JPH0313305A - Mixture of thermoplastic resin pellet and molded object using it - Google Patents

Mixture of thermoplastic resin pellet and molded object using it

Info

Publication number
JPH0313305A
JPH0313305A JP14876889A JP14876889A JPH0313305A JP H0313305 A JPH0313305 A JP H0313305A JP 14876889 A JP14876889 A JP 14876889A JP 14876889 A JP14876889 A JP 14876889A JP H0313305 A JPH0313305 A JP H0313305A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fiber
pellet
reinforced thermoplastic
pellets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14876889A
Other languages
Japanese (ja)
Other versions
JP2745685B2 (en
Inventor
Kuniharu Mori
邦治 森
Toshiaki Kitahora
北洞 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP1148768A priority Critical patent/JP2745685B2/en
Publication of JPH0313305A publication Critical patent/JPH0313305A/en
Application granted granted Critical
Publication of JP2745685B2 publication Critical patent/JP2745685B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable a molded object having excellent moldability and high mechanical property to be obtained by a method in which the pellet of fiber reinforced thermoplastic resin is mixed with the pellet of the thermoplastic resin having lower melting temperature or higher fusion index than that of former resin, and said mixture is used for molding. CONSTITUTION:The pellet of the fiber reinforced thermoplastic resin has the content of reinforcing fiber of 30-80wt.% and the mixing dispersion ratio of at least 20%. The pellet of fiber reinforced thermoplastic resin composition (e.g. glass fiber-content is 66.7wt.%) having the fusion beginning temperature of 250 deg.C and the pellet of the thermoplastic resin composition having the fusion beginning temperature of 245 deg.C, are prepared in the weight ratio of 75/25, and are mutually mixed by a V type blender, whereby the pellet mixture (glass fiber-content is 50wt.%) of (fiber reinforced) thermoplastic resin is obtained. After the pellet of (fiber reinforced) thermoplastic resin has been dried under reduced pressure e.g. at 120 deg.C for seventeen hours, it is molded into a molded object with the extrusion molding machine wherein cylinder temperature is regulated at 300 deg.C-290 deg.C-280 deg.C, and the temperatures of the nozzle and the mold are respectively regulated at 300 deg.C and 95 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は成形性に優れ、かつ力学特性にも擾れた成形体
を提供する熱可塑性樹脂ペレットに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to thermoplastic resin pellets that provide molded articles with excellent moldability and excellent mechanical properties.

(従来の技術) 繊維強化熱可塑性樹脂ペレットは、熱可塑性樹脂チップ
と長さ3〜6mの強化繊維とさらに、用途に応じて無機
フィラーを押出機中で混練し、次いでペレット化するこ
とにより製造されていた。
(Prior art) Fiber-reinforced thermoplastic resin pellets are manufactured by kneading thermoplastic resin chips, reinforcing fibers with a length of 3 to 6 m, and an inorganic filler depending on the application in an extruder, and then pelletizing the mixture. It had been.

しかしながら、該ペレットは、押出機中での混練過程で
強化m維が切損するため、該ペレットを用いて得た成形
品の力学特性、特に耐衝撃性が低いという欠点があった
However, since the reinforcing m-fibers of the pellets are broken during the kneading process in the extruder, the mechanical properties of the molded articles obtained using the pellets are low, particularly the impact resistance.

係る欠点を回避するため、強化用長繊維束が導かれた金
型内に押出機より熱可塑性樹脂を提供しながら長繊維束
を引き取り、次いでペレット化する方法が検討されてき
た。しかしながら、該ペレットは強化繊維に対する熱可
塑性樹脂の濡れが悪いため、該ペレットを、用いて得た
成形品の曲げ強度が期待されるほど大きくないという欠
点があった。
In order to avoid such drawbacks, a method has been considered in which a thermoplastic resin is supplied from an extruder into a mold into which a reinforcing long fiber bundle is guided, and the long fiber bundle is then taken into pellets. However, since the thermoplastic resin does not wet the reinforcing fibers well in the pellets, the bending strength of molded products obtained using the pellets is not as high as expected.

係る欠点を回避するため、強化繊維と熱可塑性樹脂繊維
より成る混繊糸を加熱・加圧成形し、次いでペレット化
する方法が検討されてきた。該ペレットを用いた場合、
耐衝撃性、曲げ特性、引張特性の優れた成形品が得られ
る。
In order to avoid such drawbacks, a method has been studied in which a mixed fiber yarn made of reinforcing fibers and thermoplastic resin fibers is heated and pressure-molded, and then pelletized. When using the pellet,
Molded products with excellent impact resistance, bending properties, and tensile properties can be obtained.

しかしながら、成形加工性(例えば、射出成形時での離
型性、低成形収縮性)が繊維強化熱可塑性樹脂ペレット
として未だ満足されるものではなかった。
However, molding processability (for example, mold releasability during injection molding, low mold shrinkage) has not yet been satisfactory as a fiber-reinforced thermoplastic resin pellet.

(発明が解決しようとする課題) 本発明は前記事情に鑑みてなされたものであって、その
目的とするところは耐衝撃性、曲げ特性、引張特性が優
れた成形体を得るのに好適であり、かつ成形加工性が良
好である繊維強化熱可塑性樹脂ペレットを提供すること
である。
(Problems to be Solved by the Invention) The present invention has been made in view of the above circumstances, and its purpose is to provide a molded article suitable for obtaining excellent impact resistance, bending properties, and tensile properties. It is an object of the present invention to provide fiber-reinforced thermoplastic resin pellets that have a high temperature and good moldability.

(課題を解決するための手段) 即ち、本発明は、下記の繊維強化熱可塑性樹脂ペレット
(A)と該樹脂ペレットより低い融解温度または軟化温
度、または該樹脂ペレットより高い溶融指数を有する熱
可塑性樹脂ベレン) (B)とを混合したことを特徴と
する熱可塑性樹脂ペレット混合物である。
(Means for Solving the Problems) That is, the present invention comprises the following fiber-reinforced thermoplastic resin pellets (A) and a thermoplastic having a lower melting temperature or softening temperature than the resin pellets, or a higher melting index than the resin pellets. This is a thermoplastic resin pellet mixture characterized by mixing the resin (B) (B).

繊維強化熱可塑性樹脂ペレット(A):(i)強化繊維
含有率 30〜80重量%、(ii )混合分散率  
 20%以上、また、前記樹脂ペレット(A)および(
B)を用いて成形した成形体である。
Fiber-reinforced thermoplastic resin pellets (A): (i) reinforcing fiber content 30 to 80% by weight, (ii) mixing dispersion rate
20% or more, and the resin pellets (A) and (
This is a molded article molded using B).

本発明における繊維強化熱可塑性樹脂ペレット(A)を
構成する樹脂成分は、例えばポリエチレンテレフタレー
ト、ポリブチレンテレフタレート等のポリエステル系樹
脂、ナイロン6、ナイロン66、ナイロン610等のポ
リアミド系樹脂、ポリフェニレンサルファイド樹脂、ポ
リエーテルケトン系樹脂、ポリエチレン、ポリプロピレ
ン等のポリオレフィン系樹脂等の繊維形成能のある樹脂
である。
The resin components constituting the fiber-reinforced thermoplastic resin pellets (A) in the present invention include, for example, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyamide resins such as nylon 6, nylon 66, and nylon 610, polyphenylene sulfide resins, The resin is a resin capable of forming fibers, such as a polyetherketone resin, a polyolefin resin such as polyethylene, or polypropylene.

本発明における熱可塑性樹脂ペレット(B)は、本発明
の繊維強化熱可塑性樹脂ペレット(A)よりも低い融解
温度または軟化温度、または該ペレットより高い溶融指
数(メルトインデックス)を有する帰脂ペレットであり
、該ペレットを構成する熱可塑性樹脂は、繊維強化熱可
塑性樹脂ペレット(A)を構成する熱可塑性樹脂に該樹
脂に対して結晶化促進効果を与える化合物やそのオリゴ
マーやポリマー、離型剤、可塑剤効果を与える化合物や
そのオリゴマーやポリマー、無機充填荊等を配合、添加
することによって改質、変性等がなされた熱可塑性樹脂
、前記熱可塑性樹脂と相溶性のある熱可塑性樹脂等であ
り、前記熱可塑性樹脂の成型性を向上させるものであれ
ばよい。
The thermoplastic resin pellet (B) in the present invention is a fat-backed pellet having a lower melting temperature or softening temperature than the fiber-reinforced thermoplastic resin pellet (A) of the present invention, or a higher melt index than the fiber-reinforced thermoplastic resin pellet (A) of the present invention. The thermoplastic resin constituting the pellets contains compounds, oligomers and polymers thereof, mold release agents, Thermoplastic resins that have been modified or modified by blending or adding compounds that give a plasticizing effect, oligomers or polymers thereof, inorganic fillers, etc., thermoplastic resins that are compatible with the above thermoplastic resins, etc. , any material may be used as long as it improves the moldability of the thermoplastic resin.

次に、本発明の繊維強化熱可塑性樹脂ペレットの代表的
な製造方法を示す。
Next, a typical method for producing the fiber-reinforced thermoplastic resin pellets of the present invention will be described.

即ち、強化繊維と熱可塑性樹脂繊維とを公知の方法で混
繊して混繊糸を得る0例えば、両者長繊維を引き揃えて
静電気的に開繊させつつ、両者の単繊維同志を絡合させ
る方法又は両者長ms’iを引き揃えて噴出乱流空気中
を通過させ、開繊・絡合させる方法等により混繊糸を得
る。ここで、混繊糸を使用する理由は、強化繊維の含有
率を高くすることが出来るからである0次いで、該混繊
糸を熱可塑性樹脂の融点以上の温度で加熱した後、ロー
ラ圧縮により繊維強化熱可塑性樹脂ロンドを得る。
That is, reinforcing fibers and thermoplastic resin fibers are mixed by a known method to obtain a mixed fiber yarn.For example, while the long fibers of both are aligned and opened electrostatically, the single fibers of the two are entangled with each other. A mixed fiber yarn is obtained by a method in which the lengths ms'i of both fibers are aligned, and the fibers are spread and entangled by being passed through a jet of turbulent air. The reason for using the mixed fiber yarn here is that the content of reinforcing fibers can be increased.Next, the mixed fiber yarn is heated to a temperature higher than the melting point of the thermoplastic resin, and then compressed by rollers. A fiber-reinforced thermoplastic resin rondo is obtained.

次いで、該繊維強化熱可塑性樹脂ロンドを公知の方法、
例えばペレタイザーにより長さ2〜60mmに切断して
繊維強化熱可塑性樹脂組成物ペレット(A)を得る。
Next, the fiber-reinforced thermoplastic resin rondo is processed by a known method,
For example, the pellets are cut into lengths of 2 to 60 mm using a pelletizer to obtain fiber-reinforced thermoplastic resin composition pellets (A).

一方、熱可塑性樹脂と必要により、結晶化促進剤、離型
剤、無機フィラー等を押出機で混練し熱可塑性樹脂ロッ
ドを得る。該熱可塑性樹脂ロッドを公知の方法、例えば
ペレタイザーにより長さ2〜60臆に切断して繊維強化
熱可塑性樹脂組成物ペレット(B)を得る。
On the other hand, the thermoplastic resin and, if necessary, a crystallization accelerator, a mold release agent, an inorganic filler, etc. are kneaded in an extruder to obtain a thermoplastic resin rod. The thermoplastic resin rod is cut into lengths of 2 to 60 cm using a known method, for example, a pelletizer, to obtain fiber-reinforced thermoplastic resin composition pellets (B).

次に、前記繊維強化熱可塑性樹脂ペレット(A)と熱可
塑性樹脂組成物ペレッ) (B)とを公知の方法、例え
ばV型ブレンダーにより混合して(繊維強化)熱可塑性
樹脂ペレット混合物を得る。ペレット(A)とペレット
(B)との混合割合は9515〜30/70(重量比)
、好ましくは90/10〜50150 (重量比)であ
る。
Next, the fiber-reinforced thermoplastic resin pellets (A) and the thermoplastic resin composition pellets (B) are mixed by a known method, such as a V-type blender, to obtain a (fiber-reinforced) thermoplastic resin pellet mixture. The mixing ratio of pellets (A) and pellets (B) is 9515 to 30/70 (weight ratio)
, preferably 90/10 to 50,150 (weight ratio).

本発明の繊維強化熱可塑性樹脂ペレット(A)では、強
化繊維の長さが2〜60■、好ましくは6〜20■であ
るため、射出成形又は押出成形時でのホッパーからスク
リューへの喰込み性が良好であり、得られた成形上の引
張特性、曲げ特性、耐衝撃性が良好である。逆に、強化
繊維の長さが60閣を超える場合、喰込み性が悪くなり
、強化繊維の長さが2■未満の場合、成形品の引張特性
、曲げ特性、耐衝撃性が低くなる。
In the fiber-reinforced thermoplastic resin pellets (A) of the present invention, the reinforcing fibers have a length of 2 to 60 cm, preferably 6 to 20 cm, so that they do not feed into the screw from the hopper during injection molding or extrusion molding. The resulting material has good tensile properties, bending properties, and impact resistance during molding. On the other hand, when the length of the reinforcing fibers exceeds 60 cm, the biting property becomes poor, and when the length of the reinforcing fibers is less than 2 cm, the tensile properties, bending properties, and impact resistance of the molded product decrease.

本発明の繊維強化熱可塑性樹脂ベレッ) (A)では、
繊維強化熱可譬性樹脂ペレットの強化繊維含有率が30
〜80重置%であるため、強化繊維に対する熱可塑性樹
脂の濡れ性が良好であり、その結果得られた成形品の引
張特性、曲げ特性、耐Ii撃性が良好である。逆に、繊
維強化熱可塑性樹脂組成物の強化繊維含有率が80重量
%を超える場合、強化繊維に対する熱可塑性樹脂の濡れ
性が悪くなり、その結果得られた成形品の引張特性、曲
げ特性、耐衝撃性が低くなる。又、繊維含有率が30重
量%未満の場合、強化繊維量が少ないため、得られた成
形品の引張特性、曲げ特性、耐衝撃性が低くなる。
In the fiber-reinforced thermoplastic resin beret (A) of the present invention,
The reinforcing fiber content of the fiber reinforced thermoplastic resin pellets is 30
Since the overlap ratio is 80%, the wettability of the thermoplastic resin to the reinforcing fibers is good, and the resulting molded product has good tensile properties, bending properties, and Ii impact resistance. Conversely, when the reinforcing fiber content of the fiber-reinforced thermoplastic resin composition exceeds 80% by weight, the wettability of the thermoplastic resin to the reinforcing fibers deteriorates, and as a result, the tensile properties, bending properties, Impact resistance decreases. Furthermore, when the fiber content is less than 30% by weight, the amount of reinforcing fibers is small, resulting in poor tensile properties, bending properties, and impact resistance of the obtained molded product.

又、本発明の(繊維強化)熱可塑性樹脂ペレット混合物
全重量中での強化繊維含有率は、20/TO重置%が好
ましく、得られた成形品の引張特性、曲げ特性、耐衝撃
性が良好であり、かつ結晶化促進剤、離型剤、無機フィ
ラー等の添加効果(例えば成形品の離型性、表面平滑性
、低成形収縮性)が良好である。
Further, the content of reinforcing fibers in the total weight of the (fiber-reinforced) thermoplastic resin pellet mixture of the present invention is preferably 20/TO overlapping %, and the tensile properties, bending properties, and impact resistance of the obtained molded product are In addition, the effects of adding crystallization promoters, mold release agents, inorganic fillers, etc. (for example, mold releasability, surface smoothness, and low mold shrinkage of molded products) are good.

繊維強化熱可塑性樹脂ペレット混合物中の繊維含有率が
20重量%未満に調整された場合、得られた成形品の引
張特性、曲げ特性、耐衝撃性が低くなる。又、繊維強化
熱可塑性樹脂ペレット混合物の強化繊維含有率が70重
量%を超えた場合、結晶化促進剤、離型剤、無機フィラ
ー等の・添加効果が小さくなる。
If the fiber content in the fiber-reinforced thermoplastic resin pellet mixture is adjusted to less than 20% by weight, the resulting molded product will have poor tensile properties, bending properties, and impact resistance. Furthermore, if the reinforcing fiber content of the fiber-reinforced thermoplastic resin pellet mixture exceeds 70% by weight, the effects of adding crystallization accelerators, mold release agents, inorganic fillers, etc. will be reduced.

本発明のく繊維強化)熱可塑性樹脂ペレット混合物では
、繊維強化熱可塑性樹脂ベレッ) (A)の混合分散率
が20%以上であり、ミクロボイド密度指数が5以上、
かつマクロボイド密度指数が80以下であることが好ま
しい。
In the fiber-reinforced thermoplastic resin pellet mixture of the present invention, the fiber-reinforced thermoplastic resin pellet mixture (A) has a mixing dispersion rate of 20% or more, a microvoid density index of 5 or more,
Moreover, it is preferable that the macrovoid density index is 80 or less.

但し、本発明にいう混合分散率とは、繊維強化熱可塑性
樹脂組成物の断面を光学顕微鏡で観察し、倍率200倍
の視野において観察される全強化繊維の数(N)、熱可
塑性樹脂と接する強化繊維の敗(n)とした場合、X1
=u/NX100を算出し、5視野の又、本発明にいう
ミクロボイド密度指数とは繊維強化熱可塑性樹脂組成物
の断面を光学顕微鏡で観察し、倍率200倍の視野にお
いて観察されるボイドのうち最大長が5μ以下のボイド
の視野単位面積当たりの数をniとした場合、IO視野
での合計又、本発明にいうマクロボイド密度指数とは、
繊維強化熱可塑性樹脂組成物の断面を光学顕微鏡で観察
し、倍率20倍の視野において、観察されるボイドのう
ち最大長が100μ以上のボイドの視野単位面積当りの
数をniとした場合、10視野での合本発明の(繊維強
化熱可塑性樹脂ペレット混合物では、繊維強化熱可塑性
樹脂ペレット(A)の混合分散率が、20%以上である
ため、成形品表面への繊維の浮き出しが少なく、表面平
滑性が良好である。逆に、混合分散率が20%未満の場
合、成形品表面への繊維の浮き出しが多く、表面平滑性
が悪くなる。
However, the mixing dispersion ratio as used in the present invention refers to the total number of reinforcing fibers (N) observed in a field of view at 200x magnification when a cross section of a fiber-reinforced thermoplastic resin composition is observed with an optical microscope, When the loss (n) of the reinforcing fibers in contact with
= u / N If the number of voids with a maximum length of 5 μ or less per unit area of the visual field is ni, then the total in the IO visual field or the macro void density index according to the present invention is:
When the cross section of the fiber-reinforced thermoplastic resin composition is observed with an optical microscope, and the number of voids per unit area of the visual field of the observed voids with a maximum length of 100 μ or more in a field of view with a magnification of 20 times is ni, 10 In the fiber-reinforced thermoplastic resin pellet mixture of the present invention, the mixing dispersion rate of the fiber-reinforced thermoplastic resin pellets (A) is 20% or more, so there is little protrusion of fibers on the surface of the molded product. The surface smoothness is good.On the other hand, when the mixing dispersion rate is less than 20%, the fibers are often embossed on the surface of the molded product, resulting in poor surface smoothness.

又、繊維強化熱可塑性樹脂ペレット(A)のミクロボイ
ド密度指数が5以上、かつマクロボイド密度指数が80
以下であることが好ましく、この場合、成形時での強化
繊維の折損が少な(なり、さらに、成形品でのボイド発
生率が少なくなる結果、成形品の引張特性、曲げ特性、
耐衝撃性が良好である。
Further, the fiber-reinforced thermoplastic resin pellet (A) has a microvoid density index of 5 or more and a macrovoid density index of 80.
In this case, the reinforcing fibers are less likely to break during molding, and as a result, the incidence of voids in the molded product is reduced, resulting in improved tensile and bending properties of the molded product.
Good impact resistance.

逆に、マクロボイド密度指数が80を超える場合、成形
品のボイド発生率が急速に高まり、これが破壊発生源と
なるため引張特性、曲げ特性が低下する。又、ミクロボ
イド密度指数が5未満の場合、ペレット中の繊維強化熱
可塑性樹脂組成物の長平方向における曲げ弾性率の低下
により、射出成形機又は押出成形機のスクリューの供給
部から圧縮部において未溶融状態にある繊維強化熱可塑
性…脂組成物ペレット中の強化繊維の折損が多(なるた
め、成形品の引張特性、曲げ特性、耐衝撃性が低下する
Conversely, when the macrovoid density index exceeds 80, the rate of void occurrence in the molded article increases rapidly, and this becomes a source of fracture, resulting in a decrease in tensile properties and bending properties. In addition, if the microvoid density index is less than 5, the flexural modulus of the fiber-reinforced thermoplastic resin composition in the pellets in the longitudinal direction decreases, resulting in unmelted parts from the feeding section to the compression section of the screw of the injection molding machine or extrusion molding machine. Fiber-reinforced thermoplastic in the state...The reinforcing fibers in the resin composition pellets are frequently broken, resulting in a decrease in the tensile properties, bending properties, and impact resistance of the molded product.

また、本発明における熱可塑性樹脂ペレット(B)は、
強化繊維を含有する樹脂ペレット(A)よりも、融解温
度または軟化温度が低いか溶融指数が高いため、ペレッ
ト(B)がペレット(A)中の強化繊維の射出成形機中
での折損を抑制することができ、強化繊維の繊維長分布
は広がらず、かつ長めを保持できるため高い力学特性を
発揮することができる。
Moreover, the thermoplastic resin pellet (B) in the present invention is
Since the melting temperature or softening temperature is lower or the melting index is higher than that of the resin pellet (A) containing reinforcing fibers, the pellet (B) suppresses the breakage of the reinforcing fiber in the pellet (A) in the injection molding machine. Since the fiber length distribution of the reinforcing fibers does not widen and can be kept relatively long, it is possible to exhibit high mechanical properties.

さらに、ペレッ) (B)は強化繊維の浮きを抑制し、
成形品の表面平滑性、光沢等の外観を良くする効果があ
る。
Furthermore, Pellet (B) suppresses the lifting of reinforcing fibers,
It has the effect of improving the appearance of molded products, such as surface smoothness and gloss.

なお、本発明の繊維強化熱可塑性樹脂ペレット(A)を
製造する際に使用する熱可塑性樹脂繊維としては、例え
ばポリエチレンテレフタレート、ポリブチレンテレフタ
レート等のポリエステル繊維ナイロン6、ナイロン66
、ナイロン61o1ナイロン612等のポリアミド繊維
、ポリエチレン、ポリプロピレン等のポリオレフィン繊
維、ポリフェニレンサルファイド繊維、ポリエーテルケ
トン繊維、ポリエーテルエーテルケトン繊維等が使用可
能である。
The thermoplastic resin fibers used in producing the fiber-reinforced thermoplastic resin pellets (A) of the present invention include, for example, polyester fibers such as polyethylene terephthalate, polybutylene terephthalate, nylon 6, nylon 66, etc.
, polyamide fibers such as nylon 61o1 and nylon 612, polyolefin fibers such as polyethylene and polypropylene, polyphenylene sulfide fibers, polyetherketone fibers, and polyetheretherketone fibers.

強化繊維としてガラス繊維、炭素繊維等の無機繊維が使
用可能である。
Inorganic fibers such as glass fibers and carbon fibers can be used as reinforcing fibers.

熱可塑性樹脂ペレット(B)を構成する熱可塑性樹脂と
しては、例えば、ポリエチレンテレフタレート、ポリブ
チレンテレフタレート等のポリエステル樹脂、ナイロン
6、ナイロン66、ナイロン610、ナイロン612等
のポリアミド樹脂、ポリエチレン、ポリプロピレン等の
ポリオレフィン樹脂、ポリフェニレンサルファイド樹脂
、ポリエーテルケトン樹脂、ポリエーテルエーテルケト
ン樹脂等が使用可能である。
Examples of the thermoplastic resin constituting the thermoplastic resin pellet (B) include polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyamide resins such as nylon 6, nylon 66, nylon 610, and nylon 612, polyethylene, polypropylene, etc. Polyolefin resin, polyphenylene sulfide resin, polyetherketone resin, polyetheretherketone resin, etc. can be used.

又、繊維強化熱可塑性樹脂組成物を構成する熱可塑性樹
脂繊維と熱可塑性樹脂組成物を構成する熱可塑性樹脂が
同種であることが好ましいが、射出成形、押出成形時で
の相溶性が十分良好であれば熱可塑性樹脂繊維と熱可塑
性樹脂が異種であってもかまわない。
Further, it is preferable that the thermoplastic resin fibers constituting the fiber-reinforced thermoplastic resin composition and the thermoplastic resin constituting the thermoplastic resin composition are of the same type, but the compatibility during injection molding and extrusion molding is sufficiently good. If so, it does not matter if the thermoplastic resin fiber and the thermoplastic resin are different types.

又、熱可塑性樹脂組成物ベレッ) (B)を構成するも
のとしての離型剤、無機フィラーとして、例えば高級脂
肪酸の低級アルコールエステル、脂肪酸の多価アルコー
ルエステル、流動パラフィン等並びに炭酸カルシウム、
硫酸バリウム、シラス、アスベスト、水酸化アルミニウ
ム、酸化アンチモン等が使用可能である。用途に応じて
他の成分、例えば分散剤ことに有機高分子型分散剤、難
燃剤、帯電防止剤、酸化防止剤、紫外線吸収剤、着色剤
、結晶化促進剤など品質、機能性を向上させる物質を配
合させることができる。ここで結晶化促進剤とは、アル
キレングリコール誘導体、ポリアルキレングリコール誘
導体、アイオノマー、二酸化チタン、タルク、雲母など
を挙げることができる。
In addition, as a mold release agent and an inorganic filler constituting the thermoplastic resin composition (B), for example, lower alcohol esters of higher fatty acids, polyhydric alcohol esters of fatty acids, liquid paraffin, calcium carbonate, etc.
Barium sulfate, shirasu, asbestos, aluminum hydroxide, antimony oxide, etc. can be used. Depending on the application, other ingredients such as dispersants, organic polymer type dispersants, flame retardants, antistatic agents, antioxidants, ultraviolet absorbers, colorants, crystallization promoters, etc. can be added to improve quality and functionality. Substances can be blended. Examples of the crystallization promoter include alkylene glycol derivatives, polyalkylene glycol derivatives, ionomers, titanium dioxide, talc, and mica.

(実施例) 実施例1 下記特性のEガラス繊維及びポリエチレンテレフタレー
ト繊維を使用して繊維強化熱可塑性樹脂組成物を得るた
めの混繊糸を構成した。
(Examples) Example 1 A mixed fiber yarn for obtaining a fiber-reinforced thermoplastic resin composition was constructed using E-glass fibers and polyethylene terephthalate fibers having the following characteristics.

Eガラス繊維: 合計繊度      67.5tフクス  (JIS 
 R3420)フィラメント数      400本 
    (〃)ポリエチレンテレフタレート繊維: 合計繊度   150デ:−4(JIS L1013)
フィラメント数      30本      (〃)
即ち、ポリエチレンテレフタレート繊維8本をEガラス
繊維4本に対し+0.3%のオーバーフィード状態で供
給し、タスラン法(空気圧カニ5kg/dG、加工速度
:100m/sinの速度で連続的に加熱空気中で23
0℃まで昇温し、引き続き遠赤外線ヒータを設置した加
熱帯にN1ガスを1.5Nrrrハ流しながら該混繊糸
を300 ’Cまで昇温し、ポリエチレンテレフタレー
ト繊維を溶融させた後、6対の雄雌噛合ローラ(ローラ
温度:4o〜55°C1成形溝幅:3■、ローラ圧力(
線圧):2kg/c蕩)で幅が3閣、かつ厚みが1mの
ロンドに成形し、該ロンドを長さlO閣に切断して繊維
強化熱可塑性樹脂組成物ペレット(ガラス繊維含有率6
6.7重量%)を得た。
E glass fiber: Total fineness 67.5t fuchs (JIS
R3420) Number of filaments: 400
(〃) Polyethylene terephthalate fiber: Total fineness 150 de: -4 (JIS L1013)
Number of filaments: 30 (〃)
That is, 8 polyethylene terephthalate fibers were supplied with an overfeed of +0.3% to 4 E glass fibers, and heated air was continuously heated using the Taslan method (pneumatic pressure 5 kg/dG, processing speed: 100 m/sin). 23 inside
The temperature was raised to 0°C, and then the mixed fiber yarn was heated to 300'C while flowing 1.5 Nrrr of N1 gas in a heating zone equipped with a far-infrared heater to melt the polyethylene terephthalate fibers, and then 6 pairs were heated. male and female interlocking rollers (roller temperature: 4o~55°C, molding groove width: 3cm, roller pressure (
Linear pressure): 2 kg/c) was formed into a rondo with a width of 3 mm and a thickness of 1 m, and the rondo was cut into lengths of 10 mm to obtain fiber-reinforced thermoplastic resin composition pellets (glass fiber content: 6
6.7% by weight).

該繊維強化熱可塑性樹脂組成物ペレットの融解開始温度
は250℃であり、ペレットの断面を観察した結果は、
混合分散率は70%であり、ミクロボイド密度指数は】
2であり、マルロボイド密度指数は6であった。
The melting start temperature of the fiber-reinforced thermoplastic resin composition pellets is 250°C, and the results of observing the cross section of the pellets are as follows:
The mixing dispersion rate is 70%, and the microvoid density index is]
2, and the Marlovoid density index was 6.

一方、ポリエチレンテレフタレート(固有粘度0.63
a/ g ”) 87重量%、ポリエチレングリコール
(分子量600)ジグリシジルエーテル(エポキシ1約
440) 8重量%、タルク(平均粒径10μ)5重量
%を予備混合した後、φ40as−2ベント押出機を用
い250〜275°Cで溶融混練して得たストランドを
長さ10■に切断して熱可塑性樹脂混合物ペレットを得
た。このペレットの融解開始温度は245°Cであった
On the other hand, polyethylene terephthalate (intrinsic viscosity 0.63
After premixing 87% by weight of polyethylene glycol (molecular weight 600), 8% by weight of diglycidyl ether (epoxy 1 approx. 440), and 5% by weight of talc (average particle size 10μ), the mixture was transferred to a φ40as-2 vent extruder. The strands obtained by melt-kneading at 250 to 275°C were cut into lengths of 10 cm to obtain thermoplastic resin mixture pellets.The melting start temperature of these pellets was 245°C.

次に、前記繊維強化熱可塑性樹脂組成物ペレットと熱可
塑性樹脂組成物ペレットとを重量比で75/25に調整
して■型ブレンダーにより混合し、(繊維強化)熱可塑
性樹脂ペレットtu合物(ガラス繊維含有率50重量%
)を得た。
Next, the fiber-reinforced thermoplastic resin composition pellets and the thermoplastic resin composition pellets were adjusted to a weight ratio of 75/25 and mixed in a ■-type blender to form a (fiber-reinforced) thermoplastic resin pellet tu compound ( Glass fiber content 50% by weight
) was obtained.

該(繊維強化)熱可塑性樹脂ペレットを120’Cで1
7時間減圧乾燥した後、シリンダー温度300°C29
0’C−280’C、ノズル温度300°C1金型温度
95°Cに調節した射出成形機(型締力160ton、
スクリユー:φ50m・圧縮比(深さ比) 2.09・
逆止弁付き)によりテストピースを成形した。成形品の
特性を第1表に示す。
The (fiber-reinforced) thermoplastic resin pellets were heated at 120'C.
After drying under reduced pressure for 7 hours, the cylinder temperature was 300°C29.
Injection molding machine (mold clamping force 160 tons,
Screw: φ50m・Compression ratio (depth ratio) 2.09・
A test piece was molded using a test piece (equipped with a check valve). Table 1 shows the properties of the molded product.

但し、以下に示す方法に基づき各特性を評価した。However, each characteristic was evaluated based on the method shown below.

(1)#型性:テストピースを成形する際の型離れ及び
スプルーの抜けを目視評価した。
(1) Moldability: The separation from the mold and the sprue during molding of the test piece were visually evaluated.

(2)  引張特性: ASTM 063B(3)  
曲げ特性: ASTM 0790(4)  アクジット
衝撃強度: ASTM D256(5)融解開始温度:
差動熱量計(パーキンエルマー社製)で得られた融解ピ
ークの立上がり温度、(昇温速度20°C/分)。
(2) Tensile properties: ASTM 063B (3)
Bending properties: ASTM 0790(4) Axit impact strength: ASTM D256(5) Melting onset temperature:
Rising temperature of the melting peak obtained with a differential calorimeter (manufactured by PerkinElmer) (heating rate 20°C/min).

比較例1 実施例に記載したポリエチレンテレフタレート繊維12
本をEガラス繊維3本に対し+0.3%のオーバーフィ
ード状態で供給し、タスラン法(空気圧カニ5kg/c
(G、加工速度:100m/分)により混繊糸を得た。
Comparative Example 1 Polyethylene terephthalate fiber 12 described in Example
The book was supplied in an overfeed state of +0.3% to 3 E glass fibers, and the Taslan method (pneumatic crab 5 kg/c
(G, processing speed: 100 m/min) to obtain a mixed fiber yarn.

次に実施例1と同様にして繊維強化熱可塑性樹脂組成物
ペレットを得た(混合分散率174%、ミクロボイド密
度指数:12、マクロボイド密度指数ニア、ガラス繊維
含有率:50重量%)。
Next, fiber-reinforced thermoplastic resin composition pellets were obtained in the same manner as in Example 1 (mixing dispersion ratio 174%, microvoid density index: 12, macrovoid density index near, glass fiber content: 50% by weight).

該繊維強化熱可塑性樹脂組成物ペレットを実施例1と同
様にしてテストピースを成形・評価した。
The fiber-reinforced thermoplastic resin composition pellets were molded into test pieces and evaluated in the same manner as in Example 1.

成形品の特性を第1表に示す。Table 1 shows the properties of the molded product.

比較例2 実施例1に記載したEガラス繊維40本をφ401I1
1−2ベント押出成形機の先端に設置した300’Cの
グイ(出口断面積:幅が3閣、厚みが1閤)に通した後
、実施例1に記載したポリエチレンテレフタレート95
重量%、ポリエチレングリコールジグリシジルエーテル
3.75重量%、タルク1.25重量%より成る混合物
を押出機より供給し、250〜275°Cで熔融・混練
し、加熱グイ内へ押し出しながら、ポリエチレンテレフ
タレート系樹脂が融着したEガラス繊維を10m/1n
で引抜いた0次いで、該引抜物を水槽を走行させて冷却
固化させた後、長さ10鴎に切断して繊維強化熱可塑性
樹脂ペレット(ガラス繊維含有率501量%)を得た。
Comparative Example 2 40 E glass fibers described in Example 1 were φ401I1
1-2 The polyethylene terephthalate 95 described in Example 1 was passed through a 300'C Gui (outlet cross-sectional area: 3 cm wide, 1 cm thick) installed at the tip of the vent extrusion molding machine.
A mixture consisting of 3.75% by weight of polyethylene glycol diglycidyl ether and 1.25% by weight of talc is fed from an extruder, melted and kneaded at 250 to 275°C, and extruded into a heated gou to produce polyethylene terephthalate. 10m/1n of E glass fiber fused with resin
Then, the drawn material was run through a water tank to cool and solidify, and then cut into 10 pieces to obtain fiber-reinforced thermoplastic resin pellets (glass fiber content: 501% by weight).

該繊維強化熱可塑性樹脂ペレットを実施例Iに記載した
方法で成形・評価した。成形品の特性を第1表に示す。
The fiber-reinforced thermoplastic resin pellets were molded and evaluated using the method described in Example I. Table 1 shows the properties of the molded product.

実施例2 実施例1に記載したmi強強化熱可性性樹脂組成物ペレ
ット熱可塑性樹脂組成物ペレットとを重量比で515に
調整して■型プレンダーにより混合し、繊維強化熱可塑
性樹脂ペレット(ガラス繊維含有率33重量%)を得た
Example 2 The mi strongly reinforced thermoplastic resin composition pellets and thermoplastic resin composition pellets described in Example 1 were adjusted to a weight ratio of 515 and mixed in a ■ type blender to obtain fiber reinforced thermoplastic resin pellets ( A glass fiber content of 33% by weight was obtained.

該繊維強化熱可塑性樹脂ペレットを実施例1に記載した
方法で成形・評価した。成形品の特性を第1表に示す。
The fiber-reinforced thermoplastic resin pellets were molded and evaluated by the method described in Example 1. Table 1 shows the properties of the molded product.

比較例3 実施例Iに記載したポリエチレンテレフタレート繊維1
6本をEガラス繊維2本に対し+0.3%のオーバーフ
ィード状態で供給し、タスラン法(空気圧力15kg/
ejG、加工速度100m/分)により混繊糸を得た。
Comparative Example 3 Polyethylene terephthalate fiber 1 described in Example I
6 fibers were supplied with an overfeed of +0.3% to 2 E glass fibers, and the Taslan method (air pressure 15 kg/
ejG, processing speed 100 m/min) to obtain a mixed fiber yarn.

次に実施例1と同様にして繊維強化熱可塑性樹脂組成物
ペレットを得た。(混合分散率ニア3%、ミクロボイド
密度指数:13、マクロボイド密度指数:5、ガラス繊
維含有率233重量%)該繊維強化熱可塑性樹脂組成物
ペレットを実施例1と同様にしてテストピースを成形・
評価した。
Next, fiber-reinforced thermoplastic resin composition pellets were obtained in the same manner as in Example 1. (Mixing dispersion rate near 3%, microvoid density index: 13, macrovoid density index: 5, glass fiber content 233% by weight) The fiber-reinforced thermoplastic resin composition pellets were molded into test pieces in the same manner as in Example 1.・
evaluated.

成形品の特性を第1表に示す。Table 1 shows the properties of the molded product.

第1表 ペレット混合物から得られた成形品が高力学特性を確保
するのに好適であることが明らかである。
It is clear that the molded articles obtained from the pellet mixtures of Table 1 are suitable for ensuring high mechanical properties.

(発明の効果) 本発明の(繊維強化)熱可塑性樹脂ペレット混合物を用
いると、成形性に優れ、かつ従来の樹脂と強化繊維との
混線法では到底達成し得なかった高力学特性を有し、か
つ外観にも優れる成形品を得ることができる。
(Effects of the Invention) When the (fiber-reinforced) thermoplastic resin pellet mixture of the present invention is used, it has excellent moldability and has high mechanical properties that could not be achieved by the conventional method of mixing resin and reinforcing fibers. , and a molded product with excellent appearance can be obtained.

Claims (2)

【特許請求の範囲】[Claims] (1)下記の繊維強化熱可塑性樹脂ペレット(A)と該
樹脂ペレットより低い融解温度または軟化温度、または
該樹脂ペレットより高い溶融指数を有する熱可塑性樹脂
ペレット(B)とを混合したこと特徴とする熱可塑性樹
脂ペレット混合物。 繊維強化熱可塑性樹脂ペレット(A): (i)強化繊維含有率 30〜80重量%、(ii)混
合分散率 20%以上、
(1) The following fiber-reinforced thermoplastic resin pellets (A) are mixed with thermoplastic resin pellets (B) having a lower melting temperature or softening temperature than the resin pellets, or a higher melting index than the resin pellets. thermoplastic resin pellet mixture. Fiber-reinforced thermoplastic resin pellets (A): (i) reinforcing fiber content 30 to 80% by weight, (ii) mixing dispersion rate 20% or more,
(2)請求項1記載の繊維強化熱可塑性樹脂ペレット(
A)と熱可塑性樹脂ペレット(B)とを用いて成形した
成形体。
(2) The fiber-reinforced thermoplastic resin pellets according to claim 1 (
A molded article formed using A) and thermoplastic resin pellets (B).
JP1148768A 1989-06-12 1989-06-12 Thermoplastic resin pellet mixture and molded article using the same Expired - Fee Related JP2745685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1148768A JP2745685B2 (en) 1989-06-12 1989-06-12 Thermoplastic resin pellet mixture and molded article using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1148768A JP2745685B2 (en) 1989-06-12 1989-06-12 Thermoplastic resin pellet mixture and molded article using the same

Publications (2)

Publication Number Publication Date
JPH0313305A true JPH0313305A (en) 1991-01-22
JP2745685B2 JP2745685B2 (en) 1998-04-28

Family

ID=15460224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1148768A Expired - Fee Related JP2745685B2 (en) 1989-06-12 1989-06-12 Thermoplastic resin pellet mixture and molded article using the same

Country Status (1)

Country Link
JP (1) JP2745685B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948541A (en) * 1996-04-04 1999-09-07 Kennametal Inc. Boron and nitrogen containing coating and method for making
US5976716A (en) * 1996-04-04 1999-11-02 Kennametal Inc. Substrate with a superhard coating containing boron and nitrogen and method of making the same
WO2021029109A1 (en) * 2019-08-09 2021-02-18 住友化学株式会社 Resin composition and molded body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01286824A (en) * 1988-05-13 1989-11-17 Toyota Central Res & Dev Lab Inc Manufacture of fiber-reinforced thermoplastic resin and its raw material resin composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01286824A (en) * 1988-05-13 1989-11-17 Toyota Central Res & Dev Lab Inc Manufacture of fiber-reinforced thermoplastic resin and its raw material resin composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948541A (en) * 1996-04-04 1999-09-07 Kennametal Inc. Boron and nitrogen containing coating and method for making
US5976716A (en) * 1996-04-04 1999-11-02 Kennametal Inc. Substrate with a superhard coating containing boron and nitrogen and method of making the same
US6054185A (en) * 1996-04-04 2000-04-25 Kennametal Inc. Substrate with superhard coating containing boron and nitrogen and method of making the same
US6086959A (en) * 1996-04-04 2000-07-11 Kennametal Inc. Boron and nitrogen containing coating and method for making
US6096436A (en) * 1996-04-04 2000-08-01 Kennametal Inc. Boron and nitrogen containing coating and method for making
US6117533A (en) * 1996-04-04 2000-09-12 Kennametal Inc. Substrate with a superhard coating containing boron and nitrogen and method of making the same
WO2021029109A1 (en) * 2019-08-09 2021-02-18 住友化学株式会社 Resin composition and molded body
CN114206997A (en) * 2019-08-09 2022-03-18 住友化学株式会社 Resin composition and molded article

Also Published As

Publication number Publication date
JP2745685B2 (en) 1998-04-28

Similar Documents

Publication Publication Date Title
EP1075377B1 (en) Process and apparatus for continuously manufacturing composites of polymer and cellulosic fibres
EP1394197B1 (en) Highly viscous moulding materials with nanoscale fillers
US6620507B2 (en) Fiber-reinforced thermoplastic resin pellets and manufacturing method thereof
US20060261509A1 (en) Method for making fiber reinforced polypropylene composites
JP5676080B2 (en) Organic fiber reinforced composite resin composition and organic fiber reinforced composite resin molded product
US20060264557A1 (en) In-line compounding and molding process for making fiber reinforced polypropylene composites
US20060264544A1 (en) Cloth-like fiber reinforced polypropylene compositions and method of making thereof
JP2020528845A (en) Fiber reinforced molding compound and its formation and usage
EP0934143A1 (en) Rod-shaped pellets
EP1027973B1 (en) Process for the preparation of fiber-filled thermoplastic resin composition
JP2745685B2 (en) Thermoplastic resin pellet mixture and molded article using the same
US20080214703A1 (en) Pellet and fiber length for polyester fiber reinforced polypropylene composites
JP4330258B2 (en) Fiber reinforced thermoplastic resin pellets and process for producing the same
JP6914541B2 (en) Molding machine for thermoplastic resin composition and manufacturing method
JP6353691B2 (en) Glass wool composite thermoplastic resin composition, method for producing the same, and molded product.
KR100937231B1 (en) Manufacturing method of Fiber Reinforced Plastic forming goods
JP3824402B2 (en) Method for producing glass fiber reinforced polypropylene molded body
EP1498245A1 (en) Spheroidally shaped fibre reinforced thermoplastic pellets
JP2952977B2 (en) Molding method of fiber reinforced resin
JPH0692508B2 (en) Long fiber reinforced polyolefin resin composition
KR20020087137A (en) Plastic granulate
JPH04163002A (en) Manufacture of composite fiber reinforced thermoplastic resin pellet
JP3510002B2 (en) Fiber reinforced resin composition and molded article
CN116061518A (en) Environment-friendly intumescent flame retardant thermoplastic composite material and preparation method and application thereof
CN111070469A (en) Method for preparing reinforced articles

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees