JPH0986984A - Polypropylene fiber for cement reinforcement - Google Patents

Polypropylene fiber for cement reinforcement

Info

Publication number
JPH0986984A
JPH0986984A JP24975995A JP24975995A JPH0986984A JP H0986984 A JPH0986984 A JP H0986984A JP 24975995 A JP24975995 A JP 24975995A JP 24975995 A JP24975995 A JP 24975995A JP H0986984 A JPH0986984 A JP H0986984A
Authority
JP
Japan
Prior art keywords
cement
polypropylene
fiber
yarn
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24975995A
Other languages
Japanese (ja)
Other versions
JP3167900B2 (en
Inventor
Masuo Yabuki
増男 矢吹
Shingo Morishita
真吾 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hagiwara Industries Inc
Original Assignee
Hagiwara Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hagiwara Industries Inc filed Critical Hagiwara Industries Inc
Priority to JP24975995A priority Critical patent/JP3167900B2/en
Publication of JPH0986984A publication Critical patent/JPH0986984A/en
Application granted granted Critical
Publication of JP3167900B2 publication Critical patent/JP3167900B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0616Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0625Polyalkenes, e.g. polyethylene
    • C04B16/0633Polypropylene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Artificial Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a cement forming having improved tensile strength, bending strength, shock resistance, crack resistance, etc., by using propylene fibers produced by a specific forming method as a reinforcing material. SOLUTION: A propylene synthetic resin is extruded in a molten state from a linked yarn-shaped dice in which nozzle holes are linked in a series or adjacent to each other, and the extruded resin is subjected to a longitudinal uniaxial drawing treatment to form a linked yarn-shaped tape 1 in which filaments 2 are linked 3 in an individually separable manner. The linked yarn-shaped tape 1 is cut into a specified length, and the obtained short fibers are used as a cement reinforcing material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、セメント強化用の
ポリプロピレン繊維に関し、さらに詳しくは引張強度、
曲げ強度、耐衝撃性、耐亀裂性等を改良したセメント成
形品を得るためにセメント中に配合する強化繊維とし
て、特定の成形方法で得られたポリプロピレン繊維に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polypropylene fiber for cement reinforcement, and more particularly, to tensile strength,
The present invention relates to a polypropylene fiber obtained by a specific molding method as a reinforcing fiber mixed in cement to obtain a cement molded product having improved flexural strength, impact resistance, crack resistance and the like.

【0002】[0002]

【従来の技術】従来、セメント成形品の強化繊維材とし
てポリプロピレン繊維の短繊維を配合することは広く試
みられてきた。しかしながら、従来のポリプロピレン繊
維はセメントとの親和力が充分でなく、かつ短繊維の形
状が単純であるために応力に対してしてセメントから容
易に抜けることにおいてその補強効果は充分満足するも
のではなかった。一般的には、ポリプロピレン繊維とセ
メントとの親和力を増すためにポリプロピレン繊維に対
して表面処理剤やカップリング剤が用いられることが多
く、さらに、合成樹脂繊維とセメントとの接着性を向上
を目的としてポリプロピレンにエポキシ樹脂を配合した
繊維を用いる方法(特公昭61-25669号公報)や、繊維表面
に金属被覆層を形成させて界面結合力を高める方法(特
公昭63-63504号公報)等が開示されている。また、短繊
維の形状を改善することにより抜けを減少させる方法と
しては、紡糸された糸の断面積を延伸方向にたいして不
規則に変化させて繊維の抜けを防止する方法が種々試み
られており(特公昭58-18343号公報、特公昭61-301号公
報、特公昭62-4346号公報、特公昭62-28106号公報な
ど)、さらにポリプロピレン繊維の断面積に凹凸を設け
た上に電子線による表面処理を施す方法(特公昭61-2651
0号公報)、ポリプロピレンフィルムの割裂繊維を用いる
方法(特公平5-87460号、特開平4-59644号公報)なども試
みられている。
2. Description of the Related Art Conventionally, it has been widely tried to blend polypropylene fiber short fibers as a reinforcing fiber material for cement molded products. However, conventional polypropylene fibers do not have sufficient affinity with cement, and since the shape of short fibers is simple, their reinforcing effect is not sufficiently satisfactory in that they easily come out of cement in response to stress. It was Generally, a surface treatment agent or a coupling agent is often used for polypropylene fibers in order to increase the affinity between polypropylene fibers and cement, and the purpose is to improve the adhesion between synthetic resin fibers and cement. As a method of using a fiber in which an epoxy resin is mixed with polypropylene (Japanese Patent Publication No. 61-25669), a method of forming a metal coating layer on the fiber surface to increase the interfacial bonding force (Japanese Patent Publication No. 63-63504), etc. It is disclosed. Further, as a method of reducing the dropout by improving the shape of the short fiber, various methods have been tried in which the cross-sectional area of the spun yarn is irregularly changed in the drawing direction to prevent the dropout of the fiber ( (Japanese Patent Publication No. 58-18343, Japanese Patent Publication No. 61-301, Japanese Patent Publication No. 62-4346, Japanese Patent Publication No. 62-28106, etc.). Surface treatment method (Japanese Patent Publication No. 61-2651)
No. 0), a method using split fibers of polypropylene film (Japanese Patent Publication No. 5-87460, Japanese Patent Application Laid-Open No. 4-59644) and the like have been tried.

