JP2745685B2 - Thermoplastic resin pellet mixture and molded article using the same - Google Patents

Thermoplastic resin pellet mixture and molded article using the same

Info

Publication number
JP2745685B2
JP2745685B2 JP1148768A JP14876889A JP2745685B2 JP 2745685 B2 JP2745685 B2 JP 2745685B2 JP 1148768 A JP1148768 A JP 1148768A JP 14876889 A JP14876889 A JP 14876889A JP 2745685 B2 JP2745685 B2 JP 2745685B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fiber
pellet
reinforced thermoplastic
resin pellet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1148768A
Other languages
Japanese (ja)
Other versions
JPH0313305A (en
Inventor
邦治 森
俊明 北洞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP1148768A priority Critical patent/JP2745685B2/en
Publication of JPH0313305A publication Critical patent/JPH0313305A/en
Application granted granted Critical
Publication of JP2745685B2 publication Critical patent/JP2745685B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は成形性に優れ、かつ力学特性にも優れた成形
体を提供する熱可塑性樹脂ペレットに関するものであ
る。
Description: TECHNICAL FIELD The present invention relates to a thermoplastic resin pellet which provides a molded article having excellent moldability and excellent mechanical properties.

(従来の技術) 繊維強化熱可塑性樹脂ペレットは、熱可塑性樹脂チッ
プと長さ3〜6mmの強化繊維とさらに、用途に応じて無
機フィラーを押出機中で混練し、次いでペレット化する
ことにより製造されていた。しかしながら、該ペレット
は、押出機中での混練過程で強化繊維が切損するため、
該ペレットを用いて得た成形品の力学特性、特に耐衝撃
性が低いという欠点があった。
(Prior art) Fiber-reinforced thermoplastic resin pellets are produced by kneading a thermoplastic resin chip, reinforcing fibers having a length of 3 to 6 mm, and an inorganic filler depending on the application in an extruder, and then pelletizing. It had been. However, since the reinforcing fibers break during the kneading process in the extruder,
There was a drawback that the mechanical properties, particularly impact resistance, of the molded product obtained using the pellets were low.

係る欠点を回避するため、強化用長繊維束が導かれた
金型内に押出機より熱可塑性樹脂を提供しながら長繊維
束を引き取り、次いでペレット化する方法が検討されて
きた。しかしながら、該ペレットは強化繊維に対する熱
可塑性樹脂の濡れが悪いため、該ペレットを用いて得た
成形品の曲げ強度が期待されるほど大きくないという欠
点があった。
In order to avoid such a drawback, a method has been studied in which a long fiber bundle is taken out while providing a thermoplastic resin from an extruder into a mold into which a long fiber bundle for reinforcement has been guided, and then pelletized. However, since the pellets have poor wettability of the thermoplastic resin to the reinforcing fibers, there is a disadvantage that the bending strength of a molded product obtained by using the pellets is not so large as expected.

係る欠点を回避するため、強化繊維と熱可塑性樹脂繊
維より成る混繊糸を加熱・加圧成形し、次いでペレット
化する方法が検討されてきた。該ペレットを用いた場
合、耐衝撃性、曲げ特性、引張特性の優れた成形品が得
られる。
In order to avoid such a drawback, a method has been studied in which a mixed fiber comprising a reinforcing fiber and a thermoplastic resin fiber is heated and pressed, and then pelletized. When the pellets are used, a molded article having excellent impact resistance, bending properties and tensile properties can be obtained.

しかしながら、成形加工性(例えば、射出成形時での
離型性、低成形収縮性)が繊維強化熱可塑性樹脂ペレッ
トとして未だ満足されるものではなかった。
However, molding processability (for example, mold releasability during injection molding, low molding shrinkage) has not yet been satisfied as fiber-reinforced thermoplastic resin pellets.

(発明が解決しようとする課題) 本発明は前記事情に鑑みてなされたものであって、そ
の目的とするところは耐衝撃性、曲げ特性、引張特性が
優れた成形体を得るのに好適であり、かつ成形加工性が
良好である繊維強化熱可塑性樹脂ペレットを提供するこ
とである。
(Problems to be Solved by the Invention) The present invention has been made in view of the above circumstances, and an object of the present invention is to obtain a molded article having excellent impact resistance, bending properties, and tensile properties. An object of the present invention is to provide a fiber-reinforced thermoplastic resin pellet having a good moldability.

(課題を解決するための手段) 即ち、本発明は、強化繊維および熱可塑性樹脂繊維と
から得られた混繊糸より加工された繊維強化熱可塑性樹
脂ロッドを切断して得られる、下記の繊維強化熱可塑性
樹脂ペレット(A)ならびに該繊維強化熱可塑性樹脂ペ
レット(A)より低い融解温度または軟化温度、もしく
は該繊維強化熱可塑性樹脂ペレット(A)より高い溶融
指数を有する熱可塑性樹脂ペレット(B)とを混合した
ことを特徴とする熱可塑性樹脂ペレット混合物である。
(Means for Solving the Problems) That is, the present invention relates to the following fiber obtained by cutting a fiber-reinforced thermoplastic resin rod processed from a mixed fiber obtained from a reinforcing fiber and a thermoplastic resin fiber. The reinforced thermoplastic resin pellet (A) and the thermoplastic resin pellet (B) having a lower melting temperature or softening temperature than the fiber reinforced thermoplastic resin pellet (A), or a higher melting index than the fiber reinforced thermoplastic resin pellet (A). ) Is mixed with a thermoplastic resin pellet mixture.

繊維強化熱可塑性樹脂ペレット(A): (i)強化繊維含有率 30〜80重量%、 (ii)混合分散率 20%以上、 また、前記樹脂ペレット(A)および(B)を用いて
成形した成形体である。
Fiber reinforced thermoplastic resin pellet (A): (i) Reinforced fiber content 30 to 80% by weight, (ii) Mixed dispersion ratio 20% or more, and molded using resin pellets (A) and (B) It is a molded article.

本発明における繊維強化熱可塑性樹脂ペレット(A)
を構成する樹脂成分は、例えばポリエチレンテレフタレ
ート、ポリブチレンテレフタレート等のポリエステル系
樹脂、ナイロン6、ナイロン66、ナイロン610等のポリ
アミド系樹脂、ポリフェニレンサルファイド樹脂、ポリ
エーテルケトン系樹脂、ポリエチレン、ポリプロピレン
等のポリオレフィン系樹脂等の繊維形成能のある樹脂で
ある。
Fiber-reinforced thermoplastic resin pellet (A) in the present invention
Are polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyamide resins such as nylon 6, nylon 66 and nylon 610, polyphenylene sulfide resins, polyether ketone resins, and polyolefins such as polyethylene and polypropylene. It is a resin capable of forming fibers, such as a base resin.

本発明における熱可塑性樹脂ペレット(B)は、本発
明の繊維強化熱可塑性樹脂ペレット(A)よりも低い融
解温度または軟化温度、または該ペレットより高い溶融
指数(メルトインデックス)を有する樹脂ペレットであ
り、該ペレットを構成する熱可塑性樹脂は、繊維強化熱
可塑性樹脂ペレット(A)を構成する熱可塑性樹脂に該
樹脂に対して結晶化促進効果を与える化合物やそのオリ
ゴマーやポリマー、離型剤、可塑剤効果を与える化合物
やそのオリゴマーやポリマー、無機充填剤等を配合、添
加することによって改質、変性等がなされた熱可塑性樹
脂、前記熱可塑性樹脂と相溶性のある熱可塑性樹脂等で
あり、前記熱可塑性樹脂の成型性を向上させるものであ
ればよい。
The thermoplastic resin pellet (B) in the present invention is a resin pellet having a lower melting temperature or softening temperature than the fiber-reinforced thermoplastic resin pellet (A) of the present invention, or a higher melting index (melt index) than the pellet. The thermoplastic resin constituting the pellets may be a compound which gives the thermoplastic resin constituting the fiber-reinforced thermoplastic resin pellets (A) a crystallization promoting effect to the resin, or an oligomer or polymer thereof, a release agent, or a plastic. Compounds or oligomers and polymers that give the agent effect, blended, such as an inorganic filler, modified by adding, modified thermoplastic resin, such as a thermoplastic resin compatible with the thermoplastic resin, What is necessary is just to improve the moldability of the thermoplastic resin.

次に、本発明の繊維強化熱可塑性樹脂ペレットの代表
的な製造方法を示す。
Next, a typical method for producing the fiber-reinforced thermoplastic resin pellets of the present invention will be described.

即ち、強化繊維と熱可塑性樹脂繊維とを公知の方法で
混繊して混繊糸を得る。例えば、両者長繊維を引き揃え
て静電気的に開繊させつつ、両者の単繊維同志を絡合さ
せる方法又は両者長繊維を引き揃えて噴出乱流空気中を
通過させ、開繊・絡合させる方法等により混繊糸を得
る。ここで、混繊糸を使用する理由は、強化繊維の含有
率を高くすることが出来るからである。次いで、該混繊
糸を熱可塑性樹脂の融点以上の温度で加熱した後、ロー
ラ圧縮により繊維強化熱可塑性樹脂ロッドを得る。
That is, the reinforcing fiber and the thermoplastic resin fiber are mixed by a known method to obtain a mixed fiber. For example, a method in which both long fibers are aligned and electrostatically opened, and both single fibers are entangled with each other, or both long fibers are aligned and passed through jet turbulent air to spread and entangle. A mixed fiber is obtained by a method or the like. Here, the reason why the mixed fiber is used is that the content of the reinforcing fiber can be increased. Next, after heating the mixed fiber at a temperature equal to or higher than the melting point of the thermoplastic resin, a fiber reinforced thermoplastic resin rod is obtained by roller compression.

次いで、該繊維強化熱可塑性樹脂ロッドを公知の方
法、例えばペレタイザーにより長さ2〜60mmに切断して
繊維強化熱可塑性樹脂組成物ペレット(A)を得る。
Next, the fiber-reinforced thermoplastic resin rod is cut into a length of 2 to 60 mm by a known method, for example, a pelletizer to obtain a fiber-reinforced thermoplastic resin composition pellet (A).

一方、熱可塑性樹脂と必要により、結晶化促進剤、離
型剤、無機フィラー等を押出機で混練し熱可塑性樹脂ロ
ッドを得る。該熱可塑性樹脂ロッドを公知の方法、例え
ばペレタイザーにより長さ2〜60mmに切断して繊維強化
熱可塑性樹脂組成物ペレット(B)を得る。
On the other hand, a thermoplastic resin and, if necessary, a crystallization accelerator, a release agent, an inorganic filler and the like are kneaded with an extruder to obtain a thermoplastic resin rod. The thermoplastic resin rod is cut into a length of 2 to 60 mm by a known method, for example, a pelletizer to obtain a fiber-reinforced thermoplastic resin composition pellet (B).

次に、前記繊維強化熱可塑性樹脂ペレット(A)と熱
可塑性樹脂組成物ペレット(B)とを公知の方法、例え
ばV型ブレンダーにより混合して(繊維強化)熱可塑性
樹脂ペレット混合物を得る。ペレット(A)とペレット
(B)との混合割合は95/5〜30/70(重量比)、好まし
くは90/10〜50/50(重量比)である。
Next, the fiber-reinforced thermoplastic resin pellets (A) and the thermoplastic resin composition pellets (B) are mixed by a known method, for example, a V-blender (fiber-reinforced) to obtain a thermoplastic resin pellet mixture. The mixing ratio of the pellet (A) and the pellet (B) is 95/5 to 30/70 (weight ratio), preferably 90/10 to 50/50 (weight ratio).

本発明の繊維強化熱可塑性樹脂ペレット(A)では、
強化繊維の長さが2〜60mm、好ましくは6〜20mmである
ため、射出成形又は押出成形時でのホッパーからスクリ
ューへの喰込み性が良好であり、得られた成形品の引張
特性、曲げ特性、耐衝撃性が良好である。逆に、強化繊
維の長さが60mmを超える場合、喰込み性が悪くなり、強
化繊維の長さが2mm未満の場合、成形品の引張特性、曲
げ特性、耐衝撃性が低くなる。
In the fiber-reinforced thermoplastic resin pellet (A) of the present invention,
Since the reinforcing fiber has a length of 2 to 60 mm, preferably 6 to 20 mm, it has good biteability from the hopper to the screw during injection molding or extrusion molding, and the obtained molded article has tensile properties and bending properties. Good properties and impact resistance. Conversely, when the length of the reinforcing fiber exceeds 60 mm, the biting property deteriorates, and when the length of the reinforcing fiber is less than 2 mm, the tensile properties, bending properties, and impact resistance of the molded product decrease.

本発明の繊維強化熱可塑性樹脂ペレット(A)では、
繊維強化熱可塑性樹脂ペレットの強化繊維含有率が30〜
80重量%であるため、強化繊維に対する熱可塑性樹脂の
濡れ性が良好であり、その結果得られた成形品の引張特
性、曲げ特性、耐衝撃性が良好である。逆に、繊維強化
熱可塑性樹脂組成物の強化繊維含有率が80重量%を超え
る場合、強化繊維に対する熱可塑性樹脂の濡れ性が悪く
なり、その結果得られた成形品の引張特性、曲げ特性、
耐衝撃性が低くなる。又、繊維含有率が30重量%未満の
場合、強化繊維量が少ないため、得られた成形品の引張
特性、曲げ特性、耐衝撃性が低くなる。
In the fiber-reinforced thermoplastic resin pellet (A) of the present invention,
Reinforced fiber content of fiber reinforced thermoplastic resin pellets is 30 ~
Since the content is 80% by weight, the wettability of the thermoplastic resin with respect to the reinforcing fibers is good, and the resulting molded article has good tensile properties, bending properties and impact resistance. Conversely, if the reinforcing fiber content of the fiber-reinforced thermoplastic resin composition exceeds 80% by weight, the wettability of the thermoplastic resin with respect to the reinforcing fibers becomes poor, and the tensile properties, bending properties,
Impact resistance is reduced. When the fiber content is less than 30% by weight, the tensile properties, bending properties, and impact resistance of the obtained molded product are low because the amount of reinforcing fibers is small.

又、本発明の(繊維強化)熱可塑性樹脂ペレット混合
物全重量中での強化繊維含有率は、20/70重量%が好ま
しく、得られた成形品の引張特性、曲げ特性、耐衝撃性
が良好であり、かつ結晶化促進剤、離型剤、無機フィラ
ー等の添加効果(例えば成形品の離型性、表面平滑性、
低成形収縮性)が良好である。
The content of reinforcing fibers in the total weight of the (fiber reinforced) thermoplastic resin pellet mixture of the present invention is preferably 20/70% by weight, and the obtained molded product has good tensile properties, bending properties and impact resistance. And the effect of adding a crystallization accelerator, a mold release agent, an inorganic filler, etc. (for example, mold release properties, surface smoothness,
Low molding shrinkage).

繊維強化熱可塑性樹脂ペレット混合物中の繊維含有率
が20重量%未満に調整された場合、得られた成形品の引
張特性、曲げ特性、耐衝撃性が低くなる。又、繊維強化
熱可塑性樹脂ペレット混合物の強化繊維含有率が70重量
%を超えた場合、結晶化促進剤、離型剤、無機フィラー
等の添加効果が小さくなる。
When the fiber content in the fiber reinforced thermoplastic resin pellet mixture is adjusted to less than 20% by weight, the obtained molded product has low tensile properties, bending properties and impact resistance. On the other hand, when the reinforcing fiber content of the fiber-reinforced thermoplastic resin pellet mixture exceeds 70% by weight, the effect of adding a crystallization accelerator, a release agent, an inorganic filler, and the like is reduced.

本発明の(繊維強化)熱可塑性樹脂ペレット混合物で
は、繊維強化熱可塑性樹脂ペレット(A)の混合分散率
が20%以上であり、ミクロボイド密度指数が5以上、か
つマクロボイド密度指数が80以下であることが好まし
い。
In the (fiber-reinforced) thermoplastic resin pellet mixture of the present invention, the mixed dispersion ratio of the fiber-reinforced thermoplastic resin pellet (A) is 20% or more, the microvoid density index is 5 or more, and the macrovoid density index is 80 or less. Preferably, there is.

