WO2009081574A1 - Mobile terminal part - Google Patents

Mobile terminal part Download PDF

Info

Publication number
WO2009081574A1
WO2009081574A1 PCT/JP2008/003909 JP2008003909W WO2009081574A1 WO 2009081574 A1 WO2009081574 A1 WO 2009081574A1 JP 2008003909 W JP2008003909 W JP 2008003909W WO 2009081574 A1 WO2009081574 A1 WO 2009081574A1
Authority
WO
WIPO (PCT)
Prior art keywords
polybutylene terephthalate
portable terminal
acid
resin
terminal component
Prior art date
Application number
PCT/JP2008/003909
Other languages
French (fr)
Japanese (ja)
Inventor
Sei Wakatsuka
Hiroyuki Amano
Original Assignee
Wintech Polymer Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wintech Polymer Ltd. filed Critical Wintech Polymer Ltd.
Priority to KR1020107014025A priority Critical patent/KR101503100B1/en
Priority to CN200880122938.3A priority patent/CN101910305B/en
Publication of WO2009081574A1 publication Critical patent/WO2009081574A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets

Definitions

  • the present invention relates to a portable terminal component molded from a specific polybutylene terephthalate resin composition. More specifically, the present invention relates to a portable terminal component using a polybutylene terephthalate resin composition excellent in physical properties such as mechanical strength and impact strength, and moldability such as low sink and low warp deformation.
  • Background art a polybutylene terephthalate resin composition excellent in physical properties such as mechanical strength and impact strength, and moldability such as low sink and low warp deformation.
  • plastic materials are generally molded by methods such as compression molding, injection molding, injection-compression molding, blow molding, etc. Among them, the injection molding method is excellent in mass production, and therefore, the cost can be reduced. Therefore, it is a molding technique most often used as a casing molding method for electronic devices.
  • portable terminals include polycarbonate (PC) resin, acrylonitrile-butadiene-styrene copolymer (ABS) resin, plastic material alone such as blend material of ABS resin and polycarbonate resin or polybutylene terephthalate (PBT) resin, or carbon fiber.
  • PC polycarbonate
  • ABS acrylonitrile-butadiene-styrene copolymer
  • PBT polybutylene terephthalate
  • JP-A-6-240132 a reinforced resin material using a blend material of aromatic polyamide resin and modified polyphenylene resin
  • Japanese Patent Application Laid-Open No. 62-268612 discloses a polybutylene terephthalate resin composition having excellent mechanical strength by using non-circular cross-section fibers having a longitudinal cross section as glass fibers.
  • ordinary polybutylene terephthalate resin has a problem of large shrinkage that occurs during the solidification process during molding such as injection molding, resulting in a large amount of sink of the molded product and large warpage due to shrinkage anisotropy. It was. It has been considered difficult to apply to molded products that require high strength, high rigidity, high impact, sink marks and warp deformation of molded products at the same time as portable terminal components. Disclosure of the invention
  • An object of the present invention is to provide a portable terminal component comprising a polybutylene terephthalate resin composition having excellent physical properties such as mechanical strength and impact strength, and having excellent low sink and low warpage deformation.
  • the present inventors have achieved the above object by molding a resin composition in which a specific modified polybutylene terephthalate resin and a glass fiber having a flat cross-sectional shape are combined. It has been found that portable terminal parts that can be achieved are obtained, and the present invention has been completed. That is, the present invention (A) For 100 parts by weight of the modified polybutylene terephthalate resin, (B) A mobile terminal component made of a polybutylene terephthalate resin composition containing 40 to 140 parts by weight of glass fibers having a flat cross-sectional shape. This invention is a portable terminal component use of the said composition.
  • a mobile terminal part made of the polybutylene terephthalate resin composition of the present invention has a high lightening effect and is resistant to breakage because it is resistant to rigidity and impact. Moreover, since the post-processing process is excellent because of excellent moldability, the manufacturing cost can be reduced.
  • the present invention is suitable for a casing (housing), a reinforcing plate (chassis), a frame, a hinge, or a peripheral related component of a portable terminal component.
  • the (A) modified polybutylene terephthalate resin used in the present invention is (1) polybutylene terephthalate obtained by polycondensation reaction of terephthalic acid or its ester-forming derivative and 1,4 -butanediol or its ester-forming derivative.
  • Terephthalate resin, (1) it may be a combination of combined isophthalic acid modified polybutylene terephthalate, the three isophthalic acid modified polyethylene terephthalate and polybutylene terephthalate (2).
  • isophthalic acid can be used for polycondensation in the form of an ester-forming derivative, for example, a lower alcohol ester such as dimethyl ester, and can be introduced as a copolymer component.
  • ester-forming derivative for example, a lower alcohol ester such as dimethyl ester
  • the introduction amount of the isophthalic acid comonomer unit is 5 to 30 mol%, preferably 10 to 30 mol%, particularly preferably 10 to 20 mol%. If the amount introduced is less than 5 mol%, the crystallinity is high, so that the anisotropy of molding shrinkage increases and warpage deformation increases. Further, when the introduction amount exceeds 30 mol%, the strength and thermal stability, which are the advantages of the original polybutylene terephthalate, are greatly reduced, and the crystallization is remarkably reduced and delayed, thereby reducing the molding cycle. There is a possibility that the mold releasability is lowered and a problem that is not practically used is caused.
  • either an isophthalic acid modified copolymer alone or a combination of an isophthalic acid modified copolymer and polybutylene terephthalate containing no isophthalic acid component can be used.
  • the proportion of polybutylene terephthalate is less than 50% by weight.
  • isophthalic acid-modified polyethylene terephthalate and polybutylene terephthalate are used in combination.
  • the proportion of isophthalic acid-modified polyethylene terephthalate is preferably 10 to 60% by weight.
  • the warp deformation suppressing effect is insufficient, and if it exceeds 60% by weight, the moldability as polybutylene terephthalate is impaired, and molding may not be possible at a mold temperature of 100 ° C. or less.
  • the modified polybutylene terephthalate resin is used as a copolymer copolymerized with a copolymerizable monomer (hereinafter sometimes referred to simply as a copolymerizable monomer) within a range not impairing the effects of the present invention.
  • a copolymerizable monomer hereinafter sometimes referred to simply as a copolymerizable monomer
  • Examples of the copolymerizable monomer include dicarboxylic acid components excluding terephthalic acid and isophthalic acid, diols other than alkylene glycol having 2 to 4 carbon atoms, oxycarboxylic acid components, and lactone components.
  • a copolymerizable monomer can be used 1 type or in combination of 2 or more types.
  • Dicarboxylic acids include aliphatic dicarboxylic acids (for example, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid, hexadecandioyl carboxylic acid, C 4 ⁇ 40 dicarboxylic acids such as dimer acid, preferably C 4 ⁇ 14 dicarboxylic acids), alicyclic dicarboxylic acid component (e.g., hexahydrophthalic acid, hexahydroisophthalic acid, hexahydroterephthalic acid, hymic C 8 ⁇ 12 dicarboxylic acid), terephthalic acid such as an acid, an aromatic dicarboxylic acid component other than isophthalic acid (e.g., phthalic acid, naphthalene
  • aliphatic dicarboxylic acids for example, succ
  • polyvalent carboxylic acid such as trimellitic acid and pyromellitic acid, or its ester formation derivative (alcohol ester etc.) etc. as needed.
  • a polyfunctional compound such as trimellitic acid and pyromellitic acid, or its ester formation derivative (alcohol ester etc.) etc.
  • a branched polybutylene terephthalate resin can also be obtained.
  • Diols include, for example, aliphatic alkanediols excluding 1,4-butanediol [eg, alkanediols (eg, ethylene glycol, trimethylene glycol, propylene glycol, neopentyl glycol, hexanediol ( 1,6-hexanediol), octanediol (1,3-octanediol, 1,8-octanediol, etc.), lower alkane diols, such as decanediol, preferably a straight chain or branched chain C 2 ⁇ 12 alkane Diols, more preferably linear or branched C 2-10 alkane diols); (poly) oxyalkylene glycols (eg glycols having a plurality of oxy C 2-4 alkylene units, eg diethylene glycol, diprop
  • a polyol such as glycerin, trimethylolpropane, trimethylolethane, pentaerythritol, or an ester-forming derivative thereof may be used in combination.
  • a polyfunctional compound such as glycerin, trimethylolpropane, trimethylolethane, pentaerythritol, or an ester-forming derivative thereof may be used in combination.
  • a branched polybutylene terephthalate resin can also be obtained.
  • the proportion of the copolymerizable monomer can be selected from the range of, for example, about 0.01 to 30 mol%, and is usually 1 to 30 mol%, preferably 3 to 25 mol%, more preferably 5 to 5 mol%. It is about 20 mol% (for example, 5 to 15 mol%).
  • the proportion of the homopolyester and the copolyester is such that the proportion of the copolymerizable monomer is relative to the total monomers.
  • the range is about 0.1 to 30 mol% (preferably 1 to 25 mol%, more preferably 5 to 25 mol%).
  • the former / the latter 99/1 to 1/99 (weight ratio), preferably It can be selected from the range of 95/5 to 5/95 (weight ratio), more preferably about 90/10 to 10/90 (weight ratio).
  • modified polyethylene terephthalate resin can also be used as a copolymer copolymerized with a copolymerizable monomer other than isophthalic acid within a range not impairing the effects of the present invention.
  • the intrinsic viscosity (IV) of the (A) modified polybutylene terephthalate resin is preferably 1.2 dL / g or less, and more preferably 1.0 dL / g or less.
  • the intrinsic viscosity (IV) can be measured, for example, in O-chlorophenol at a temperature of 35 ° C.
  • the glass fiber having a flat cross-sectional shape used in the present invention is a long diameter (longest linear distance in the cross section) and a short diameter (longest straight distance in the direction perpendicular to the long diameter).
  • the glass fiber has a ratio of 1.3 to 10, preferably 1.5 to 8, particularly preferably 2 to 5.
  • Specific shapes include a substantially oval shape, a substantially oval shape, a substantially eyebrow shape, and the like.
  • (B) Glass fiber having a flat cross-sectional shape is excellent in mechanical strength and impact strength, suppresses warpage deformation, and is excellent in moldability.
  • the glass fiber having a flat cross-sectional shape preferably has an average cross-sectional area of 100 to 300 square micrometers. If it is smaller than 100 square micrometers, the mechanical strength and impact strength are not sufficient, and if it exceeds 300 square micrometers, problems such as gate clogging during injection molding and wear of molds and molding machines occur.
  • the blending amount of the glass fiber (B) having a flat cross-sectional shape used in the present invention is 40 to 140 parts by weight, preferably 50 to 130 parts by weight with respect to 100 parts by weight of (A) the modified polybutylene terephthalate resin. .
  • the blending amount is less than 40 parts by weight, the mechanical strength and impact strength are low, and when it exceeds 140 parts by weight, the fluidity is remarkably deteriorated.
  • Such glass fiber (B) can be used regardless of the glass fiber form at the time of blending A glass, E glass, an alkali-resistant glass composition containing a zirconia component, chopped strands, roving glass, or the like.
  • the glass fiber having a flat cross-sectional shape used in the present invention uses a nozzle having an appropriate hole shape such as an oval, an ellipse, a rectangle, or a slit as a bushing used for discharging molten glass.
  • a nozzle having an appropriate hole shape such as an oval, an ellipse, a rectangle, or a slit as a bushing used for discharging molten glass.
  • Prepared by spinning Also prepared by spinning molten glass from a plurality of adjacent nozzles having various cross-sectional shapes (including circular cross-sections), and joining the spun molten glass into a single filament it can.
  • resin materials may be colored.
  • an inorganic white pigment As the inorganic white pigment optimal for the resin composition of the present invention, (C) inorganic white pigment having a Mohs hardness of 4.5 or less, such as zinc sulfide, zinc oxide, barium sulfate, lithopone, magnesium carbonate, muscovite, calcium sulfate, barite , Calcium carbonate and the like. With these white pigments, good physical properties can be obtained because glass fiber breakage is small.
  • rutile-type titanium oxide, anatase-type titanium oxide, brookite-type titanium oxide and the like having a Mohs hardness exceeding 4.5 are not preferable because many glass fiber breaks may occur.
  • the blending amount of the inorganic white pigment is not particularly limited as long as it is a general coloring requirement amount.
  • the resin composition of the present invention may contain other resins as needed within a range not impairing the effects of the present invention.
  • Other resins include polyester resins other than polybutylene terephthalate resins (polyethylene terephthalate, polytrimethylene terephthalate, etc.), polyolefin resins, polystyrene resins, polyamide resins, polyacetals, polyarylene oxides, polyarylene sulfides, fluorine resins, etc. Is exemplified.
  • copolymers such as acrylonitrile-styrene resin, acrylonitrile-butadiene-styrene resin, and ethylene-ethyl acrylate resin are also exemplified. These other resins may be used alone or in combination of two or more.
  • additives may be added to the resin composition of the present invention.
  • additives include various stabilizers (antioxidants, ultraviolet absorbers, heat stabilizers, etc.), nucleating agents (crystallization nucleating agents), flame retardants, lubricants, mold release agents, antistatic agents, dyes / pigments, etc. Colorants, dispersions, and the like.
  • a phosphorus-based stabilizer to suppress transesterification.
  • examples of the phosphorus stabilizer used include organic phosphite compounds, phosphonite compounds, and metal phosphates.
  • Specific examples include bis (2,4-di-t-4methylphenyl) pentaerythritol diphosphite, bis (2,4-di-t-butylphenyl) pentaerythritol diphosphite, tetrakis (2,4 Examples of the -di-t-butylphenyl) -4,4'-biphenylene phosphonite and metal phosphate include monobasic calcium phosphate, monobasic sodium phosphate hydrate, and the like.
  • reinforcing fillers can be added to the resin composition of the present invention as needed within a range not impairing the effects of the present invention.
  • Other reinforcing fillers include glass fibers other than those specified in the present invention, milled glass fibers, glass beads, glass flakes, silica, alumina fibers, zirconia fibers, potassium titanate fibers, carbon fibers, graphite, calcium silicate, Silicates such as aluminum silicate, kaolin, talc and clay, metal oxides such as iron oxide, titanium oxide, zinc oxide, antimony oxide and alumina, carbonates and sulfates of metals such as calcium, magnesium and zinc, and carbonization
  • the organic filler include silicon polyester, silicon nitride, boron nitride and the like, and examples of the organic filler include high melting point aromatic polyester fiber, liquid crystalline polyester fiber, aromatic polyamide fiber, fluororesin fiber, and polyimide fiber.
  • the composition of the present invention is easily prepared by equipment and methods generally used as conventional resin composition preparation methods. For example, after mixing each component, kneading and extruding with a single-screw or twin-screw extruder to prepare pellets, then forming the pellets, once preparing pellets with different compositions, mixing the pellets in a predetermined amount Any method can be used, such as a method of obtaining a molded product having a desired composition after molding and a method of directly charging one or more of each component into a molding machine. Further, mixing a part of the resin component as a fine powder with other components and adding it is a preferable method for uniformly blending these components. Injection molding, extrusion molding, compression molding, blow molding, vacuum molding, rotational molding, gas injection molding, etc. can be applied as a molding method for filling the resin into the mold, but injection molding is common. .
  • FIG. 1 is a diagram showing a cellular phone housing molded in the example and its evaluation status.
  • Molding machine Sumitomo Heavy Industries SE100D Cylinder temperature: 270-270-260-230 °C Mold temperature: 100 °C (4-1) Bending strength of hinge portion of mobile phone housing The bending strength was measured by pushing and bending the hinge portion of FIG.
  • Measuring instrument Universal testing machine Tensilon UTA50KN (Orientec) Measurement speed: 1000mm / min (4-2) Sink on the boss part of the mobile phone housing Sink condition on the surface of the boss part in FIG. 1 was visually observed. Judgment ⁇ ... Low sink ⁇ ⁇ High sink (4-3) Burning of mobile phone housing (compression heat generated by gas) The burn condition at the flow end of the hinge part in FIG. 1 was visually observed. Judgment ⁇ ... less burnt ⁇ ... more burnt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Casings For Electric Apparatus (AREA)

Abstract

Provided is a mobile terminal part formed from a polybutylene-telephtalate resin composition having excellent properties such as a mechanical strength and a shock resistance and causing little shrinkage or warp deformation. More specifically, the polybutylene-telephtalate resin composition is prepared by mixing [A] 100 % by weight of denaturated polyethylene-telephtalate resin and [B] 40 to 140 % by weight of glass fiber having a flat cross sectional shape.

Description

携帯端末部品Mobile terminal parts
 本発明は、特定のポリブチレンテレフタレート樹脂組成物で成形された携帯端末部品に関する。更に詳しくは、機械的強度、衝撃強度等の物性、および低ひけ、低そり変形等の成形性に優れたポリブチレンテレフタレート樹脂組成物を用いた携帯端末部品に関する。
背景技術
The present invention relates to a portable terminal component molded from a specific polybutylene terephthalate resin composition. More specifically, the present invention relates to a portable terminal component using a polybutylene terephthalate resin composition excellent in physical properties such as mechanical strength and impact strength, and moldability such as low sink and low warp deformation.
Background art
 各種のOA機器、家電製品、電話機等の電気・電子機器は小型化の要求があり、特に携帯として使用する電子機器製品では小型・軽量の要求が強い。従来、各種携帯端末の電子機器を収容するための筐体(ハウジング)、この製品強度を維持するための補強板(シャーシ)等の材料としては、電子機器を保護するという観点から、アルミニウム、マグネシウム等の金属材料やセラミック材料が使用されてきた。しかし、これらの材料の比重はアルミニウムの2.69をはじめとしてかなり大きいため、電子機器の総重量に占める筐体の割合が大きくなり、かなり重いものとなっていた。また、金属材料は価格が高く、成形加工も難しいため、重量、コストおよび生産性の面で問題があった。金属材料が抱えている上記の問題点を解決するため、代替材料として低比重で値段が安く、且つ成形加工性に優れたプラスチック材料が注目を浴びるようになってきた。 There is a demand for miniaturization of various OA devices, home appliances, telephones and other electrical / electronic devices, and there is a strong demand for miniaturization and light weight especially for electronic device products used as mobile phones. Conventionally, as a material for a housing (housing) for housing various portable terminal electronic devices and a reinforcing plate (chassis) for maintaining the strength of the product, aluminum, magnesium are used from the viewpoint of protecting the electronic devices. Such metal materials and ceramic materials have been used. However, the specific gravity of these materials, including 2.69 of aluminum, is quite large, so the proportion of the housing in the total weight of electronic equipment has become large, and it has become quite heavy. In addition, since metal materials are expensive and difficult to form, there are problems in terms of weight, cost, and productivity. In order to solve the above-mentioned problems that metal materials have, plastic materials with low specific gravity, low price, and excellent moldability have attracted attention as alternative materials.
 一般的なプラスチック材料の比重は2.0以下と金属材料の比重に比べて小さいため、これらの部品に応用することで、携帯端末製品の軽量化をはかることができる。また、プラスチック材料は、一般的に圧縮成形、射出成形、射出-圧縮成形、ブロー成形等の方法によって成形されるが、その中でも射出成形法は量産性に優れているため低価格化をはかることができるので、電子機器の筐体成形法として最も多く用いられている成形技術である。これら携帯端末には、ポリカーボネート(PC)樹脂、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)樹脂、ABS樹脂とポリカーボネート樹脂もしくはポリブチレンテレフタレート(PBT)樹脂とのブレンド材料等のプラスチック材料単独もしくは炭素繊維、ガラス繊維等の強化材料を充填した複合材料の使用が検討されてきた(特開平7-60777号公報)。 Since the specific gravity of general plastic materials is 2.0 or less, which is smaller than the specific gravity of metal materials, it is possible to reduce the weight of mobile terminal products by applying to these parts. In addition, plastic materials are generally molded by methods such as compression molding, injection molding, injection-compression molding, blow molding, etc. Among them, the injection molding method is excellent in mass production, and therefore, the cost can be reduced. Therefore, it is a molding technique most often used as a casing molding method for electronic devices. These portable terminals include polycarbonate (PC) resin, acrylonitrile-butadiene-styrene copolymer (ABS) resin, plastic material alone such as blend material of ABS resin and polycarbonate resin or polybutylene terephthalate (PBT) resin, or carbon fiber. The use of composite materials filled with reinforcing materials such as glass fibers has been studied (Japanese Patent Application Laid-Open No. 7-60777).
 しかしながら、ABS樹脂、PC樹脂、ABS/PC樹脂、ABS/PBT樹脂等の一般的なプラスチック材料単独の使用は、引張強度、弾性率等の機械的強度、衝撃特性が比較的低いため、成形品の厚みを厚くしたり金属の補強板を併用する必要があるため、部品点数が増加し製品設計上の制約が発生する問題があった。これに対し、機械的強度、剛性、衝撃特性を改善する目的で、一般的なガラス繊維、炭素繊維で補強された複合材料も提案されているが、その効果は十分でなく、特に炭素繊維で補強された複合材料は剛性は高いものの材料価格が著しく高くなるため実用性がなかった。 However, the use of general plastic materials such as ABS resin, PC resin, ABS / PC resin, ABS / PBT resin alone is relatively low in mechanical strength such as tensile strength and elastic modulus, and impact characteristics. Therefore, there is a problem in that the number of parts increases and product design is restricted. On the other hand, for the purpose of improving mechanical strength, rigidity, and impact properties, composite materials reinforced with general glass fibers and carbon fibers have also been proposed, but the effect is not sufficient, especially with carbon fibers. Although the reinforced composite material has high rigidity, the material price is remarkably high, so it is not practical.
 また、芳香族ポリアミド樹脂と変性ポリフェニレン樹脂のブレンド材料(特開平6-240132号公報)を用いた補強樹脂材料が提案されている。しかしながら、これら樹脂材料では、優れた強度、剛性は得られるものの、衝撃特性は不十分であり、成形時に発生するガスが多いため成形量産性が悪く、成形品に発生するバリ処理が必要とされるため製品製造コストが高くなるという問題があった。 Further, a reinforced resin material using a blend material of aromatic polyamide resin and modified polyphenylene resin (JP-A-6-240132) has been proposed. However, with these resin materials, excellent strength and rigidity are obtained, but impact characteristics are insufficient, and a large amount of gas is generated at the time of molding, resulting in poor mass-productivity and the need for burr treatment that occurs in molded products. Therefore, there is a problem that the product manufacturing cost becomes high.
 一方、特開昭62-268612号公報においては、ガラス繊維として長手形状の断面を有する非円形断面繊維を用いることで、機械的強度に優れるポリブチレンテレフタレート樹脂組成物が開示されている。しかし、通常のポリブチレンテレフタレート樹脂は、射出成形等の成形加工時の固化過程で発生する収縮が大きく、成形品のひけ量が大きい問題や、収縮異方性によるそり変形が大きいという問題があった。携帯端末部品のように、高強度、高剛性、高衝撃、成形品のひけとそり変形等が同時に要求される成形品への応用は困難とされていた。
発明の開示
On the other hand, Japanese Patent Application Laid-Open No. 62-268612 discloses a polybutylene terephthalate resin composition having excellent mechanical strength by using non-circular cross-section fibers having a longitudinal cross section as glass fibers. However, ordinary polybutylene terephthalate resin has a problem of large shrinkage that occurs during the solidification process during molding such as injection molding, resulting in a large amount of sink of the molded product and large warpage due to shrinkage anisotropy. It was. It has been considered difficult to apply to molded products that require high strength, high rigidity, high impact, sink marks and warp deformation of molded products at the same time as portable terminal components.
Disclosure of the invention
 本発明の目的は、機械的強度、衝撃強度等の物性に優れ、低ひけ、低そり変形に優れたポリブチレンテレフタレート樹脂組成物からなる携帯端末部品を提供することにある。 An object of the present invention is to provide a portable terminal component comprising a polybutylene terephthalate resin composition having excellent physical properties such as mechanical strength and impact strength, and having excellent low sink and low warpage deformation.
 本発明者等は上記課題を解決するため鋭意検討を行った結果、特定の変性ポリブチレンテレフタレート樹脂と扁平な断面形状を有するガラス繊維とを組み合わせた樹脂組成物を成形することにより、上記目的を達成し得る携帯端末部品が得られることを見出し、本発明を完成するに至った。
即ち、本発明は
(A)変性ポリブチレンテレフタレート樹脂100重量部に対して、
(B)扁平な断面形状を有するガラス繊維40~140重量部
を配合してなるポリブチレンテレフタレート樹脂組成物からなる携帯端末部品である。
 本発明は上記組成物の携帯端末部品用途である。