【0003】[0003]

【発明が解決しようとする課題】しかし、これらの技術
はいずれも充分なものではなく、例えばカップリング剤
等を用いる方法は配合が複雑で面倒である上に強化繊維
がセメント中に均一に分散し難いなどの欠点があり、糸
の断面積を不規則に変化させる方法は製造工程において
均一な巻取りが困難でかつ生産性に劣るなどの欠点があ
った。また、ポリプロピレンフィルムの割裂繊維を用い
る方法では割裂分繊のための工程が増え、割裂分繊によ
って発生した枝毛はセメント中での補強効果にあまり期
待できない上に割繊斑による分散にバラツキがあるとい
う欠点を有しているのである。
However, none of these techniques are sufficient. For example, the method using a coupling agent is complicated and complicated, and the reinforcing fibers are uniformly dispersed in the cement. However, the method of irregularly changing the cross-sectional area of the yarn has drawbacks that it is difficult to uniformly wind the yarn in the manufacturing process and the productivity is poor. Also, in the method using split fibers of a polypropylene film, the number of steps for split splitting increases, and the split ends generated by split splitting cannot be expected to have much reinforcing effect in the cement, and the dispersion due to split split spots varies. It has the disadvantage of being.

【0004】[0004]

【課題を解決するための手段】本発明は、上記課題を解
決するために鋭意検討の結果、引張強度、曲げ強度、耐
衝撃性、耐亀裂性等を改良したセメント成形品を得るべ
くセメント中に配合する強化繊維材として、特定の成形
方法で得られたポリプロピレン繊維を用いることでその
目的を達しようとするものである。
As a result of intensive studies to solve the above problems, the present invention provides a cement molded product having improved tensile strength, bending strength, impact resistance, crack resistance, etc. The purpose is to achieve the object by using polypropylene fiber obtained by a specific molding method as the reinforcing fiber material to be blended with.

【0005】すなわち、ポリプロピレン系合成樹脂フィ
ラメントであり、個々のフィラメントが分離可能に連結
した連糸形状テープの短繊維からなるセメント強化用ポ
リプロピレン繊維である。
That is, the polypropylene fiber for cement reinforcement is a polypropylene-based synthetic resin filament, which is a continuous fiber-shaped tape short fiber in which individual filaments are separably connected.

【0006】具体的には、ポリプロピレン系合成樹脂を
ノズル孔がシリーズに連結又は隣接された連糸形状ダイ
スから溶融押出して縦一軸延伸処理を施して形成される
フィラメントが個々に分離可能に連結した連糸形状テー
プを所定長さに切断した短繊維からなるセメント強化用
ポリプロピレン繊維である。
Specifically, polypropylene-based synthetic resin is melt-extruded from a continuous-thread-shaped die in which nozzle holes are connected in series or adjacent to each other and subjected to longitudinal uniaxial stretching treatment, and filaments formed by separate separation are connected to each other. A polypropylene fiber for cement reinforcement, which comprises short fibers obtained by cutting a continuous yarn-shaped tape into a predetermined length.

【0007】更に詳細には、ポリプロピレン系合成樹脂
を5〜100個のノズル孔をシリーズに連結又は隣接した
連糸形状ダイスから溶融押出して縦一軸延伸処理を施し
て形成される、単糸繊度5〜100drのフィラメントが分
離可能に連結した総繊度200〜3,000drの連糸形状テープ
を、繊維長が3〜30mmとなる長さに切断したことを特徴
とするセメント強化用ポリプロピレン繊維である。
More specifically, a polypropylene-based synthetic resin is formed by melt-extruding polypropylene synthetic resin from a continuous yarn-shaped die in which 5 to 100 nozzle holes are connected in series or adjacent to each other and subjected to longitudinal uniaxial stretching treatment. A polypropylene fiber for cement reinforcement, characterized in that a continuous yarn-shaped tape having a total fineness of 200 to 3,000 dr in which filaments of up to 100 dr are separably connected is cut into a length of 3 to 30 mm.

【0008】[0008]

【発明の実施の形態】本発明に用いられるポリプロピレ
ン系合成樹脂とは、プロピレン単独重合体、エチレン−
プロピレンブロック共重合体あるいはランダム共重合体
等の公知のポリプロピレン共重合体またはそれらの混合
物であって、これらなかでも高強度、耐熱性を要求され
るセメント成形品補強材としてはプロピレン単独重合体
が望ましく、特に、アイソタクチックペンタッド分率0.
95以上のものが好適に採用される。アイソタクチックペ
ンタッド分率とは、A.Zambelli等によってMacromolecul
es 6 925(1973)に発表された、13C−NMRを使用して
測定されるポリプロピレン分子内のペンタッド単位での
アイソタクチック分率を意味するもので、この数値が高
いほど結晶化度が高くなり、その結果、成形体の剛性と
耐熱性が向上したものとなる。また、樹脂の溶融流動特
性からメルトフローレート(MFR)は0.1〜50g/10min.、好
ましくは1〜40g/10min.、さらに好ましくは5〜30g/10
min.の範囲から選択するのがよい。
BEST MODE FOR CARRYING OUT THE INVENTION The polypropylene synthetic resin used in the present invention means a propylene homopolymer, ethylene-
Known polypropylene copolymers such as propylene block copolymers or random copolymers or mixtures thereof, and among them, propylene homopolymer is a high strength, as a reinforcing material for cement molded articles required to have heat resistance, a propylene homopolymer. Desirable, especially with an isotactic pentad fraction of 0.
Those of 95 or more are preferably used. Isotactic Pentad Fraction is a macrolecule by A. Zambelli et al.
es 6 925 (1973), which means the isotactic fraction in the pentad unit in the polypropylene molecule measured by 13 C-NMR, the higher the value, the higher the crystallinity. As a result, the rigidity and heat resistance of the molded product are improved. Further, the melt flow rate (MFR) from the resin melt flow characteristics is 0.1 to 50 g / 10 min., Preferably 1 to 40 g / 10 min., And more preferably 5 to 30 g / 10.
It is better to select from the range of min.

【0009】ポリプロピレン系合成樹脂には、その使用
目的により本発明の主旨を逸脱しない範囲において、酸
化防止剤、滑剤、紫外線吸収剤、帯電防止剤、無機充填
材、有機充填材、架橋剤、発泡剤、核剤等の添加剤を配
合してもよい。
[0009] Polypropylene-based synthetic resins include antioxidants, lubricants, ultraviolet absorbers, antistatic agents, inorganic fillers, organic fillers, cross-linking agents, and foams within the range not departing from the gist of the present invention depending on the purpose of use. You may mix | blend additives, such as an agent and a nucleating agent.

【0010】本発明のセメント強化用ポリプロピレン繊
維の製造方法としては、前述のポリプロピレン系樹脂を
複数のノズル孔を略直線的に並設した連糸形状ダイスか
ら溶融状態で押出し冷却した後に、縦方向に高倍率に熱
延伸処理を施すことによりフィラメントが連結した連糸
状テープを形成する。
The method for producing the polypropylene fiber for cement reinforcement of the present invention is as follows. The polypropylene resin is extruded in a molten state from a continuous yarn-shaped die having a plurality of nozzle holes arranged substantially linearly in a molten state, and then cooled in the longitudinal direction. A continuous filament tape in which filaments are connected is formed by subjecting the filaments to a high-strength heat drawing treatment.

【0011】連糸形状ダイスは少なくとも5〜100個の
ノズル孔をシリーズに連結又は隣接した形状を有してい
るが、通常10〜50個、好ましくは20〜30個のノズルを連
結した形状である。ノズルの孔数は連糸を構成するフィ
ラメント本数を表すが、孔数が5個未満であると後述す
るがセメント配合前の取扱性とセメント中で解繊した際
の繊維表面の凹凸によるマトリックスと繊維の接触面積
の増加による補強効果において通常のモノフィラメント
形状のものと差がないものとなるし、一方、孔数が100
個を超えると連糸形状テープとしての幅が広くなり必要
な熱延伸を均一に行うことが困難となり、またセメント
に配合しても解繊せずに繊維塊として残存してセメント
成形品の表面を荒らし品質低下を起こすなど問題とな
る。ノズル形状としては、円形もしくは三角形、四角形
等の多角形、Y形、星形等の異形断面形状であってもよ
い。
The continuous thread type die has a shape in which at least 5 to 100 nozzle holes are connected or adjacent to each other in a series, but usually has a shape in which 10 to 50, preferably 20 to 30 nozzles are connected. is there. The number of holes in the nozzle represents the number of filaments that make up the continuous yarn. It will be described later that the number of holes is less than 5, but it is easy to handle before cement mixing and a matrix due to the unevenness of the fiber surface when defibrated in cement. The reinforcing effect due to the increase in the contact area of the fiber is the same as the normal monofilament shape, while the number of holes is 100
If it exceeds the number, the width as a continuous yarn-shaped tape becomes wider and it becomes difficult to uniformly perform the necessary heat drawing, and even if it is mixed with cement, it does not defibrate and remains as a fiber lump and the surface of the cement molded product It causes problems such as degrading quality. The nozzle shape may be a circular shape, a triangular shape, a polygonal shape such as a quadrangle, or an irregular cross-sectional shape such as a Y shape or a star shape.

【0012】ダイスから押出成形された未延伸の連糸形
状テープは、ポリプロピレン系合成樹脂の融点以下、軟
化点以上の温度下に熱延伸処理が行われるが、加熱方式
としては、熱ロール式、熱板式、赤外線式、熱風式など
の公知の技術がいずれも採用でき、これらのなかでは内
部から電熱加熱されたコンベックス状熱板上で加熱され
る熱板式が高速生産性、安定性の上で好ましい。所定の
温度で加熱された連糸形状テープは、前後ロールの周速
度差により延伸処理が施される。ここで延伸倍率は好ま
しくは3〜20倍、より好ましくは10〜15倍である。この
延伸処理により剛性が高くかつ伸びの小さいフィラメン
トを成すことができ、さらに重要なのは縦方向に高延伸
するため配向が付与され縦方向に割れやすくなり、連糸
が容易に分離可能な状態とすることである。
The unstretched continuous filament tape extruded from the die is subjected to hot stretching at a temperature below the melting point of the polypropylene-based synthetic resin and above the softening point. Any known technology such as hot plate type, infrared type, hot air type, etc. can be adopted. Among them, the hot plate type heated on a convex type hot plate electrically heated from the inside is high in productivity and stability. preferable. The continuous yarn-shaped tape heated at a predetermined temperature is stretched due to the difference in peripheral speed between the front and rear rolls. Here, the draw ratio is preferably 3 to 20 times, more preferably 10 to 15 times. By this drawing treatment, a filament having a high rigidity and a small elongation can be formed, and more importantly, since the film is drawn in the longitudinal direction, it is oriented so that it is easily broken in the longitudinal direction, so that the continuous yarn can be easily separated. That is.

【0013】延伸された連糸形状テープは、総繊度が20
0〜3,000drのものが好ましい。総繊度200drより小さい
ものはセメント強化用繊維としての取扱性が悪く、総繊
度3,000drを超えたものはセメントに配合して使用する
際にセメント中で繊維塊を作って分散不良となり易く、
そのためセメント成形品の補強効果が充分に発現しない
など問題となる。
The continuous continuous filament tape has a total fineness of 20.
It is preferably 0 to 3,000 dr. Those with a total fineness of less than 200dr have poor handleability as a fiber for cement reinforcement, and those with a total fineness of more than 3,000dr tend to form fiber lumps in the cement and become poorly dispersed when used in combination with cement,
Therefore, there is a problem that the reinforcing effect of the cement molded product is not sufficiently exhibited.

【0014】所定の総繊度の連糸形状テープは切断され
てその繊維長を3〜30mm、好ましくは5〜15mmとなした
ものである。繊維長が3mm未満では、セメントに配合さ
れた際にセメントからの抜けが生じ易く、30mmを越える
と分散性が不良となり易く好ましくない。繊維長を一定
長さに切断する方法は通常用いられる切断方法がすべて
用いられるが、カッター刃を加熱する必要のあるもの
や、連続運転でカッター刃が熱を蓄積してしまうような
方法は好ましくない。つまり、連糸形状テープの切断時
にフィラメントがカッター刃により加熱され一部溶融す
ることにより隣接するフィラメント同士が溶着して集束
した繊維塊となり分散不良を生じやすくなるためであ
る。
A continuous yarn-shaped tape having a predetermined total fineness is cut to have a fiber length of 3 to 30 mm, preferably 5 to 15 mm. If the fiber length is less than 3 mm, it tends to come off from the cement when blended with the cement, and if it exceeds 30 mm, the dispersibility tends to be poor, which is not preferable. As the method for cutting the fiber length to a constant length, all commonly used cutting methods are used, but a method in which the cutter blade needs to be heated or a method in which the cutter blade accumulates heat in continuous operation is preferable. Absent. That is, when the continuous yarn-shaped tape is cut, the filaments are heated by the cutter blade and partially melted, so that adjacent filaments are welded to each other to form a bundle of fibers, which is likely to cause poor dispersion.

【0015】こうして得られる本発明のポリプロピレン
繊維は、強化繊維材としてポルトランドセメント、白色
ポルトランドセメント、アルミナセメント等の水硬性セ
メントまたは石膏、石灰等の気硬性セメント等のセメン
ト類などに配合して用いられる。セメント中の繊維の配
合量は、通常セメント固形分に対して0.1〜20重量%で
ある。また、ポリプロピレン繊維をセメントに混合する
方法としては、セメント粉体に繊維を分散する方法、セ
メントスラリー中に繊維を分散するプレミックス法、セ
メントと繊維及び水を同時に吹き付けるスプレーアップ
法などの公知の方法を用いることができる。
The polypropylene fiber of the present invention thus obtained is used as a reinforcing fiber material by being mixed with hydraulic cement such as Portland cement, white Portland cement, alumina cement or cement such as gypsum, air-hardening cement such as lime, etc. To be The content of fibers in cement is usually 0.1 to 20% by weight based on the solid content of cement. Further, as a method of mixing polypropylene fibers with cement, known methods such as a method of dispersing fibers in cement powder, a premix method of dispersing fibers in cement slurry, and a spray-up method of simultaneously spraying cement and fibers and water are known. Any method can be used.

【0016】こうした使用状態における本発明のポリプ
ロピレン繊維は、複数のフィラメントからなる連糸形状
を呈しており、高倍率に縦一軸延伸処理が施されている
ために縦方向に配向が付与され、フィラメント同士の連
結部が外力によって割れやすくなっている。このため
に、本発明のポリプロピレン繊維はセメントに配合され
る前段においては、集束繊維と同様に取扱性の良好な総
繊度200〜3,000dr程度のテープ状の繊維でありながら、
セメントとの混練によって適度に分離し解繊され良好な
分散性を有する繊維となるのである。解繊されたテープ
状は、モノフィラメント状の繊維も若干はあるものの、
その大部分は複数本の集束繊維となっており、フィラメ
ントが連結部によって多数が連なった断面を有するため
に、繊維の表面あるいは全体に凹凸が形成されたものと
なり、この凹凸がセメントへの物理的結合を著しく向上
させるのである。
The polypropylene fiber of the present invention in such a use state has a continuous yarn shape composed of a plurality of filaments, and since it is subjected to a longitudinal uniaxial stretching treatment at a high magnification, orientation is imparted in the longitudinal direction, The connection between them is easily broken by external force. For this reason, the polypropylene fiber of the present invention is a tape-shaped fiber having a total fineness of about 200 to 3,000 dr, which has a good handleability similar to that of the bundled fiber in the preceding stage of being mixed with cement,
By kneading with cement, the fibers are appropriately separated and defibrated into fibers having good dispersibility. The disentangled tape shape has some monofilament fibers,
Most of them are a plurality of bundled fibers, and since the filaments have a cross section in which a large number of filaments are connected by a connecting part, irregularities are formed on the surface or the whole of the fibers, and these irregularities physically affect the cement. It significantly improves the physical coupling.

【0017】連糸を構成するフィラメントの単糸繊度は
5〜100dr、好ましくは10〜60drであり、単糸繊度が5d
r未満では繊維が細すぎて、たとえ数本が集束しても分
散が不均一になり強化繊維材としての効果も著しく低下
したものとなるし、単糸繊度100drを超えると、セメン
トとの接触面積が減少して補強効果が劣ったものとな
る。また、フィラメントの引張強度は5g/dr以上が好ま
しく、7g/dr以上がより好ましい。引張強度が5g/dr未
満ではセメント強化繊維としての補強効果が不充分とな
ることが考えられる。
The filament of the continuous yarn has a single yarn fineness of 5 to 100 dr, preferably 10 to 60 dr, and a single yarn fineness of 5 d.
If it is less than r, the fiber is too thin, and even if several fibers are bundled, the dispersion becomes non-uniform and the effect as a reinforcing fiber material is remarkably reduced, and if the single yarn fineness exceeds 100 dr, contact with cement occurs. The area is reduced and the reinforcing effect is inferior. The tensile strength of the filament is preferably 5 g / dr or more, more preferably 7 g / dr or more. If the tensile strength is less than 5 g / dr, the reinforcing effect as a cement-reinforced fiber may be insufficient.

【0018】本発明のポリプロピレン繊維は、セメント
配合前に、種々の処理を施してもよい。例えば、繊維表
面を界面活性剤、分散剤、カップリング剤等で処理して
もよいし、またはコロナ放電処理、紫外線照射、電子線
照射等により表面活性化または架橋化等の処理を行って
もよい。
The polypropylene fiber of the present invention may be subjected to various treatments before being mixed with cement. For example, the fiber surface may be treated with a surfactant, a dispersant, a coupling agent, or the like, or may be subjected to a treatment such as surface activation or cross-linking by corona discharge treatment, ultraviolet irradiation, electron beam irradiation, or the like. Good.

【0019】本発明のポリプロピレン繊維を適量配合し
たセメント混合物は、用途により抄造成形法、押出成形
法、注入成形法等公知の成形法に従って成形し、常温で
数十日間大気中又は水中に放置する自然養生法または2
〜3日常温で放置後100〜200℃の温度で処理されるオー
トクレーブ養生法などにより養生硬化しセメント成形品
となる。繊維強化されたセメント成形品の用途として
は、あらゆるセメント製品にわたるものであるが、例え
ば、建造物の壁材、床材コンクリート、仕上げモルタ
ル、防水コンクリート、屋根材等、あるいは土木関係部
材としては道路、滑走路等の舗装、道路標識、側溝等の
道路部材、下水管、ケーブルダクト等のパイプ類、漁
礁、護岸ブロック、テトラポット等、その他各種構築物
として枕木、ベンチ、フラワーポット等に使用できる。
The cement mixture containing the polypropylene fiber of the present invention in an appropriate amount is molded according to a known molding method such as a paper-forming molding method, an extrusion molding method, an injection molding method, etc., and left in the air or water at room temperature for several tens of days. Natural cure or 2
After being left at room temperature for 3 days, it is cured by an autoclave curing method in which it is treated at a temperature of 100 to 200 ° C. to be a cement molded product. The applications of fiber-reinforced cement molded products are all cement products, but for example, wall materials for buildings, concrete floor materials, finished mortar, waterproof concrete, roof materials, etc. It can be used for sleepers, benches, flower pots, etc. as pavements for runways, road signs, road members such as gutters, sewer pipes, pipes such as cable ducts, fishing reefs, revetment blocks, tetrapots, etc.

【0020】[0020]

【実施例】ポリプロピレン樹脂(アイソタクチックペン
タッド分率0.96,MFR=5.0g/10min.)を押出機に供給し、
溶融温度230℃で、2mmφ×25孔の連糸形状ノズルから
押出して冷却した後、熱板接触式延伸法で延伸温度130
℃、アニーリング温度135℃、延伸倍率12倍で縦一軸延
伸を行い、単糸繊度20drのフィラメントが幅方向に連結
した総繊度500drの連糸形状テープを成形し、カッター
刃により約6mm長に切断して本実施例のポリプロピレン
繊維とした。
Example: Polypropylene resin (isotactic pentad fraction 0.96, MFR = 5.0 g / 10 min.) Was supplied to an extruder,
At a melting temperature of 230 ℃, extrude from a continuous yarn shape nozzle with 2mmφ × 25 holes and cool, then draw at a draw temperature of 130 by hot plate contact drawing method.
℃, annealing temperature 135 ℃, longitudinal uniaxial stretching at a draw ratio of 12 times, to form a continuous thread-shaped tape with a total fineness of 500 dr in which filaments with a single-thread fineness of 20 dr are connected in the width direction and cut into about 6 mm length with a cutter blade. The polypropylene fiber of this example was obtained.

【0021】本実施例のポリプロピレン繊維をセメント
に配合して供試体を成形するにあたり、ポルトランドセ
メント100重量部と標準砂200重量部とを充分に混合し、
前述のポリプロピレン繊維を5重量部添加し撹拌混合
し、更に水道水65重量部を加えて全体が均一になるよう
に混練した。この状態で繊維の形状を確認したところ、
僅かに単繊維に分離したものもあるがその大部分が2〜
5本程度の連糸に分繊してセメント混合物中に均一に分
散された状態であった。図1はその顕微鏡写真からスケ
ッチした平面図で、倍率は8倍である。図2は同断面図
であり、倍率は60倍である。連糸形状テープ1が単糸フ
ィラメント2の連続体であり、適当に個々の単糸フィラ
メント2が連接部3から分離している状態が明瞭にわか
る。
When the polypropylene fiber of this example was mixed with cement to form a specimen, 100 parts by weight of Portland cement and 200 parts by weight of standard sand were sufficiently mixed,
5 parts by weight of the above-mentioned polypropylene fiber was added and mixed by stirring, and 65 parts by weight of tap water was further added and kneaded so that the whole was uniform. When the shape of the fiber was confirmed in this state,
Some are slightly separated into single fibers, but most of them are 2 to
It was in a state in which it was divided into about 5 continuous yarns and uniformly dispersed in the cement mixture. FIG. 1 is a plan view sketched from the micrograph and the magnification is 8 times. FIG. 2 is a sectional view of the same, and the magnification is 60 times. It can be clearly seen that the continuous yarn-shaped tape 1 is a continuous body of the single yarn filaments 2, and the individual single yarn filaments 2 are appropriately separated from the connecting portion 3.

【0022】このセメント混合物は、型枠に流し込み、
大気中、常温で48時間放置した後、オートクレーブ中で
165℃、20時間養生を行い、厚さ5mm、縦横500mmの板材
とした。
The cement mixture was poured into a mold,
Leave it in the air at room temperature for 48 hours and then in an autoclave.
After curing at 165 ° C for 20 hours, a plate material having a thickness of 5 mm and a length and width of 500 mm was prepared.

【0023】比較例1として、通常のモノフィラメント
形状のポリプロピレン繊維をとりあげる。これは、ポリ
プロピレン樹脂(アイソタクチックペンタッド分率0.9
6,MFR=5.0g/10min.)を押出機に供給し、溶融温度230
℃で、2mmφの円形ノズルから押出して冷却した後、熱
板接触式延伸法で延伸温度130℃、アニーリング温度135
℃、延伸倍率7倍で縦一軸延伸を行い、繊度20drのモノ
フィラメントを成形し、カッター刃により約6mm長に切
断してポリプロピレン繊維としたものである。
As Comparative Example 1, an ordinary monofilament-shaped polypropylene fiber is taken up. This is a polypropylene resin (isotactic pentad fraction 0.9
6, MFR = 5.0g / 10min.) Is fed to the extruder and melt temperature 230
After being extruded from a 2 mmφ circular nozzle at ℃ and cooled, the drawing temperature is 130 ℃ and the annealing temperature is 135 by the hot plate contact drawing method.
A uniaxial longitudinal stretching was performed at a temperature of 7 ° C and a draw ratio of 7 to form a monofilament having a fineness of 20dr, which was cut into about 6mm length by a cutter blade to obtain a polypropylene fiber.

【0024】以下、実施例と同様にセメントに配合して
供試体を成形したが、比較例1のポリプロピレン繊維
は、実施例と同程度の単糸繊度であるが、使用前に細か
く分離しており取り扱いがし難く、またセメント中にお
いて分離した単繊維同士が絡み合って分散性が不良なも
のであった。図1と図2の比較で繊維形態の差が理解で
きる。
Hereinafter, a test piece was molded by mixing with cement in the same manner as in Example. The polypropylene fiber of Comparative Example 1 had a single yarn fineness similar to that of Example, but was finely separated before use. It was difficult to handle, and the dispersability was poor because the single fibers separated in the cement were entangled with each other. The difference in fiber morphology can be understood by comparing FIGS. 1 and 2.

【0025】比較例2として、フィルムを割裂分繊した
幹枝形状のポリプロピレン繊維をとりあげる。これは、
ポリプロピレン樹脂(アイソタクチックペンタッド分率
0.94,MFR=3.0g/10min.)を押出機に供給し、インフレ
ーション法により溶融温度230℃で円形ダイスから無定
形状態で押出し、冷却してフィルムを成形した後、細断
してテープ状とし、熱板接触式法で延伸温度130℃、ア
ニーリング温度135℃、延伸倍率5倍で縦一軸延伸を行
い、高速の回転刃ロールに接触させることにより切れ目
を入れて割裂分繊して幹繊維の平均繊度が60drである幹
枝形状を有するスプリットヤーンを成形し、カッター刃
により約6mm長に切断してポリプロピレン繊維としたも
のである。図3はその顕微鏡写真からスケッチした平面
図で、倍率は8倍である。図4は同断面図(60倍)であ
り、従来のフラットヤーン4にはランダムなスプリット
5が形成されているのみである。
As Comparative Example 2, a trunk-branch-shaped polypropylene fiber obtained by splitting and splitting a film is taken. this is,
Polypropylene resin (isotactic pentad fraction
0.94, MFR = 3.0 g / 10 min.) Is fed to the extruder, and is extruded in an amorphous state from a circular die at a melting temperature of 230 ° C by the inflation method, cooled to form a film, and then chopped into tapes. Uniaxially stretching at a drawing temperature of 130 ° C., an annealing temperature of 135 ° C., and a draw ratio of 5 times by a hot plate contact method, and makes a cut by splitting the fiber by contacting with a high-speed rotary blade roll to split the trunk fiber. A split yarn having a trunk-branch shape with an average fineness of 60 dr is formed and cut into about 6 mm long with a cutter blade to obtain polypropylene fiber. FIG. 3 is a plan view sketched from the micrograph and the magnification is 8 times. FIG. 4 is the same cross-sectional view (60 times), and only the random splits 5 are formed in the conventional flat yarn 4.

【0026】以下、実施例と同様にセメントに配合して
供試体を成形したが、比較例2のポリプロピレン繊維
は、特徴的な幹枝形状によって使用前においては繊維が
集束状態であり取り扱いは容易であるが、セメント中に
おいては枝毛の存在が繊維自体を嵩高にし均一に分散し
がたいものであった。
Hereinafter, the sample was molded by mixing it with cement in the same manner as in Example. However, the polypropylene fiber of Comparative Example 2 was in a bundled state before use due to the characteristic trunk-branch shape, and was easy to handle. However, the presence of split ends in the cement made the fibers bulky and difficult to disperse uniformly.

【0027】上述の実施例1及び比較例1,2のポリプ
ロピレン繊維を配合して得られた強化セメント成形品の
物性を測定した結果を表1に示す。
Table 1 shows the results of measuring the physical properties of the reinforced cement molded products obtained by blending the polypropylene fibers of Example 1 and Comparative Examples 1 and 2 described above.

【0028】[0028]

【表1】 [Table 1]

【0029】実施例2〜5 実施例1で用いたポリプロピレン樹脂を異なる連糸形状
ノズルから溶融押出して、延伸したフィラメントを切断
して表2に示す各種の連糸形状テープを作成し、実施例
1と同様の方法で、セメント板材として、それらの物性
を測定した。結果を表1にまとめて示す。
Examples 2 to 5 The polypropylene resin used in Example 1 was melt extruded from different continuous yarn shape nozzles, and the drawn filaments were cut to prepare various continuous yarn shape tapes shown in Table 2. In the same manner as in 1, the physical properties of the cement board were measured. The results are summarized in Table 1.

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【発明の効果】以上詳記したように、本発明のポリプロ
ピレン繊維は、単糸繊度5〜100drの短く切断されたフ
ィラメントの5〜100本が連糸形状を有して分離可能な
連結部で接合されてなるものであるから、セメントに投
入し易いなど取扱性が良好であり、しかもセメント中で
混練する際には容易に少数の連糸に分離するため均一に
分散する。また、その大部分が少数の連糸となることで
繊維の表面あるいは全体に凹凸が形成され、繊維とセメ
ントとの接触面積を増加させセメントへの物理的結合力
を増加することができ、これにより強化繊維材として本
発明のポリプロピレン繊維を配合したセメント成形品
は、引張強度、曲げ強度、衝撃強度などを大幅に改良す
ることができるのである。
As described in detail above, in the polypropylene fiber of the present invention, 5 to 100 shortly cut filaments having a single yarn fineness of 5 to 100 dr have a continuous yarn shape and are separable connecting portions. Since they are joined, they are easy to put into cement and have good handleability, and when kneaded in cement, they are easily separated into a small number of continuous yarns and are therefore uniformly dispersed. Further, most of them are a small number of continuous yarns, so that unevenness is formed on the surface or the whole of the fiber, and it is possible to increase the contact area between the fiber and the cement and increase the physical binding force to the cement. Thus, the cement molded product containing the polypropylene fiber of the present invention as a reinforcing fiber material can be improved in tensile strength, bending strength, impact strength and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明(実施例1)のセメント強化用ポリプロピ
レン繊維の顕微鏡写真(8倍)からスケッチした平面図で
ある。
FIG. 1 is a plan view sketched from a micrograph (8 times) of a polypropylene fiber for cement reinforcement of the present invention (Example 1).

【図2】本発明(実施例1)のセメント強化用ポリプロピ
レン繊維の顕微鏡写真(60倍)からスケッチした断面図で
ある。
FIG. 2 is a cross-sectional view sketched from a micrograph (60 times) of a polypropylene fiber for cement reinforcement of the present invention (Example 1).

【図3】従来(比較例2)のセメント強化用ポリプロピレ
ン繊維の顕微鏡写真(8倍)からスケッチした平面図であ
る。
FIG. 3 is a plan view sketched from a microscope photograph (8 times) of a conventional (Comparative Example 2) polypropylene fiber for cement reinforcement.

【図4】従来(比較例2)のセメント強化用ポリプロピレ
ン繊維の顕微鏡写真(60倍)からスケッチした断面図であ
る。
FIG. 4 is a sectional view sketched from a microscope photograph (60 times) of a conventional (Comparative Example 2) polypropylene fiber for cement reinforcement.

【符号の説明】[Explanation of symbols]

1 連糸形状テープ 2 単糸フィラメント 3 連接部 4 フラットヤーン 5 スプリット 1 Continuous yarn shape tape 2 Single yarn filament 3 Connection part 4 Flat yarn 5 Split

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ポリプロピレン系合成樹脂フィラメント
であり、個々のフィラメントが分離可能に連結した連糸
形状テープの短繊維からなるセメント強化用ポリプロピ
レン繊維。
1. A polypropylene fiber for cement reinforcement, which is a polypropylene-based synthetic resin filament and is composed of short fibers of a continuous yarn-shaped tape in which individual filaments are separably connected.
【請求項2】 ポリプロピレン系合成樹脂をノズル孔が
シリーズに連結又は隣接された連糸形状ダイスから溶融
押出して縦一軸延伸処理を施して形成されるフィラメン
トが個々に分離可能に連結した連糸形状テープを所定長
さに切断した短繊維からなるセメント強化用ポリプロピ
レン繊維。
2. A continuous thread shape in which polypropylene synthetic resin is melt extruded from a continuous thread shape die in which nozzle holes are connected in series or adjacent to each other and subjected to longitudinal uniaxial stretching treatment, and filaments formed in such a manner that they can be individually separated. Polypropylene fiber for cement reinforcement, which consists of short fibers obtained by cutting a tape to a specified length.
JP24975995A 1995-09-27 1995-09-27 Polypropylene fiber for cement reinforcement Expired - Lifetime JP3167900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24975995A JP3167900B2 (en) 1995-09-27 1995-09-27 Polypropylene fiber for cement reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24975995A JP3167900B2 (en) 1995-09-27 1995-09-27 Polypropylene fiber for cement reinforcement

Publications (2)

Publication Number Publication Date
JPH0986984A true JPH0986984A (en) 1997-03-31
JP3167900B2 JP3167900B2 (en) 2001-05-21

Family

ID=17197814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24975995A Expired - Lifetime JP3167900B2 (en) 1995-09-27 1995-09-27 Polypropylene fiber for cement reinforcement

Country Status (1)

Country Link
JP (1) JP3167900B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040004938A (en) * 2002-07-06 2004-01-16 하태욱 Reinforced Polypropylene Fiber Applied Hydrophilic Surface Treatment for Concrete and Shotcrete and its manufacturing
KR100441074B1 (en) * 2001-05-18 2004-07-19 주식회사 하이콘 Bundle of bent type reinforce ment-fiber and method for preparing the same
US6780367B2 (en) 2000-06-28 2004-08-24 Dow Global Technologies Inc. Method for preparing a concrete article having reinforcing fibers frayed at their ends
EP1769108A1 (en) 2004-05-25 2007-04-04 Saint-Gobain Materiaux de Construction S.A.S Loaded polymer fibre, method for the production thereof, use of the same, and composition comprising such fibres
KR100741015B1 (en) * 2006-01-18 2007-07-20 세종대학교산학협력단 Textile reinforced material manufacturing system
JP2009292667A (en) * 2008-06-03 2009-12-17 Ohbayashi Corp Fiber reinforced cement composite material and production method thereof
JP2015000827A (en) * 2013-06-14 2015-01-05 ダイワボウホールディングス株式会社 Cement-reinforcing fiber, production method thereof and cement hardened body
JP2016160161A (en) * 2015-03-04 2016-09-05 太平洋セメント株式会社 Hydraulic composition and heat resistant structure
JP2022526620A (en) * 2019-04-08 2022-05-25 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Induction parts and manufacturing method of induction parts
CN114753152A (en) * 2019-12-29 2022-07-15 河北新尔特橡塑密封有限公司 Titanate modified polypropylene fiber, preparation method and application thereof, heat-shrinkage-resistant sealing ring and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6780367B2 (en) 2000-06-28 2004-08-24 Dow Global Technologies Inc. Method for preparing a concrete article having reinforcing fibers frayed at their ends
KR100441074B1 (en) * 2001-05-18 2004-07-19 주식회사 하이콘 Bundle of bent type reinforce ment-fiber and method for preparing the same
KR20040004938A (en) * 2002-07-06 2004-01-16 하태욱 Reinforced Polypropylene Fiber Applied Hydrophilic Surface Treatment for Concrete and Shotcrete and its manufacturing
EP1769108A1 (en) 2004-05-25 2007-04-04 Saint-Gobain Materiaux de Construction S.A.S Loaded polymer fibre, method for the production thereof, use of the same, and composition comprising such fibres
KR100741015B1 (en) * 2006-01-18 2007-07-20 세종대학교산학협력단 Textile reinforced material manufacturing system
JP2009292667A (en) * 2008-06-03 2009-12-17 Ohbayashi Corp Fiber reinforced cement composite material and production method thereof
JP2015000827A (en) * 2013-06-14 2015-01-05 ダイワボウホールディングス株式会社 Cement-reinforcing fiber, production method thereof and cement hardened body
JP2016160161A (en) * 2015-03-04 2016-09-05 太平洋セメント株式会社 Hydraulic composition and heat resistant structure
JP2022526620A (en) * 2019-04-08 2022-05-25 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Induction parts and manufacturing method of induction parts
CN114753152A (en) * 2019-12-29 2022-07-15 河北新尔特橡塑密封有限公司 Titanate modified polypropylene fiber, preparation method and application thereof, heat-shrinkage-resistant sealing ring and preparation method thereof

Also Published As

Publication number Publication date
JP3167900B2 (en) 2001-05-21

Similar Documents

Publication Publication Date Title
US5886078A (en) Polymeric compositions and methods for making construction materials from them
DE69417535T2 (en) Mixture of polypropylene and polypropylene resin reinforced with long glass fibers and molded parts made from them
DE60012095T2 (en) Process for the preparation of granules of polyolefin reinforced with synthetic organic fibers
JP3167900B2 (en) Polypropylene fiber for cement reinforcement
DE10048209A1 (en) Polypropylene based fiber reinforced composite containing reinforcing fibers and a matrix resin obtained from different polypropylene based resins, exhibits excellent adhesion between the fibers and matrix resin and strength
JPH10138244A (en) Long and short fiber-reinforced polyolefin composite structure and molding formed thereof
JP2001504401A (en) Rod-shaped pellets
WO2013129323A1 (en) Fiber for reinforcing cement, and cured cement produced using same
JP4596672B2 (en) Manufacturing method of high heat-resistant polypropylene fiber
JP3579770B2 (en) Crystalline thermoplastic resin columns reinforced with long fibers and plate-like inorganic fillers
JP3517330B2 (en) Polypropylene fiber for cement reinforcement
JP4330258B2 (en) Fiber reinforced thermoplastic resin pellets and process for producing the same
JPH10265246A (en) Polypropylene fiber for reinforcing cement
JPH0365311A (en) Carbon fiber chop
JP3569460B2 (en) Cement reinforcing fiber
JP2000256048A (en) Polypropylene flat yarn for reinforcing cement
JPH031907A (en) Production of fiber reinforced composite material
JP2000212826A (en) Cement reinforcing fiber
JP2745685B2 (en) Thermoplastic resin pellet mixture and molded article using the same
WO2004031095A1 (en) Polypropylene fiber for cement reinforcement, fiber-reinforced molded cement made with the polypropylene fiber for cement reinforcement, method of constructing concrete structure with the polypropylene fiber for cement reinforcement, and method of concrete spraying with the polypropylene fiber for cement reinforcement
KR102616017B1 (en) Polyolefin monofilament yarn having improved abrasion resistance, method of manufacturing the same, and molded article manufactured thereby
JPH09255391A (en) Fiber reinforced cement formed body
JP2002348157A (en) Fiber for reinforcement of cement
JP2004059389A (en) Polypropylene fiber for reinforcing cement
JP3755267B2 (en) Concrete reinforcing fiber and concrete molded body using the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term