但し、本発明にいう混合分散率とは、繊維強化熱可塑
性樹脂組成物の断面を光学顕微鏡で観察し、倍率200倍
の視野において観察される全強化繊維の数(N)、熱可
塑性樹脂と接する強化繊維の数(n)とした場合、Xi=
n/N×100を算出し、5視野のXiの平均値 をもって定義する。
However, the mixed dispersion ratio referred to in the present invention refers to the number (N) of the total reinforcing fibers observed in a visual field at a magnification of 200 times when the cross section of the fiber-reinforced thermoplastic resin composition is observed with an optical microscope. When the number (n) of reinforcing fibers in contact with each other, Xi =
Calculate n / N × 100 and average Xi of 5 fields of view Is defined by

又、本発明にいうミクロボイド密度指数とは繊維強化
熱可塑性樹脂組成物の断面を光学顕微鏡で観察し、倍率
200倍の視野において観察されるボイドのうち最大長が
5μ以下のボイドの視野単位面積当たりの数をniとした
場合、10視野での合計値 をもって定義する。
Further, the microvoid density index referred to in the present invention is to observe the cross section of the fiber reinforced thermoplastic resin composition with an optical microscope, magnification
The total value in 10 visual fields, where ni is the number of voids with a maximum length of 5μ or less per visual field unit area among the voids observed in a 200 times visual field Is defined by

又、本発明にいうマクロボイド密度指数とは、繊維強
化熱可塑性樹脂組成物の断面を光学顕微鏡で観察し、倍
率20倍の視野において、観察されるボイドのうち最大長
が100μ以上のボイドの視野単位面積当りの数をniとし
た場合、10視野での合計値 をもって定義する。
Further, the macro void density index referred to in the present invention, by observing the cross section of the fiber-reinforced thermoplastic resin composition with an optical microscope, in a visual field of 20 times magnification, the maximum length of the observed voids of the void of 100μ or more. The total value for 10 visual fields, where ni is the number per visual field unit area Is defined by

本発明の(繊維強化熱可塑性樹脂ペレット混合物で
は、繊維強化熱可塑性樹脂ペレット(A)の混合分散率
が、20%以上であるため、成形品表面への繊維の浮き出
しが少なく、表面平滑性が良好である。逆に、混合分散
率が20%未満の場合、成形品表面への繊維の浮き出しが
多く、表面平滑性が悪くなる。
In the (fiber-reinforced thermoplastic resin pellet mixture) of the present invention, since the mixing and dispersing ratio of the fiber-reinforced thermoplastic resin pellet (A) is 20% or more, there is little floating of the fiber on the surface of the molded product, and the surface smoothness is low. On the other hand, when the mixing and dispersing ratio is less than 20%, the fiber is often raised on the surface of the molded product, and the surface smoothness is deteriorated.

又、繊維強化熱可塑性樹脂ペレット(A)のミクロボ
イド密度指数が5以上、かつマクロボイド密度指数が80
以下であることが好ましく、この場合、成形時での強化
繊維の折損が少なくなり、さらに、成形品でのボイド発
生率が少なくなる結果、成形品の引張特性、曲げ特性、
耐衝撃性が良好である。逆に、マクロボイド密度指数が
80を超える場合、成形品のボイド発生率が急速に高ま
り、これが破壊発生源となるため引張特性、曲げ特性が
低下する。又、ミクロボイド密度指数が5未満の場合、
ペレット中の繊維強化熱可塑性樹脂組成物の長手方向に
おける曲げ弾性率の低下により、射出成形機又は押出成
形機のスクリューの供給部から圧縮部において未溶融状
態にある繊維強化熱可塑性樹脂組成物ペレット中の強化
繊維の折損が多くなるため、成形品の引張特性、曲げ特
性、耐衝撃性が低下する。
The fiber-reinforced thermoplastic resin pellet (A) has a microvoid density index of 5 or more and a macrovoid density index of 80 or more.
It is preferable that, in this case, the breakage of the reinforcing fibers during molding is reduced, and further, the void generation rate in the molded product is reduced, so that the tensile properties, bending characteristics,
Good impact resistance. Conversely, the macrovoid density index
If it exceeds 80, the void generation rate of the molded article rapidly increases, and this becomes a source of destruction, so that the tensile properties and bending properties deteriorate. When the microvoid density index is less than 5,
Due to a decrease in the bending elastic modulus in the longitudinal direction of the fiber-reinforced thermoplastic resin composition in the pellet, the fiber-reinforced thermoplastic resin composition pellet in an unmelted state in a compression section from a screw supply section of an injection molding machine or an extrusion molding machine. Since the breakage of the reinforcing fibers in the inside increases, the tensile properties, bending properties, and impact resistance of the molded product decrease.

また、本発明における熱可塑性樹脂ペレット(B)
は、強化繊維を含有する樹脂ペレット(A)よりも、溶
解温度または軟化温度が低いか溶融指数が高いため、ペ
レット(B)がペレット(A)中の強化繊維の射出成形
機中での折損を抑制することができ、強化繊維の繊維長
分布は広がらず、かつ長めを保持できるため高い力学特
性を発揮することができる。さらに、ペレット(B)は
強化繊維の浮きを抑制し、成形品の表面平滑性、光沢等
の外観を良くする効果がある。
Further, the thermoplastic resin pellet (B) in the present invention
Is that the melting temperature or softening temperature is lower or the melting index is higher than that of the resin pellet (A) containing the reinforcing fiber, so that the pellet (B) is broken in the injection molding machine of the reinforcing fiber in the pellet (A). Can be suppressed, and the fiber length distribution of the reinforcing fibers does not spread, and the reinforcing fibers can be kept long, so that high mechanical properties can be exhibited. Further, the pellet (B) has an effect of suppressing the floating of the reinforcing fiber and improving the appearance such as surface smoothness and gloss of the molded product.