As a result of intensive studies to solve the above problems, the present inventors have achieved the above object by molding a resin composition in which a specific modified polybutylene terephthalate resin and a glass fiber having a flat cross-sectional shape are combined. It has been found that portable terminal parts that can be achieved are obtained, and the present invention has been completed.
That is, the present invention
(A) For 100 parts by weight of the modified polybutylene terephthalate resin,
(B) A mobile terminal component made of a polybutylene terephthalate resin composition containing 40 to 140 parts by weight of glass fibers having a flat cross-sectional shape.
This invention is a portable terminal component use of the said composition.
 本発明のポリブチレンテレフタレート樹脂組成物からなる携帯端末部品は、軽量化効果が高く、剛性および衝撃にも強いため破壊しにくい特徴を持つ。また、成形性に優れ後処理加工が簡略化できるため、製造コスト低減が可能である。本発明は、携帯端末部品の筐体(ハウジング)、補強板(シャーシ)、フレーム、ヒンジ又はこれらの周辺関連部品に好適である。
発明の詳細な説明
A mobile terminal part made of the polybutylene terephthalate resin composition of the present invention has a high lightening effect and is resistant to breakage because it is resistant to rigidity and impact. Moreover, since the post-processing process is excellent because of excellent moldability, the manufacturing cost can be reduced. The present invention is suitable for a casing (housing), a reinforcing plate (chassis), a frame, a hinge, or a peripheral related component of a portable terminal component.
Detailed Description of the Invention
 以下、順次本発明の樹脂材料の構成成分について詳しく説明する。 Hereinafter, the constituent components of the resin material of the present invention will be described in detail.
 本発明に用いられる(A)変性ポリブチレンテレフタレート樹脂とは、(1)テレフタル酸またはそのエステル形成誘導体と、1,4 -ブタンジオールまたはそのエステル形成誘導体を重縮合反応して得られるポリブチレンテレフタレートを主成分とし、これに5~30モル%のイソフタル酸をコモノマーユニットとして導入した共重合体、あるいは該共重合体を含有するポリブチレンテレフタレート樹脂、また(2)テレフタル酸またはそのエステル形成誘導体と、エチレングリコールまたはそのエステル形成誘導体を重縮合反応して得られるポリエチレンテレフタレートを主成分とし、これに5~30モル%のイソフタル酸をコモノマーユニットとして導入した変性ポリエチレンテレフタレート共重合体を含有するポリブチレンテレフタレート樹脂であり、更に(1)、(2)を合わせたイソフタル酸変性ポリブチレンテレフタレート、イソフタル酸変性ポリエチレンテレフタレートおよびポリブチレンテレフタレートの3種を組み合わせたものでもよい。 The (A) modified polybutylene terephthalate resin used in the present invention is (1) polybutylene terephthalate obtained by polycondensation reaction of terephthalic acid or its ester-forming derivative and 1,4 -butanediol or its ester-forming derivative. A copolymer in which 5 to 30 mol% of isophthalic acid is introduced as a comonomer unit, or a polybutylene terephthalate resin containing the copolymer, and (2) terephthalic acid or an ester-forming derivative thereof Polybutylene containing a modified polyethylene terephthalate copolymer containing, as a main component, polyethylene terephthalate obtained by polycondensation reaction of ethylene glycol or an ester-forming derivative thereof with 5-30 mol% of isophthalic acid as a comonomer unit. Terephthalate resin, (1), it may be a combination of combined isophthalic acid modified polybutylene terephthalate, the three isophthalic acid modified polyethylene terephthalate and polybutylene terephthalate (2).
 (1)、(2)のいずれにおいても、イソフタル酸はエステル形成可能な誘導体、例えばジメチルエステルの如き低級アルコールエステルの形で重縮合に使用し、コポリマー成分として導入することが可能である。 In both (1) and (2), isophthalic acid can be used for polycondensation in the form of an ester-forming derivative, for example, a lower alcohol ester such as dimethyl ester, and can be introduced as a copolymer component.
 ここで、イソフタル酸コモノマーユニットの導入量は5~30モル%であり、好ましくは10~30モル%、特に好ましくは10~20モル%である。導入量は5モル%未満では、結晶性が高いため、成形収縮の異方性が大きくなりそり変形が大きくなる。また、導入量が30モル%を超えると、本来のポリブチレンテレフタレートの優位点である強度および熱安定性の低下が大きく、且つ結晶化が著しく低下、遅延されることで、成形サイクルの低下、離型性の低下を引き起こし、実用的に用いられない問題を生じるおそれがある。 Here, the introduction amount of the isophthalic acid comonomer unit is 5 to 30 mol%, preferably 10 to 30 mol%, particularly preferably 10 to 20 mol%. If the amount introduced is less than 5 mol%, the crystallinity is high, so that the anisotropy of molding shrinkage increases and warpage deformation increases. Further, when the introduction amount exceeds 30 mol%, the strength and thermal stability, which are the advantages of the original polybutylene terephthalate, are greatly reduced, and the crystallization is remarkably reduced and delayed, thereby reducing the molding cycle. There is a possibility that the mold releasability is lowered and a problem that is not practically used is caused.
 (1)の場合、イソフタル酸変性共重合体単独か、またはイソフタル酸変性共重合体とイソフタル酸成分を含まないポリブチレンテレフタレートとの併用のいずれでも使用できる。併用の場合、イソフタル酸変性共重合体とイソフタル酸成分を含まないポリブチレンテレフタレートを合わせた全ジカルボン酸成分に対して5~30モル%のイソフタル酸成分を含むことが必要である。例えば、カルボン酸成分がテレフタル酸のみからなるポリブチレンテレフタレートと10モル%イソフタル酸変性共重合体の併用組成100重量%のうち、ポリブチレンテレフタレートの割合は50重量%未満である。 In the case of (1), either an isophthalic acid modified copolymer alone or a combination of an isophthalic acid modified copolymer and polybutylene terephthalate containing no isophthalic acid component can be used. In the case of the combined use, it is necessary to contain 5 to 30 mol% of isophthalic acid component with respect to the total dicarboxylic acid component including the isophthalic acid-modified copolymer and polybutylene terephthalate not containing isophthalic acid component. For example, out of 100% by weight of the combined composition of polybutylene terephthalate whose carboxylic acid component consists only of terephthalic acid and 10 mol% isophthalic acid-modified copolymer, the proportion of polybutylene terephthalate is less than 50% by weight.
 (2)の場合、イソフタル酸変性ポリエチレンテレフタレートとポリブチレンテレフタレートは併用して用いられる。この場合、変性ポリエチレンテレフタレート中の全ジカルボン酸成分に対して5~30モル%のイソフタル酸成分を含むことが必要である。また、イソフタル酸変性ポリエチレンテレフタレートとポリブチレンテレフタレートを合わせて100重量%とした場合のイソフタル酸変性ポリエチレンテレフタレートの割合は10~60重量%が好ましい。10重量%未満ではそり変形抑制効果が不十分であり、60重量%を超えるとポリブチレンテレフタレートとしての成形性が損なわれ、100℃以下の金型温度で成形できない場合がある。 In the case of (2), isophthalic acid-modified polyethylene terephthalate and polybutylene terephthalate are used in combination. In this case, it is necessary to contain 5 to 30 mol% of isophthalic acid component with respect to the total dicarboxylic acid component in the modified polyethylene terephthalate. Further, when the total amount of isophthalic acid-modified polyethylene terephthalate and polybutylene terephthalate is 100% by weight, the proportion of isophthalic acid-modified polyethylene terephthalate is preferably 10 to 60% by weight. If it is less than 10% by weight, the warp deformation suppressing effect is insufficient, and if it exceeds 60% by weight, the moldability as polybutylene terephthalate is impaired, and molding may not be possible at a mold temperature of 100 ° C. or less.
 (A)変性ポリブチレンテレフタレート樹脂は、本発明の効果を阻害しない範囲で、共重合可能なモノマー(以下、単に共重合性モノマーと称する場合がある)と共重合させた共重合体として用いることができる。共重合性モノマーとしては、例えば、テレフタル酸、イソフタル酸を除くジカルボン酸成分、炭素数2~4のアルキレングリコール以外のジオール、オキシカルボン酸成分、ラクトン成分等が挙げられる。共重合性モノマーは、1種又は2種以上組み合わせて使用できる。 (A) The modified polybutylene terephthalate resin is used as a copolymer copolymerized with a copolymerizable monomer (hereinafter sometimes referred to simply as a copolymerizable monomer) within a range not impairing the effects of the present invention. Can do. Examples of the copolymerizable monomer include dicarboxylic acid components excluding terephthalic acid and isophthalic acid, diols other than alkylene glycol having 2 to 4 carbon atoms, oxycarboxylic acid components, and lactone components. A copolymerizable monomer can be used 1 type or in combination of 2 or more types.
 ジカルボン酸(又はジカルボン酸成分又はジカルボン酸類)としては、脂肪族ジカルボン酸(例えば、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸、ヘキサデカンジカルボン酸、ダイマー酸などのC4~40ジカルボン酸、好ましくはC4~14ジカルボン酸)、脂環式ジカルボン酸成分(例えば、ヘキサヒドロフタル酸、ヘキサヒドロイソフタル酸、ヘキサヒドロテレフタル酸、ハイミック酸などのC8~12ジカルボン酸)、テレフタル酸、イソフタル酸を除く芳香族ジカルボン酸成分(例えば、フタル酸、2,6-ナフタレンジカルボン酸などのナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェノキシエーテルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、4,4’-ジフェニルメタンジカルボン酸、4,4’-ジフェニルケトンジカルボン酸などのC8~16ジカルボン酸)、またはこれらの反応性誘導体(例えば、低級アルキルエステル(ジメチルフタル酸などのフタル酸のC1~4アルキルエステルなど)、酸クロライド、酸無水物などのエステル形成可能な誘導体)などが挙げられる。さらに、必要に応じて、トリメリット酸、ピロメリット酸などの多価カルボン酸又はそのエステル形成誘導体(アルコールエステルなど)などを併用してもよい。このような多官能性化合物を併用すると、分岐状のポリブチレンテレフタレート樹脂を得ることもできる。 Dicarboxylic acids (or dicarboxylic acid components or dicarboxylic acids) include aliphatic dicarboxylic acids (for example, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid, hexadecandioyl carboxylic acid, C 4 ~ 40 dicarboxylic acids such as dimer acid, preferably C 4 ~ 14 dicarboxylic acids), alicyclic dicarboxylic acid component (e.g., hexahydrophthalic acid, hexahydroisophthalic acid, hexahydroterephthalic acid, hymic C 8 ~ 12 dicarboxylic acid), terephthalic acid such as an acid, an aromatic dicarboxylic acid component other than isophthalic acid (e.g., phthalic acid, naphthalene dicarboxylic acids such as 2,6-naphthalenedicarboxylic acid, 4,4'-diphenyl dicarboxylic acid , 4,4'-Diphenoxyether dicarboxylic acid Acid, 4,4'-diphenyl ether dicarboxylic acid, 4,4'-diphenylmethane dicarboxylic acid, 4,4'-diphenyl ketone C 8 ~ 16 dicarboxylic acids such as dicarboxylic acids), or reactive derivatives thereof (e.g., lower alkyl Esters (such as C 1-4 alkyl esters of phthalic acid such as dimethylphthalic acid), derivatives such as acid chlorides and acid anhydrides that can form esters), and the like. Furthermore, you may use together polyvalent carboxylic acid, such as trimellitic acid and pyromellitic acid, or its ester formation derivative (alcohol ester etc.) etc. as needed. When such a polyfunctional compound is used in combination, a branched polybutylene terephthalate resin can also be obtained.
 ジオール(又はジオール成分又はジオール類)には、例えば1,4 -ブタンジオールを除く脂肪族アルカンジオール[例えば、アルカンジオール(例えば、エチレングリコール、トリメチレングリコール、プロピレングリコール、ネオペンチルグリコール、ヘキサンジオール(1,6-ヘキサンジオールなど)、オクタンジオール(1,3-オクタンジオール、1,8-オクタンジオールなど)、デカンジオールなどの低級アルカンジオール、好ましくは直鎖状又は分岐鎖状C2~12アルカンジオール、さらに好ましくは直鎖状又は分岐鎖状C2~10アルカンジオールなど);(ポリ)オキシアルキレングリコール(例えば、複数のオキシC2~4アルキレン単位を有するグリコール、例えば、ジエチレングリコール、ジプロピレングリコール、ジテトラメチレングリコール、トリエチレングリコール、トリプロピレングリコール、ポリテトラメチレングリコールなど)など]、脂環族ジオール(例えば、1,4 -シクロヘキサンジオール、1,4 -シクロヘキサンジメタノール、水素化ビスフェノールAなど)、芳香族ジオール[例えば、ハイドロキノン、レゾルシノール、ナフタレンジオールなどのジヒドロキシC6~14アレーン;ビフェノール(4,4'-ジヒドロキシビフェニルなど);ビスフェノール類;キシリレングリコールなど]、及びこれらの反応性誘導体(例えば、アルキル、アルコキシ又はハロゲン置換体などのエステル形成性誘導体など)などが挙げられる。さらに、必要に応じて、グリセリン、トリメチロールプロパン、トリメチロールエタン、ペンタエリスリトールなどのポリオール又はそのエステル形成性誘導体を併用してもよい。このような多官能性化合物を併用すると、分岐状のポリブチレンテレフタレート樹脂を得ることもできる。 Diols (or diol components or diols) include, for example, aliphatic alkanediols excluding 1,4-butanediol [eg, alkanediols (eg, ethylene glycol, trimethylene glycol, propylene glycol, neopentyl glycol, hexanediol ( 1,6-hexanediol), octanediol (1,3-octanediol, 1,8-octanediol, etc.), lower alkane diols, such as decanediol, preferably a straight chain or branched chain C 2 ~ 12 alkane Diols, more preferably linear or branched C 2-10 alkane diols); (poly) oxyalkylene glycols (eg glycols having a plurality of oxy C 2-4 alkylene units, eg diethylene glycol, dipropylene glycol) Ditetramethylene glycol , Triethylene glycol, tripropylene glycol, polytetramethylene glycol, etc.)], alicyclic diols (eg, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, hydrogenated bisphenol A, etc.), aromatic family diol [for example, hydroquinone, resorcinol, dihydroxy C 6 ~ 14 arenes such as naphthalene diol; (such as 4,4'-dihydroxybiphenyl) biphenol; bisphenols; and xylylene glycol], and reactive derivatives thereof (e.g., And ester-forming derivatives such as alkyl, alkoxy or halogen-substituted products). Furthermore, if necessary, a polyol such as glycerin, trimethylolpropane, trimethylolethane, pentaerythritol, or an ester-forming derivative thereof may be used in combination. When such a polyfunctional compound is used in combination, a branched polybutylene terephthalate resin can also be obtained.
 なお、共重合体において、共重合性モノマーの割合は、例えば、0.01~30モル%程度の範囲から選択でき、通常、1~30モル%、好ましくは3~25モル%、さらに好ましくは5~20モル%(例えば、5~15モル%)程度である。また、ホモポリエステル(ポリブチレンテレフタレート)と共重合体(コポリエステル)とを組み合わせて使用する場合、ホモポリエステルとコポリエステルとの割合は、共重合性モノマーの割合が、全単量体に対して0.1~30モル%(好ましくは1~25モル%、さらに好ましくは5~25モル%)程度となる範囲であり、通常、前者/後者=99/1~1/99(重量比)、好ましくは95/5~5/95(重量比)、さらに好ましくは90/10~10/90(重量比)程度の範囲から選択できる。 In the copolymer, the proportion of the copolymerizable monomer can be selected from the range of, for example, about 0.01 to 30 mol%, and is usually 1 to 30 mol%, preferably 3 to 25 mol%, more preferably 5 to 5 mol%. It is about 20 mol% (for example, 5 to 15 mol%). In addition, when a homopolyester (polybutylene terephthalate) and a copolymer (copolyester) are used in combination, the proportion of the homopolyester and the copolyester is such that the proportion of the copolymerizable monomer is relative to the total monomers. The range is about 0.1 to 30 mol% (preferably 1 to 25 mol%, more preferably 5 to 25 mol%). Usually, the former / the latter = 99/1 to 1/99 (weight ratio), preferably It can be selected from the range of 95/5 to 5/95 (weight ratio), more preferably about 90/10 to 10/90 (weight ratio).
 また、変性ポリエチレンテレフタレート樹脂についても、本発明の効果を阻害しない範囲で、イソフタル酸以外の共重合可能なモノマーと共重合させた共重合体として用いることができる。 Further, the modified polyethylene terephthalate resin can also be used as a copolymer copolymerized with a copolymerizable monomer other than isophthalic acid within a range not impairing the effects of the present invention.
 なお、(A)変性ポリブチレンテレフタレート樹脂の固有粘度(IV)は、何れも1.2dL/g以下であることが好ましく、さらに好ましくは1.0dL/g以下である。異なる固有粘度を有するポリブチレンテレフタレート樹脂又は変性ポリエステルをブレンドすることによって、例えば固有粘度1.2dL/gと0.8dL/gのポリブチレンテレフタレート樹脂をブレンドすることによって、1.0dL/g以下の固有粘度を実現してもよい。なお、固有粘度(IV)は、例えば、O-クロロフェノール中、温度35℃の条件で測定できる。このような範囲の固有粘度を有するポリブチレンテレフタレート樹脂を使用すると、十分な靱性の付与と溶融粘度の低減とを効率よく実現しやすい。固有粘度が大きすぎると、成形時の溶融粘度が高くなり、場合により成形金型内で樹脂の流動不良、充填不良を起こす可能性がある。 The intrinsic viscosity (IV) of the (A) modified polybutylene terephthalate resin is preferably 1.2 dL / g or less, and more preferably 1.0 dL / g or less. By blending polybutylene terephthalate resins or modified polyesters with different intrinsic viscosities, for example by blending polybutylene terephthalate resins with intrinsic viscosities of 1.2 dL / g and 0.8 dL / g, an intrinsic viscosity of 1.0 dL / g or less is achieved. It may be realized. The intrinsic viscosity (IV) can be measured, for example, in O-chlorophenol at a temperature of 35 ° C. When a polybutylene terephthalate resin having an intrinsic viscosity in such a range is used, it is easy to efficiently achieve sufficient toughness and a reduced melt viscosity. If the intrinsic viscosity is too large, the melt viscosity at the time of molding becomes high, and in some cases, there is a possibility of causing poor resin flow and poor filling in the molding die.
 本発明で用いられる(B)扁平な断面形状を有するガラス繊維とは、長さ方向に直角の断面の長径(断面の最長の直線距離)と短径(長径と直角方向の最長の直線距離)の比が1.3~10、好ましくは1.5~8、特に好ましくは2~5の間にあるガラス繊維である。具体的な形状としては、略楕円形、略長円形、略まゆ形等である。 (B) The glass fiber having a flat cross-sectional shape used in the present invention is a long diameter (longest linear distance in the cross section) and a short diameter (longest straight distance in the direction perpendicular to the long diameter). The glass fiber has a ratio of 1.3 to 10, preferably 1.5 to 8, particularly preferably 2 to 5. Specific shapes include a substantially oval shape, a substantially oval shape, a substantially eyebrow shape, and the like.
 (B)扁平な断面形状を有するガラス繊維は、機械的強度、衝撃強度に優れ、そり変形を抑制するとともに成形性にも優れる。 (B) Glass fiber having a flat cross-sectional shape is excellent in mechanical strength and impact strength, suppresses warpage deformation, and is excellent in moldability.
 又、扁平な断面形状を有するガラス繊維は、その平均断面積が100~300平方マイクロメートルのものが好ましい。100平方マイクロメートルより小さい場合、機械的強度、衝撃強度が十分でなく、300平方マイクロメートルを超える場合には、射出成形時のゲート詰まりや、金型や成形機の摩耗の問題を生じる。 The glass fiber having a flat cross-sectional shape preferably has an average cross-sectional area of 100 to 300 square micrometers. If it is smaller than 100 square micrometers, the mechanical strength and impact strength are not sufficient, and if it exceeds 300 square micrometers, problems such as gate clogging during injection molding and wear of molds and molding machines occur.
 本発明において用いられる(B)扁平な断面形状を有するガラス繊維の配合量は、(A)変性ポリブチレンテレフタレート樹脂100重量部に対し、40~140重量部、好ましくは50~130重量部である。配合量が40重量部未満では機械的強度、衝撃強度が低く、また140重量部を超えると流動性が著しく悪化する。 The blending amount of the glass fiber (B) having a flat cross-sectional shape used in the present invention is 40 to 140 parts by weight, preferably 50 to 130 parts by weight with respect to 100 parts by weight of (A) the modified polybutylene terephthalate resin. . When the blending amount is less than 40 parts by weight, the mechanical strength and impact strength are low, and when it exceeds 140 parts by weight, the fluidity is remarkably deteriorated.
 (B)扁平な断面形状を有するガラス繊維の使用にあたっては、必要ならば収束剤又は表面処理剤を使用することが望ましい。この例を示せば、エポキシ系化合物、アクリル系化合物、イソシアネート系化合物、シラン系化合物、チタネート系化合物等の官能性化合物がいずれも好ましく用いられる。これ等の化合物は予め表面処理又は収束処理を施して用いるか、又は材料調製の際同時に添加してもよい。また、併用される官能性表面処理剤の使用量は、充填剤に対し0~10重量%、好ましくは0.01~5重量%である。 (B) When using a glass fiber having a flat cross-sectional shape, it is desirable to use a sizing agent or a surface treatment agent if necessary. If this example is shown, all functional compounds, such as an epoxy-type compound, an acryl-type compound, an isocyanate type compound, a silane type compound, and a titanate type compound, are used preferably. These compounds may be used after surface treatment or convergence treatment in advance, or may be added at the same time as the material preparation. The amount of the functional surface treating agent used in combination is 0 to 10% by weight, preferably 0.01 to 5% by weight, based on the filler.
 かかるガラス繊維(B)としては、Aガラス、Eガラス、ジルコニア成分含有の耐アルカリガラス組成や、チョップドストランド、ロービングガラス等の配合時のガラス繊維の形態を問わず、使用可能である。 Such glass fiber (B) can be used regardless of the glass fiber form at the time of blending A glass, E glass, an alkali-resistant glass composition containing a zirconia component, chopped strands, roving glass, or the like.
 本発明に用いる(B)扁平な断面形状を有するガラス繊維は、溶融ガラスを吐出するために使用するブッシングとして、長円形、楕円形、矩形、スリット状等の適当な孔形状を有するノズルを用いて紡糸することにより調製される。又、各種の断面形状(円形断面を含む)を有する近接して設けられた複数のノズルから溶融ガラスを紡出し、紡出された溶融ガラスを互いに接合して単一のフィラメントとすることにより調製できる。 (B) The glass fiber having a flat cross-sectional shape used in the present invention uses a nozzle having an appropriate hole shape such as an oval, an ellipse, a rectangle, or a slit as a bushing used for discharging molten glass. Prepared by spinning. Also prepared by spinning molten glass from a plurality of adjacent nozzles having various cross-sectional shapes (including circular cross-sections), and joining the spun molten glass into a single filament it can.
 携帯端末部品では樹脂材料を着色して用いることがある。この場合、各種着色顔料や染料とともに、無機白色顔料を使用するのが一般的である。本発明の樹脂組成物に最適な無機白色顔料としては、(C)モース硬度4.5以下の無機白色顔料、例えば、硫化亜鉛、酸化亜鉛、硫酸バリウム、リトポン、炭酸マグネシウム、白雲母、硫酸カルシウム、バライト、炭酸カルシウム等である。これら白色顔料では、ガラス繊維折れが少ないため良好な物性を得ることができる。一方、モース硬度が4.5を超える、ルチル型酸化チタン、アナタース型酸化チタン、ブルッカイト型酸化チタン等はガラス繊維折れが多く発生することがあり、好ましくない。無機白色顔料の配合量は特に限定されず、一般的な着色必要量であれば良い。 In mobile terminal parts, resin materials may be colored. In this case, it is common to use an inorganic white pigment together with various colored pigments and dyes. As the inorganic white pigment optimal for the resin composition of the present invention, (C) inorganic white pigment having a Mohs hardness of 4.5 or less, such as zinc sulfide, zinc oxide, barium sulfate, lithopone, magnesium carbonate, muscovite, calcium sulfate, barite , Calcium carbonate and the like. With these white pigments, good physical properties can be obtained because glass fiber breakage is small. On the other hand, rutile-type titanium oxide, anatase-type titanium oxide, brookite-type titanium oxide and the like having a Mohs hardness exceeding 4.5 are not preferable because many glass fiber breaks may occur. The blending amount of the inorganic white pigment is not particularly limited as long as it is a general coloring requirement amount.
 なお、本発明の樹脂組成物には、必要に応じて、本発明の効果を損なわない範囲で他の樹脂を含んでいてもよい。他の樹脂としては、ポリブチレンテレフタレート樹脂以外のポリエステル樹脂(ポリエチレンテレフタレート、ポリトリメチレンテレフタレート等)、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂、ポリアセタール、ポリアリーレンオキシド、ポリアリーレンサルファイド、フッ素樹脂等が例示される。また、アクリロニトリル-スチレン樹脂、アクリロニトリル-ブタジエン-スチレン樹脂、エチレン-エチルアクリレート樹脂等の共重合体も例示される。これら他の樹脂は単独で又は2種以上組み合わせてもよい。 It should be noted that the resin composition of the present invention may contain other resins as needed within a range not impairing the effects of the present invention. Other resins include polyester resins other than polybutylene terephthalate resins (polyethylene terephthalate, polytrimethylene terephthalate, etc.), polyolefin resins, polystyrene resins, polyamide resins, polyacetals, polyarylene oxides, polyarylene sulfides, fluorine resins, etc. Is exemplified. Moreover, copolymers such as acrylonitrile-styrene resin, acrylonitrile-butadiene-styrene resin, and ethylene-ethyl acrylate resin are also exemplified. These other resins may be used alone or in combination of two or more.
 また、本発明の樹脂組成物には、種々の添加剤(安定剤、成形性改善剤等)を添加してもよい。添加剤としては、例えば、各種安定剤(酸化防止剤、紫外線吸収剤、熱安定剤等)核剤(結晶化核剤)、難燃剤、滑剤、離型剤、帯電防止剤、染・顔料等の着色剤、分散等が挙げられる。 Further, various additives (stabilizer, moldability improving agent, etc.) may be added to the resin composition of the present invention. Examples of additives include various stabilizers (antioxidants, ultraviolet absorbers, heat stabilizers, etc.), nucleating agents (crystallization nucleating agents), flame retardants, lubricants, mold release agents, antistatic agents, dyes / pigments, etc. Colorants, dispersions, and the like.
 特に、ポリブチレンテレフタレートと、ポリカーボネートや、ポリエチレンテレフタレートをはじめとするアルキレングリコール成分が異なるポリエステルを併用する場合は、エステル交換抑制のためにリン系安定剤を添加することが好ましい。用いられるリン系安定剤としては、例えば有機ホスファイト系、ホスフォナイト系化合物およびリン酸金属塩等である。具体例を示すと、ビス(2,4-ジ-t-4メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトールジホスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)-4,4’-ビフェニレンホスフォナイト、またリン酸金属塩としては、第一リン酸カルシウム、第一リン酸ナトリウムの水和物等が挙げられる。 In particular, when polybutylene terephthalate and polyesters having different alkylene glycol components such as polycarbonate and polyethylene terephthalate are used in combination, it is preferable to add a phosphorus-based stabilizer to suppress transesterification. Examples of the phosphorus stabilizer used include organic phosphite compounds, phosphonite compounds, and metal phosphates. Specific examples include bis (2,4-di-t-4methylphenyl) pentaerythritol diphosphite, bis (2,4-di-t-butylphenyl) pentaerythritol diphosphite, tetrakis (2,4 Examples of the -di-t-butylphenyl) -4,4'-biphenylene phosphonite and metal phosphate include monobasic calcium phosphate, monobasic sodium phosphate hydrate, and the like.
 なお、本発明の樹脂組成物には、必要に応じて、本発明の効果を損なわない範囲で他の強化用充填剤を添加することができる。他の強化用充填剤としては、本発明で規定した以外のガラス繊維、ミルドガラスファイバー、ガラスビーズ、ガラスフレーク、シリカ、アルミナ繊維、ジルコニア繊維、チタン酸カリウム繊維、カーボン繊維、黒鉛、珪酸カルシウム、珪酸アルミニウム、カオリン、タルク、クレー等の珪酸塩、酸化鉄、酸化チタン、酸化亜鉛、酸化アンチモン、アルミナ等の金属酸化物、カルシウム、マグネシウム、亜鉛等の金属の炭酸塩や硫酸塩、さらには炭化珪素、窒化珪素、窒化硼素等が例示され、有機充填剤としては、高融点の芳香族ポリエステル繊維、液晶性ポリエステル繊維、芳香族ポリアミド繊維、フッ素樹脂繊維、ポリイミド繊維等が例示される。 It should be noted that other reinforcing fillers can be added to the resin composition of the present invention as needed within a range not impairing the effects of the present invention. Other reinforcing fillers include glass fibers other than those specified in the present invention, milled glass fibers, glass beads, glass flakes, silica, alumina fibers, zirconia fibers, potassium titanate fibers, carbon fibers, graphite, calcium silicate, Silicates such as aluminum silicate, kaolin, talc and clay, metal oxides such as iron oxide, titanium oxide, zinc oxide, antimony oxide and alumina, carbonates and sulfates of metals such as calcium, magnesium and zinc, and carbonization Examples of the organic filler include silicon polyester, silicon nitride, boron nitride and the like, and examples of the organic filler include high melting point aromatic polyester fiber, liquid crystalline polyester fiber, aromatic polyamide fiber, fluororesin fiber, and polyimide fiber.
 本発明の組成物の調製は、従来の樹脂組成物調製法として一般に用いられる設備と方法により容易に調製される。例えば、各成分を混合した後、1軸又は2軸の押出機により練込押出してペレットを調製し、しかる後成形する方法、一旦組成の異なるペレットを調製し、そのペレットを所定量混合して成形に供し成形後に目的組成の成形品を得る方法、成形機に各成分の1又は2以上を直接仕込む方法等、何れも使用できる。また、樹脂成分の一部を細かい粉体としてこれ以外の成分と混合し添加することは、これらの成分の均一配合を行う上で好ましい方法である。 樹脂を金型に充填するための成形法としては、射出成形、押出成形、圧縮成形、ブロー成形、真空成形、回転成形、ガスインジェクションモールディング等が適用可能であるが、射出成形が一般的である。 The composition of the present invention is easily prepared by equipment and methods generally used as conventional resin composition preparation methods. For example, after mixing each component, kneading and extruding with a single-screw or twin-screw extruder to prepare pellets, then forming the pellets, once preparing pellets with different compositions, mixing the pellets in a predetermined amount Any method can be used, such as a method of obtaining a molded product having a desired composition after molding and a method of directly charging one or more of each component into a molding machine. Further, mixing a part of the resin component as a fine powder with other components and adding it is a preferable method for uniformly blending these components. Injection molding, extrusion molding, compression molding, blow molding, vacuum molding, rotational molding, gas injection molding, etc. can be applied as a molding method for filling the resin into the mold, but injection molding is common. .
図1は、実施例で成形した携帯電話ハウジングおよびその評価状況を示す図である。FIG. 1 is a diagram showing a cellular phone housing molded in the example and its evaluation status.
 以下実施例により本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。
実施例1~8、比較例1~7
 各樹脂組成物を表1に示す混合比率でドライブレンドし、30mmφのスクリューを有する2軸押出機((株)日本製鋼製)を用いて、シリンダー設定温度250℃で溶融混練したのちペレット化し、試験片を作成し、各評価を行った。結果を表1に示す。
Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.
Examples 1-8, Comparative Examples 1-7
Each resin composition was dry blended at the mixing ratio shown in Table 1, and melt-kneaded at a cylinder set temperature of 250 ° C. using a twin-screw extruder (manufactured by Nippon Steel Co., Ltd.) having a 30 mmφ screw. Test pieces were prepared and evaluated. The results are shown in Table 1.
 また、使用した成分の詳細、物性評価の測定法は以下の通りである。
(1)使用成分
(A)成分
 (A-1)イソフタル酸変性ポリブチレンテレフタレート(固有粘度IV=0.65dL/g)
 テレフタル酸と1,4 -ブタンジオールとの反応において、テレフタル酸の一部(12.5モル%)に代えて、共重合成分としてのジメチルイソフタル酸12.5モル%を用いた変性ポリブチレンテレフタレート
 (A-2)ポリブチレンテレフタレート(固有粘度IV=0.69dL/g、ウィンテックポリマー(株)製)
 (A-3)イソフタル酸変性ポリエチレンテレフタレート(イソフタル酸12.0モル%変性、固有粘度IV=0.80dL/g、(株)ベルポリエステルプロダクツ製)
(B)ガラス繊維
 (B-1) ;扁平な断面形状を有するガラス繊維(長径・短径比:4、平均断面積196μm、日東紡(株)製)
 (B'-1) ;一般的な円形断面形状を有するガラス繊維(長径・短径比:1、平均断面積133μm、日本電気ガラス(株)製)
(C)白色顔料
 (C-1)硫化亜鉛 モース硬度4
 (C'-1)ルチル型酸化チタン モース硬度7
 尚、実施例6、7、8および比較例5については、表中の組成に更に第一リン酸カルシウムを0.15重量部添加している。
(2)物性評価
<引張強さ>
 得られたペレットを140℃で3時間乾燥後、成形機シリンダー温度260℃、金型温度80℃で、射出成形により引張試験片を作製し、ISO-527(試験片厚み4mm)に準じて測定した。
<シャルピー衝撃強さ>
 得られたペレットを140℃で3時間乾燥後、成形機シリンダー温度260℃、金型温度80℃で、射出成形によりシャルピー衝撃試験片を作製し、ISO-179(試験片厚み4mm)に準じて測定した。
(3)そり変形の評価
 下記基準で平板の平面度を測定した。
評価成形品;50mm×50mm×厚さ1mmの平板
成形機;FANUC ROBOSHOTα-100Ia
シリンダー温度;260-260-240-220℃
金型温度;80℃
射出圧力;69MPa
平面度測定機;CNC画像測定機クイックビジョンQVH404(ミツトヨ社製)
 平面度測定法は平板上の9点(縦横3×3点)にて測定した。
(4)携帯電話ハウジングでの評価
 図1に示す携帯電話ハウジングを成形し、(4-1)~(4-3)の評価を行った。
成形機;住友重機工業SE100D
シリンダー温度;270-270-260-230℃
金型温度;100℃
(4-1)携帯電話ハウジングのヒンジ部の曲げ強度
 図1のヒンジ部を押し曲げて、破壊強度を測定した。
Moreover, the detail of the used component and the measuring method of physical property evaluation are as follows.
(1) Components used
(A) Component (A-1) Isophthalic acid modified polybutylene terephthalate (Intrinsic viscosity IV = 0.65dL / g)
In the reaction of terephthalic acid with 1,4-butanediol, modified polybutylene terephthalate using 12.5 mol% of dimethylisophthalic acid as a copolymerization component instead of part of terephthalic acid (12.5 mol%) (A-2 ) Polybutylene terephthalate (Intrinsic viscosity IV = 0.69 dL / g, manufactured by Wintech Polymer Co., Ltd.)
(A-3) Isophthalic acid-modified polyethylene terephthalate (modified with 12.0 mol% isophthalic acid, intrinsic viscosity IV = 0.80 dL / g, manufactured by Bell Polyester Products)
(B) Glass fiber (B-1): Glass fiber having a flat cross section (major axis / minor axis ratio: 4, average cross-sectional area 196 μm 2 , manufactured by Nittobo Co., Ltd.)
(B'-1): Glass fiber having a general circular cross-sectional shape (major axis / minor axis ratio: 1, average cross-sectional area of 133 μm 2 , manufactured by NEC Glass, Inc.)
(C) White pigment (C-1) Zinc sulfide Mohs hardness 4
(C'-1) Rutile type titanium oxide Mohs hardness 7
In Examples 6, 7, 8 and Comparative Example 5, 0.15 parts by weight of primary calcium phosphate was further added to the composition in the table.
(2) Physical property evaluation <Tensile strength>
The obtained pellets were dried at 140 ° C. for 3 hours, and then a tensile test piece was prepared by injection molding at a molding machine cylinder temperature of 260 ° C. and a mold temperature of 80 ° C., and measured according to ISO-527 (test piece thickness 4 mm). did.
<Charpy impact strength>
The obtained pellets were dried at 140 ° C. for 3 hours, and then Charpy impact test pieces were prepared by injection molding at a molding machine cylinder temperature of 260 ° C. and a mold temperature of 80 ° C., according to ISO-179 (test piece thickness 4 mm). It was measured.
(3) Evaluation of warpage deformation The flatness of the flat plate was measured according to the following criteria.
Evaluation molded product; 50mm x 50mm x 1mm thickness flat plate molding machine; FANUC ROBOSHOTα-100Ia
Cylinder temperature: 260-260-240-220 ℃
Mold temperature: 80 ℃
Injection pressure: 69MPa
Flatness measuring machine; CNC image measuring machine Quick Vision QVH404 (Mitutoyo)
The flatness measurement method was performed at 9 points (3 × 3 points in length and width) on a flat plate.
(4) Evaluation in mobile phone housing The mobile phone housing shown in FIG. 1 was molded and evaluated in (4-1) to (4-3).
Molding machine: Sumitomo Heavy Industries SE100D
Cylinder temperature: 270-270-260-230 ℃
Mold temperature: 100 ℃
(4-1) Bending strength of hinge portion of mobile phone housing The bending strength was measured by pushing and bending the hinge portion of FIG.
 測定器;万能試験機テンシロンUTA50KN(オリエンテック社製)
 測定速度;1000mm/分
(4-2)携帯電話ハウジングのボス部のひけ
 図1のボス部の表面のひけ状況を目視観察した。
判断
 ○…ひけ少ない
 ×…ひけ多い
(4-3)携帯電話ハウジングのやけ(ガスによる圧縮発熱)
 図1のヒンジ部流動末端のやけ状況を目視観察した。
判断
 ○…やけ少ない
 ×…やけ多い
Measuring instrument: Universal testing machine Tensilon UTA50KN (Orientec)
Measurement speed: 1000mm / min
(4-2) Sink on the boss part of the mobile phone housing Sink condition on the surface of the boss part in FIG. 1 was visually observed.
Judgment ○… Low sink × × High sink
(4-3) Burning of mobile phone housing (compression heat generated by gas)
The burn condition at the flow end of the hinge part in FIG. 1 was visually observed.
Judgment ○… less burnt ×… more burnt
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (8)

  1. (A)変性ポリブチレンテレフタレート樹脂100重量部に対して、
    (B)扁平な断面形状を有するガラス繊維40~140重量部
    を配合してなるポリブチレンテレフタレート樹脂組成物からなる携帯端末部品。
    (A) For 100 parts by weight of the modified polybutylene terephthalate resin,
    (B) A mobile terminal part made of a polybutylene terephthalate resin composition containing 40 to 140 parts by weight of glass fibers having a flat cross-sectional shape.
  2.  (A)変性ポリブチレンテレフタレート樹脂が、全ジカルボン酸成分に対して5~30モル%のイソフタル酸を含むイソフタル酸変性ポリブチレンテレフタレートである請求項1記載のポリブチレンテレフタレート携帯端末部品。 2. The polybutylene terephthalate portable terminal component according to claim 1, wherein the (A) modified polybutylene terephthalate resin is isophthalic acid-modified polybutylene terephthalate containing 5 to 30 mol% of isophthalic acid with respect to the total dicarboxylic acid component.
  3.  (A)変性ポリブチレンテレフタレート樹脂が、ポリブチレンテレフタレートとイソフタル酸変性ポリエチレンテレフタレートの混合物である請求項1記載の携帯端末部品。 The portable terminal component according to claim 1, wherein (A) the modified polybutylene terephthalate resin is a mixture of polybutylene terephthalate and isophthalic acid-modified polyethylene terephthalate.
  4.  (B)扁平な断面形状を有するガラス繊維が、長さ方向に直角の断面の長径(断面の最長の直線距離)と短径(長径と直角方向の最長の直線距離)の比が1.3~10の間にあるものである請求項1~3の何れか1項記載の携帯端末部品。 (B) The ratio of the long diameter (longest straight line distance in the cross section) to the short diameter (long straight line and longest straight distance in the right direction) of the glass fiber having a flat cross section is 1.3 to 10 The mobile terminal component according to any one of claims 1 to 3, wherein the mobile terminal component is between the two.
  5.  (B)扁平な断面形状を有するガラス繊維が、平均断面積100~300平方マイクロメートルのものである請求項1~4の何れか1項記載の携帯端末部品。 (B) The portable terminal component according to any one of claims 1 to 4, wherein the glass fiber having a flat cross-sectional shape has an average cross-sectional area of 100 to 300 square micrometers.
  6.  更に(C)モース硬度4.5以下の無機白色顔料を用いて着色された請求項1~5の何れか1項記載の携帯端末部品。 6. The portable terminal component according to claim 1, further comprising (C) an inorganic white pigment having a Mohs hardness of 4.5 or less.
  7.  携帯端末部品の筐体(ハウジング)、補強板(シャーシ)、フレーム、ヒンジ又はこれらの周辺関連部品である請求項1~6の何れか1項記載の携帯端末部品。 The portable terminal component according to any one of claims 1 to 6, which is a casing (housing), a reinforcing plate (chassis), a frame, a hinge, or a peripheral related component thereof.
  8.  請求項1に記載した組成物の携帯端末部品用途。 Use of the composition according to claim 1 for portable terminal parts.
PCT/JP2008/003909 2007-12-26 2008-12-24 Mobile terminal part WO2009081574A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020107014025A KR101503100B1 (en) 2007-12-26 2008-12-24 Mobile terminal part
CN200880122938.3A CN101910305B (en) 2007-12-26 2008-12-24 Mobile terminal part

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-334706 2007-12-26
JP2007334706A JP5329804B2 (en) 2007-12-26 2007-12-26 Mobile terminal parts

Publications (1)

Publication Number Publication Date
WO2009081574A1 true WO2009081574A1 (en) 2009-07-02

Family

ID=40800891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/003909 WO2009081574A1 (en) 2007-12-26 2008-12-24 Mobile terminal part

Country Status (4)

Country Link
JP (1) JP5329804B2 (en)
KR (1) KR101503100B1 (en)
CN (1) CN101910305B (en)
WO (1) WO2009081574A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111816A (en) * 2008-11-07 2010-05-20 Mitsubishi Engineering Plastics Corp Molded article of polybutylene terephthalate resin having weld part

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155366A1 (en) * 2010-06-10 2011-12-15 ウィンテックポリマー株式会社 Modified polyalkylene terephthalate resin for improving adhesive strength, modified polyalkylene terephthalate resin composition for improving adhesive strength, resin molded article, and bonded article
JP5773999B2 (en) * 2010-06-10 2015-09-02 ウィンテックポリマー株式会社 Adhesive strength improving resin composition, resin molded body, joined body and adhesive strength improving agent
CN104272885B (en) * 2012-05-01 2017-05-17 胜技高分子株式会社 Case for electronic devices
JP5973282B2 (en) * 2012-08-24 2016-08-23 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition and molded body
JP5968722B2 (en) * 2012-08-24 2016-08-10 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition and molded body
KR101823736B1 (en) 2015-09-24 2018-01-30 롯데첨단소재(주) Polyester resin composition and article using the same
CN106009542A (en) * 2016-06-28 2016-10-12 长沙争明新材料有限公司 Glass fiber reinforced terephthalic acid butanediol composite material and preparation method thereof
WO2019070025A1 (en) * 2017-10-06 2019-04-11 東洋紡株式会社 Inorganic reinforced thermoplastic polyester resin composition
JP7471065B2 (en) 2019-09-13 2024-04-19 アルテミラ製缶株式会社 Sleeve printing plate and its manufacturing method
KR102463004B1 (en) * 2020-10-15 2022-11-03 니토 보세키 가부시기가이샤 Glass Fiber Reinforced Resin Board
CN115505245B (en) * 2022-09-29 2023-12-19 江苏金发科技新材料有限公司 PBT composite material and preparation method and application thereof

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938264B2 (en) * 1976-12-09 1984-09-14 東レ株式会社 Thermoplastic polyester resin composition
JPS612746A (en) * 1984-06-15 1986-01-08 Mitsubishi Chem Ind Ltd Polyester resin composition
JPS62268612A (en) * 1986-05-19 1987-11-21 Nitto Boseki Co Ltd Glass-fiber reinforced resin molded form
JPH02173047A (en) * 1988-12-26 1990-07-04 Polyplastics Co Fiber-reinforced thermoplastic resin composition
JPH0395257A (en) * 1989-05-29 1991-04-19 Polyplastics Co Flame-retardant polyester resin composition
JPH04353556A (en) * 1991-05-31 1992-12-08 Teijin Ltd Polyester resin composition
JPH09216245A (en) * 1996-02-13 1997-08-19 Toray Ind Inc Case for portable instrument
JPH09286036A (en) * 1996-04-22 1997-11-04 Toray Ind Inc Resin molded product
JP2000265046A (en) * 1999-03-17 2000-09-26 Polyplastics Co Polybutylene terephthalate resin composition
JP2001339235A (en) * 2000-05-26 2001-12-07 Sony Corp Electronic apparatus
WO2005083991A1 (en) * 2004-02-27 2005-09-09 Nec Corporation Card-type mobile telephone
JP2006176691A (en) * 2004-12-24 2006-07-06 Wintech Polymer Ltd Polybutylene terephthalate resin composition for vibration welding
JP2008120925A (en) * 2006-11-13 2008-05-29 Wintech Polymer Ltd Polybutylene terephthalate resin composition and molding thereof
JP2008214558A (en) * 2007-03-07 2008-09-18 Toyobo Co Ltd Inorganic-reinforced polyester-based resin composition and method for improving surface appearance of molded product using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5214099B2 (en) * 2005-09-28 2013-06-19 ウィンテックポリマー株式会社 Flame retardant polybutylene terephthalate resin composition

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938264B2 (en) * 1976-12-09 1984-09-14 東レ株式会社 Thermoplastic polyester resin composition
JPS612746A (en) * 1984-06-15 1986-01-08 Mitsubishi Chem Ind Ltd Polyester resin composition
JPS62268612A (en) * 1986-05-19 1987-11-21 Nitto Boseki Co Ltd Glass-fiber reinforced resin molded form
JPH02173047A (en) * 1988-12-26 1990-07-04 Polyplastics Co Fiber-reinforced thermoplastic resin composition
JPH0395257A (en) * 1989-05-29 1991-04-19 Polyplastics Co Flame-retardant polyester resin composition
JPH04353556A (en) * 1991-05-31 1992-12-08 Teijin Ltd Polyester resin composition
JPH09216245A (en) * 1996-02-13 1997-08-19 Toray Ind Inc Case for portable instrument
JPH09286036A (en) * 1996-04-22 1997-11-04 Toray Ind Inc Resin molded product
JP2000265046A (en) * 1999-03-17 2000-09-26 Polyplastics Co Polybutylene terephthalate resin composition
JP2001339235A (en) * 2000-05-26 2001-12-07 Sony Corp Electronic apparatus
WO2005083991A1 (en) * 2004-02-27 2005-09-09 Nec Corporation Card-type mobile telephone
JP2006176691A (en) * 2004-12-24 2006-07-06 Wintech Polymer Ltd Polybutylene terephthalate resin composition for vibration welding
JP2008120925A (en) * 2006-11-13 2008-05-29 Wintech Polymer Ltd Polybutylene terephthalate resin composition and molding thereof
JP2008214558A (en) * 2007-03-07 2008-09-18 Toyobo Co Ltd Inorganic-reinforced polyester-based resin composition and method for improving surface appearance of molded product using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111816A (en) * 2008-11-07 2010-05-20 Mitsubishi Engineering Plastics Corp Molded article of polybutylene terephthalate resin having weld part

Also Published As

Publication number Publication date
JP2009155449A (en) 2009-07-16
JP5329804B2 (en) 2013-10-30
CN101910305A (en) 2010-12-08
CN101910305B (en) 2013-02-13
KR20100105840A (en) 2010-09-30
KR101503100B1 (en) 2015-03-16

Similar Documents

Publication Publication Date Title
JP5329804B2 (en) Mobile terminal parts
WO2009081571A1 (en) Polybutylene terephthalate resin composition and thin molded article
JP2007169358A (en) Polyester resin composition for laser welding and molded article using the same
CN110753729B (en) Polybutylene terephthalate resin composition
JP6567866B2 (en) Laser welding resin composition and welded body thereof
KR100846861B1 (en) Composition Of Polyester resin
KR20220082886A (en) Composite of polybutylene terephthalate composition and plastic/metal hybrid
JP7088915B2 (en) Thermoplastic Polyester Elastoma Resin Compositions and Resin Belt Molds for Resin Belt Materials
WO2018038072A1 (en) Method for producing thermoplastic aromatic polyester resin composition, method for producing insert-molded article, and method for inhibiting reduction in heat shock resistance
CN116964149A (en) Polyester resin composition and molded article decorated with hot stamping foil
TWI680156B (en) Polyalkylene terephthalate resin composition
JP2017172794A (en) Thermoplastic polyester elastomer resin composition for resin belt material and resin belt molded body
JP5616536B2 (en) Wind direction control plate and method of manufacturing wind direction control plate
JPH01167370A (en) Thermoplastic resin composition
JP2018104529A (en) Polybutylene terephthalate resin composition and molded article formed from the same
JP2005240003A (en) Thermoplastic polyester resin composition and insert-molded article
WO2020218149A1 (en) Polybutylene terephthalate resin composition for laser welding
JP4785398B2 (en) Injection compression molding method
JP6911382B2 (en) Polybutylene terephthalate resin composition for moldings and composite moldings for welding polyester elastomers
JP3631640B2 (en) Flame-retardant polyester resin composition and molded article comprising the same
KR101786185B1 (en) Polyester resin composition and article comprising the same
JP7409372B2 (en) Polybutylene terephthalate resin composition
CN110382622B (en) Polybutylene terephthalate resin composition for fusion-bonding molded article of polyester elastomer, and composite molded article
JP2021066787A (en) Resin composition and molding
JP2009191206A (en) Polyalkylene terephthalate resin composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880122938.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08863697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107014025

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08863697

Country of ref document: EP

Kind code of ref document: A1