JP3510002B2 - Fiber reinforced resin composition and molded article - Google Patents

Fiber reinforced resin composition and molded article

Info

Publication number
JP3510002B2
JP3510002B2 JP12846795A JP12846795A JP3510002B2 JP 3510002 B2 JP3510002 B2 JP 3510002B2 JP 12846795 A JP12846795 A JP 12846795A JP 12846795 A JP12846795 A JP 12846795A JP 3510002 B2 JP3510002 B2 JP 3510002B2
Authority
JP
Japan
Prior art keywords
fiber
resin composition
polyolefin
resin
crosslinked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12846795A
Other languages
Japanese (ja)
Other versions
JPH08319380A (en
Inventor
圭 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP12846795A priority Critical patent/JP3510002B2/en
Publication of JPH08319380A publication Critical patent/JPH08319380A/en
Application granted granted Critical
Publication of JP3510002B2 publication Critical patent/JP3510002B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、繊維強化樹脂組成物に
関し、剛性、強度等の機械特性および耐環境応力亀裂特
性に優れ、特に中空成形体用材料として好適な繊維強化
樹脂組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber reinforced resin composition, and more particularly to a fiber reinforced resin composition which is excellent in mechanical properties such as rigidity and strength and environmental stress crack resistance, and which is particularly suitable as a material for hollow molded articles.

【0002】[0002]

【従来の技術】ポリオレフィン樹脂は易成形加工性、耐
薬品性等の特徴を有し、さらには軽量、経済的に安価で
あることから、化粧品、医薬品、トイレタリー用品、食
品等の包装材料等として広範囲に利用されてきた。これ
らの包装材料、特に中空成形法により成形された容器に
は、剛性、強度等の機械特性や耐環境応力亀裂性等が要
求される。これらの物性を向上させるために、近年では
ガラス繊維等との複合化による高剛性高強度材料の開発
が盛んに行われており、各種の無機強化材、無機フィラ
ー等の強化材をマトリックス樹脂に配合することによ
り、剛性、強度、耐熱性、寸法安定性等に優れた樹脂組
成物とすることができることが広く知られている。しか
しながら、配合する各種無機強化材等は比重が大きく、
これらをマトリックス樹脂に配合すると、その樹脂組成
物の剛性、強度等の機械特性は向上するが、重量は大幅
に増加し、金属材料等と比較して軽量であるという樹脂
材料の長所の一つを損なうだけでなく、これら無機強化
材とマトリックス樹脂の界面強度が弱いため、耐環境応
力亀裂性をも損なうという問題点がある。
2. Description of the Related Art Polyolefin resins have characteristics such as easy moldability, chemical resistance, etc., and are lightweight and economically inexpensive. Therefore, they are used as packaging materials for cosmetics, pharmaceuticals, toiletries, foods, etc. It has been used extensively. Mechanical properties such as rigidity and strength, environmental stress crack resistance, and the like are required for these packaging materials, particularly containers formed by the blow molding method. In order to improve these physical properties, in recent years, development of high-rigidity and high-strength materials by compounding with glass fiber etc. has been actively carried out, and various inorganic reinforcing materials, reinforcing materials such as inorganic fillers are used as matrix resins. It is widely known that by blending, a resin composition having excellent rigidity, strength, heat resistance, dimensional stability and the like can be obtained. However, the specific gravity of various inorganic reinforcing materials to be compounded is large,
When these are compounded in a matrix resin, the mechanical properties such as rigidity and strength of the resin composition are improved, but the weight is significantly increased, and one of the advantages of the resin material is that it is lighter than metal materials and the like. In addition to the above, the interface strength between the inorganic reinforcing material and the matrix resin is weak, so that environmental stress crack resistance is also impaired.

【0003】これらの問題点を解決するために、無機強
化材の代わりに炭素繊維、アラミド繊維、高弾性高強度
のポリエチレン繊維の配合による複合化が検討されてお
り、剛性、強度等の機械特性の物性向上は可能であるこ
とが特開平6−9802号公報に記載されている。ま
た、シラン架橋ポリエチレン繊維を強化材として用いた
樹脂組成物が特開昭63−296927号公報および特
開昭64−26783号公報に記載されている。しか
し、これらの樹脂組成物は、繊維強化材とマトリックス
界面の接着強度が弱いため、得られる樹脂組成物の剛
性、強度等の機械特性が十分に向上しないという欠点が
ある。マトリックス樹脂がエポキシ樹脂等の極性基を持
つ樹脂である場合には、低温プラズマ処理やコロナ放電
処理により、繊維強化材に極性基を付与することにより
接着強度を改善することができるが、マトリックス樹脂
が極性基を持たないポリオレフィン樹脂等である場合に
は、繊維強化材としてシラン架橋ポリオレフィン繊維を
用いると、その分子構造内に極性基を有するがゆえに、
該繊維とマトリックス樹脂との界面における接着強度は
弱いものとなる。現在、トイレタリー用品分野等を中心
に、軽量で機械特性に優れ、耐環境応力亀裂性に優れる
中空成形容器に好適な樹脂組成物の開発が強く望まれて
いる。
In order to solve these problems, compounding of carbon fiber, aramid fiber and polyethylene fiber having high elasticity and high strength in place of the inorganic reinforcing material has been studied, and mechanical properties such as rigidity and strength have been studied. It is described in JP-A-6-9802 that it is possible to improve the physical properties of. Further, resin compositions using silane-crosslinked polyethylene fibers as a reinforcing material are described in JP-A-63-296927 and JP-A-64-26783. However, these resin compositions have a drawback that mechanical strength such as rigidity and strength of the resulting resin composition is not sufficiently improved because the adhesive strength between the fiber reinforcement and the matrix interface is weak. When the matrix resin is a resin having a polar group such as an epoxy resin, the bonding strength can be improved by adding a polar group to the fiber reinforcement by low temperature plasma treatment or corona discharge treatment. Is a polyolefin resin having no polar group, when using a silane cross-linked polyolefin fiber as the fiber reinforcement, because it has a polar group in its molecular structure,
The adhesive strength at the interface between the fibers and the matrix resin becomes weak. At present, there is a strong demand for development of a resin composition suitable for a hollow molded container, which is lightweight, has excellent mechanical properties, and has excellent resistance to environmental stress cracking, mainly in the field of toiletry products.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来におけ
る問題点を解決することのできる、剛性、強度等の機械
特性および耐環境応力亀裂特性に優れた、繊維強化樹脂
組成物を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides a fiber reinforced resin composition which is capable of solving the problems of the prior art and which is excellent in mechanical properties such as rigidity and strength and environmental stress crack resistance. With the goal.

【0005】[0005]

【課題を解決するための手段】本発明者は、上記課題を
解決するために鋭意検討を重ねた結果、高弾性を示す表
面自由エネルギーの低い架橋ポリオレフィン繊維をマト
リックス樹脂に配合することにより本発明に到達した。
すなわち、上記課題は、ポリオレフィン樹脂50〜90
重量%に対して、引張弾性率30GPa以上であり、表
面自由エネルギーが40エルグ/cm2 未満である架橋
ポリオレフィン繊維50〜10重量%が均一に混合分散
されていることを特徴とする繊維強化樹脂組成物、ポリ
オレフィン樹脂が、JISK7210、条件4に準じて
測定したメルトフローレートが0.01〜10g/10
分であるポリエチレン樹脂であることを特徴とする上記
記載の繊維強化樹脂組成物、架橋ポリオレフィン繊維が
放射線照射により架橋された架橋ポリエチレン繊維であ
ることを特徴とする上記記載の繊維強化樹脂組成物、上
記記載の繊維強化樹脂組成物を中空成形したことを特徴
とする成形品、によって解決することができる。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventor has found that the present invention can be achieved by blending a matrix resin with crosslinked polyolefin fibers having high elasticity and low surface free energy. Reached
That is, the above-mentioned subject is polyolefin resin 50-90.
50% to 10% by weight of crosslinked polyolefin fibers having a tensile elastic modulus of 30 GPa or more and a surface free energy of less than 40 ergs / cm 2 with respect to % by weight are uniformly mixed and dispersed.
Fiber-reinforced resin composition characterized that you have been, polyolefin resin, JIS K7210, the melt flow rate measured according to the condition 4 is 0.01 to 10 g / 10
The fiber-reinforced resin composition described above, wherein the fiber-reinforced resin composition is a polyethylene resin, and the cross-linked polyolefin fiber is a cross-linked polyethylene fiber cross-linked by irradiation, the fiber-reinforced resin composition described above, This can be solved by a molded article characterized by hollow molding of the fiber-reinforced resin composition described above.

【0006】本発明におけるポリオレフィン樹脂とは、
オレフィン類の単独重合体または共重合体であり、例え
ばポリエチレン、ポリプロピレン、エチレンとα−オレ
フィンとの共重合体等が挙げられ、該α−オレフィンと
しては、例えば1−ブテン、1−ヘキセン等が挙げられ
る。本発明のポリオレフィン樹脂は、1種類でも、2種
類以上を組み合わせたものでもよい。本発明に用いるポ
リオレフィン樹脂には、安定剤、酸化防止剤、紫外線吸
収剤、加工性改良剤、滑剤、帯電防止剤、難燃剤、顔
料、染料、充填剤等の通常のポリオレフィン樹脂に用い
る各種添加剤と組み合わせて使用してもよい。
The polyolefin resin in the present invention means
Homopolymers or copolymers of olefins, such as polyethylene, polypropylene, copolymers of ethylene and α-olefins, and the like, and the α-olefins include, for example, 1-butene, 1-hexene and the like. Can be mentioned. The polyolefin resin of the present invention may be one type or a combination of two or more types. In the polyolefin resin used in the present invention, various additives used for ordinary polyolefin resins such as stabilizers, antioxidants, ultraviolet absorbers, processability improvers, lubricants, antistatic agents, flame retardants, pigments, dyes and fillers. You may use it in combination with an agent.

【0007】本発明に用いるポリオレフィン樹脂は、メ
ルトフローレート(JIS K7210、条件4に準じ
て測定:以下MFRと略す)が0.01〜10g/10
分、好ましくは0.2〜3.0g/10分の範囲内であ
る。MFRが0.01g/10分未満のものおよび10
g/10分を越えるものについては、成形加工性が著し
く低下するため適していない。
The polyolefin resin used in the present invention has a melt flow rate (measured according to JIS K7210, condition 4: hereinafter referred to as MFR) of 0.01 to 10 g / 10.
Min, preferably 0.2 to 3.0 g / 10 min. MFR of less than 0.01 g / 10 minutes and 10
Those exceeding g / 10 minutes are not suitable because the molding processability is significantly reduced.

【0008】本発明に用いる架橋ポリオレフィン繊維
は、ポリオレフィン繊維の架橋処理を行ない、JIS
R7601に準じて測定した引張弾性率が30GPa以
上、表面自由エネルギーが40エルグ/cm2 未満であ
り、繊維径が5〜100μmの範囲内、繊維長が0.2
〜2mmの範囲内にあるものが好ましい。本発明におい
て架橋ポリオレフィン繊維の表面自由エネルギーは、水
およびヨウ化メチレンを用いて測定した接触角より求め
ることができ、特開昭61−241330号公報に示さ
れた方法に準じて求めることができる。架橋ポリオレフ
ィン繊維の引張弾性率が30GPa未満であると該樹脂
組成物の機械特性の十分な改善効果が得られない。ま
た、架橋ポリオレフィン繊維の表面自由エネルギーが4
0エルグ/cm2 以上であると、マトリックスとなる
ポリオレフィン樹脂との接着強度が低下し、該樹脂組成
物の機械特性の十分な改善効果が得られない。さらに、
架橋ポリオレフィン繊維の繊維径が5μm未満であると
該樹脂組成物の機械特性の十分な改善効果が得られず、
100μmを越えると成形加工性が低下するだけでな
く、該樹脂組成物の機械特性が改善されない。さらに、
架橋ポリオレフィン繊維の繊維長が0.2mm未満であ
ると、該樹脂組成物の機械特性や耐環境応力亀裂性の十
分な改善効果が得られず、2mmを越えると混練時や成
形時に架橋ポリオレフィン繊維が変形し該樹脂組成物の
機械特性が十分に改善されなかったり、押出機内部での
詰まりやゲル発生の原因となる。
The crosslinked polyolefin fiber used in the present invention is obtained by subjecting the polyolefin fiber to a crosslinking treatment according to JIS.
The tensile modulus measured according to R7601 is 30 GPa or more, the surface free energy is less than 40 erg / cm 2 , the fiber diameter is in the range of 5 to 100 μm, and the fiber length is 0.2.
Those within a range of up to 2 mm are preferable. In the present invention, the surface free energy of the crosslinked polyolefin fiber can be determined from the contact angle measured using water and methylene iodide, and can be determined according to the method disclosed in JP-A-61-241330. . When the tensile elastic modulus of the crosslinked polyolefin fiber is less than 30 GPa, the effect of sufficiently improving the mechanical properties of the resin composition cannot be obtained. In addition, the surface free energy of crosslinked polyolefin fiber is 4
When it is 0 ergs / cm 2 or more, the adhesive strength with the polyolefin resin that serves as the matrix is lowered, and the effect of sufficiently improving the mechanical properties of the resin composition cannot be obtained. further,
If the fiber diameter of the crosslinked polyolefin fiber is less than 5 μm, a sufficient effect of improving the mechanical properties of the resin composition cannot be obtained,
If it exceeds 100 μm, not only the moldability is deteriorated, but also the mechanical properties of the resin composition are not improved. further,
When the fiber length of the crosslinked polyolefin fiber is less than 0.2 mm, the effect of sufficiently improving the mechanical properties and environmental stress crack resistance of the resin composition cannot be obtained, and when it exceeds 2 mm, the crosslinked polyolefin fiber is kneaded or molded. May cause deformation of the resin composition, and may cause clogging or gel generation inside the extruder.

【0009】本発明における架橋ポリオレフィン繊維
は、ポリオレフィン樹脂を溶融紡糸し、得られた繊維を
延伸配向後、架橋させることにより得られるものであ
る。架橋させるための方法としては、放射線照射により
架橋させる方法、架橋剤、架橋助剤を同時に溶融混合す
る方法等が挙げられる。中でも放射線照射による方法
は、操作が簡便で、短時間のうちに架橋処理を行うこと
ができるため好ましい。架橋するポリオレフィン樹脂の
種類は特に限定されないが、MFR0.45〜1.2g
/10分の範囲内にあるものが、繊維状に加工しやすく
好ましい。ポリオレフィン樹脂を溶融紡糸するための方
法としては、通常のポリオレフィン延伸糸用原糸の製造
方法、および同延伸糸の製造方法が挙げられる。また、
ポリオレフィン繊維に延伸処理を施すと、高弾性高強度
の繊維が得られるため、元の長さの3〜15倍に延伸処
理することが好ましい。
The crosslinked polyolefin fiber in the present invention is obtained by melt spinning a polyolefin resin, stretching and orienting the obtained fiber, and then crosslinking. Examples of the method for crosslinking include a method of crosslinking by irradiation with radiation, a method of simultaneously melt-mixing a crosslinking agent and a crosslinking aid, and the like. Among them, the method using radiation irradiation is preferable because the operation is simple and the crosslinking treatment can be performed in a short time. The type of cross-linked polyolefin resin is not particularly limited, but MFR 0.45 to 1.2 g
Those within the range of / 10 minutes are preferable because they can be easily processed into fibrous form. Examples of the method for melt-spinning a polyolefin resin include a usual method for producing a base yarn for a polyolefin drawn yarn and a method for producing the same drawn yarn. Also,
When the polyolefin fiber is stretched, a fiber having high elasticity and high strength can be obtained. Therefore, it is preferable to stretch the polyolefin fiber to 3 to 15 times its original length.

【0010】本発明に用いる照射のための放射線として
は、電子加速器よりの電子線、γ線およびX線等の電離
性放射線が使用される。線量率、照射温度および照射時
間は照射されたポリオレフィン繊維が必要なだけの架橋
を形成し、しかも放電破壊等の劣化を生じないような範
囲の値でなければならない。好ましい線量率、照射温度
および照射時間は、架橋するポリオレフィン樹脂のMF
R、結晶化度、添加剤の種類等により異なり、目的とす
る架橋ポリオレフィン繊維の物性を満たす範囲となるよ
うに決められる。本発明において放射線照射によるポリ
オレフィン樹脂の放電破壊を防止するために、あるいは
放射線照射によるポリオレフィン樹脂の架橋を促進する
ために、放射線照射を施すポリオレフィン繊維にあらか
じめジブロバギルマレート等の老化防止剤を配合しても
よい。
As the radiation for irradiation used in the present invention, ionizing radiation such as electron beam from electron accelerator, γ ray and X ray is used. The dose rate, the irradiation temperature and the irradiation time must be values within a range such that the irradiated polyolefin fibers form the necessary crosslinks and do not cause deterioration such as discharge breakdown. The preferable dose rate, irradiation temperature and irradiation time are MF of the cross-linked polyolefin resin.
It depends on R, crystallinity, kind of additives, etc., and is determined so as to satisfy the target physical properties of the crosslinked polyolefin fiber. In the present invention, in order to prevent the discharge breakdown of the polyolefin resin by irradiation with radiation, or in order to accelerate the crosslinking of the polyolefin resin by irradiation, the polyolefin fiber to be irradiated is premixed with an antioxidant such as dibrovagyl malate. You may.

【0011】ポリオレフィン樹脂および架橋ポリオレフ
ィン繊維の配合割合は樹脂組成物の用途によって任意に
選ぶことができるが、通常は最終的に得られる樹脂組成
物に対して架橋ポリオレフィン繊維として10〜50重
量%の範囲である。架橋ポリオレフィン繊維の配合量が
10重量%未満だと該樹脂組成物の機械特性の十分な改
善効果が得られない。また、架橋ポリオレフィン繊維の
配合量が50重量%を越える場合には、組成物の溶融状
態における流動性が低下するため、押出し等の各工程に
おける作業性が低下し、さらには、均一な混合分散状態
が得られなくなるため該樹脂組成物で構成される成形品
の外観が悪くなる。
The blending ratio of the polyolefin resin and the crosslinked polyolefin fiber can be arbitrarily selected depending on the use of the resin composition, but usually 10 to 50% by weight as the crosslinked polyolefin fiber with respect to the finally obtained resin composition. It is a range. If the content of the crosslinked polyolefin fiber is less than 10% by weight, the effect of sufficiently improving the mechanical properties of the resin composition cannot be obtained. On the other hand, when the amount of the crosslinked polyolefin fiber is more than 50% by weight, the fluidity of the composition in the molten state is lowered, the workability in each step such as extrusion is lowered, and further, uniform mixing and dispersion is performed. Since the state cannot be obtained, the appearance of the molded product made of the resin composition is deteriorated.

【0012】本発明においてポリオレフィン樹脂の配合
割合は50〜90重量%が好ましい。50重量%未満で
は組成物の溶融状態における流動性が低下するため成形
加工性が低下し成形品の外観が悪くなる。また、90重
量%を越えると樹脂組成物の機械特性の改善効果が不充
分となる。
In the present invention, the blending ratio of the polyolefin resin is preferably 50 to 90% by weight. If it is less than 50% by weight, the fluidity of the composition in the molten state is lowered, so that the molding processability is lowered and the appearance of the molded article is deteriorated. Further, if it exceeds 90% by weight, the effect of improving the mechanical properties of the resin composition becomes insufficient.

【0013】本発明の繊維強化樹脂組成物は、ポリオレ
フィン樹脂のペレット、粒状物、あるいは粉末と架橋ポ
リオレフィン繊維をドライブレンドした後、通常の単軸
または二軸押出機のような押出機中でポリオレフィン樹
脂が溶融する温度で混合し、押出後冷却することによっ
て得られる。
The fiber-reinforced resin composition of the present invention is obtained by dry blending pellets, granules, or powders of a polyolefin resin with crosslinked polyolefin fibers, and then using a polyolefin in an extruder such as a conventional single-screw or twin-screw extruder. Tree
It is obtained by mixing at a temperature at which the fat melts, cooling after extrusion, and cooling.

【0014】本発明の繊維強化樹脂組成物は、各種の方
法で成形品とすることができるが、中でも中空成形法に
より得られる成形品は、発明による効果が大きく、好ま
しい。中空成形法としては、ダイレクトブロー成形、イ
ンジェクションブロー成形、延伸ブロー成形等が挙げら
れる。
The fiber-reinforced resin composition of the present invention can be formed into a molded product by various methods. Among them, a molded product obtained by the hollow molding method is preferable because the effect of the invention is great. Examples of the blow molding method include direct blow molding, injection blow molding, stretch blow molding and the like.

【0015】[0015]

【実施例】【Example】

架橋ポリオレフィン繊維I〜VI 以下の仕様による延伸用原糸(ストランド)の製造装置
を用いて架橋ポリオレフィン繊維を製造した。スクリュ
ー径20mmφ、スクリュー有効長(L/D)20、ス
クリュー圧縮比3.0のフルフライト型スクリューおよ
び、ダイ長さ240mm、ダイ出口内径1mmφ、ダイ
L/D=40のダイ。架橋ポリオレフィン繊維用樹脂と
して、MFR0.5g/10分の高密度ポリエチレン樹
脂(商品名シヨウレックスS6006M、昭和電工
(株)製)を用い、押出機供給部、同溶融圧縮部、同計
量部、同ダイ部の設定温度を各々170℃、200℃、
220℃、220℃に設定し、スクリュー回転数30r
pmとし、引取機にて150m/分の速度で引取ること
により、外径250μmφからなるポリエチレン繊維を
製造した。得られたポリエチレン繊維は、続いて沸騰水
槽中で11倍に延伸配向させた。次に、このポリエチレ
ン繊維に、表1に示す各種の架橋処理を行なった。放射
線処理の場合、所定の量の電子線を加速エネルギー1.
5MeV、線量率0.2Mrad/秒照射し、架橋ポリ
オレフィン繊維を製造した。また、特開昭63−296
927号公報に記載の方法に基づいて、シラン架橋ポリ
エチレン繊維を作製した。製造した架橋ポリオレフィン
繊維の弾性率は、JIS R7601に基づいて測定を
行った。さらに、架橋ポリオレフィン繊維の表面自由エ
ネルギーは、特開昭61−241330号公報に記載の
方法に基づいて、水およびヨウ化メチレンとの接触角を
測定することにより算出した。得られた架橋ポリオレフ
ィン繊維を表1に示す。
Crosslinked Polyolefin Fibers I to VI Crosslinked polyolefin fibers were manufactured by using a drawing raw yarn (strand) manufacturing apparatus having the following specifications. A full flight type screw having a screw diameter of 20 mmφ, an effective screw length (L / D) of 20, a screw compression ratio of 3.0, a die length of 240 mm, a die outlet inner diameter of 1 mmφ, and a die of L / D = 40. As a resin for crosslinked polyolefin fiber, a high-density polyethylene resin (trade name: SHORELEX S6006M, manufactured by Showa Denko KK) having an MFR of 0.5 g / 10 min was used, and the extruder supply section, the melt compression section, the measurement section, Set the die temperature to 170 ℃, 200 ℃,
Set 220 ℃, 220 ℃, screw rotation speed 30r
Then, the polyethylene fiber having an outer diameter of 250 μmφ was produced by setting pm and taking it off at a speed of 150 m / min with a take-up machine. The polyethylene fiber obtained was subsequently stretched and oriented 11 times in a boiling water bath. Next, this polyethylene fiber was subjected to various crosslinking treatments shown in Table 1. In the case of radiation treatment, an acceleration energy of 1.
Irradiation with 5 MeV and a dose rate of 0.2 Mrad / sec was performed to produce a crosslinked polyolefin fiber. In addition, JP-A-63-296
Silane-crosslinked polyethylene fibers were produced based on the method described in Japanese Patent No. 927. The elastic modulus of the produced crosslinked polyolefin fiber was measured based on JIS R7601. Further, the surface free energy of the crosslinked polyolefin fiber was calculated by measuring the contact angle with water and methylene iodide based on the method described in JP-A-61-241330. The obtained crosslinked polyolefin fibers are shown in Table 1.

【0016】(実施例1〜5および比較例1〜8) 前記架橋ポリオレフィン繊維を1mmの長さに切断し、
表2の配合比となるようにポリオレフィン樹脂とドライ
ブレンドし、単軸押出機でポリオレフィン樹脂が溶融
る温度で混合後、ペレット化した。ポリオレフィン樹脂
としては、(A)MFR0.25g/10分の高密度ポ
リエチレン樹脂(商品名シヨウレックスS6002F
D、昭和電工(株)製)、(B)MFR3.0g/10
分の高密度ポリエチレン樹脂(商品名シヨウレックス5
020、昭和電工(株)製)、(C)MFR20g/1
0分の高密度ポリエチレン樹脂(商品名シヨウレックス
T7300FL、昭和電工(株)製)を用いた。架橋ポ
リオレフィン繊維強化ポリオレフィン樹脂組成物のペレ
ットは、以下の仕様の単軸押出機を用いて製造した。ス
クリュー径50mmφ、スクリュー有効長(L/D)2
0、スクリュー圧縮比3.0のフルフライト型スクリュ
ー。押出機供給部、同溶融圧縮部、同計量部、同ダイ部
の設定温度を各々150℃、180℃、200℃、20
0℃に設定し、スクリュー回転数40rpmで溶融スト
ランドを押出し、30℃の冷却水槽中で固化した後、カ
ッターでペレット状に切断した。製造した樹脂組成物ペ
レットは、JIS K7074に基づいて曲げ弾性率
を、JIS K7073に基づいて引張強度(降伏)を
それぞれ測定した。結果を表2に示す。また、住友重機
(株)製BEKUM−SE91中空成形機を用いて、上
記樹脂組成物ペレットから中空成形容器(380ml偏
平瓶)を製造した。該中空成形機の押出機設定温度は、
押出機供給部、同溶融圧縮部、同計量部、同ダイ部を各
々150℃、170℃、175℃、180℃に設定し、
スクリュー回転数25rpmでパリソンを押出し、金型
冷却温度20℃にて中空成形容器を製造した。製造した
中空成形容器の耐環境応力亀裂性(F50)はASTM
D2561に準ずる方法で測定した。結果を表2に示
す。
(Examples 1 to 5 and Comparative Examples 1 to 8) The crosslinked polyolefin fiber was cut into a length of 1 mm,
Dry blend with the polyolefin resin so that the blending ratio is as shown in Table 2, and melt the polyolefin resin with a single-screw extruder .
After mixing at different temperatures, it was pelletized. As the polyolefin resin, (A) MFR 0.25 g / 10 min high-density polyethylene resin (trade name: SHORELEX S6002F
D, Showa Denko KK), (B) MFR 3.0 g / 10
Minute high-density polyethylene resin (trade name: SHOREEX 5
020, Showa Denko KK), (C) MFR 20g / 1
A 0 minute high-density polyethylene resin (trade name: SHORELEX T7300FL, manufactured by Showa Denko KK) was used. Pellets of the crosslinked polyolefin fiber-reinforced polyolefin resin composition were produced using a single-screw extruder having the following specifications. Screw diameter 50 mmφ, effective screw length (L / D) 2
Full flight type screw with 0 and screw compression ratio of 3.0. The set temperatures of the extruder supply unit, the melt compression unit, the metering unit, and the die unit are 150 ° C, 180 ° C, 200 ° C, and 20 ° C, respectively.
The molten strand was extruded at a screw rotation speed of 40 rpm, set at 0 ° C., solidified in a cooling water tank at 30 ° C., and then cut into pellets by a cutter. The flexural modulus of the produced resin composition pellet was measured according to JIS K7074, and the tensile strength (yield) was measured according to JIS K7073. The results are shown in Table 2. Moreover, the hollow molding container (380 ml flat bottle) was manufactured from the said resin composition pellet using the Sumitomo Heavy Industries Ltd. make BEKUM-SE91 hollow molding machine. The extruder set temperature of the blow molding machine is
The extruder supply unit, the melt compression unit, the metering unit, and the die unit were set at 150 ° C, 170 ° C, 175 ° C, and 180 ° C, respectively,
The parison was extruded at a screw rotation speed of 25 rpm to manufacture a hollow molded container at a mold cooling temperature of 20 ° C. Environmental stress crack resistance (F50) of manufactured hollow molded container is ASTM
It was measured by a method according to D2561. The results are shown in Table 2.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【発明の効果】本発明の繊維強化樹脂組成物は、剛性、
強度等の機械特性に優れており、従来の繊維強化樹脂組
成物に比べて、耐環境応力亀裂性に優れ、しかも軽量で
あるため、トイレタリー用品容器、工業用薬品缶、灯油
缶等の中空成形容器用材料に好適である。
The fiber-reinforced resin composition of the present invention has rigidity,
It has excellent mechanical properties such as strength, is superior in environmental stress crack resistance to conventional fiber reinforced resin compositions, and is lightweight, so it can be used for hollow molding of toiletry product containers, industrial chemical cans, kerosene cans, etc. It is suitable as a material for containers.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ポリオレフィン樹脂50〜90重量%
対して、引張弾性率30GPa以上であり、表面自由エ
ネルギーが40エルグ/cm2 未満である架橋ポリオレ
フィン繊維50〜10重量%が均一に混合分散されてい
ることを特徴とする繊維強化樹脂組成物。
1. A polyolefin resin in an amount of 50 to 90% by weight .
On the other hand , 50 to 10% by weight of crosslinked polyolefin fibers having a tensile elastic modulus of 30 GPa or more and a surface free energy of less than 40 ergs / cm 2 are uniformly mixed and dispersed. Resin composition.
【請求項2】 ポリオレフィン樹脂が、JIS K72
10、条件4に準じて測定したメルトフローレートが
0.01〜10g/10分であるポリエチレン樹脂であ
ることを特徴とする請求項1記載の繊維強化樹脂組成
物。
2. The polyolefin resin is JIS K72.
10. The fiber-reinforced resin composition according to claim 1, which is a polyethylene resin having a melt flow rate of 0.01 to 10 g / 10 minutes measured according to the conditions of 10 and 4.
【請求項3】 架橋ポリオレフィン繊維が放射線照射に
より架橋された架橋ポリエチレン繊維であることを特徴
とする請求項1または2記載の繊維強化樹脂組成物。
3. The fiber-reinforced resin composition according to claim 1, wherein the crosslinked polyolefin fiber is a crosslinked polyethylene fiber crosslinked by irradiation with radiation.
【請求項4】 請求項1〜3のいずれか一項記載の繊維
強化樹脂組成物を中空成形したことを特徴とする成形
品。
4. A molded article obtained by blow molding the fiber-reinforced resin composition according to claim 1.
JP12846795A 1995-05-26 1995-05-26 Fiber reinforced resin composition and molded article Expired - Fee Related JP3510002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12846795A JP3510002B2 (en) 1995-05-26 1995-05-26 Fiber reinforced resin composition and molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12846795A JP3510002B2 (en) 1995-05-26 1995-05-26 Fiber reinforced resin composition and molded article

Publications (2)

Publication Number Publication Date
JPH08319380A JPH08319380A (en) 1996-12-03
JP3510002B2 true JP3510002B2 (en) 2004-03-22

Family

ID=14985455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12846795A Expired - Fee Related JP3510002B2 (en) 1995-05-26 1995-05-26 Fiber reinforced resin composition and molded article

Country Status (1)

Country Link
JP (1) JP3510002B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4500469B2 (en) * 2001-07-23 2010-07-14 中部電力株式会社 COMPOSITE RESIN COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND MOLDED ARTICLE THEREOF

Also Published As

Publication number Publication date
JPH08319380A (en) 1996-12-03

Similar Documents

Publication Publication Date Title
US3639424A (en) Extrudable and moldable plastic compositions reinforced with heat set polyester fibers
EP3088459B1 (en) Polypropylene composite
US3702356A (en) Process for production of glass-filled thermoplastic pellets suitable for blending with thermoplastic
US20060264544A1 (en) Cloth-like fiber reinforced polypropylene compositions and method of making thereof
EP2096134B1 (en) Organic fiber-reinforced composite resin composition and organic fiber-reinforced composite resin molding
US20060261509A1 (en) Method for making fiber reinforced polypropylene composites
US20060264557A1 (en) In-line compounding and molding process for making fiber reinforced polypropylene composites
EP1661935B1 (en) Transparent easy tearable film
US20060264556A1 (en) Fiber reinforced polypropylene composite body panels
JP2001316534A (en) Long-fiber reinforced polypropylene resin composition and molded product
TW296356B (en)
EP0934143A1 (en) Rod-shaped pellets
CN111205554A (en) Polypropylene composite material and preparation method thereof
CN112608552A (en) Polypropylene composite material with high glossiness and good low-temperature toughness and preparation method thereof
CN110872418A (en) Polypropylene composition and preparation method thereof
JP4742211B2 (en) Long fiber reinforced polypropylene resin composition and molded product
US20080214703A1 (en) Pellet and fiber length for polyester fiber reinforced polypropylene composites
JP3510002B2 (en) Fiber reinforced resin composition and molded article
US3773705A (en) Thermoplastic moulding compositions reinforced with a mixture of glass and asbestos fibers
JPH01167370A (en) Thermoplastic resin composition
JPH1148317A (en) Hollow molding made of synthetic resin
JP3538441B2 (en) Method for producing polypropylene resin foam
CN110054878A (en) A kind of short fiber toughened crystalline polymer product of elastomer and preparation method thereof
EP3168258B1 (en) Method for preparing polyolefin resin composition and polyolefin resin composition
KR20150123369A (en) Long fiber reinforced plastic composition, long fiber reinforced composite material improving impact performance formed thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031224

LAPS Cancellation because of no payment of annual fees