なお、本発明の繊維強化熱可塑性樹脂ペレット(A)
を製造する際に使用する熱可塑性樹脂繊維としては、例
えばポリエチレンテレフタレート、ポリブチレンテレフ
タレート等のポリエステル繊維ナイロン6、ナイロン6
6、ナイロン610、ナイロン612等のポリアミド繊維、ポ
リエチレン、ポリプロピレン等のポリオレフィン繊維、
ポリフェニレンサルファイド繊維、ポリエーテルケトン
繊維、ポリエーテルエーテルケトン繊維等が使用可能で
ある。
In addition, the fiber-reinforced thermoplastic resin pellet of the present invention (A)
Examples of the thermoplastic resin fibers used in the production of polyester fiber include polyester fibers such as polyethylene terephthalate and polybutylene terephthalate.
6, polyamide fibers such as nylon 610 and nylon 612, polyolefin fibers such as polyethylene and polypropylene,
Polyphenylene sulfide fiber, polyether ketone fiber, polyether ether ketone fiber and the like can be used.

強化繊維としてガラス繊維、炭素繊維等の無機繊維が
使用可能である。
Inorganic fibers such as glass fibers and carbon fibers can be used as the reinforcing fibers.

熱可塑性樹脂ペレット(B)を構成する熱可塑性樹脂
としては、例えば、ポリエチレンテレフタレート、ポリ
ブチレンテレフタレート等のポリエステル樹脂、ナイロ
ン6、ナイロン66、ナイロン610、ナイロン612等のポリ
アミド樹脂、ポリエチレン、ポリプロピレン等のポリオ
レンフィン樹脂、ポリフェニレンサルファイド樹脂、ポ
リエーテルケトン樹脂、ポリエーテルエーテルケトン樹
脂等が使用可能である。
Examples of the thermoplastic resin constituting the thermoplastic resin pellet (B) include polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyamide resins such as nylon 6, nylon 66, nylon 610, and nylon 612, and polyethylene and polypropylene. Polyolene fin resin, polyphenylene sulfide resin, polyether ketone resin, polyether ether ketone resin and the like can be used.

又、繊維強化熱可塑性樹脂組成物を構成する熱可塑性
樹脂繊維と熱可塑性樹脂組成物を構成する熱可塑性樹脂
が同種であることが好ましいが、射出成形、押出成形時
での相溶性が十分良好であれば熱可塑性樹脂繊維と熱可
塑性樹脂が異種であってもかまわない。
Further, it is preferable that the thermoplastic resin constituting the fiber-reinforced thermoplastic resin composition and the thermoplastic resin constituting the thermoplastic resin composition are of the same kind, but the injection molding and the compatibility at the time of extrusion molding are sufficiently good. If so, the thermoplastic resin fibers and the thermoplastic resin may be different types.

又、熱可塑性樹脂組成物ペレット(B)を構成するも
のとしての離型剤、無機フィラーとして、例えば高級脂
肪酸の低級アルコールエステル、脂肪酸の多価アルコー
ルエステル、流動パラフィン等並びに炭酸カルシウム、
硫酸バリウム、シラス、アスベスト、水酸化アルミニウ
ム、酸化アンチモン等が使用可能である。用途に応じて
他の成分、例えば分散剤ことに有機高分子型分散剤、難
燃剤、帯電防止剤、酸化防止剤、紫外線吸収剤、着色
剤、結晶化促進剤など品質、機能性を向上させる物質を
配合させることができる。ここで結晶化促進剤とは、ア
ルキレングリコール誘導体、ポリアルキレングリコール
誘導体、アイオノマー、二酸化チタン、タルク、雲母な
どを挙げることができる。
Also, a release agent as a constituent of the thermoplastic resin composition pellet (B), and inorganic fillers such as lower alcohol esters of higher fatty acids, polyhydric alcohol esters of fatty acids, liquid paraffin, etc.
Barium sulfate, shirasu, asbestos, aluminum hydroxide, antimony oxide and the like can be used. Improve the quality and functionality of other components depending on the application, such as dispersants, organic polymer type dispersants, flame retardants, antistatic agents, antioxidants, ultraviolet absorbers, colorants, crystallization accelerators, etc. Substances can be incorporated. Here, examples of the crystallization accelerator include an alkylene glycol derivative, a polyalkylene glycol derivative, an ionomer, titanium dioxide, talc, and mica.

(実施例) 実施例1 下記特性のEガラス繊維及びポリエチレンテレフタレ
ート繊維を使用して繊維強化熱可塑性樹脂組成物を得る
ための混繊糸を構成した。
(Example) Example 1 A mixed fiber for obtaining a fiber-reinforced thermoplastic resin composition was constructed using E glass fiber and polyethylene terephthalate fiber having the following characteristics.

Eガラス繊維: 合計繊度 67.5テックス(JIS R3420) フィラメント数 400 本 (JIS R3420) ポリエチレンテレフタレート繊維: 合計繊度 150デニール(JIS L1013) フィラメント数 30 本 (JIS L1013) 即ち、ポリエチレンテレフタレート繊維8本をEガラ
ス繊維4本に対し+0.3%のオーバーフィード状態で供
給し、タスラン法(空気圧力:5kg/cm2G、加工速度:100m
/minの速度で連続的に加熱空気中で230℃まで昇温し、
引き続き遠赤外線ヒータを設置した加熱帯にN2ガスを1.
5Nm3/h流しながら該混繊糸を300℃まで昇温し、ポリエ
チレンテレフタレート繊維を溶融させた後、6対の雄雌
噛合ローラ(ローラ温度:40〜55℃、成形溝幅:3mm、ロ
ーラ圧力(線圧):2kg/cm)で幅が3mm、かつ厚みが1mm
のロッドに成形し、該ロッドを長さ10mmに切断して繊維
強化熱可塑性樹脂組成物ペレット(ガラス繊維含有率6
6.7重量%)を得た。
E glass fiber: Total fineness 67.5 tex (JIS R3420) Number of filaments 400 (JIS R3420) Polyethylene terephthalate fiber: Total fineness 150 denier (JIS L1013) Number of filaments 30 (JIS L1013) That is, 8 polyethylene terephthalate fibers are E glass + 0.3% overfeed for 4 fibers, Taslan method (Air pressure: 5kg / cm 2 G, Processing speed: 100m
at a rate of / min continuously in heated air to 230 ° C,
Continue to add N 2 gas to the heating zone where the far infrared heater is installed.
After raising the temperature of the mixed fiber to 300 ° C. while flowing 5 Nm 3 / h to melt the polyethylene terephthalate fiber, 6 pairs of male and female meshing rollers (roller temperature: 40 to 55 ° C., forming groove width: 3 mm, roller Pressure (linear pressure): 2kg / cm) 3mm wide and 1mm thick
Into a rod, and cut the rod into a length of 10 mm to produce fiber-reinforced thermoplastic resin composition pellets (glass fiber content 6%).
6.7% by weight).

該繊維強化熱可塑性樹脂組成物ペレットの融解開始温
度は250℃であり、ペレットの断面を観察した結果は、
混合分散率は70%であり、ミクロボイド密度指数は12で
あり、マクロボイド密度指数は6であった。
The melting start temperature of the fiber-reinforced thermoplastic resin composition pellet is 250 ° C., and the result of observing the cross section of the pellet is as follows:
The mixed dispersion ratio was 70%, the microvoid density index was 12, and the macrovoid density index was 6.

一方、ポリエチレンテレフタレート(固有粘度0.63dl
/g)87重量%、ポリエチレングリコール(分子量600)
ジグリシジルエーテル(エポキシ糧約440)8重量%、
タルク(平均粒径10μ)5重量%を予備混合した後、φ
40mm−2ベント押出機を用い250〜275℃で溶融混練して
得たストランドを長さ10mmに切断して熱可塑性樹脂混合
物ペレットを得た。このペレットの溶融開始温度は245
℃であった。
On the other hand, polyethylene terephthalate (intrinsic viscosity 0.63dl
/ g) 87% by weight, polyethylene glycol (molecular weight 600)
8% by weight of diglycidyl ether (about 440 epoxies)
After premixing 5% by weight of talc (average particle size 10μ),
A strand obtained by melt-kneading at 250 to 275 ° C. using a 40 mm-2 vent extruder was cut into a length of 10 mm to obtain a thermoplastic resin mixture pellet. The melting start temperature of this pellet is 245
° C.

次に、前記繊維強化熱可塑性樹脂組成物ペレットと熱
可塑性樹脂組成物ペレットとを重量比で75/25に調整し
てV型ブレンダーにより混合し、(繊維強化)熱可塑性
樹脂ペレット混合物(ガラス繊維含有率50重量%)を得
た。
Next, the fiber-reinforced thermoplastic resin composition pellets and the thermoplastic resin composition pellets were adjusted to a weight ratio of 75/25 and mixed by a V-type blender, and a (fiber-reinforced) thermoplastic resin pellet mixture (glass fiber Content 50% by weight).

該(繊維強化)熱可塑性樹脂ペレットを120℃で17時
間減圧乾燥した後、シリンダー温度300℃−290℃−280
℃、ノズル温度300℃、金型温度95℃に調節した射出成
形機(型締力160ton、スクリュー:φ50mm・圧縮比(深
さ比)2.09・逆止弁付き)によりテストピースを成形し
た。成形品の特性を第1表に示す。
The (fiber reinforced) thermoplastic resin pellets were dried under reduced pressure at 120 ° C for 17 hours, and then cylinder temperature was 300 ° C-290 ° C-280 ° C.
A test piece was molded by an injection molding machine (mold clamping force: 160 ton, screw: φ50 mm, compression ratio (depth ratio) 2.09, with check valve) adjusted to 300 ° C, nozzle temperature 300 ° C, and mold temperature 95 ° C. Table 1 shows the properties of the molded products.

但し、以下に示す方法に基づき各特性を評価した。 However, each characteristic was evaluated based on the method shown below.

(1) 離型性:テストピースを成形する際の型離れ及
びスプルーの抜けを目視評価した。
(1) Releasability: The mold release and the sprue coming off when forming the test piece were visually evaluated.

(2) 引張特性:ASTM D638 (3) 曲げ特性:ASTM D790 (4) アクゾット衝撃強度:ASTM D256 (5) 融解開始温度:差動熱量計(パーキンエルマー
社製)で得られた融解ピークの立上がり温度。(昇温速
度20℃/分)。
(2) Tensile properties: ASTM D638 (3) Bending properties: ASTM D790 (4) Akzot impact strength: ASTM D256 (5) Melting onset temperature: Rise of melting peak obtained by differential calorimeter (PerkinElmer) temperature. (Heating rate 20 ° C / min).

比較例1 実施例1に記載したポリエチレンテレフタレート繊維
12本をEガラス繊維3本に対し+0.3%のオーバーフィ
ード状態で供給し、タスラン法(空気圧力:5kg/cm2G、
加工速度:100m/分)により混繊糸を得た。
Comparative Example 1 Polyethylene terephthalate fiber described in Example 1
Twelve fibers are supplied in an overfeed state of + 0.3% to three E glass fibers, and the Taslan method (air pressure: 5 kg / cm 2 G,
(Processing speed: 100 m / min) to obtain a mixed fiber.

次に実施例1と同様にして繊維強化熱可塑性樹脂組成
物ペレットを得た(混合分散率:74%、ミクロボイド密
度指数:12、マクロボイド密度指数:7、ガラス繊維含有
率:50重量%)。
Next, a fiber-reinforced thermoplastic resin composition pellet was obtained in the same manner as in Example 1 (mixing dispersion ratio: 74%, microvoid density index: 12, macrovoid density index: 7, glass fiber content: 50% by weight). .

該繊維強化熱可塑性樹脂組成物ペレットを実施例1と
同様にしてテストピースを成形・評価した。成形品の特
性を第1表に示す。
Test pieces were molded and evaluated from the fiber-reinforced thermoplastic resin composition pellets in the same manner as in Example 1. Table 1 shows the properties of the molded products.

比較例2 実施例1に記載したEガラス繊維40本をφ40mm−2ベ
ント押出成形機の先端に設置した300℃のダイ(出口断
面積:幅が3mm、厚みが1mm)に通した後、実施例1に記
載したポリエチレンテレフタレート95重量%、ポリエチ
レングリコールジグリシジルエーテル3.75重量%、タル
ク1.25重量%より成る混合物を押出機より供給し、250
〜275℃で溶融・混練し、加熱ダイ内へ押し出しなが
ら、ポリエチレンテレフタレート系樹脂が融着したEガ
ラス繊維を10m/minで引抜いた。次いで、該引抜物を水
槽を走行させて冷却固化させた後、長さ10mmに切断して
繊維強化熱可塑性樹脂ペレット(ガラス繊維含有率50重
量%)を得た。
Comparative Example 2 40 E glass fibers described in Example 1 were passed through a 300 ° C. die (exit cross section: width 3 mm, thickness 1 mm) installed at the tip of a φ40 mm-2 vent extruder, and then carried out. A mixture consisting of 95% by weight of polyethylene terephthalate, 3.75% by weight of polyethylene glycol diglycidyl ether, and 1.25% by weight of talc described in Example 1 was fed from an extruder, and was subjected to 250
While being melted and kneaded at 275275 ° C. and extruded into a heating die, the E glass fiber fused with the polyethylene terephthalate resin was pulled out at 10 m / min. Next, the drawn material was cooled and solidified by running in a water tank, and then cut to a length of 10 mm to obtain fiber-reinforced thermoplastic resin pellets (glass fiber content: 50% by weight).

該繊維強化熱可塑性樹脂ペレットを実施例1に記載し
た方法で成形・評価した。成形品の特性を第1表に示
す。
The fiber-reinforced thermoplastic resin pellets were molded and evaluated by the method described in Example 1. Table 1 shows the properties of the molded products.

実施例2 実施例1に記載した繊維強化熱可塑性樹脂組成物ペレ
ットと熱可塑性樹脂組成物ペレットとを重量比で5/5に
調整してV型ブレンダーにより混合し、繊維強化熱可塑
性樹脂ペレット(ガラス繊維含有率33重量%)を得た。
Example 2 The fiber-reinforced thermoplastic resin composition pellets and the thermoplastic resin composition pellets described in Example 1 were adjusted to a weight ratio of 5/5 and mixed by a V-type blender to obtain a fiber-reinforced thermoplastic resin pellet ( The glass fiber content was 33% by weight.

該繊維強化熱可塑性樹脂ペレットを実施例1に記載し
た方法で成形・評価した。成形品の特性を第1表に示
す。
The fiber-reinforced thermoplastic resin pellets were molded and evaluated by the method described in Example 1. Table 1 shows the properties of the molded products.

比較例3 実施例1に記載したポリエチレンテレフタレート繊維
16本をEガラス繊維2本に対し+0.3%のオーバーフィ
ード状態で供給し、タスラン法(空気圧力:5kg/cm2G、
加工速度:100m/分)により混繊糸を得た。
Comparative Example 3 Polyethylene terephthalate fiber described in Example 1
16 fibers are supplied in an overfeed state of + 0.3% to two E glass fibers, and the Taslan method (air pressure: 5 kg / cm 2 G,
(Processing speed: 100 m / min) to obtain a mixed fiber.

次に実施例1と同様にして繊維強化熱可塑性樹脂組成
物ペレットを得た。(混合分散率:73%、ミクロボイド
密度指数:13、マクロボイド密度指数:5、ガラス繊維含
有率:33重量%) 該繊維強化熱可塑性樹脂組成物ペレットを実施例1と
同様にしてテストピースを成形・評価した。成形品の特
性を第1表に示す。
Next, pellets of the fiber-reinforced thermoplastic resin composition were obtained in the same manner as in Example 1. (Mix dispersion ratio: 73%, microvoid density index: 13, macrovoid density index: 5, glass fiber content: 33% by weight) The test piece was prepared from the fiber-reinforced thermoplastic resin composition pellets in the same manner as in Example 1. Molded and evaluated. Table 1 shows the properties of the molded products.

実施例1と比較例1及び実施例2と比較例3より、本
発明品の成形性向上効果が著しいことが明らかであり、
実施例1と比較例2より、本発明のペレット混合物から
得られた成形品が高力学特性を確保するのに好適である
ことが明らかである。
It is clear from Example 1 and Comparative Example 1 and Example 2 and Comparative Example 3 that the effect of improving the moldability of the product of the present invention is remarkable.
From Example 1 and Comparative Example 2, it is clear that a molded article obtained from the pellet mixture of the present invention is suitable for securing high mechanical properties.

(発明の効果) 本発明の(繊維強化)熱可塑性樹脂ペレット混合物を
用いると、成形性に優れ、かつ従来の樹脂と強化繊維と
の混練法では到底達成し得なかった高力学特性を有し、
かつ外観にも優れる成形品を得ることができる。
(Effect of the Invention) The use of the (fiber-reinforced) thermoplastic resin pellet mixture of the present invention has excellent moldability and high mechanical properties which could not be achieved by the conventional kneading method of resin and reinforcing fibers. ,
In addition, a molded article excellent in appearance can be obtained.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】強化繊維および熱可塑性樹脂繊維とから得
られた混繊糸より加工された繊維強化熱可塑性樹脂ロッ
ドを切断して得られる、下記の繊維強化熱可塑性樹脂ペ
レット(A)ならびに該繊維強化熱可塑性樹脂ペレット
(A)より低い融解温度または軟化温度、もしくは該繊
維強化熱可塑性樹脂ペレット(A)より高い溶融指数を
有する熱可塑性樹脂ペレット(B)とを混合したことを
特徴とする熱可塑性樹脂ペレット混合物。 繊維強化熱可塑性樹脂ペレット(A): (i)強化繊維含有率 30〜80重量%、 (ii)混合分散率 20%以上
1. A fiber-reinforced thermoplastic resin pellet (A) obtained by cutting a fiber-reinforced thermoplastic resin rod processed from a mixed fiber obtained from a reinforcing fiber and a thermoplastic resin fiber, It is characterized by being mixed with a thermoplastic resin pellet (B) having a lower melting temperature or softening temperature than that of the fiber-reinforced thermoplastic resin pellet (A), or a higher melting index than that of the fiber-reinforced thermoplastic resin pellet (A). Thermoplastic resin pellet mixture. Fiber reinforced thermoplastic resin pellets (A): (i) Reinforced fiber content 30 to 80% by weight, (ii) Mixed dispersion ratio 20% or more
【請求項2】請求項1記載の繊維強化熱可塑性樹脂ペレ
ット(A)と熱可塑性樹脂ペレット(B)とを用いて成
形した成形体。
2. A molded article formed using the fiber-reinforced thermoplastic resin pellet (A) and the thermoplastic resin pellet (B) according to claim 1.
JP1148768A 1989-06-12 1989-06-12 Thermoplastic resin pellet mixture and molded article using the same Expired - Fee Related JP2745685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1148768A JP2745685B2 (en) 1989-06-12 1989-06-12 Thermoplastic resin pellet mixture and molded article using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1148768A JP2745685B2 (en) 1989-06-12 1989-06-12 Thermoplastic resin pellet mixture and molded article using the same

Publications (2)

Publication Number Publication Date
JPH0313305A JPH0313305A (en) 1991-01-22
JP2745685B2 true JP2745685B2 (en) 1998-04-28

Family

ID=15460224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1148768A Expired - Fee Related JP2745685B2 (en) 1989-06-12 1989-06-12 Thermoplastic resin pellet mixture and molded article using the same

Country Status (1)

Country Link
JP (1) JP2745685B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948541A (en) * 1996-04-04 1999-09-07 Kennametal Inc. Boron and nitrogen containing coating and method for making
US5976716A (en) * 1996-04-04 1999-11-02 Kennametal Inc. Substrate with a superhard coating containing boron and nitrogen and method of making the same
JP6687793B1 (en) * 2019-08-09 2020-04-28 住友化学株式会社 Resin composition and molded article
CN116328032A (en) * 2023-03-20 2023-06-27 吉林大学 Glass fiber reinforced polyether-ether-ketone composite material and preparation method and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01286824A (en) * 1988-05-13 1989-11-17 Toyota Central Res & Dev Lab Inc Manufacture of fiber-reinforced thermoplastic resin and its raw material resin composition

Also Published As

Publication number Publication date
JPH0313305A (en) 1991-01-22

Similar Documents

Publication Publication Date Title
US20060261509A1 (en) Method for making fiber reinforced polypropylene composites
US4812247A (en) Plastics moulding containing reinforced fillings
US4835047A (en) Wholly aromatic polyester fiber-reinforced polyetherimide composite and process for preparing same
JP5676080B2 (en) Organic fiber reinforced composite resin composition and organic fiber reinforced composite resin molded product
JP2000516657A (en) Process for the production of polymeric composites and construction materials therefrom
EP1136216A1 (en) Fiber-reinforced thermoplastic resin pellets and manufacturing method thereof
Li et al. Morphology-tensile behavior relationship in injection molded poly (ethylene terephthalate)/polyethylene and polycarbonate/polyethylene blends (I) Part I Skin-core Structure
WO1998016359A1 (en) Rod-shaped pellets
US5973013A (en) Polyamide/polyurethane micro-blend and process
JP2745685B2 (en) Thermoplastic resin pellet mixture and molded article using the same
EP1027973B1 (en) Process for the preparation of fiber-filled thermoplastic resin composition
KR101418135B1 (en) Polycarbonate compositions, methods of manufacture thereof and articles comprising the same
JPH0986984A (en) Polypropylene fiber for cement reinforcement
KR101335165B1 (en) Enhanced dimensional stability of modified polyphenylene ether/carbon fiber and manufacturing method the same
JP4330258B2 (en) Fiber reinforced thermoplastic resin pellets and process for producing the same
JP4956974B2 (en) Conductive thermoplastic resin composition and molded article
Kim et al. Processing/structure/property relationships for artificial wood made from stretched PP/wood‐fiber composites
CN112552586B (en) Glass fiber reinforced polypropylene composition and preparation method thereof
JP2906595B2 (en) Method for producing fiber-reinforced thermoplastic resin pellets
KR100937231B1 (en) Manufacturing method of Fiber Reinforced Plastic forming goods
JP2648745B2 (en) Thermotropic liquid crystal polymer composition and method for producing the same
JP2952977B2 (en) Molding method of fiber reinforced resin
KR102642395B1 (en) Molded composition comprising decrosslinked regenerated polyethylene
JP3510002B2 (en) Fiber reinforced resin composition and molded article
CN114206579A (en) Injection molded article

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees