JPH01167370A - Thermoplastic resin composition - Google Patents

Thermoplastic resin composition

Info

Publication number
JPH01167370A
JPH01167370A JP32542387A JP32542387A JPH01167370A JP H01167370 A JPH01167370 A JP H01167370A JP 32542387 A JP32542387 A JP 32542387A JP 32542387 A JP32542387 A JP 32542387A JP H01167370 A JPH01167370 A JP H01167370A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin composition
fibers
denier
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32542387A
Other languages
Japanese (ja)
Inventor
Tadashi Matsuo
正 松尾
Yukiko Sayama
佐山 有紀子
Shigeyuki Umeda
重之 梅田
Yoichi Kishigami
岸上 洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP32542387A priority Critical patent/JPH01167370A/en
Publication of JPH01167370A publication Critical patent/JPH01167370A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a thermoplastic resin composition, having excellent strength, rigidity, processability, dimensional stability, appearance of molded products, etc., and suitable as automotive parts, by blending a thermoplastic resin with a specific amount of specified modified cross-section polyester fibers. CONSTITUTION:A thermoplastic resin composition obtained by blending 10-60wt.% polyester fibers having 1-10 denier, preferably 1-5 denier single fiber size and 3-10g/denier strength, 9-40% elongation, 0.5-10% shrinkage in boiling water and modified cross section with a thermoplastic resin (e.g., polyethylene, polypropylene, nylon-6 or polystyrene).

Description

【発明の詳細な説明】[Detailed description of the invention]

【産業上の利用分野1 本発明は、熱可塑性樹脂組成物に関し、更に詳しくは、
熱可塑性樹脂と異形断面ポリエステル繊維を主体とする
産業材料等の用途に適した成形用熱可塑性樹脂組成物に
関する。 【従来の技術l 樹脂複合材料用の樹脂マトリックスとしては、ポリオレ
フィン、ナイロン等の熱可塑性樹脂、エポキシ樹脂、不
飽和ポリエステル樹脂等の熱硬化性樹脂を挙げることが
できる。また、樹脂補強用材料としては、従来から主と
してガラス繊維が用いられてきた。しかしながら、最近
ではポリエステル系繊維、ポリアミド系繊維等の有機合
成繊維をガラス繊維と共に使用することで、ガラス繊維
の剛性および有機合成繊維の弾性が相乗的に効果を発現
し、成形された樹脂製品において各種物理性能の向上が
認められ、更に有機合成繊維とガラス繊維の比重の差が
そのまま樹脂複合成形品の軽量化にもつながることが明
らかとなった。 樹脂マトリックスのような有機ポリマーとガラス繊維、
有機合成繊維のような異種材料とを複合させようとする
ときには、両者の親和性が樹脂複合成型品の性能を大き
く左右する。しかしながら、−船釣には有機合成繊維と
樹脂マトリックスの親和性は極めて低く、接着不良を生
じやすいという問題点がある。 そこで有機合成繊維と樹脂マトリックスとの接着性を向
上させるため多くの研究がなされ、繊維に被覆材を付与
して両者の界面の物理的性質および化学的性質を変化さ
せ親和性を高めることが提案されている0例えば特開昭
54−55077号公報には、合成ゴムラテックスをポ
リエステル繊維に付与し加熱して重合体の被膜をポリエ
ステル繊維の表面に形成した後、樹脂マトリックスに配
合する方法が開示されている。また、特開昭61−19
879号公報には、有機官能性シランをポリエステル繊
維表面に付着させる方法が開示されている。しかしなが
ら、これらの表面処理を行なうことによって確かにポリ
エステル繊維と樹脂マトリックスとの親和性はかなり改
善されるが、繊維・樹脂間の接着性の向上はまだ充分と
はいえず、樹脂複合成形品の曲げ強度、曲げ弾性率等の
物理的な性能の点および表面の凹凸、歪み等の外観形状
の点で改良が望まれていた。 〔発明が解決しようとする問題点1 本発明者らは、このような問題点を改善し、物理性能、
外観形状の点で実用に耐え得る成型材料を開発すべく鋭
意研究した結果、特定の熱可塑性樹脂に異形断面ポリエ
ステル繊維を配合することにより、強度、剛性、加工性
、寸法安定性、成形物の外観等の点で優れた成形用熱可
塑性樹脂組成物が得られることを見出し、本発明に到達
した。 【問題点を解決するための手段] すなわち、本発明は、異形断面を有するポリエステル繊
維を、該ポリエステルの軟化点より30℃以上低い軟化
点を有する熱可塑性樹脂に、10〜60重量%の割合で
配合してなる熱可塑性樹脂組成物である。 【作用】 本発明に用いる熱可塑性樹脂は、その軟化点が異形断面
繊維を構成するポリエステルの軟化点よりも30℃以上
低いものであることが必要である。 このような熱可塑性樹脂の好ましい具体例としては、ポ
リエチレン、ポリプロピレン、ナイロン−6、ポリスチ
レン、アクリロニトリル−スチレン共重合体、ポリアセ
タールおよびポリカーボネートが挙げられる。熱可塑性
樹脂の軟化点とポリエステルの軟化点との温度差が30
℃未満の場合には、熱可塑性樹脂組成物の溶融時にポリ
エステル繊維に収縮、脆化等の現象が発生するので好ま
しくない。 なお、本発明にいう軟化点とは、ビカット試験(JIS
 K 7206)により測定される値をいう。 本発明に用いる異形断面を有するポリエステル繊維(以
下、異形断面ポリエステル繊維と略称する。)とは、そ
の繊維断面における断面輪郭周長と同一ポリマーからな
り同一のデニールを有する円形断面繊維の断面輪郭周長
との比(以下、異形指数と略称する。)を求めた際に、
その異形指数が1.2以上であるポリエステル繊維をい
う。 樹脂マトリックスとポリエステル繊維とは、その界面物
質によって親和性を有している、つまり接着性を有して
いるので、異形断面ポリエステル繊維の単位体積当りの
接着面積は広ければ広いほど接着強度は大となる。した
がって、異形指数が大きければ大きい程接着面積は広く
なり、繊維と樹脂マトリックスとの良好な接着が達成さ
れる。 異形指数が1.2が未満の場合には、接着面積の増大が
僅かであり、円形断面を有する通常のポリエステル繊維
を使用する場合と比較してそれ程接着性の向上が期待で
きない。 また、その断面形状としては、特C;限定されるもので
はないが、三葉型や四葉型のように突起部を有するもの
が特に好ましい。異形断面繊維がこのような突起部を有
する場合には、必然的に異形率が大きくなると同時に、
樹脂マトリックスと繊維との混合に際して、突起同志が
障害となり、突起のない繊維と比較すると、繊維が引き
揃いにくくなるため、樹脂マトリックス内におけるポリ
エステル繊維の分散性を向上させることができる。 本発明に用いる異形断面を有するポリエステル繊維のポ
リエステル基質の好ましい具体例としては、それを構成
する繰り返し単位の80モル%以上がエチレンテレフタ
レートからなるものであり、共重合体も含まれる。共重
合成分としては、イソフタル酸、アジピン酸、セバシン
酸、p−β−オキシエトキシ安息香酸、ジフェニルエー
テル−4,4°−ジカルボン酸、ジフェノキシエタン−
4,4“−ジカルボン酸等のジカルボン酸成分およびプ
ロピレングリコール、ブタンジオール、ヘキサメチレン
グリコール、ネオペンチルグリコール、シクロヘキサン
ジメタツール等のグリコール類が用いられる。これらポ
リエステルは、エステル交換反応を経て重縮合を行なう
方法、直接エステル化反応を経て重縮合を行なう方法、
あるいはこれらの方法によって得られたポリマーを固相
重合する方法のいずれの方法によって得られたポリマー
も使用することができる。 本発明に用いる異形断面ポリエステル繊維は、ミルドフ
ァイバー、カットファイバー、フィラメント等各種の形
態のものが使用できる。 本発明に用いる異形断面ポリエステル繊維としては、単
繊維繊度が1.0〜10.0デニール、より好ましくは
1.0〜5.0デニール、強度が3〜lag/デニール
、伸度が9〜40%および沸水収縮率が0.5〜l01
0%であるものが好ましい。 異形断面ポリエステル繊維のデニールは、成型品に充分
な物理的性能を与えるため、更に製造工程での樹脂マト
リックスとの混合分散性が良好で、かつ混合操作中に受
ける機械的な引張り応力に耐える必要があることから、
 1.0デニ一ル以上であることが好ましい、また、単
繊維デニールがIO0θデニールを越える場合には、繊
維の単位体積すなわち重量当りの樹脂マトリックスとの
接着面積の低下が大きくなり、異形断面ポリエステル繊
維を使用する意味が薄れ、良好な接着性を維持すること
ができにくくなるため好ましくない。 また、強度、伸度については、単繊維の強度が3g/デ
ニール未満または伸度が40%を超える場合には、成形
品に充分な強度、特に耐衝撃性な与えることが困難とな
るため好ましくない、逆に強度が10g/デニールな超
える異形断面ポリエステル繊維を使用した場合には、成
形品には充分な物理的性能を与えることができるが、製
糸工程での安定性の低下、製造コストアップの問題が発
生するため好ましくない。 一般に強度と伸度は表裏の関係にあり、強度向上を計れ
ば伸度が低下する。したがって、この製造時の安定性低
下の問題は伸度9%未満の繊維においても同様に発生す
る0強度が10g/デニールな超え、かつ伸度が9%未
満の異形断面ポリエステル繊維を試験的に製造し、樹脂
強化材料として供し、樹脂複合成形品の性能を評価した
ところ、強度向上に見合っただけの性能向上は望めない
ことが明らかとなった。したがって、本発明に用いる異
形断面ポリエステル繊維の強度の上限は10g/デニー
ル、また伸度の下限は9%とすることが望ましい。 沸水収縮率は、成形品の外観に及ぼす影響が大きいファ
クターである0例えば沸水収縮率が10,0%の異形断
面ポリエステル繊維を補強材料として用いた(15重量
%含有)ポリプロピレン樹脂を190℃の金型で成形し
たときの成形品の金型寸法に対する収縮率は0.7%で
あるが、沸水収縮率が11.8%および12.8%の異
形断面ポリエステル繊維を用い同様にして得た成形品の
収縮率は、それぞれ1.12%および1.4%と急激に
増加し、成形品にクラックを起す原因となる。また沸水
収縮率が0.5%未満の異形断面ポリエステル繊維を用
いると、曲げ強度が1.1kg/mm”とグラスファイ
バーを用いた成形品の6.7kg/ mm”に較べl/
6以下と非常に低い値を示した。この原因は、沸水収縮
率を0.5%未満にするための繊維製造時の高熱履歴に
より繊維が脆化しているためである。 本発明の熱可塑性樹脂組成物における異形断面ポリエス
テル繊維の配合割合は、熱可塑性樹脂組成物に対して1
5〜60重量%であり、好ましくは20〜55重量%で
ある。15重量%未満では、剛性、寸法安定性、耐熱性
、塗装性等の点で分割型複合繊維添加による改善効果が
小さく、60重量%を超える場合には、可塑剤等を加え
ても流動性が悪くなり、成形性の点で問題が生ずるとと
もに、強度的にも脆くなり実用性に乏しくなる。 本発明の熱可塑性樹脂組成物には、剛性を増すためにガ
ラス繊維を併用することが好ましい、ガラス繊維の添加
量は、0〜50重量%、より好ましくは5〜40重量で
ある。また、無機充填材として炭酸カルシウム、珪酸マ
グネシウム、硅酸アルミニウム、硫酸バリウム、硫酸カ
ルシウム等、更には樹脂用可塑材を使用することができ
る。異形断面ポリエステル繊維と無機質充填剤を併用し
た場合は、難燃性、剛性、耐熱性等の物性面での改良効
果が得られるが、無機充填剤を少量添加することにより
異形断面ポリエステル繊維の分散を向上させる効果も認
められ、結果として耐衝撃強度も改善される。 熱可塑剤樹脂にこれら各種の配合物を均一に混合させる
には、バンバリーミキサ−、ロールミキサー、ニーダ−
1押出機、高速回転ミキサー等、一般に樹脂と充填剤を
混合するのに利用されている装置および方法がそのまま
適用できる。 本発明の熱可塑性樹脂組成物には、必要に応じ更に着色
剤、光安定剤、酸化防止剤等の各種添加剤を含有するこ
とができる。
[Industrial Application Field 1] The present invention relates to a thermoplastic resin composition, and more specifically,
The present invention relates to a thermoplastic resin composition for molding that is suitable for use in industrial materials, etc., which is mainly composed of a thermoplastic resin and polyester fibers with irregular cross sections. [Prior Art I] Examples of the resin matrix for resin composite materials include thermoplastic resins such as polyolefins and nylon, thermosetting resins such as epoxy resins, and unsaturated polyester resins. Furthermore, glass fiber has conventionally been mainly used as a resin reinforcing material. However, recently, by using organic synthetic fibers such as polyester fibers and polyamide fibers together with glass fibers, the rigidity of glass fibers and the elasticity of organic synthetic fibers have a synergistic effect, and molded resin products. Improvements in various physical properties were observed, and it was also revealed that the difference in specific gravity between organic synthetic fibers and glass fibers directly leads to weight reduction of resin composite molded products. organic polymers and glass fibers, such as resin matrices;
When combining dissimilar materials such as organic synthetic fibers, the compatibility of the two greatly influences the performance of the resin composite molded product. However, for boat fishing, there is a problem in that the affinity between the organic synthetic fiber and the resin matrix is extremely low, and poor adhesion is likely to occur. Therefore, many studies have been conducted to improve the adhesion between organic synthetic fibers and resin matrices, and it has been proposed to add coating materials to the fibers to change the physical and chemical properties of the interface between the two to increase their affinity. For example, Japanese Patent Application Laid-Open No. 54-55077 discloses a method of applying synthetic rubber latex to polyester fibers, heating them to form a polymer film on the surface of the polyester fibers, and then blending it into a resin matrix. has been done. Also, JP-A-61-19
No. 879 discloses a method for attaching an organofunctional silane to the surface of polyester fibers. However, although these surface treatments certainly improve the affinity between polyester fibers and the resin matrix, the improvement in adhesion between the fibers and resin is still not sufficient, and the Improvements have been desired in terms of physical performance such as bending strength and flexural modulus, and appearance such as surface unevenness and distortion. [Problem to be solved by the invention 1 The present inventors have improved the above-mentioned problems and improved physical performance,
As a result of intensive research to develop a molding material that can withstand practical use in terms of external appearance, we found that by blending polyester fibers with irregular cross sections into a specific thermoplastic resin, we were able to improve the strength, rigidity, processability, dimensional stability, and molded products. The inventors have discovered that a thermoplastic resin composition for molding that is excellent in terms of appearance and the like can be obtained, and have arrived at the present invention. [Means for Solving the Problems] That is, the present invention provides polyester fibers having an irregular cross section in a thermoplastic resin having a softening point lower than the softening point of the polyester by 10 to 60% by weight. This is a thermoplastic resin composition formed by blending the following. [Function] The thermoplastic resin used in the present invention must have a softening point that is 30° C. or more lower than the softening point of the polyester constituting the irregular cross-section fiber. Preferred specific examples of such thermoplastic resins include polyethylene, polypropylene, nylon-6, polystyrene, acrylonitrile-styrene copolymer, polyacetal, and polycarbonate. The temperature difference between the softening point of thermoplastic resin and the softening point of polyester is 30
If the temperature is less than 0.degree. C., phenomena such as shrinkage and embrittlement occur in the polyester fibers when the thermoplastic resin composition is melted, which is not preferable. In addition, the softening point referred to in the present invention refers to the Vicat test (JIS
K 7206). The polyester fiber having an irregular cross section used in the present invention (hereinafter abbreviated as irregular cross section polyester fiber) refers to the cross-sectional contour circumference of a circular cross-sectional fiber made of the same polymer and having the same denier as the cross-sectional contour circumference of the fiber cross section. When calculating the ratio to the length (hereinafter abbreviated as anomaly index),
Refers to polyester fibers whose irregular shape index is 1.2 or more. The resin matrix and polyester fibers have an affinity due to their interfacial substance, that is, they have adhesive properties, so the larger the adhesive area per unit volume of irregular cross-section polyester fibers, the higher the adhesive strength. becomes. Therefore, the larger the irregularity index, the larger the bonding area, and the better the bonding between the fibers and the resin matrix is achieved. When the irregularity index is less than 1.2, the adhesive area increases only slightly, and no significant improvement in adhesiveness can be expected compared to the case of using ordinary polyester fibers having a circular cross section. Further, as for the cross-sectional shape, it is particularly preferable to have a protrusion such as a three-lobed shape or a four-lobed shape, although the cross-sectional shape is not limited thereto. When the irregular cross-section fiber has such protrusions, the irregularity ratio inevitably increases, and at the same time,
When the resin matrix and fibers are mixed, the protrusions become an obstacle, and compared to fibers without protrusions, the fibers are difficult to pull together, so it is possible to improve the dispersibility of the polyester fibers within the resin matrix. A preferred specific example of the polyester substrate of the polyester fiber having an irregular cross section used in the present invention is one in which 80 mol% or more of the repeating units constituting it is composed of ethylene terephthalate, and copolymers are also included. Copolymerization components include isophthalic acid, adipic acid, sebacic acid, p-β-oxyethoxybenzoic acid, diphenyl ether-4,4°-dicarboxylic acid, diphenoxyethane-
Dicarboxylic acid components such as 4,4"-dicarboxylic acid and glycols such as propylene glycol, butanediol, hexamethylene glycol, neopentyl glycol, and cyclohexanedimetatool are used. These polyesters undergo polycondensation through transesterification. A method of carrying out polycondensation through a direct esterification reaction,
Alternatively, polymers obtained by any method of solid phase polymerization of polymers obtained by these methods can be used. The irregular cross-section polyester fibers used in the present invention can be in various forms such as milled fibers, cut fibers, and filaments. The irregular cross-section polyester fiber used in the present invention has a single fiber fineness of 1.0 to 10.0 denier, more preferably 1.0 to 5.0 denier, a strength of 3 to lag/denier, and an elongation of 9 to 40 denier. % and boiling water shrinkage rate from 0.5 to 101
Preferably, it is 0%. In order to provide sufficient physical performance to the molded product, the denier of the irregular cross-section polyester fiber must also have good mixing and dispersibility with the resin matrix during the manufacturing process, and must withstand mechanical tensile stress during the mixing operation. Since there is
It is preferable that the denier is 1.0 denier or more. Furthermore, if the single fiber denier exceeds the IO0θ denier, the adhesion area with the resin matrix per unit volume of the fiber, that is, per weight, will decrease significantly, and the irregular cross-section polyester This is not preferable because the purpose of using the fibers is diminished and it becomes difficult to maintain good adhesion. Regarding strength and elongation, if the strength of the single fiber is less than 3 g/denier or the elongation exceeds 40%, it is difficult to give the molded product sufficient strength, especially impact resistance, so it is preferable. On the other hand, when using irregular cross-section polyester fibers with a strength exceeding 10 g/denier, sufficient physical performance can be given to the molded product, but stability during the spinning process decreases and manufacturing costs increase. This is not desirable because it causes problems. Generally, strength and elongation are two sides of the same coin, and if you try to improve the strength, the elongation will decrease. Therefore, this problem of decreased stability during production also occurs in fibers with an elongation of less than 9%. When the resin was manufactured, used as a resin-reinforced material, and the performance of resin composite molded products was evaluated, it became clear that performance improvements commensurate with the strength improvements could not be expected. Therefore, it is desirable that the upper limit of the strength of the irregular cross-section polyester fiber used in the present invention is 10 g/denier, and the lower limit of the elongation is 9%. The boiling water shrinkage rate is a factor that has a large effect on the appearance of the molded product. When molded with a mold, the shrinkage rate relative to the mold dimensions is 0.7%, but polyester fibers with irregular cross sections having boiling water shrinkage rates of 11.8% and 12.8% were similarly obtained. The shrinkage rate of the molded product increases rapidly to 1.12% and 1.4%, respectively, causing cracks in the molded product. In addition, when polyester fibers with irregular cross sections with a boiling water shrinkage rate of less than 0.5% are used, the bending strength is 1.1 kg/mm", compared to 6.7 kg/mm" for molded products using glass fibers.
It showed a very low value of 6 or less. This is because the fibers are embrittled due to the high heat history during fiber production in order to reduce the boiling water shrinkage rate to less than 0.5%. The blending ratio of the irregular cross-section polyester fibers in the thermoplastic resin composition of the present invention is 1% to the thermoplastic resin composition.
It is 5 to 60% by weight, preferably 20 to 55% by weight. If it is less than 15% by weight, the improvement effect of the addition of splittable composite fibers will be small in terms of stiffness, dimensional stability, heat resistance, paintability, etc. If it exceeds 60% by weight, the fluidity will not improve even if plasticizers etc. are added. This causes problems in terms of moldability, and it also becomes brittle in terms of strength, making it impractical. It is preferable to use glass fiber in combination with the thermoplastic resin composition of the present invention in order to increase rigidity.The amount of glass fiber added is 0 to 50% by weight, more preferably 5 to 40% by weight. Further, as inorganic fillers, calcium carbonate, magnesium silicate, aluminum silicate, barium sulfate, calcium sulfate, etc., and furthermore, plasticizers for resins can be used. When irregular cross-section polyester fibers and inorganic fillers are used together, improvements in physical properties such as flame retardance, rigidity, and heat resistance can be obtained, but by adding a small amount of inorganic fillers, the dispersion of irregular cross-section polyester fibers can be improved. The effect of improving the impact strength is also observed, and as a result, the impact strength is also improved. In order to uniformly mix these various compounds into the thermoplastic resin, a Banbury mixer, roll mixer, or kneader is used.
1 Extruders, high-speed rotation mixers, and other devices and methods that are generally used for mixing resins and fillers can be used as they are. The thermoplastic resin composition of the present invention may further contain various additives such as colorants, light stabilizers, and antioxidants, if necessary.

【実施例】【Example】

以下、本発明を実施例により更に具体的に説明する。 実施例1 メルトフローインデックスが30、エチレン含有量8重
量%のエチレンーブロビレンブロックボリマ−(軟化点
165℃)40重量部、メルトフローインデックスが2
0の高密度ポリエチレン(軟化点129℃) 15重量
部、三葉状断面のポリエチレンテレフタレート繊維(軟
化点235℃、繊維長6齢)10重量部、グラスファイ
バー(直径11μ、繊維長lへインチ) 15重量部お
よび炭酸カルシウム(平均粒径3pa)20重量部を配
合し、170℃に加熱されたニーダ−で混合し、本発明
の熱可塑性樹脂組成物を得た。ポリプロピレン樹脂の樹
脂温が190℃となる条件で射出成形し、引張強度、曲
げ弾性率およびアイゾツト衝撃強度の測定用試験片をそ
れぞれ射出成形した。 使用した三葉状断面のポリエチレンテレフタレート繊維
の物性と本発明の熱可塑性樹脂組成物の物性の評価結果
を第1表に示した。なお、引張強度、曲げ弾性率、アイ
ゾツト衝撃強度は、JIS−に−6911に準拠して測
定した。 第1表から明らかなように、本発明の熱可塑性樹脂組成
物は、アイゾツト衝撃強度が著しく優れている。 比較例1 三葉状断面のポリエチレンテレフタレート繊維を使用せ
ずにグラスファイバー20重量部を使用したことを除き
、実施例1と全く同様にして熱可塑性樹脂組成物を得た
。得られた熱可塑性樹脂組成物の物性の評価結果を第1
表に示した。 比較例2 三葉状断面のポリエチレンテレフタレート繊維に代え、
円形断面のポリエチレンテレフタレート繊維を使用した
ことを除き、実施例1と全く同様にして熱可塑性樹脂組
成物を得た。使用したポリエチレンテレフタレート繊維
の物性と得られた熱可塑性樹脂組成物の物性の評価結果
を第1表に示した。 参考例1 伸度が40%以上の三葉状断面のポリエチレンテレフタ
レート繊維を使用したたことを除き、実施例1と全く同
様にして熱可塑性樹脂組成物を得た。使用したポリエチ
レンテレフタレート繊維の物性と得られた熱可塑性樹脂
組成物の物性の評価結果を第1表に示した。 参考例2 沸水収縮率が10%以上の三葉状断面のポリエチレンテ
レフタレート繊維を使用したたことを除き、実施例1と
全く同様にして熱可塑性樹脂組成物を得た。物性の評価
結果を第1表に示した。ここで用いた異形断面ポリエチ
レンテレフタレート繊維は沸水収縮率が高すぎるため、
実施例1に比較すると得られた成型品の外観すなわち表
面平滑性に劣るものであった。 第1表 実施例2〜4および比較例3〜5 熱可塑性樹脂として、メルトフローインデックスが20
のポリエチレン(軟化点129℃)、相対粘度2.5(
95%硫酸中、25℃)のナイロン−6(軟化点200
℃)、およびメルトフローインデックスが8.5のポリ
スチレン(軟化点95℃)を用いたことを除き、実施例
1と同様にして第2表に示した割合で各種成分を配合し
熱可塑性樹脂組成物を得た。 得られた熱可塑性樹脂組成物の物性の評価結果を第2表
に示した。 〔発明の効果J 本発明の熱可塑性樹脂組成物は、従来の繊維強化熱可塑
性樹脂組成物に比較し、アイゾツト衝撃強度が著しく優
れている。したがって、耐衝撃性が重視される分野で特
に有効に使用できる。また、押出成型、射出成型等各種
の成型法により成型することが可能であるが、特に−旦
シートを製造し、それを真空成型等により二次加工する
のに適している。したがって、その成型品の優れた耐衝
撃性、良好な外観、軽量性を生かして自動車部品等に好
適に使用することができる。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 40 parts by weight of ethylene-brobylene block polymer with a melt flow index of 30 and an ethylene content of 8% by weight (softening point 165°C), a melt flow index of 2
0 high-density polyethylene (softening point 129°C) 15 parts by weight, trilobal cross-section polyethylene terephthalate fiber (softening point 235°C, fiber length 6 years old) 10 parts by weight, glass fiber (diameter 11μ, fiber length 1 inch) 15 parts by weight and 20 parts by weight of calcium carbonate (average particle size: 3 pa) were mixed in a kneader heated to 170°C to obtain a thermoplastic resin composition of the present invention. Injection molding was carried out under conditions such that the resin temperature of the polypropylene resin was 190° C., and test pieces for measuring tensile strength, flexural modulus, and Izod impact strength were each injection molded. Table 1 shows the evaluation results of the physical properties of the trilobal cross-section polyethylene terephthalate fiber used and the physical properties of the thermoplastic resin composition of the present invention. The tensile strength, flexural modulus, and Izod impact strength were measured in accordance with JIS-6911. As is clear from Table 1, the thermoplastic resin composition of the present invention has extremely high Izod impact strength. Comparative Example 1 A thermoplastic resin composition was obtained in exactly the same manner as in Example 1, except that 20 parts by weight of glass fiber was used instead of polyethylene terephthalate fiber with a trilobal cross section. The evaluation results of the physical properties of the obtained thermoplastic resin composition were evaluated in the first
Shown in the table. Comparative Example 2 Instead of polyethylene terephthalate fiber with trilobal cross section,
A thermoplastic resin composition was obtained in exactly the same manner as in Example 1, except that polyethylene terephthalate fibers with a circular cross section were used. Table 1 shows the evaluation results of the physical properties of the polyethylene terephthalate fibers used and the physical properties of the obtained thermoplastic resin composition. Reference Example 1 A thermoplastic resin composition was obtained in exactly the same manner as in Example 1, except that polyethylene terephthalate fibers with a trilobal cross section having an elongation of 40% or more were used. Table 1 shows the evaluation results of the physical properties of the polyethylene terephthalate fibers used and the physical properties of the obtained thermoplastic resin composition. Reference Example 2 A thermoplastic resin composition was obtained in exactly the same manner as in Example 1, except that polyethylene terephthalate fibers with a trilobal cross section having a boiling water shrinkage rate of 10% or more were used. The evaluation results of physical properties are shown in Table 1. The irregular cross-section polyethylene terephthalate fiber used here has too high a shrinkage rate in boiling water.
Compared to Example 1, the appearance of the molded product obtained, that is, the surface smoothness, was inferior. Table 1 Examples 2 to 4 and Comparative Examples 3 to 5 As a thermoplastic resin, the melt flow index is 20
of polyethylene (softening point 129°C), relative viscosity 2.5 (
Nylon-6 (softening point 200 in 95% sulfuric acid at 25°C)
A thermoplastic resin composition was prepared by blending various components in the proportions shown in Table 2 in the same manner as in Example 1, except that polystyrene (softening point: 95°C) with a melt flow index of 8.5 was used. I got something. Table 2 shows the evaluation results of the physical properties of the obtained thermoplastic resin composition. [Effect of the Invention J The thermoplastic resin composition of the present invention has significantly superior Izot impact strength compared to conventional fiber-reinforced thermoplastic resin compositions. Therefore, it can be used particularly effectively in fields where impact resistance is important. Although it is possible to mold by various molding methods such as extrusion molding and injection molding, it is particularly suitable for producing a sheet first and then secondary processing it by vacuum molding or the like. Therefore, the molded product can be suitably used for automobile parts and the like by taking advantage of its excellent impact resistance, good appearance, and light weight.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、本発明の熱可塑性樹脂組成物に
おける繊維の充填状態を示す模式図である。第3図は、
通常の円形断面繊維を充填した従来の熱可塑性樹脂組成
物における繊維の充填状態を示す模式図である。 l:繊維      2:熱可塑性樹脂第1図    
  第2図 第3図 手続7山IE ”F’?  (自発) 昭和83年3月220
FIG. 1 and FIG. 2 are schematic diagrams showing the state of fiber filling in the thermoplastic resin composition of the present invention. Figure 3 shows
FIG. 2 is a schematic diagram showing the state of fiber filling in a conventional thermoplastic resin composition filled with ordinary circular cross-section fibers. l: Fiber 2: Thermoplastic resin Figure 1
Figure 2 Figure 3 Procedure 7 IE "F'? (Voluntary) March 1983 220

Claims (3)

【特許請求の範囲】[Claims] (1)異形断面を有するポリエステル繊維を、該ポリエ
ステルの軟化点より30℃以上低い軟化点を有する熱可
塑性樹脂に、10〜60重量%の割合で配合してなる熱
可塑性樹脂組成物。
(1) A thermoplastic resin composition comprising 10 to 60% by weight of polyester fibers having an irregular cross section mixed with a thermoplastic resin having a softening point 30° C. or more lower than that of the polyester.
(2)熱可塑性樹脂が、ポリエチレン、ポリプロピレン
、ナイロン−6、ポリスチレン、アクリロニトリル−ス
チレン共重合体、ポリアセタールおよびポリカーボネー
トからなる群より選ばれた一種以上である特許請求の範
囲第1項記載の熱可塑性樹脂組成物。
(2) The thermoplastic resin according to claim 1, wherein the thermoplastic resin is one or more selected from the group consisting of polyethylene, polypropylene, nylon-6, polystyrene, acrylonitrile-styrene copolymer, polyacetal, and polycarbonate. Resin composition.
(3)ポリエステル繊維の、単繊維繊度が1.0〜10
.0デニール、強度が3〜10g/デニール、伸度が9
〜40%および沸水収縮率が0.5〜10.0%である
特許請求の範囲第1項記載の熱可塑性樹脂組成物。
(3) Single fiber fineness of polyester fiber is 1.0 to 10
.. 0 denier, strength 3-10g/denier, elongation 9
40% and a boiling water shrinkage rate of 0.5 to 10.0%.
JP32542387A 1987-12-24 1987-12-24 Thermoplastic resin composition Pending JPH01167370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32542387A JPH01167370A (en) 1987-12-24 1987-12-24 Thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32542387A JPH01167370A (en) 1987-12-24 1987-12-24 Thermoplastic resin composition

Publications (1)

Publication Number Publication Date
JPH01167370A true JPH01167370A (en) 1989-07-03

Family

ID=18176687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32542387A Pending JPH01167370A (en) 1987-12-24 1987-12-24 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPH01167370A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124956A (en) * 1988-11-02 1990-05-14 Mitsubishi Corp Production of composite material composition
JPH03290453A (en) * 1990-04-06 1991-12-20 Chisso Corp Polypropylene resin composition
US5286557A (en) * 1990-10-31 1994-02-15 E. I. Du Pont De Nemours And Company Composite sheet moldable material
JPH0762167A (en) * 1993-08-25 1995-03-07 Chisso Corp Propylene resin composition containing organic fiber
US6395342B1 (en) 1999-08-12 2002-05-28 Kabushiki Kaisha Kobe Seiko Sho Process of preparing pellets of synthetic organic fiber reinforced polyolefin
JP2008057793A (en) * 2007-11-21 2008-03-13 Kurabo Ind Ltd Vacuum heat insulation material
US7482402B2 (en) 2005-05-17 2009-01-27 Exxonmobil Research And Engineering Company Fiber reinforced polypropylene compositions
US8119725B2 (en) 2005-05-17 2012-02-21 Exxonmobil Chemical Patents Inc. Fiber reinforced polypropylene composite interior trim cover panels

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124956A (en) * 1988-11-02 1990-05-14 Mitsubishi Corp Production of composite material composition
JPH03290453A (en) * 1990-04-06 1991-12-20 Chisso Corp Polypropylene resin composition
US5286557A (en) * 1990-10-31 1994-02-15 E. I. Du Pont De Nemours And Company Composite sheet moldable material
JPH0762167A (en) * 1993-08-25 1995-03-07 Chisso Corp Propylene resin composition containing organic fiber
US6395342B1 (en) 1999-08-12 2002-05-28 Kabushiki Kaisha Kobe Seiko Sho Process of preparing pellets of synthetic organic fiber reinforced polyolefin
US7482402B2 (en) 2005-05-17 2009-01-27 Exxonmobil Research And Engineering Company Fiber reinforced polypropylene compositions
US8119725B2 (en) 2005-05-17 2012-02-21 Exxonmobil Chemical Patents Inc. Fiber reinforced polypropylene composite interior trim cover panels
JP2008057793A (en) * 2007-11-21 2008-03-13 Kurabo Ind Ltd Vacuum heat insulation material

Similar Documents

Publication Publication Date Title
EP0333518B1 (en) Fiber-reinforced polyamide composition and method of producing same
JPH10152607A (en) Method and composition for reinforcing polyester resin
JPS59136344A (en) Thermoplastic molding composition with improved impact resistance
WO2009081574A1 (en) Mobile terminal part
JP3338330B2 (en) Polyester resin composite molding
JPH01167370A (en) Thermoplastic resin composition
JP3584890B2 (en) Thermoplastic resin molded article and method for producing the same
US5989723A (en) Conductive polyester-based alloy sheet
JP2003020389A (en) Thermoplastic resin composition
GB2344785A (en) Conductive laminated sheet
JPH06200132A (en) Resin composition for lamp reflector
JPH01242618A (en) Improved polyester resin, preparation thereof and molded item obtained therefrom
JPH01225647A (en) Resin composition
KR20220082886A (en) Composite of polybutylene terephthalate composition and plastic/metal hybrid
JPH0328463B2 (en)
JP2003201398A (en) Gear made of resin
JPH06306261A (en) Liquid crystal polyester resin composition for blow molding or extrusion molding and molded article thereof
JP3040142B2 (en) Reinforced resin composition
JP3317368B2 (en) Thermoplastic polyester composition, production method thereof and molded article thereof
JPH07100904A (en) Polyester hollow molded product
JP2005272754A (en) Fiber-containing resin pellet
JPS5949932B2 (en) Reinforced olefin resin composition
JP3040578B2 (en) Polyester resin composition
JPH0762167A (en) Propylene resin composition containing organic fiber
JPH01279974A (en) Thermoplastic resin composition