ° C., it is preferable because the wet tension increases, the adhesion to the cement increases, and the bending toughness coefficient and bending toughness increase.
  • the amount of the surface treatment agent attached to the polypropylene fiber is 0.1 to 5% by weight, preferably 0.5 to 5% by weight, based on the total fiber. If the adhesion amount is less than 0.1% by weight with respect to the total fiber, the polypropylene fiber is not sufficiently hydrophilic, and the bending strength and bending toughness of the cement molded body are insufficiently improved. The effect of imparting hydrophilicity is not further improved, and therefore, the bending strength and bending toughness of the cement molded body reach an equilibrium, and conversely the cost increases.
  • the polypropylene fiber subjected to the surface treatment in this manner is cut into a predetermined length and becomes a short fiber for cement reinforcement.
  • the length of the short fiber is 5 to 100 mm, preferably 20 to 70 mm. If the fiber length is less than 5 mm, the cement will come off, and if it exceeds 100 mm, the dispersibility will be poor.
  • the polypropylene fiber for cement reinforcement of the present invention is used as a reinforcing fiber material by blending with cement, fine aggregate, coarse aggregate, water and an appropriate amount of concrete admixture.
  • the cement include hydraulic cements such as Portland cement, blast furnace cement, silica cement, fly ash cement, white Portland cement, and alumina cement, and cements such as plaster, air-hardening cement such as lime, and the like.
  • fine aggregates examples include river sand, sea sand, mountain sand, crushed sand, quartz sand, glass sand, iron sand, ash sand, and other artificial sand.
  • Coarse aggregates include reki, gravel, crushed stone, slag, and various artificial sands.
  • a typical example is lightweight aggregate.
  • cement reinforcing polypropylene fiber spraying construction for use if the concrete of the present invention, the amount is, cement, fine aggregate, coarse aggregate, the concrete mixture lm 3 consisting of water, etc.
  • a concrete mixture made of cement, fine aggregate, coarse aggregate, water or the like is added to form base concrete, and after mixing this base concrete, polypropylene fiber is mixed. It is preferable to add and knead.
  • the mixing time is the power by the amount of mixing per time. Generally, mixing of base concrete is 45 to 90 seconds, mixing polypropylene fiber after mixing. Even the range of 45 to 90 seconds is appropriate.
  • the spray nozzle for constructing spray concrete in such a slump range should be arranged at right angles to the spray surface and the distance between the nozzle and the spray surface should be 0.5 to 1.5 m. It becomes.
  • the wetting tension of the obtained monofilament surface was 32 mNZm.
  • This polypropylene monofilament was subjected to corona discharge treatment at 30 W'min per lm 2 of polypropylene monofilament surface as surface acid treatment, and the wetting tension of the obtained monofilament surface was 45 mNZm.
  • the polypropylene monofilament is immersed in a treatment solution (Polylith No. 70, manufactured by ENUMB Co., Ltd.) consisting of a lignosulfonic acid compound and a polyol composite as a surface treatment agent. After the pickling treatment, it was dried at 20 ° C to adhere 1% by weight of the surface treatment solution. The polypropylene monofilament was cut to a fiber length of 48 mm to obtain polypropylene fiber.
  • a treatment solution Polylith No. 70, manufactured by ENUMB Co., Ltd.
  • the polypropylene fiber obtained above was subjected to a fiber adhesion test by the following method, and the results are shown in Table 2.
  • the specimen preparation method and loading test method were in accordance with the Japan Concrete Engineering Association “JCI-SF8 Fiber Adhesion Test Method”.
  • Partition plate thickness 0.5 (mm)
  • Polypropylene fiber was used which was stored for 180 days at room temperature after the surface treatment agent was applied and dried.
  • Curing was carried out at 20 ° C under water for 14 days.
  • the polypropylene fiber obtained above was tested for concrete reinforcement effect by the following method, and the results are shown in Table 3.
  • Admixture High-performance AE water reducing agent ENEBBY Rheobuild SP8SB 4.42kg / m 3 Fiber: Polypropylene fiber is a volume that is stored for 180 days at room temperature after it has been surface-treated and dried. As a result, 0.3% was blended.
  • Kneading is performed by adding coarse aggregate, fine aggregate and cement for 30 seconds, then adding water and admixture, mixing for 120 seconds, adding reinforcing fibers and mixing for 60 seconds. Mix and drain.
  • Example 1 the obtained polypropylene monofilament was subjected to corona discharge treatment, followed by the same treatment except that a surface treatment agent was adhered and dried at 60 ° C. for 4 hours.
  • the results are shown in Tables 1 to 3.
  • Example 1 plasma treatment was performed on the surface of the obtained polypropylene monofilament at 2.5 kW in a two-stage treatment, and then a surface treatment agent was attached and dried at 60 ° C for 4 hours. The procedure was the same except for the above. The results are shown in Tables 1 to 3.
  • Example 4 In Example 1, plasma treatment was performed on the surface of the obtained polypropylene monofilament in a two-step treatment at 2.5 kW, and then a surface treatment agent was adhered and dried at 20 ° C. The same was done. The results are shown in Tables 1 to 3.
  • Example 1 the same procedure was performed except that the obtained polypropylene monofilament was not subjected to corona discharge treatment and adhesion of the surface treatment agent at all. The results are shown in Tables 1 to 3.
  • Example 1 the same procedure was performed except that the surface treatment agent was not adhered to the polypropylene monofilament obtained by corona discharge treatment. The results are shown in Tables 1 to 3.
  • Example 1 plasma treatment was performed on the surface of the obtained polypropylene monofilament in the same manner except that the surface treatment agent was not adhered after performing a two-step treatment at 2.5 kW. .
  • the results are shown in Tables 1 to 3.
  • the polypropylene fiber cement was treated with a surface treatment solution and then dried by applying a surface treatment solution, compared to the one without the surface treatment solution. It was found that the adhesive strength to was high.

Abstract

The invention provides thermoplastic resin fibers for the reinforcement of cement which have permanent hydrophilicity and are therefore excellent in the dispersibility in cement and the physical bonding with cement and which can give cement moldings improved in bending toughness. A thermoplastic resin fiber (particularly polypropylene fiber) according to the invention is produced by subjecting a thermoplastic resin fiber to surface oxidation, applying a surface treatment containing at least one compound selected from among sulfonic acids, polyol complexes, and polycarboxylic acids to the surface-oxidized thermoplastic resin fiber to make the compound adhere to the surface of the fiber in an amount of 0.1 to 5 wt%, and then drying the resulting fiber at 20 to 90˚C. The obtained thermoplastic resin fiber has further improved hydrophilicity as compared with the hydrophilicity imparted by the surface oxidation alone and is therefore excellent in the dispersibility in cement and the physical bonding with cement, thus enabling the production of cement moldings excellent in bending toughness and bending tenacity.

Description

明 細 書  Specification
セメント強化用熱可塑性樹脂繊維  Cement-reinforced thermoplastic fiber
技術分野  Technical field
[0001] 本発明は、コンクリートやモルタルの補強効果に優れたセメント補強用熱可塑性榭 脂繊維に関するものである。  [0001] The present invention relates to a thermoplastic resin fiber for cement reinforcement having an excellent reinforcing effect for concrete or mortar.
背景技術  Background art
[0002] 従来よりモルタルやコンクリートを用いたセメント成形品、または建築物の外壁、トン ネルの内壁、傾斜法面などが構築されている力 これらは成形体としては比較的脆 性が大で、引張強度、曲げ耐カ、曲げタフネス、耐衝撃性などの物性が充分でない と壁面のひび割れによる水漏れや外壁の剥離落下事故などが生じる危険性がある。 そして、コンクリートの補強を目的として、鋼繊維やポリビュルアルコール繊維 (例えば 、特許文献 1)を混入することは広く行われている。また、吹付けコンクリートにおいて 曲げ強度やタフネスを要求される場合には、補強金網を設置する。  [0002] Conventionally, cement molded products using mortar and concrete, or the strength of building outer walls, tunnel inner walls, slope slopes, etc. These are relatively brittle as molded bodies, If physical properties such as tensile strength, bending resistance, bending toughness, and impact resistance are not sufficient, there is a risk of water leakage due to cracks on the wall surface or peeling and dropping accidents on the outer wall. For the purpose of reinforcing concrete, mixing of steel fibers or polybulal alcohol fibers (for example, Patent Document 1) is widely performed. When shotcrete requires bending strength and toughness, a reinforcing wire mesh will be installed.
[0003] しかし、鋼繊維を混入したコンクリートは、鋼繊維の比重が 7.8と重いために材料の 運搬や混入作業が困難であり、また、吹付けコンクリートにおいては吹付け時のはね 返りにより落下した鋼繊維の踏み抜きによる怪我のおそれが大きぐさらに鋼繊維が 鲭びる等の欠点が指摘されている。また、ポリビュルアルコール繊維を混入したコン クリートは、繊維自身が吸水性を有し、また、繊維がアルカリで高温になると加水分解 を起こし、さらに繊維を混入しないものに対してスランプが著しく低下する傾向にあり 、吹付けに必要なスランプを確保するために単位水量を増加させる必要がある等の 不都合が生じる。  [0003] However, the concrete mixed with steel fibers is difficult to transport and mix with the material because the specific gravity of steel fibers is as high as 7.8, and in sprayed concrete, it falls due to rebounding during spraying. It has been pointed out that there is a high risk of injury due to trampling of the damaged steel fibers, and that the steel fibers are glaring. In addition, the concrete mixed with polybulualcohol fiber has water absorbency, and when the fiber is alkali and high in temperature, it hydrolyzes, and the slump is significantly reduced compared to the fiber not mixed with fiber. This tends to cause inconveniences such as the need to increase the unit water volume to secure the slump required for spraying.
[0004] このような問題を解決するために、近年、鋼繊維やポリビニルアルコール繊維に代 替して、成形性が良好で軽量、低廉などの理由でポリオレフイン系繊維を使用する試 みがある(例えば、特許文献 2)。  [0004] In order to solve such problems, in recent years, there have been attempts to use polyolefin fibers instead of steel fibers and polyvinyl alcohol fibers for reasons such as good formability, light weight, and low cost ( For example, Patent Document 2).
ポリオレフイン系繊維としては、一般的に繊度が lOOdt以下、繊維長さが 5mm以下の 単糸や集束糸、あるいはスプリット糸の短繊維が用いられることが多い。この繊維形 状力も性状として、低繊度でかつ短い繊維は、ファイバーボールという繊維塊が生成 したり、嵩高となりセメント中への均一分散がし難いという欠点があり、そのため分散 性を良くするために繊度を太くすると、セメントとの接着性が劣り曲げ応力が力かると 繊維が引き抜けてしまうなど充分な補強効果が得られない傾向にある。 Polyolefin fibers are generally single yarns, bundled yarns, or split yarn short fibers having a fineness of lOOdt or less and a fiber length of 5 mm or less. This fiber shape force is also a property, and a fiber lump called a fiber ball is formed with short fibers with low fineness. However, if the fineness is increased to improve the dispersibility, the fiber will be pulled out if the adhesion to the cement is poor and bending stress is applied. There is a tendency that a sufficient reinforcing effect cannot be obtained.
[0005] 力かるポリオレフイン榭脂繊維のセメントとの親水性を改良するために、繊維断面に 凹凸を付形したポリプロピレン繊維に、ポリオキシアルキレンアルキルフエ-ルエーテ ルリン酸エステルとポリオキシアルキレン脂肪酸エステルカゝらなる界面活性剤等をそ れぞれ塗布する方法が提案されている (例えば、特許文献 3)が、上記提案の界面活 性剤はポリオレフイン系榭脂繊維との接着性が十分でな 、ため、セメントマトリックスと 界面活性剤が接着したとしても、ポリオレフイン系榭脂繊維とマトリックス間で十分接 着力が得られず、セメント成形物の曲げタフネスは十分ではな 、と 、う問題があった  [0005] In order to improve the hydrophilicity of the powerful polyolefin resin fiber cement, the polyoxyalkylene alkylphenol phosphate ester and the polyoxyalkylene fatty acid ester carbonate are added to the polypropylene fiber with irregularities in the fiber cross section. (For example, Patent Document 3), the above-mentioned proposed surfactant does not have sufficient adhesion to polyolefin resin fibers. For this reason, even if the cement matrix and the surfactant are bonded, there is a problem that the adhesive strength between the polyolefin resin fiber and the matrix cannot be sufficiently obtained, and the bending toughness of the cement molded product is not sufficient.
[0006] 本出願人は、このようなポリオレフイン榭脂繊維の問題点を改良するために、繊維 断面に特定の平均偏平率の凹凸を付形した単糸繊度 200dt以上の太いモノフィラメ ントを繊維長さ 5mm以上に長く切断してなるポリプロピレン繊維に、コロナ放電処理、 プラズマ処理、フレームプラズマ処理、電子線照射処理、紫外線照射処理などの表 面酸化処理を施す方法を提案した (例えば、特許文献 4)。 [0006] In order to improve the problem of such a polyolefin resin, the present applicant has decided to add a thick monofilament having a single yarn fineness of 200 dt or more with irregularities having a specific average flatness to the fiber cross section. We proposed a method of subjecting polypropylene fibers cut to a length of 5 mm or longer to surface oxidation treatment such as corona discharge treatment, plasma treatment, flame plasma treatment, electron beam irradiation treatment, and ultraviolet irradiation treatment (for example, Patent Document 4). ).
しかしながら、上記提案の表面酸化処理を施す方法では、その酸化処理効果の経 時変化により、経時とともにその処理効果が薄れてしまい、ポリオレフイン系榭脂繊維 とマトリックス間で十分接着力が得られず、セメント成形物の曲げ靭性は十分ではな いという問題があった。  However, in the proposed method of surface oxidation treatment, the treatment effect diminishes over time due to the change in the oxidation treatment effect over time, and sufficient adhesion between the polyolefin resin and the matrix cannot be obtained. There was a problem that the bending toughness of the cement molding was not sufficient.
特許文献 1:特公平 1—40786号公報(1頁)  Patent Document 1: Japanese Patent Publication No. 1-40786 (1 page)
特許文献 2:特開平 9 86984号公報(2頁)  Patent Document 2: JP-A-9 86984 (2 pages)
特許文献 3:特開平 11 116297号公報 (2頁)  Patent Document 3: Japanese Patent Laid-Open No. 11 116297 (2 pages)
特許文献 4:特開 2004— 168645号公報(2頁)  Patent Document 4: Japanese Unexamined Patent Application Publication No. 2004-168645 (2 pages)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本発明は、上記のような従来技術の問題点を解消するためになされたもので、熱可 塑性榭脂、特にポリプロピレン系榭脂繊維に対して永続的に親水性を付与でき、セメ ントとの分散性やセメントとの物理的結合が良好で、セメント成形物の曲げタフネスを 向上させるセメント補強用熱可塑性榭脂またはポリプロピレン系榭脂繊維を提供する ことを目的とする。 [0007] The present invention was made in order to solve the problems of the prior art as described above, and can permanently impart hydrophilicity to thermoplastic resin, particularly polypropylene-based resin fiber, Seme It is an object of the present invention to provide a cement-reinforced thermoplastic resin or polypropylene-based resin fiber that has good dispersibility with the cement and physical bond with the cement and improves the bending toughness of the cement molded product.
課題を解決するための手段  Means for solving the problem
[0008] 本発明は、上記課題を技術的に解決するために、熱可塑性榭脂繊維、特にポリプ ロピレン系榭脂繊維を表面酸化処理を施し、その酸化処理表面に特定の表面処理 剤で塗布し、乾燥処理を行うことにより、上記目的が達成できることを見出し、本発明 を完成するに至った。  [0008] In order to technically solve the above problems, the present invention performs surface oxidation treatment on a thermoplastic resin fiber, in particular, a polypropylene resin fiber, and coats the oxidized surface with a specific surface treatment agent. The inventors have found that the above-described object can be achieved by performing a drying process, and have completed the present invention.
すなわち、本発明の第 1の要旨は、熱可塑性榭脂の繊維表面に対して表面酸化処 理を施し、その表面にスルホン酸ィ匕合物、ポリオール類およびポリカルボン酸ィ匕合物 力も選ばれた少なくとも 1種の化合物を 0.1〜5重量 %付着させてなることを特徴とする セメント強化用熱可塑性榭脂繊維であり、また、第 2の要旨は、ポリプロピレン系榭脂 から紡糸し、その繊維表面に対して表面酸化処理を施させ、その表面にスルホン酸 化合物、ポリカルボン酸及びポリオール類力 選ばれた少なくとも一種の化合物また は二種以上の混合物を 0.1〜5重量%付着なることを特徴とするセメント強化用ポリプ ロピレン繊維、に存する。  That is, the first gist of the present invention is that the surface of the thermoplastic resin fiber is subjected to surface oxidation treatment, and the sulfonic acid compound, polyols and polycarboxylic acid compound force are also selected on the surface. A thermoplastic resin fiber for cement reinforcement characterized by adhering 0.1 to 5% by weight of at least one kind of compound, and the second gist is that the fiber is spun from polypropylene-based resin. A surface oxidation treatment is applied to the fiber surface, and at least one selected compound or mixture of two or more selected sulfonic acid compounds, polycarboxylic acids and polyols is adhered to the surface by 0.1 to 5% by weight. The characteristic feature is polypropylene fiber for cement reinforcement.
発明の効果  The invention's effect
[0009] 本発明のセメント強化用熱可塑性榭脂繊維は、熱可塑性榭脂の繊維表面、特にポ リプロピレン繊維表面に対して表面酸化処理を施した後に、表面処理液としてスルホ ン酸ィ匕合物、ポリオール複合体またはポリカルボン酸ィ匕合物の少なくとも 1種の化合 物を特定量を塗布し、乾燥処理して付着させてことにより、繊維表面の酸化処理によ つて付与した親水性を向上させることができ、セメントとの分散性やセメントとの物理 的結合が良好で、セメント成形物の曲げタフネス及び曲げ靭性に優れたセメント成形 物の製造が可能となる熱可塑性榭脂繊維、特にポリプロピレン繊維を得ることができ る。  [0009] The thermoplastic resin fiber for cement reinforcement of the present invention is subjected to surface oxidation treatment on the surface of the fiber of the thermoplastic resin, in particular, the surface of the polypropylene fiber, and is then used as a surface treatment liquid. The hydrophilicity imparted by the oxidation treatment of the fiber surface by applying a specific amount of at least one compound of a compound, a polyol complex or a polycarboxylic acid compound and applying it by drying. A thermoplastic resin fiber that can improve the dispersibility of cement and physical bond with cement, and can produce cement moldings with excellent bending toughness and bending toughness of cement moldings, In particular, polypropylene fibers can be obtained.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 本発明に用いられる熱可塑性榭脂としては、特に制限されるものではなぐポリオレ フィン系榭脂、ポリ塩化ビュル、ポリエステル、ポリアミド、ポリビュルアルコール、ポリ スチレン等を挙げることができる。ポリオレフイン系榭脂としては、例えば、高密度ポリ エチレン、中密度ポリエチレン、線状低密度ポリエチレン、メタ口セン触媒を用いて製 造されたエチレン' a—ォレフイン共重合体、ポリプロピレン系榭脂、ポリブテン一 1、 ポリー4ーメチルペンテン 1、エチレン 酢酸ビュル共重合体、エチレン アクリル 酸ェチル共重合体、無水マレイン酸変性ポリオレフインなどが用いられるが力 ポリプ ロピレン系榭脂が好ましい。また、ポリエステルとしては、ポリエチレンテレフタレート、 ポリブチレンテレフタレートなどが用いられる。 [0010] The thermoplastic resin used in the present invention is not particularly limited, but is not limited to polyolefin resin, polychlorinated bur, polyester, polyamide, polybulal alcohol, poly Examples thereof include styrene. Examples of polyolefin resin include high-density polyethylene, medium-density polyethylene, linear low-density polyethylene, ethylene-a-olefin copolymer produced using a meta-octane catalyst, polypropylene-based resin, and polybutene. 1. Poly-4-methylpentene 1, ethylene acetate butyl copolymer, ethylene acrylate ethyl copolymer, maleic anhydride modified polyolefin, etc. are used, but power polypropylene-based resin is preferred. As the polyester, polyethylene terephthalate, polybutylene terephthalate, or the like is used.
[0011] 上記ポリプロピレン系榭脂としては、プロピレン単独重合体、エチレン プロピレン ブロック共重合体あるいはランダム共重合体などのポリプロピレン共重合体またはそ れらの混合物を使用することができる。これらの中では高強度、耐熱性を要求される セメント強化用としてプロピレン単独重合体が望ましぐ特にアイソタクチックペンタツ ド率 0.95以上のものを選択することが望まし 、。このポリプロピレン系榭脂のメルトフ口 一レート (以下、 MFRと略す)は、連続的な安定生産性の点で 0.1〜30g/10分の範囲、 好ましくは l〜10g/10分の範囲力 選択するのがよい。  [0011] As the polypropylene-based resin, a polypropylene copolymer such as a propylene homopolymer, an ethylene-propylene block copolymer or a random copolymer, or a mixture thereof can be used. Of these, propylene homopolymers are particularly desirable for cement reinforcement where high strength and heat resistance are required, and it is particularly desirable to select those having an isotactic pentad ratio of 0.95 or more. This polypropylene resin melt melt rate (hereinafter abbreviated as MFR) is selected in the range of 0.1 to 30 g / 10 min, preferably l to 10 g / 10 min in terms of continuous and stable productivity. It is good.
[0012] また、上記ポリプロピレン系榭脂には、必要に応じ他のポリオレフインが添加されて もよい。ここでの他のポリオレフインとしては、高密度ポリエチレン、直鎖状低密度ポリ エチレン、低密度ポリエチレン、エチレン 酢酸ビュル共重合体、エチレン アクリル 酸アルキル共重合体などのポリエチレン系榭脂、ポリブテン 1等である。  [0012] In addition, other polyolefins may be added to the polypropylene-based resin as necessary. Other polyolefins here include high-density polyethylene, linear low-density polyethylene, low-density polyethylene, ethylene acetate butyl copolymer, ethylene alkyl acrylate copolymer, and other polyethylene-based resins, polybutene 1, etc. is there.
[0013] 熱可塑性榭脂繊維力もなる延伸糸の形態としては、フィルムをスリットして延伸した フラットヤーンや、フラットヤーンを割繊したスプリットヤーン、また紡糸ノズル力も押し 出したフィラメントを延伸したモノフィラメントや、低繊度フィラメントを収束したマルチ フィラメントなどが使用できる力 フラットヤーンやモノフィラメントが好ま 、。  [0013] As a form of drawn yarn that also has thermoplastic resin fiber strength, a flat yarn obtained by slitting a film, a split yarn obtained by splitting a flat yarn, a monofilament obtained by drawing a filament that also extrudes a spinning nozzle force, The ability to use multi-filaments with converged low-definition filaments. Flat yarns and monofilaments are preferred.
[0014] 熱可塑性榭脂としてポリプロピレン系榭脂を用いた場合につき、以下に詳述する。  [0014] The case where polypropylene-based resin is used as the thermoplastic resin is described in detail below.
上記延伸糸の形態として、フラットヤーンを用いる場合には、まず、ポリプロピレンを 押出機にて溶融混練し、 Tダイ法またはインフレーション法にてフィルムを成形し、成 形されたフィルム(以下、未延伸フィルムと称す)はスリットした後延伸し、ついで熱処 理してフラットヤーンを形成する。延伸処理はポリプロピレンの融点以下、軟化点以 上の温度にて行われる力 加熱方式としては、熱ロール式、熱板式、赤外線式、熱風 式等いずれの方式も採用でき、これらの内では熱ロール式が延伸効率、高速生産性 、安定性の上で好ましい。スリットされたポリプロピレンフィルムは加熱され、前後ロー ルの周速度差により延伸を行う。延伸倍率は 5倍以上、好ましくは 7倍〜 15倍、さらに 好ましくは 9〜 13倍の範囲である。 When flat yarn is used as the form of the drawn yarn, first, polypropylene is melt-kneaded with an extruder, a film is formed by a T-die method or an inflation method, and a formed film (hereinafter, undrawn) is used. (Referred to as film) is slit and then stretched, and then heat treated to form a flat yarn. Stretching is performed at a temperature below the melting point of polypropylene and above the softening point. Heating methods include hot roll type, hot plate type, infrared type, hot air. Any of these methods can be employed, and among these, the hot roll method is preferable in view of stretching efficiency, high-speed productivity, and stability. The slit polypropylene film is heated and stretched by the difference in peripheral speed between the front and rear rolls. The draw ratio is 5 times or more, preferably 7 to 15 times, more preferably 9 to 13 times.
[0015] また延伸糸の形態として、モノフィラメントを用いる場合には、その製造方法としては 特に限定されるものではなぐ円形や楕円形、異型、その他連糸形状のダイス力 フ イラメントを押し出す製造技術を採用することができる。  [0015] When a monofilament is used as the drawn yarn, the production method is not particularly limited, and a production technique for extruding a circular, elliptical, irregular, or other continuous yarn-shaped die force filament is used. Can be adopted.
[0016] さらに、このモノフィラメントの構成として基本的な単層フィラメントの他に、ポリプロピ レン高融点成分を芯層とし、ポリプロピレン低融点成分を鞘層とする複合モノフィラメ ントを使用することもできる。この製造方法は、各層のポリプロピレンを押出機で溶融 混練し、 2層の吐出孔が略同心円上に設けられたダイスの中心吐出孔から高融点成 分からなる芯層を供給し、その外面に低融点成分力 なる鞘層を押出して被覆して 複合モノフィラメントを得るものである。この場合に実質的な強力が芯層の物性に依 存するため、高融点成分としてプロピレン単独重合体、ァイソタクチックポリプロピレン などを使用することが好ましぐ一方低融点成分としては、プロピレン エチレンプロ ック共重合体及びランダム共重合体、シンジオタクチックポリプロピレンなどが好まし い。こうして得られる複合モノフィラメントを使用することで、コンクリート成形時の加熱 養生におけるポリプロピレン繊維の熱劣化を抑制することができる。  [0016] Further, in addition to the basic single-layer filament, a composite monofilament having a polypropylene high-melting component as a core layer and a polypropylene low-melting component as a sheath layer can also be used as the monofilament structure. In this manufacturing method, polypropylene of each layer is melt-kneaded with an extruder, and a core layer made of a high melting point component is supplied from a central discharge hole of a die in which two layers of discharge holes are provided on a substantially concentric circle. A composite monofilament is obtained by extruding and coating a sheath layer having a melting point component force. In this case, since the substantial strength depends on the physical properties of the core layer, it is preferable to use a propylene homopolymer, a isotactic polypropylene or the like as the high melting point component, while propylene ethylene propylene is used as the low melting point component. Copolymers, random copolymers and syndiotactic polypropylene are preferred. By using the composite monofilament thus obtained, it is possible to suppress thermal deterioration of the polypropylene fiber during heat curing during concrete molding.
[0017] 次に、モノフィラメントは熱延伸及び熱弛緩処理を施し、この熱処理によってフィラメ ントの剛性を高めて、伸びの小さいセメント強化用として好適なポリプロピレンモノフィ ラメントが得られる。この熱延伸はポリプロピレンの融点以下、軟化点以上の温度下 に行われ、通常は延伸温度が 90〜150°C、延伸倍率は通常 5〜12倍、好ましくは?〜 9倍である。熱延伸法としては、熱ロール式、熱板式、赤外線照射式、熱風オーブン 式、熱水式などの方式が採用できる。  Next, the monofilament is subjected to heat stretching and heat relaxation treatment, and the rigidity of the filament is increased by this heat treatment to obtain a polypropylene monofilament suitable for cement reinforcement having a small elongation. This hot drawing is performed at a temperature below the melting point of polypropylene and above the softening point. Usually, the drawing temperature is 90 to 150 ° C, and the draw ratio is usually 5 to 12 times, preferably? ~ 9 times. As the hot stretching method, methods such as a hot roll method, a hot plate method, an infrared irradiation method, a hot air oven method, and a hot water method can be adopted.
[0018] ポリプロピレンのフラットヤーンまたはフィラメントの引張強度は 5g/d以上であり、好 ましくは、 6g/d以上である。また、引張伸度は 20%以下であり、好ましくは、 15%以下で ある。引張強度、引張伸度がこれらの範囲を外れるとセメント強化用ポリプロピレン繊 維としての強度が不充分となり好ましくな!/、。 [0019] 形成されるポリプロピレンのフラットヤーンまたはフィラメントの単糸繊度は 5〜10,00 Odtの範囲であり、好ましくは 200〜6,500dtの範囲である。単糸繊度が 200dt未満では 繊維が細すぎてコンクリート混和物中の分散が不均一でファイバーボールになり易く 、施工性や補強性の点で問題となり、一方、単糸繊度が 10,000dtを超えると繊維のコ ンクリート混和物との接触面積が減少し曲げ応力に対して引き抜け易くなり補強効果 が劣り好ましくない。 [0018] The tensile strength of the flat yarn or filament of polypropylene is 5 g / d or more, and preferably 6 g / d or more. Further, the tensile elongation is 20% or less, preferably 15% or less. If the tensile strength and tensile elongation are outside these ranges, the strength as a polypropylene fiber for cement reinforcement is insufficient, which is preferable! [0019] The single yarn fineness of the formed flat yarn or filament of polypropylene is in the range of 5 to 10,00 Odt, preferably in the range of 200 to 6,500 dt. If the single yarn fineness is less than 200 dt, the fibers are too thin and the dispersion in the concrete mixture is uneven and tends to become fiber balls, which causes problems in terms of workability and reinforcement. On the other hand, if the single yarn fineness exceeds 10,000 dt The contact area of the fiber with the concrete admixture is reduced, and it tends to be pulled out with respect to bending stress.
[0020] それ故、ポリプロピレンのフラットヤーンまたはフィラメントは、熱延伸の次工程として 、表面に凹凸が付形されることが必要である。これによつて、繊維とコンクリートとの接 触面積を増加させて、コンクリート硬化後の繊維の引き抜けを抑制して補強効果を高 めることができるのである。この表面に凹凸を付形する方法としては、フラットヤーンま たはフィラメントをエンボスカ卩ェする方法が挙げられる。エンボスカ卩ェは、フラットヤー ンまたはフィラメントを延伸前または延伸後にエンボスロールを通すことにより行なうも ので、フラットヤーンまたはフィラメントの長手方向に連続して凹凸が形成されるもの である。  [0020] Therefore, the flat yarn or filament of polypropylene needs to have irregularities on the surface as the next step of hot drawing. As a result, the contact area between the fiber and the concrete can be increased, and the reinforcing effect can be enhanced by suppressing the pull-out of the fiber after the concrete is hardened. Examples of a method for forming irregularities on the surface include a method of embossing a flat yarn or a filament. Embossing is performed by passing a flat yarn or filament through an embossing roll before or after stretching, so that unevenness is continuously formed in the longitudinal direction of the flat yarn or filament.
[0021] ここで、エンボスの長さ及び深さ等の形状は任意のものでよいが、押し潰しによる繊 維断面の平均偏平率 1.5/1〜7/1の範囲、好ましくは 1.8/1〜7/1であることが必要とさ れる。この平均偏平率とは、付形された多様な形状の繊維断面における幅と高さの 平均的な比率を示した数値であり、平均偏平率が 1.5/1未満であると繊維表面に対 する凹凸付形が少ないため平滑表面繊維と補強効果の差が認められなぐ一方、平 均偏平率が 7/1を超えると付形による強度劣化が著しぐまた前記所定繊度の繊維に おいてはコンクリート中への分散性が悪ィ匕する傾向にあり問題となる。  [0021] Here, the shape such as the length and depth of the emboss may be arbitrary, but the average flatness ratio of the fiber cross section by crushing is in the range of 1.5 / 1 to 7/1, preferably 1.8 / 1 to It needs to be 7/1. This average flatness is a numerical value showing the average ratio of width and height in the cross-sections of various shaped shapes. If the average flatness is less than 1.5 / 1, While there are few uneven shapes, there is no difference in the reinforcing effect from smooth surface fibers.On the other hand, when the average flatness ratio exceeds 7/1, strength deterioration due to shaping is significant. Dispersibility in concrete tends to be poor, which is a problem.
[0022] 上記ポリプロピレン繊維には、本発明の主旨を逸脱しない範囲において、酸化防止 剤、滑剤、紫外線吸収剤、帯電防止剤、無機充填材、有機充填材、架橋剤、発泡剤 、核剤等の添加剤を配合してもよい。  [0022] The polypropylene fiber includes an antioxidant, a lubricant, an ultraviolet absorber, an antistatic agent, an inorganic filler, an organic filler, a crosslinking agent, a foaming agent, a nucleating agent and the like without departing from the gist of the present invention. These additives may be blended.
[0023] 本発明においては、上記ポリプロピレン繊維表面に対して、表面酸化処理を施して なり、その表面の濡れ張力が 40mN/m以上、好ましくは 40〜70mN/mの範囲にするこ とを特徴とする。表面の濡れ張力が 40mN/m未満では、ポリオレフイン榭脂繊維に対 して親水性を十分付与させることができず、セメント成形物の曲げ強度や衝撃強度を 向上させることができない。なお、濡れ張力は、「JIS K 6768 ぬれ張力試験方法」に 準拠した値である。 [0023] In the present invention, the surface of the polypropylene fiber is subjected to a surface oxidation treatment, and the surface has a wet tension of 40 mN / m or more, preferably 40 to 70 mN / m. And If the surface wetting tension is less than 40 mN / m, hydrophilicity cannot be sufficiently imparted to the polyolefin resin fiber, and the bending strength and impact strength of the cement molded product cannot be increased. It cannot be improved. The wetting tension is a value based on “JIS K 6768 Wetting Tension Test Method”.
表面酸化処理としては、コロナ放電処理、プラズマ処理、フレームプラズマ処理、電 子線照射処理、紫外線照射処理より選ばれた少なくとも一種の処理方法であり、コロ ナ放電処理、プラズマ処理が好ましい。  The surface oxidation treatment is at least one treatment method selected from corona discharge treatment, plasma treatment, flame plasma treatment, electron beam irradiation treatment, and ultraviolet irradiation treatment, and corona discharge treatment and plasma treatment are preferred.
[0024] コロナ放電処理は、通常用いられている処理条件、例えば、電極先端と被処理基 布間の距離 0.2〜5mmの条件で、その処理量としては、ポリプロピレン繊維 lm2当たり 10W'分以上、好ましくは 10〜200W.分の範囲、さらに好ましくは 10〜180W.分の範 囲である。 10W'分 /m2未満では、コロナ放電処理の効果が不十分で、上記繊維表面 の濡れ張力を上記範囲内にすることができず、セメント成形物の曲げ強度や衝撃強 度を向上させることができない。 [0024] Corona discharge treatment is a treatment condition that is usually used, for example, a distance of 0.2 to 5 mm between the electrode tip and the substrate to be treated. The treatment amount is 10 W 'min or more per lm 2 of polypropylene fiber. The range is preferably 10 to 200 W. min, and more preferably 10 to 180 W. min. If it is less than 10 W 'min / m 2 , the effect of corona discharge treatment is insufficient, the wetting tension of the fiber surface cannot be within the above range, and the bending strength and impact strength of the cement molded product are improved. I can't.
[0025] プラズマ処理工程は、アルゴン、ヘリウム、クリプトン、ネオン、キセノン、水素、窒素 、酸素、オゾン、一酸化炭素、二酸化炭素、二酸ィ匕硫黄等の単体ガスまたはこれらの 混合ガス、例えば、酸素濃度 5〜15容量%を含有する酸素と窒素の混合ガスを大気 圧近傍の圧力下で、対向電極間に電圧を印加してプラズマ放電を発生させること〖こ よって、プラズマジェットで電子的に励起せしめた後、帯電粒子を除去し、電気的に 中性とした励起混合ガスを、プラスチック基材の表面に吹きつけることにより実施でき る。プラズマ処理条件としては、例えば、処理するプラスチック基材が通過する電極 間の距離は、基材の厚み、印加電圧の大きさ、混合ガスの流量等に応じて適宜決定 される力 通常 l〜50mm、好ましくは 2〜30mmの範囲であり、上記電極間に印加する 電圧は印加した際の電界強度力 〜 40kV/cmとなるように印加するのが好ましぐそ の際の交流電源の周波数は、 l〜100kHzの範囲である。  [0025] The plasma treatment step is performed by using a single gas such as argon, helium, krypton, neon, xenon, hydrogen, nitrogen, oxygen, ozone, carbon monoxide, carbon dioxide, sulfur dioxide or a mixed gas thereof, for example, A plasma jet is generated electronically by generating a plasma discharge by applying a voltage between counter electrodes under a pressure close to atmospheric pressure with a mixed gas of oxygen and nitrogen containing an oxygen concentration of 5 to 15% by volume. After excitation, the charged particles are removed, and an electrically neutral excitation mixed gas is sprayed onto the surface of the plastic substrate. As plasma treatment conditions, for example, the distance between the electrodes through which the plastic substrate to be treated passes is a force that is appropriately determined according to the thickness of the substrate, the magnitude of the applied voltage, the flow rate of the mixed gas, etc. Preferably, it is in the range of 2 to 30 mm, and the voltage applied between the electrodes is preferably applied so that the electric field strength at the time of application is 40 kV / cm. The frequency of the AC power supply at that time is l is in the range of 100kHz.
[0026] フレームプラズマ処理工程は、天然ガスやプロパンを燃焼させた時に生じる火炎内 のイオンィ匕したプラズマを、プラスチック基材の表面に吹きつけることにより実施でき る。  [0026] The flame plasma treatment step can be carried out by blowing ionized plasma in a flame generated when natural gas or propane is burned onto the surface of the plastic substrate.
[0027] 電子線照射処理工程は、プラスチック基材の表面に、電子線加速器により発生させ た電子線を照射することにより行われる。電子線照射装置としては、例えば、線状の フィラメントからカーテン状に均一な電子線を照射できる装置「エレクト口カーテン」 ( 商品名)を使用することができる。 [0027] The electron beam irradiation treatment step is performed by irradiating the surface of the plastic substrate with an electron beam generated by an electron beam accelerator. As an electron beam irradiation device, for example, a device that can irradiate a uniform electron beam in the form of a curtain from a linear filament "elect mouth curtain" ( Product name) can be used.
[0028] 紫外線照射処理工程は、たとえば 200〜400m μの波長の紫外線を、プラスチック基 材の表面に照射することにより実施される。  [0028] The ultraviolet irradiation treatment step is carried out, for example, by irradiating the surface of the plastic substrate with ultraviolet rays having a wavelength of 200 to 400 µm.
[0029] 本発明においては、上記ポリプロピレン繊維表面に表面酸ィ匕処理を施した後、その 酸化処理表面に下記表面処理剤を特定量塗布して付着させ、表面処理を施すもの である。 [0029] In the present invention, after the surface of the polypropylene fiber is subjected to surface acid treatment, a specific amount of the following surface treatment agent is applied and adhered to the oxidized surface, and the surface treatment is performed.
[0030] 本発明に用いる表面処理剤は、スルホン酸ィ匕合物、ポリオール類あるいはポリカル ボン酸ィ匕合物の少なくとも 1種の化合物を主成分とするものであり、これらの一種又は 二種以上が使用される。  [0030] The surface treatment agent used in the present invention is mainly composed of at least one compound of a sulfonic acid compound, a polyol, or a polycarbonate compound, and one or two of these compounds The above is used.
スルホン酸化合物としては、リグ-ンスルホン酸系化合物、ナフタリンスルホン酸ホ ルマリン縮合物、メラミンスルホン酸ホルマリン縮合物、アントラセンスルホン酸ホルマ リン縮合物あるいは芳香族アミノスルホン酸系化合物が挙げられる。  Examples of the sulfonic acid compounds include ligne sulfonic acid compounds, naphthalene sulfonic acid formalin condensates, melamine sulfonic acid formalin condensates, anthracene sulfonic acid formalin condensates, and aromatic amino sulfonic acid compounds.
[0031] ポリオール類としては、ネオペンチルグリコール、ペンタエリスリトール、ヒドロキシピ ノ リン酸ネオペンチルダリコールまたはそれらの誘導体、へキサンジオールあるいは ペンタンジオールが挙げられる。  [0031] Examples of polyols include neopentyl glycol, pentaerythritol, neopentyl darlicol hydroxyhydroxyphosphate or derivatives thereof, hexanediol or pentanediol.
[0032] ポリカルボン酸ィ匕合物としては、スチレン 無水マレイン酸共重合体及びその部分 エステル化物、ァリルエーテル 無水マレイン酸共重合体及びその誘導体、ビニル エーテル 無水マレイン酸共重合体及びその誘導体、(分岐)ペンテ-ルエーテル 無水マレイン酸共重合体及びその誘導体、(メタ)アクリル酸 (メタ)アクリル酸エステ ル共重合体及びその誘導体が挙げられる。  [0032] Polycarboxylic acid compounds include styrene maleic anhydride copolymers and partially esterified products thereof, aryl ether maleic anhydride copolymers and derivatives thereof, vinyl ether maleic anhydride copolymers and derivatives thereof, ( (Branched) pentyl ether maleic anhydride copolymer and derivatives thereof, (meth) acrylic acid (meth) acrylic acid ester copolymers and derivatives thereof.
[0033] これらの中で、リグ-ンスルホン酸系化合物、ポリオール類が好ましぐ中でもリグ- ンスルホン酸系化合物とポリオール類との併用が好まし 、。  [0033] Among these, combined use of a lignite sulfonic acid compound and a polyol is preferred, even though a lignite sulfonic acid compound and a polyol are preferred.
具体的には、これらの表面処理剤として、生コンクリートの高流動性を付与させる目 的で使用される ΑΕ減水剤や高性能 ΑΕ減水剤、例えば、ェヌェムビー社のポゾリスシ リーズの ΑΕ減水剤、レオビルド SPシリーズの高性能 ΑΕ減水剤等が挙げられ、これら を本発明の表面処理剤として好適に用いることができる。  Specifically, as these surface treatment agents, water-reducing agents and high-performance water-reducing agents used for the purpose of imparting high fluidity to ready-mixed concrete, for example, water-reducing agents from the Phenoris series of NEMBEE, Leo Build SP series of high-performance water reducing agents and the like can be mentioned, and these can be suitably used as the surface treatment agent of the present invention.
[0034] 上記表面処理剤のポリプロピレン繊維に対する付着方法としては、一般に表面処 理剤をポリプロピレン繊維に塗布する方法により行われる。この塗布方法としては、表 面処理剤溶液中にポリプロピレン繊維を浸漬して塗布するディップコート法 (浸漬法) 、ポリプロピレン繊維に表面処理剤溶液をスプレーして塗布するスプレーコート法、 刷毛塗りやロールコータを用いてポリプロピレン繊維に表面処理剤溶液を塗布する 方法、ノ ットドライ法等が挙げられ、これらのうちディップコート法が好ましい。 [0034] The method of attaching the surface treatment agent to the polypropylene fiber is generally performed by a method of applying the surface treatment agent to the polypropylene fiber. As this coating method, Dip coating method (dipping method) in which polypropylene fiber is dipped in surface treatment solution, spray coating method in which surface treatment solution is sprayed onto polypropylene fiber, and applied to polypropylene fiber using brush coating or roll coater Examples thereof include a method of applying a surface treating agent solution, a knot dry method and the like, and among these, a dip coating method is preferable.
[0035] 上記ポリプロピレン繊維に表面処理剤を塗布した後、乾燥させるが、その乾燥温度 としては、通常、 10°C以上、好ましくは 20〜90°C、さらに好ましは 30〜90°Cの範囲 である。乾燥温度が、 30〜90°Cで高温乾燥する場合には、濡れ張力が増加し、セメ ントに対する付着力が高ぐ且つ、曲げ靭性係数および曲げタフネスが高くなるので 、好ましい。  [0035] The surface treatment agent is applied to the polypropylene fiber and then dried. The drying temperature is usually 10 ° C or higher, preferably 20 to 90 ° C, more preferably 30 to 90 ° C. It is a range. When the drying temperature is 30 to 90 ° C., it is preferable because the wet tension increases, the adhesion to the cement increases, and the bending toughness coefficient and bending toughness increase.
[0036] 上記表面処理剤のポリプロピレン繊維に対する付着量は、総繊維に対して 0.1〜5 重量%、好ましくは 0.5〜5重量 %である。付着量が総繊維に対して 0.1重量%未満では ポリプロピレン繊維に親水性が十分付与されずセメント成形体の曲げ強度や曲げタ フネスの向上が不充分であり、 5重量%を超えるとポリプロピレン繊維の親水性の付与 効果がそれ以上向上せずそれ故、セメント成形体の曲げ強度や曲げ靭性が平衡に 達してしまい、逆にコストが上昇するので、好ましくない。  [0036] The amount of the surface treatment agent attached to the polypropylene fiber is 0.1 to 5% by weight, preferably 0.5 to 5% by weight, based on the total fiber. If the adhesion amount is less than 0.1% by weight with respect to the total fiber, the polypropylene fiber is not sufficiently hydrophilic, and the bending strength and bending toughness of the cement molded body are insufficiently improved. The effect of imparting hydrophilicity is not further improved, and therefore, the bending strength and bending toughness of the cement molded body reach an equilibrium, and conversely the cost increases.
[0037] こうして表面処理を施したポリプロピレン繊維は、所定長さにカットされセメント強化 用の短繊維となる。短繊維の長さは 5〜100mm、好ましくは 20〜70mmである。繊維長 が 5mm未満では、セメントからの抜けが生じ、 100mmを越えると分散性が不良となり好 ましくない。  [0037] The polypropylene fiber subjected to the surface treatment in this manner is cut into a predetermined length and becomes a short fiber for cement reinforcement. The length of the short fiber is 5 to 100 mm, preferably 20 to 70 mm. If the fiber length is less than 5 mm, the cement will come off, and if it exceeds 100 mm, the dispersibility will be poor.
[0038] 本発明のセメント強化用ポリプロピレン繊維は、強化繊維材としてセメント、細骨材、 粗骨材、水及び適量のコンクリート混和剤に配合して用いられる。ここで、セメントとし てはポルトランドセメント、高炉セメント、シリカセメント、フライアッシュセメント、 白色ポ ルトランドセメント、アルミナセメント等の水硬性セメントまたは石膏、石灰等の気硬性 セメント等のセメント類が挙げられ、細骨材としては川砂、海砂、山砂、砕砂、珪砂、 ガラス砂、鉄砂、灰砂、その他人工砂などが挙げられ、粗骨材としてはレキ、砂利、砕 石、スラグ、各種人工軽量骨材などが代表的に挙げられる。  [0038] The polypropylene fiber for cement reinforcement of the present invention is used as a reinforcing fiber material by blending with cement, fine aggregate, coarse aggregate, water and an appropriate amount of concrete admixture. Here, examples of the cement include hydraulic cements such as Portland cement, blast furnace cement, silica cement, fly ash cement, white Portland cement, and alumina cement, and cements such as plaster, air-hardening cement such as lime, and the like. Examples of fine aggregates include river sand, sea sand, mountain sand, crushed sand, quartz sand, glass sand, iron sand, ash sand, and other artificial sand.Coarse aggregates include reki, gravel, crushed stone, slag, and various artificial sands. A typical example is lightweight aggregate.
[0039] 本発明のセメント強化用ポリプロピレン繊維を吹付けコンクリートの施工に用いる場 合、この配合量は、セメント、細骨材、粗骨材、水等よりなるコンクリート混合物 lm3に 対してポリプロピレン繊維を 4〜19kg、好ましくは 6〜14kgを配合して分散させることが 肝要である。これは、ポリプロピレン繊維の配合量が 19kgを超えてもコンクリート中に 繊維が均一に分布しないために曲げ靭性は増大しないし、一方、配合量が 4kg未満 では吹付け時のはね返りが大きぐまた硬化後補強効果が小さい。 [0039] cement reinforcing polypropylene fiber spraying construction for use if the concrete of the present invention, the amount is, cement, fine aggregate, coarse aggregate, the concrete mixture lm 3 consisting of water, etc. On the other hand, it is important to mix and disperse 4 to 19 kg, preferably 6 to 14 kg of polypropylene fiber. This is because even if the blended amount of polypropylene fiber exceeds 19 kg, the fiber does not distribute evenly in the concrete, so the bending toughness does not increase. Small post-reinforcing effect.
[0040] また、この場合の混合する方法として、セメント、細骨材、粗骨材、水等よりなるコン クリート混合物を投入してベースコンクリートとし、このベースコンクリートを練混ぜ後 に、ポリプロピレン繊維を投入し練混ぜを行なうことが好ましぐ練混ぜ時間は 1回当 たりの混合量による力 一般的にベースコンクリートの練混ぜは 45〜90秒、ポリプロピ レン繊維を投入後の練混ぜにっ ヽても 45〜90秒の範囲が適当とされる。  [0040] Further, as a mixing method in this case, a concrete mixture made of cement, fine aggregate, coarse aggregate, water or the like is added to form base concrete, and after mixing this base concrete, polypropylene fiber is mixed. It is preferable to add and knead. The mixing time is the power by the amount of mixing per time. Generally, mixing of base concrete is 45 to 90 seconds, mixing polypropylene fiber after mixing. Even the range of 45 to 90 seconds is appropriate.
[0041] カロえて、吹付けコンクリートの施工においては、本発明のポリプロピレン繊維を前記 配合量で使用する場合、スランプの範囲を 8〜21cmに調整するのが好ましい。これは 、スランプが 8cm未満では吹付け作業が困難となり、 21cmを超えるとはね返りが大きく なるので好ましくな!/、。このようなスランプの範囲で吹付けコンクリートを施工するため の吹付けノズルは、ノズルを吹付け面に直角に配置すること、及びノズルと吹付け面 の距離を 0.5〜1.5mとすることが有効となる。  [0041] In the construction of shotcrete, when the polypropylene fiber of the present invention is used in the above blending amount, it is preferable to adjust the slump range to 8 to 21 cm. This is preferable because the slump is less than 8 cm, and the spraying work becomes difficult, and when it exceeds 21 cm, the rebound becomes large! /. It is effective that the spray nozzle for constructing spray concrete in such a slump range should be arranged at right angles to the spray surface and the distance between the nozzle and the spray surface should be 0.5 to 1.5 m. It becomes.
[0042] 実施例 1  [0042] Example 1
(1)繊維の製造  (1) Manufacturing of fiber
ポリプロピレン (MFR=4.0g/10分、 Tm=163°C)を押出機に投入して円形ノズルから紡 糸して冷却した後に熱風オーブン式延伸法により、熱延伸温度 115°C、熱弛緩温度 1 20°C、延伸倍率 7〜8倍で延伸を行い、繊度 4300dtのモノフィラメントを形成し、次い で、傾斜格子柄のエンボスロールと硬質ゴムロールを用いてエンボス-ップ圧を変え て平均偏平率も異なる表面に凹凸を付形したポリプロピレンモノフィラメントを得た。 得られたモノフィラメント表面の濡れ張力は 32mNZmであった。  Polypropylene (MFR = 4.0g / 10min, Tm = 163 ° C) is charged into an extruder, spun from a circular nozzle, cooled, and then hot-air oven drawing method, hot drawing temperature 115 ° C, heat relaxation temperature 1 Stretch at 20 ° C, draw ratio 7-8 times to form a monofilament with a fineness of 4300 dt, and then change the embossing-up pressure using an embossed roll with hard lattice pattern and a hard rubber roll to change the average flatness Polypropylene monofilaments having irregularities on the surfaces with different rates were obtained. The wetting tension of the obtained monofilament surface was 32 mNZm.
このポリプロピレンモノフィラメントに表面酸ィ匕処理として、コロナ放電処理をポリプロ ピレンモノフィラメント表面 lm2当り 30W '分で処理を行い、得られたモノフィラメント表 面の濡れ張力は 45mNZmであった。 This polypropylene monofilament was subjected to corona discharge treatment at 30 W'min per lm 2 of polypropylene monofilament surface as surface acid treatment, and the wetting tension of the obtained monofilament surface was 45 mNZm.
さらに、このポリプロピレンモノフィラメントに表面処理剤として、リグ-ンスルホン酸ィ匕 合物及びポリオール複合体からなる処理液 ( (株)ェヌェムビー製ポゾリス No.70)に浸 漬処理後、 20°Cで乾燥して表面処理液 1重量 %を付着させた。上記ポリプロピレンモノ フィラメントを繊維長が 48mmになるように切断し、ポリプロピレン繊維とした。 Furthermore, the polypropylene monofilament is immersed in a treatment solution (Polylith No. 70, manufactured by ENUMB Co., Ltd.) consisting of a lignosulfonic acid compound and a polyol composite as a surface treatment agent. After the pickling treatment, it was dried at 20 ° C to adhere 1% by weight of the surface treatment solution. The polypropylene monofilament was cut to a fiber length of 48 mm to obtain polypropylene fiber.
[0043] (2)評価試験 1 [0043] (2) Evaluation test 1
上記で得られたポリプロピレン繊維にっ 、て、ポリプロピレン繊維に付着した表面処 理液を水洗にて除去した後、 JIS K 6768 (1999年)に準拠して濡れ張力を測定し、 その結果を表 1に示す。  After removing the surface treatment liquid adhering to the polypropylene fiber by washing with the polypropylene fiber obtained above, the wetting tension was measured according to JIS K 6768 (1999), and the result was displayed. Shown in 1.
[0044] (3)評価試験 2 [0044] (3) Evaluation test 2
上記で得られたポリプロピレン繊維にっ ヽて、下記方法で繊維の付着力試験を行 い、その結果を表 2に示す。なお、供試体の作製方法および載荷試験方法は、(社) 日本コンクリート工学協会「JCI-SF8 繊維の付着試験方法」に準じた。  The polypropylene fiber obtained above was subjected to a fiber adhesion test by the following method, and the results are shown in Table 2. The specimen preparation method and loading test method were in accordance with the Japan Concrete Engineering Association “JCI-SF8 Fiber Adhesion Test Method”.
1)繊維の埋込み条件  1) Fiber embedding conditions
埋込み長さ: 23.75(mm)  Embedding length: 23.75 (mm)
仕切板の厚さ:0.5(mm)  Partition plate thickness: 0.5 (mm)
定着長さ: 23.75(mm)  Fixing length: 23.75 (mm)
繊維長: 48(mm)  Fiber length: 48 (mm)
[0045] 2)使用材料と配合条件 [0045] 2) Materials used and blending conditions
セメント:早強ポルトランドセメント (密度 = 3.13g/cm3) Cement: Early strong Portland cement (Density = 3.13g / cm 3 )
細骨材:豊浦標準砂 (表乾密度 = 2.64g/cm3) Fine aggregate: Toyoura standard sand (surface dry density = 2.64 g / cm 3 )
水:水道水  Water: tap water
水セメント比: 50%  Water cement ratio: 50%
セメント砂比: 1 : 1.7  Cement sand ratio: 1: 1.7
繊維:ポリプロピレン繊維は、表面処理剤を付着して乾燥させた後、常温にて 180日 間保存させたものを使用した。  Fiber: Polypropylene fiber was used which was stored for 180 days at room temperature after the surface treatment agent was applied and dried.
なお、養生は、 14日間 20°C水中養生にて行った。  Curing was carried out at 20 ° C under water for 14 days.
[0046] (4)評価試験 3 [0046] (4) Evaluation test 3
上記で得られたポリプロピレン繊維にっ 、て、下記方法にてコンクリート補強効果を 試験し、その結果を表 3に示す。  The polypropylene fiber obtained above was tested for concrete reinforcement effect by the following method, and the results are shown in Table 3.
1)使用材料と配合条件 セメント:普通ポルトランドセメント (密度 = 3.15g/cm3) 340kg/m3 1) Materials used and blending conditions Cement: Ordinary Portland cement (Density = 3.15g / cm 3 ) 340kg / m 3
細骨材:木更津産山砂 (表乾密度 = 2.60 g/cm3) 894 kg/m3 Fine aggregate: Kisarazu mountain sand (surface dry density = 2.60 g / cm 3 ) 894 kg / m 3
粗骨材:青梅産砕石 1505(表乾密度 = 2.65g/cm3) 880kg/m3 Coarse aggregate: Ome crushed stone 1505 (surface dry density = 2.65 g / cm 3 ) 880 kg / m 3
水:水道水 170kg/m3 Water: Tap water 170kg / m 3
混和剤:高性能 AE減水剤 (株)ェヌェムビー製レオビルド SP8SB 4.42kg/m3 繊維:ポリプロピレン繊維は、表面処理剤を付着して乾燥させた後、常温にて 180日 間保存させたものを容積として 0.3%配合した。 Admixture: High-performance AE water reducing agent ENEBBY Rheobuild SP8SB 4.42kg / m 3 Fiber: Polypropylene fiber is a volume that is stored for 180 days at room temperature after it has been surface-treated and dried. As a result, 0.3% was blended.
[0047] 2)コンクリートの練混ぜ [0047] 2) Mixing concrete
容量 100リットルの強制二軸練りミキサを使用し、 1バッチ 60リットルで行う。コンクリー トの練り上がり時の温度は約 20°Cとした。練混ぜ方法は粗骨材、細骨材およびセメン トを投入して 30秒間の空練りを行った後、水および混和剤を投入し 120秒間練混ぜ後 に補強繊維を添加して 60秒間練混ぜを行い排出する。  Use a forced biaxial kneading mixer with a capacity of 100 liters, and perform one batch at 60 liters. The temperature when kneading the concrete was about 20 ° C. Kneading is performed by adding coarse aggregate, fine aggregate and cement for 30 seconds, then adding water and admixture, mixing for 120 seconds, adding reinforcing fibers and mixing for 60 seconds. Mix and drain.
[0048] 3)供試体の作成 [0048] 3) Specimen creation
土木学会基準「鋼繊維補強コンクリートの強度およびタフネス試験用供試体の作り 方」 OSCE F552-1983)に準拠した。尚、供試体は 24時間後に脱型し、材齢 28日まで 水中養生を実施した。  It conformed to the Japan Society of Civil Engineers standard “How to make specimens for strength and toughness testing of steel fiber reinforced concrete” (OSCE F552-1983). The specimens were demolded after 24 hours, and water curing was performed until the age of 28 days.
[0049] 4)試験方法 [0049] 4) Test method
土木学会基準「鋼繊維補強コンクリートの曲げ強度および曲げタフネス試験方法」 ( Japan Society of Civil Engineers standard "Bending strength and bending toughness test method of steel fiber reinforced concrete" (
JSCE G552- 1983)に準拠した。 JSCE G552-1983).
[0050] 実施例 2 [0050] Example 2
実施例 1にお 、て、得られたポリプロピレンモノフィラメントにコロナ放電処理を行つ た後、表面処理剤を付着させ、 60°Cで 4時間乾燥させたこと以外は同様にして行つ た。その結果を表 1〜表 3示す。  In Example 1, the obtained polypropylene monofilament was subjected to corona discharge treatment, followed by the same treatment except that a surface treatment agent was adhered and dried at 60 ° C. for 4 hours. The results are shown in Tables 1 to 3.
[0051] 実施例 3 [0051] Example 3
実施例 1にお 、て、得られたポリプロピレンモノフィラメント表面にプラズマ処理を出 力 2. 5kWにて 2段階処理で行った後、表面処理剤を付着させ、 60°Cで 4時間乾燥 させたこと以外は同様にして行った。その結果を表 1〜表 3示す。  In Example 1, plasma treatment was performed on the surface of the obtained polypropylene monofilament at 2.5 kW in a two-stage treatment, and then a surface treatment agent was attached and dried at 60 ° C for 4 hours. The procedure was the same except for the above. The results are shown in Tables 1 to 3.
[0052] 実施例 4 実施例 1にお 、て、得られたポリプロピレンモノフィラメント表面にプラズマ処理を出 力 2. 5kWにて 2段階処理で行った後、表面処理剤を付着させ、 20°Cで乾燥させた こと以外は同様にして行った。その結果を表 1〜表 3示す。 [0052] Example 4 In Example 1, plasma treatment was performed on the surface of the obtained polypropylene monofilament in a two-step treatment at 2.5 kW, and then a surface treatment agent was adhered and dried at 20 ° C. The same was done. The results are shown in Tables 1 to 3.
[0053] 比較例 1 [0053] Comparative Example 1
実施例 1にお 、て、得られたポリプロピレンモノフィラメントにコロナ放電処理及び表 面処理剤の付着を全く行わな力つたこと以外は同様にして行った。その結果を表 1〜 表 3示す。  In Example 1, the same procedure was performed except that the obtained polypropylene monofilament was not subjected to corona discharge treatment and adhesion of the surface treatment agent at all. The results are shown in Tables 1 to 3.
[0054] 比較例 2 [0054] Comparative Example 2
実施例 1にお 、て、コロナ放電処理して得られたポリプロピレンモノフィラメントに表 面処理剤を付着させな力つたこと以外は同様にして行った。その結果を表 1〜表 3に 示す。  In Example 1, the same procedure was performed except that the surface treatment agent was not adhered to the polypropylene monofilament obtained by corona discharge treatment. The results are shown in Tables 1 to 3.
[0055] 比較例 3 [0055] Comparative Example 3
実施例 1にお 、て、得られたポリプロピレンモノフィラメント表面にプラズマ処理を出 力 2. 5kWにて 2段階処理で行った後、表面処理剤を付着させなかったこと以外は同 様にして行った。その結果を表 1〜表 3示す。  In Example 1, plasma treatment was performed on the surface of the obtained polypropylene monofilament in the same manner except that the surface treatment agent was not adhered after performing a two-step treatment at 2.5 kW. . The results are shown in Tables 1 to 3.
[0056] 表 1から明らかなように、ポリプロピレン繊維を表面酸化処理した後、表面処理液を 塗布したものは 1年経過してもその濡れ張力が低下せず、特に 30〜90°Cの高温に て乾燥させたものは、その濡れ張力が増加することが判明した。 [0056] As is clear from Table 1, the wetting tension of polypropylene fibers coated with a surface treatment solution after surface oxidation treatment did not decrease even after 1 year, especially at a high temperature of 30 to 90 ° C. It was found that the wet tension increased in the dried product.
また、表 2から明らかなように、ポリプロピレン繊維を表面酸化処理した後、表面処 理液を塗布して乾燥させたものは、表面処理液を塗布しないものに比較して、ポリプ ロピレン繊維のセメントに対する付着力が高いことが判明した。  As is clear from Table 2, the polypropylene fiber cement was treated with a surface treatment solution and then dried by applying a surface treatment solution, compared to the one without the surface treatment solution. It was found that the adhesive strength to was high.
さらに、表 3から明らかなように、ポリプロピレン繊維を表面酸ィ匕処理した後、表面処 理液を塗布して乾燥させたものは、表面処理液を塗布しないものに比較して、曲げ 靭性係数および曲げタフネスが高いことが分力つた。  Furthermore, as is clear from Table 3, the toughness coefficient of the polypropylene fiber after the surface acid treatment was applied and the surface treatment solution was applied and dried, compared to the case where the surface treatment solution was not applied. Also, the bending toughness was high.
[0057] [表 1] 濡れ張力(mN/m) [0057] [Table 1] Wetting tension (mN / m)
0曰 1 曰 7 0 30曰 90曰 180 日 365 日 実施例 1 46 46 45 45 45 45 45 実施例λ ' 46 60 65 65 65 65 65 実施例 3 62 65 70 70 70 70 70 実施例 4 62 62 60 60 60 60 60 比較例 1 32 32 32 32 32 32 32 比較例 2 45 45 43 41 39 36 35 比較例 3 60 56 52 50 50 48 48 0 曰 1 曰 7 0 30 曰 90 曰 180 days 365 days Example 1 46 46 45 45 45 45 45 Example λ '46 60 65 65 65 65 65 Example 3 62 65 70 70 70 70 70 Example 4 62 62 60 60 60 60 60 Comparative Example 1 32 32 32 32 32 32 32 Comparative Example 2 45 45 43 41 39 36 35 Comparative Example 3 60 56 52 50 50 48 48
繊維 1本あたりの 繊維 1本あたりの 引抜け開始荷重 (N) 最大引抜け荷重 (N) 実施例 1 50.7 157.6 実施例 2 52.9 169.2 実施例 3 53.9 172.7 実施例 4 52.7 165.6 比較例 1 47.4 147.1 比較例 2 48.3 148.8 比較例 3 50.9 158.0 Pull-out start load per fiber (N) Maximum pull-out load (N) Example 1 50.7 157.6 Example 2 52.9 169.2 Example 3 53.9 172.7 Example 4 52.7 165.6 Comparative Example 1 47.4 147.1 Comparison Example 2 48.3 148.8 Comparative Example 3 50.9 158.0
曲げ強度 曲げタフネス 曲げ靭性係数Bending strength Bending toughness Bending toughness factor
(N/mm2) (N · mm) (N/mm2) 実施例 1 4.90 42000 1.87 実施例 2 4.91 51200 2.28 実施例 3 4.91 56200 2.49 実施例 4 4.90 48200 2.14 比較例 1 4.78 34000 1.51 比較例 2 4.85 38400 1.71 比較例 3 4.84 43800 1.94 (N / mm 2 ) (N mm) (N / mm 2 ) Example 1 4.90 42000 1.87 Example 2 4.91 51200 2.28 Example 3 4.91 56200 2.49 Example 4 4.90 48200 2.14 Comparative Example 1 4.78 34000 1.51 Comparative Example 2 4.85 38400 1.71 Comparative Example 3 4.84 43800 1.94

Claims

請求の範囲 The scope of the claims
[1] 熱可塑性榭脂繊維からなる延伸糸の表面に対して表面酸化処理を施し、その表面 にスルホン酸ィ匕合物、ポリオール類およびポリカルボン酸ィ匕合物力 選ばれた少なく とも 1種の化合物を 0.1〜5重量 %付着させてなることを特徴とするセメント強化用熱可 塑性榭脂繊維。  [1] The surface of a drawn yarn made of thermoplastic resin fibers is subjected to surface oxidation treatment, and the surface thereof has a sulfonic acid compound, polyols, and polycarboxylic acid compound strength. At least one selected A thermoplastic resin fiber for cement reinforcement characterized by comprising 0.1 to 5% by weight of the above compound.
[2] 熱可塑性榭脂繊維からなる延伸糸の表面に対して表面酸化処理を施し、その表面 にスルホン酸ィ匕合物、ポリオール類およびポリカルボン酸ィ匕合物力 選ばれた少なく とも 1種の化合物を 0.1〜5重量%塗布し、 20〜90°Cで乾燥処理して付着させてなるこ とを特徴とする請求項 1に記載のセメント強化用熱可塑性榭脂繊維。  [2] A surface oxidation treatment is applied to the surface of the drawn yarn made of thermoplastic resin fiber, and the surface of the sulfonic acid compound, polyol, and polycarboxylic acid compound is selected. 2. The thermoplastic resin fiber for cement reinforcement according to claim 1, wherein 0.1 to 5% by weight of the above compound is applied, and dried and adhered at 20 to 90 ° C.
[3] 熱可塑性榭脂繊維カゝらなる延伸糸が熱可塑性榭脂フィルムをスリットして延伸した フラットヤーンであることを特徴とする請求項 1または請求項 2に記載のセメント強化 用熱可塑性榭脂繊維。  [3] The thermoplastic resin for cement reinforcement according to claim 1 or 2, wherein the drawn yarn composed of a thermoplastic resin fiber fiber is a flat yarn obtained by slitting and drawing a thermoplastic resin film. Absorbent fiber.
[4] 熱可塑性榭脂繊維からなる延伸糸が熱可塑性榭脂を紡糸し、延伸したフィラメント であることを特徴とする請求項 1または請求項 2に記載のセメント強化用熱可塑性榭 脂繊維。  [4] The thermoplastic resin fiber for cement reinforcement according to [1] or [2], wherein the drawn yarn comprising the thermoplastic resin fiber is a filament obtained by spinning a thermoplastic resin.
[5] 熱可塑性榭脂繊維がポリプロピレン系榭脂繊維であることを特徴とする請求項 1〜 請求項 4の何れかに記載のセメント強化用熱可塑性榭脂繊維  [5] The thermoplastic resin fiber for cement reinforcement according to any one of claims 1 to 4, wherein the thermoplastic resin fiber is a polypropylene-based resin fiber.
[6] 熱可塑性榭脂繊維がポリプロピレン系榭脂繊維であり、その繊維断面の平均偏平 率力 l.5/1〜7/1の範囲で凹凸を付形した単糸繊度 200〜10,000dt以上のフラットャ ーンまたはモノフィラメントであって、且つ、その繊維表面に対して表面酸化処理を施 し、繊維表面の濡れ張力を 40mN/m以上となしたことを特徴とする請求項 1〜請求項 5の何れかに記載のセメント強化用熱可塑性榭脂繊維。  [6] The single-filament fineness is 200 to 10,000 dt or more with irregularities formed in the range of the average flatness ratio power l. A flat yarn or monofilament, and the surface of the fiber is subjected to a surface oxidation treatment so that the wetting tension of the fiber surface is 40 mN / m or more. The thermoplastic resin fiber for cement reinforcement according to any one of the above.
[7] スルホン酸化合物力 リグ-ンスルホン酸系化合物、ナフタリンスルホン酸ホルマリ ン縮合物、メラミンスルホン酸ホルマリン縮合物、アントラセンスルホン酸ホルマリン縮 合物、芳香族アミノスルホン酸系化合物、メタンスルホン酸系化合物及びベンゼンス ルホン酸系化合物力 選ばれた少なくとも 1種の化合物であることを特徴とする請求 項 1〜請求項 6の何れかに記載のセメント強化用熱可塑性榭脂繊維  [7] Strength of sulfonic acid compounds Lignone sulfonic acid compounds, naphthalene sulfonic acid formalin condensate, melamine sulfonic acid formalin condensate, anthracene sulfonic acid formalin condensate, aromatic amino sulfonic acid compound, methane sulfonic acid compound And a benzene sulfonic acid-based compound strength. The cement-reinforced thermoplastic resin fiber according to any one of claims 1 to 6, which is at least one selected compound.
[8] ポリオール類が、ネオペンチルグリコール、ペンタエリスリトール、ヒドロキシビバリン 酸ネオペンチルグリコールまたはそれらの誘導体、へキサンジオール及びペンタンジ オール力 選ばれた少なくとも 1種の化合物であることを特徴とする請求項 1〜請求 項 6の何れかに記載のセメント強化用熱可塑性榭脂繊維。 [8] Polyols are neopentyl glycol, pentaerythritol, hydroxybivalin The thermoplastic cocoon for cement reinforcement according to any one of claims 1 to 6, which is at least one compound selected from acid neopentyl glycol or derivatives thereof, hexanediol and pentanediol. Fat fiber.
ポリカルボン酸ィ匕合物力 スチレン 無水マレイン酸共重合体及びその部分エステ ル化物、ァリルエーテル 無水マレイン酸共重合体及びその誘導体、ビュルエーテ ル 無水マレイン酸共重合体及びその誘導体、(分岐)ペンテ-ルエーテル 無水マ レイン酸共重合体及びその誘導体、(メタ)アクリル酸 (メタ)アクリル酸エステル共重 合体及びその誘導体力 選ばれた少なくとも 1種の化合物であることを特徴とする請 求項 1〜請求項 6の何れかに記載のセメント強化用熱可塑性榭脂繊維  Polycarboxylic acid compound strength Styrene Maleic anhydride copolymer and its partially esterified product, allyl ether Maleic anhydride copolymer and its derivative, Bue ether Maleic anhydride copolymer and its derivative, (Branched) pentyl ether Maleic anhydride copolymer and derivatives thereof, (meth) acrylic acid (meth) acrylic acid ester copolymer and derivatives thereof At least one compound selected from claims 1 to claims Item 7. The thermoplastic resin fiber for cement reinforcement according to any one of Items 6
PCT/JP2005/014072 2004-08-09 2005-08-02 Thermoplastic resin fibers for the reinforcement of cement WO2006016499A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004232152 2004-08-09
JP2004-232152 2004-08-09
JP2004237175A JP2007284256A (en) 2004-08-09 2004-08-17 Cement-reinforcing polypropylene fiber
JP2004-237175 2004-08-17

Publications (1)

Publication Number Publication Date
WO2006016499A1 true WO2006016499A1 (en) 2006-02-16

Family

ID=35839271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014072 WO2006016499A1 (en) 2004-08-09 2005-08-02 Thermoplastic resin fibers for the reinforcement of cement

Country Status (2)

Country Link
JP (1) JP2007284256A (en)
WO (1) WO2006016499A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123173A1 (en) * 2007-03-26 2008-10-16 Kuraray Co., Ltd. Polypropylene fiber, method of producing the same and utilization of the same
JP2008266872A (en) * 2007-03-27 2008-11-06 Kuraray Co Ltd Polypropylene yarn
JP2009007727A (en) * 2007-05-25 2009-01-15 Kuraray Co Ltd Method for producing polypropylene fiber excellent in heat resistance and strength
JP2009084140A (en) * 2007-09-10 2009-04-23 Kuraray Co Ltd Hydraulic composition and hydraulic matter
CN102492074A (en) * 2011-11-24 2012-06-13 华东理工大学 Comb type copolymer with side chains grafted with naphthalene sulfonic acid groups, preparation method thereof and application thereof
RU2457290C2 (en) * 2007-03-26 2012-07-27 Курарей Ко., Лтд. Polypropylene fibres, production methods thereof and use thereof
WO2015136290A1 (en) * 2014-03-12 2015-09-17 Enviromate Limited Construction material and method of manufacturing the same
US10131579B2 (en) 2015-12-30 2018-11-20 Exxonmobil Research And Engineering Company Polarity-enhanced ductile polymer fibers for concrete micro-reinforcement
US10717673B2 (en) 2015-12-30 2020-07-21 Exxonmobil Research And Engineering Company Polymer fibers for concrete reinforcement
CN111996612A (en) * 2020-08-10 2020-11-27 中国纺织科学研究院有限公司 Reinforcing and toughening fiber and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103898738B (en) * 2014-03-21 2016-08-17 华南理工大学 The surface modification of a kind of carbon fiber and dispersion technology

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256048A (en) * 1999-03-05 2000-09-19 Hagihara Industries Inc Polypropylene flat yarn for reinforcing cement
JP2004059385A (en) * 2002-07-30 2004-02-26 Hagihara Industries Inc Polypropylene fiber for reinforcing cement
WO2004039744A1 (en) * 2002-10-30 2004-05-13 Hagihara Industries Inc. Polypropylene fiber for cement reinforcement, molded cement made with the fiber, method of constructing concrete structure, and method of spray concreting
JP2004175574A (en) * 2002-09-30 2004-06-24 Hagihara Industries Inc Polypropylene fiber for reinforcing cement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256048A (en) * 1999-03-05 2000-09-19 Hagihara Industries Inc Polypropylene flat yarn for reinforcing cement
JP2004059385A (en) * 2002-07-30 2004-02-26 Hagihara Industries Inc Polypropylene fiber for reinforcing cement
JP2004175574A (en) * 2002-09-30 2004-06-24 Hagihara Industries Inc Polypropylene fiber for reinforcing cement
WO2004039744A1 (en) * 2002-10-30 2004-05-13 Hagihara Industries Inc. Polypropylene fiber for cement reinforcement, molded cement made with the fiber, method of constructing concrete structure, and method of spray concreting

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2457290C2 (en) * 2007-03-26 2012-07-27 Курарей Ко., Лтд. Polypropylene fibres, production methods thereof and use thereof
WO2008123173A1 (en) * 2007-03-26 2008-10-16 Kuraray Co., Ltd. Polypropylene fiber, method of producing the same and utilization of the same
US8647741B2 (en) 2007-03-26 2014-02-11 Kuraray Co., Ltd. Polypropylene fiber, method of producing the same and utilization of the same
AU2008236152B2 (en) * 2007-03-26 2012-06-14 Kuraray Co., Ltd. Polypropylene fiber, method of producing the same and utilization of the same
JP2008266872A (en) * 2007-03-27 2008-11-06 Kuraray Co Ltd Polypropylene yarn
JP2009007727A (en) * 2007-05-25 2009-01-15 Kuraray Co Ltd Method for producing polypropylene fiber excellent in heat resistance and strength
JP2009084140A (en) * 2007-09-10 2009-04-23 Kuraray Co Ltd Hydraulic composition and hydraulic matter
CN102492074A (en) * 2011-11-24 2012-06-13 华东理工大学 Comb type copolymer with side chains grafted with naphthalene sulfonic acid groups, preparation method thereof and application thereof
WO2015136290A1 (en) * 2014-03-12 2015-09-17 Enviromate Limited Construction material and method of manufacturing the same
US10131579B2 (en) 2015-12-30 2018-11-20 Exxonmobil Research And Engineering Company Polarity-enhanced ductile polymer fibers for concrete micro-reinforcement
US10717673B2 (en) 2015-12-30 2020-07-21 Exxonmobil Research And Engineering Company Polymer fibers for concrete reinforcement
CN111996612A (en) * 2020-08-10 2020-11-27 中国纺织科学研究院有限公司 Reinforcing and toughening fiber and preparation method thereof
CN111996612B (en) * 2020-08-10 2022-10-11 中国纺织科学研究院有限公司 Reinforcing and toughening fiber and preparation method thereof

Also Published As

Publication number Publication date
JP2007284256A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
WO2006016499A1 (en) Thermoplastic resin fibers for the reinforcement of cement
JP3351724B2 (en) Polypropylene fiber for cement reinforcement and construction method of shotcrete using the same
TW200533626A (en) Polypropylene fiber for reinforcing cement, and cement moldings, executing method of concrete structures and method of spraying concrete using the fiber
JP6632622B2 (en) Surface modified polyolefin fiber
WO2013129323A1 (en) Fiber for reinforcing cement, and cured cement produced using same
KR100343339B1 (en) Twist-form reinforcement-fiber and method of preparing the same
JP3167900B2 (en) Polypropylene fiber for cement reinforcement
JP2006096565A (en) Cement-reinforcing fiber
JP4358645B2 (en) Polyolefin short fiber for cement reinforcement and cement-based molded body using the same
JP2006151792A (en) Polypropylene fiber for reinforcing cement and cement formed body obtained by using the same
JP3149248U (en) Polypropylene fiber for cement reinforcement
JP2000302494A (en) Cement reinforcing fiber
JP2004168645A (en) Polypropylene fiber for cement reinforcement
JP6445400B2 (en) Polyvinyl alcohol fiber for reinforcing mortar concrete, and mortar concrete containing the same
JP2004168643A (en) Polypropylene fiber for cement reinforcement
WO2004031095A1 (en) Polypropylene fiber for cement reinforcement, fiber-reinforced molded cement made with the polypropylene fiber for cement reinforcement, method of constructing concrete structure with the polypropylene fiber for cement reinforcement, and method of concrete spraying with the polypropylene fiber for cement reinforcement
JP2006103993A (en) Bundled fiber of thermoplastic resin for cement reinforcement
JP3996158B2 (en) Polypropylene short fiber for concrete reinforcement
JP2004175574A (en) Polypropylene fiber for reinforcing cement
JP2000256048A (en) Polypropylene flat yarn for reinforcing cement
JP2004059385A (en) Polypropylene fiber for reinforcing cement
JP2005289707A (en) Cement-reinforcing fiber
JP2006103992A (en) Bundled fiber of thermoplastic resin for cement reinforcement
EP2727892B1 (en) Concrete-reinforcing connecting fibers and manufacturing method thereof
JP2012193075A (en) Blastproof hydraulic hardened body

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase