WO2019070025A1 - Inorganic reinforced thermoplastic polyester resin composition - Google Patents
Inorganic reinforced thermoplastic polyester resin composition Download PDFInfo
- Publication number
- WO2019070025A1 WO2019070025A1 PCT/JP2018/037213 JP2018037213W WO2019070025A1 WO 2019070025 A1 WO2019070025 A1 WO 2019070025A1 JP 2018037213 W JP2018037213 W JP 2018037213W WO 2019070025 A1 WO2019070025 A1 WO 2019070025A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- parts
- resin composition
- polyester resin
- thermoplastic polyester
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/52—Phosphorus bound to oxygen only
- C08K5/521—Esters of phosphoric acids, e.g. of H3PO4
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/14—Glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L69/00—Compositions of polycarbonates; Compositions of derivatives of polycarbonates
Definitions
- the present invention relates to an inorganic reinforced polyester resin composition containing a thermoplastic polyester resin and an inorganic reinforcing material such as glass fiber. Specifically, it is possible to obtain a molded product having high rigidity, high strength, and a small appearance defect due to the floating of the inorganic reinforcing material of the molded product and having a uniform textured and specular appearance without unevenness under a wide condition width.
- Inorganic reinforced polyester resin composition containing a thermoplastic polyester resin and an inorganic reinforcing material such as glass fiber.
- polyester resins are excellent in mechanical properties, heat resistance, chemical resistance and the like, and are widely used in automobile parts, electric / electronic parts, household goods and the like.
- polyester resin compositions reinforced with an inorganic reinforcing material such as glass fiber are known to dramatically improve the rigidity, strength and heat resistance, and in particular, the rigidity improves according to the amount of the inorganic reinforcing material added. ing.
- the inorganic reinforcing material such as glass fiber is easily floated to the surface of the molded product, and in the molded product where the surface gloss is desired, the surface gloss is lowered.
- defective embossing may be a problem.
- polyester resins such as polybutylene terephthalate, which have a high crystallization rate, have a poor transferability to the mold as the crystallization during molding, and it is very difficult to obtain a satisfactory appearance.
- Patent Document 3 increases the filling amount to obtain high mechanical strength and high rigidity.
- Patent Document 4 the compounding amount of isophthalic acid-modified polybutylene terephthalate and polycarbonate resin needs to be large, so it is satisfactory in terms of molding stability and molding cycle. It was not possible.
- patent document 5 was proposed as what improved these fault, in the application where high rigidity is required, rigidity is insufficient, and if it strengthens in order to increase rigidity, the amount of reinforcements will decrease in appearance, furthermore, molding There has been a drawback that the range of conditions is very narrow and stable, and it is difficult to obtain a good product.
- the present invention provides a molded product having high rigidity (bending elastic modulus of more than 20 GPa) and high strength, and having a uniform textured appearance with little unevenness in appearance and warp deformation due to floating of the inorganic reinforcing material of the molded product and the like. It is an object of the present invention to provide an inorganic reinforced polyester resin composition which can be obtained and which has a very wide range of molding conditions.
- the present inventors contain an appropriate amount of a specific resin and appropriately adjust the ratio of each component. It has been found that the present invention can be achieved.
- the present invention has the following constitution.
- An inorganic reinforced thermoplastic polyester resin composition comprising 60 to 70 parts by mass and 0.05 to 2 parts by mass of a transesterification inhibitor (E), wherein the total of (A) to (E) is 100 parts by mass
- An inorganic reinforced thermoplastic polyester resin composition characterized by satisfying the following requirements (1) and (2).
- (1) The flexural modulus of a molded article obtained by injection molding an inorganic reinforced thermoplastic polyester resin composition exceeds 20 GPa.
- thermoplastic polyester resin composition When temperature-falling crystallization temperature calculated
- the copolymerized component of the copolymerized polybutylene terephthalate resin (A) is isophthalic acid, and the copolymerized amount thereof is 10 to 40% by mole of the total acid component [1] Reinforced thermoplastic polyester resin composition.
- the solidification (crystallization) speed (TC2 becomes an alternative measure) of the resin composition in the mold is in a specific range
- TC2 solidification (crystallization) speed
- a specific glass fiber reinforcing material in a specific range it is possible to obtain a molded article having a good mirror appearance while having high strength and high rigidity without causing a significant increase in molding cycle.
- molded articles having emboss it is possible to produce a molded article with extremely excellent designability and low brightness (gloss) with no jetty and with no emboss unevenness, in a wide molding condition width.
- each component constituting the inorganic reinforced thermoplastic polyester resin composition described below is described in parts by mass, and the total amount of the components (A) to (E) is 100 parts by mass. .
- the copolymerized polybutylene terephthalate resin (A) in the present invention is a resin of the main component in all polyester resins in the resin composition of the present invention. It is preferable that the content is the highest in the entire polyester resin. Assuming that the total acid component constituting is 100 mol% and the total glycol component constituting is 100 mol%, 80 mol% or more of 1,4-butanediol and 120 to the total of terephthalic acid and 1,4-butanediol It is a resin that occupies 190 mol%.
- copolymerization components isophthalic acid, sebacic acid, adipic acid, trimellitic acid, 2,6-naphthalenedicarboxylic acid, ethylene glycol, diethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, 1,2-propane At least one selected from the group consisting of a diol, 1,3-propanediol, and 2-methyl-1,3-propanediol can be included as a copolymerization component.
- isophthalic acid is preferable as a copolymerization component, and when the total acid component constituting the copolymerized polybutylene terephthalate resin (A) is 100 mol%, the copolymerization ratio of isophthalic acid is preferably 10 to 40 mol%. 20 to 40 mol% is more preferable, and 20 to 30 mol% is more preferable. If the copolymerization ratio is less than 10 mol%, the transferability to the mold tends to be poor and a sufficient appearance tends to be difficult to obtain. If the copolymerization amount exceeds 40 mol%, the molding cycle decreases from the addition amount, May cause a decrease in moldability.
- the molecular weight of the copolymerized polybutylene terephthalate resin (A) varies slightly depending on the specific copolymer composition, but reduced viscosity (0.1 g of sample to 25 ml of mixed solvent of phenol / tetrachloroethane (weight ratio 6/4)
- reduced viscosity 0.1 g of sample to 25 ml of mixed solvent of phenol / tetrachloroethane (weight ratio 6/4)
- it is 0.4 to 1.5 dl / g, more preferably 0.4 to 1.3 dl / g, after being dissolved and measured at 30 ° C. using a Ubbelohde viscosity tube. If it is less than 0.4 dl / g, the toughness tends to decrease, and if it exceeds 1.5 dl / g, the fluidity tends to decrease.
- the content of the copolymerized polybutylene terephthalate resin (A) is 20 to 30 parts by mass, preferably 25 to 30 parts by mass. If the amount is less than 20 parts by mass, the width of the molding condition tends to be narrow against appearance defects due to floating of glass fibers etc. and mold transfer defects, and if it exceeds 30 parts by mass, the appearance of the molded article becomes good. It is not preferable because the cycle becomes long.
- the polybutylene terephthalate resin (B) in the present invention is not particularly limited, but when the total acid component constituting is 100 mol% and the total glycol component constituting is 100 mol%, terephthalic acid and 1,4-butanediol The total amount is preferably a resin exceeding 190 mol%, and the copolymerizable component is the same as the copolymerized polybutylene terephthalate resin (A).
- a homopolymer comprising terephthalic acid and 1,4-butanediol is preferably used.
- the molecular weight of the polybutylene terephthalate resin (B) is determined by dissolving a reduced viscosity (0.1 g sample in 25 ml of a mixed solvent of phenol / tetrachloroethane (weight ratio 6/4)) and measuring at 30 ° C. using a Ubbelohde viscosity tube. Is preferably in the range of 0.5 to 0.7 dl / g, more preferably in the range of 0.6 to 0.7 dl / g. If it is less than 0.5 dl / g, the toughness of the resin is greatly reduced, and if the fluidity is too high, burrs tend to be generated.
- the content of the polybutylene terephthalate resin (B) is 1 to 5 parts by mass, preferably 2 to 5 parts by mass, and more preferably 3 to 5 parts by mass.
- the polycarbonate in the polycarbonate resin (C) used in the present invention is a solvent method, that is, a known acid acceptor in a solvent such as methylene chloride, and a carbonate such as dihydric phenol and phosgene in the presence of a molecular weight modifier. It can be produced by the reaction with a precursor or the transesterification reaction of a dihydric phenol with a carbonate precursor such as diphenyl carbonate.
- preferable dihydric phenols include bisphenols, and in particular, 2,2-bis (4-hydroxyphenyl) propane, that is, bisphenol A.
- what substituted some or all of bisphenol A by the other dihydric phenol may be used.
- dihydric phenols other than bisphenol A examples include compounds such as hydroquinone, 4,4-dihydroxydiphenyl, bis (4-hydroxyphenyl) alkane, bis (3,5-dibromo-4-hydroxyphenyl) propane, bis (3 Mention may be made of halogenated bisphenols such as 5, 5-dichloro-4-hydroxyphenyl) propane.
- the polycarbonate may be a homopolymer using one dihydric phenol or a copolymer using two or more.
- the polycarbonate resin (C) a resin consisting only of polycarbonate is preferably used.
- the polycarbonate resin (C) may be a resin obtained by copolymerizing a component (for example, a polyester component) other than polycarbonate within a range (20% by mass or less) which does not impair the effect of the present invention.
- Polycarbonate-based resin used in the present invention (C) is preferably particularly high fluidity, 300 ° C., melt volume rate measured at a load 1.2 kg (unit: cm 3 / 10min) thereof is preferably 20 to 100 More preferably, it is 25 to 95, more preferably 30 to 90. If it is less than 20, the flowability may be significantly reduced, the strand stability may be reduced, or the formability may be deteriorated. If the melt volume rate is more than 100, if the molecular weight is too low, the physical properties may be degraded, and problems such as gas generation due to decomposition may easily occur.
- the content of the polycarbonate resin (C) used in the present invention is 1 to 10 parts by mass, preferably 2 to 8 parts by mass. If the amount is less than 1 part by mass, the improvement effect on the textured appearance is small, and if it exceeds 10 parts by mass, deterioration of the molding cycle due to a decrease in crystallinity and appearance defects due to a decrease in fluidity tend to occur. .
- the glass fiber reinforcing material (D) in the present invention is a milled fiber which is a short glass fiber having an average fiber diameter of about 4 to 20 ⁇ m and a cut length of about 30 to 150 ⁇ m, and an average fiber diameter of about 1 to 20 ⁇ m.
- the chopped strand-like one cut into about 20 mm can be preferably used.
- As a cross-sectional shape of glass fiber glass fiber of circular cross section and non-circular cross section can be used.
- an average fiber diameter is about 4 to 20 ⁇ m and a cut length is about 2 to 6 mm, and a very general one can be used.
- the glass fibers having a non-circular cross section include those having a substantially oval shape, a substantially oval shape, or a substantially wedge shape in a cross section perpendicular to the length direction of the fiber length, and the flatness is 1.3 to 8 Is preferred.
- the flatness is assumed to be a rectangle having a minimum area circumscribing the cross section perpendicular to the longitudinal direction of the glass fiber, and the length of the long side of this rectangle is the long diameter, and the length of the short side is the short diameter.
- Ratio of major axis / minor axis when The thickness of the glass fiber is not particularly limited, but one having a short diameter of 1 to 20 ⁇ m and a long diameter of about 2 to 100 ⁇ m can be used.
- the glass fiber reinforcing material (D) has a flat cross section glass fiber (D1) in which the average value of the ratio of the major axis to the minor axis (major axis / minor axis) of the fiber cross section is 1.3 to 8 from the viewpoint of appearance and elastic modulus From the viewpoint of suppression of glass floating, glass short fiber milled fibers (D2) with a fiber length of 30 to 150 ⁇ m are preferable.
- the glass fiber-based reinforcing material (D) it is more preferable to use a flat cross-section glass fiber (D1) as an essential component.
- a further preferred embodiment is to use a flat cross-section glass fiber (D1) and a short glass fiber milled fiber (D2) in combination.
- the total amount of the glass fiber reinforcing material (D) is 100% by mass
- the flat cross section glass fiber (D1) is more preferably 65 to 90% by mass
- the short glass fiber milled fiber (D2) is preferably 10 to 35% by mass.
- the average fiber diameter and the average fiber length of the glass fibers can be measured by electron microscope observation.
- these glass fibers those which have been previously treated with a conventionally known coupling agent such as organosilane compounds, organotitanium compounds, organoborane compounds and epoxy compounds can be preferably used.
- an inorganic reinforcing material other than the above-mentioned glass fiber can be used in combination depending on the purpose and in a range not to impair the characteristics.
- mica, wollastonite, needle-like wollastonite, glass flakes, glass beads, etc. which are generally commercially available, may be mentioned, and these are generally treated with known coupling agents. Even things can be used without problems.
- the amount of the glass fiber and the other inorganic reinforcing material combined is a glass fiber system
- a material that exerts a large nucleating agent effect is a temperature-falling crystallization temperature (TC2) range of the material specified in the present invention even if a small amount is added. Is not preferable because it
- the content of the glass fiber-based reinforcing material (D) in the present invention is 60 to 70 parts by mass, preferably 62 to 65 parts by mass from the viewpoint of rigidity and strength.
- the total amount of the glass fiber reinforcing material (D) is 100% by mass, 60 to 100% by mass of flat cross section glass fiber (D1), glass short fiber milled fiber ( D2) By setting the content to 0 to 40% by mass, it is possible to obtain a good appearance while having high mechanical properties.
- the transesterification inhibitor (E) used by this invention is a stabilizer which prevents the transesterification of polyester-based resin as the name.
- transesterification has occurred not a little due to the addition of heat history, regardless of how appropriate the conditions at the time of production are made. If the degree becomes very large, the desired characteristics can not be obtained by alloying.
- transesterification of polybutylene terephthalate and polycarbonate often occurs, and in this case, the crystallinity of polybutylene terephthalate is greatly reduced, which is not preferable.
- transesterification between the polybutylene terephthalate resin (B) and the polycarbonate resin (C) is particularly prevented, whereby appropriate crystallinity can be maintained.
- the transesterification inhibitor (E) a phosphorus-based compound having a catalyst-deactivating effect of a polyester-based resin can be preferably used, and for example, "ADEKA STAB AX-71" manufactured by ADEKA CO., LTD. Can be used.
- the addition amount of the transesterification inhibitor (E) used in the present invention is preferably 0.05 to 2 parts by mass, more preferably 0.05 to 1 parts by mass, and still more preferably 0.1 to 0.5 parts by mass. . If the amount is less than 0.05 parts by mass, the desired transesterification preventing performance is not exhibited in many cases, and even if it is added in excess of 2 parts by mass, the improvement of the effect is not recognized so much, conversely, a factor to increase gas etc. It may be
- the inorganic reinforced thermoplastic polyester resin composition of the present invention contains 60 to 70 parts by mass of the glass fiber reinforcing material (D), it bends in a molded article obtained by injection molding the inorganic reinforced thermoplastic polyester resin composition. It is possible that the modulus of elasticity exceeds 20 GPa. The higher the flexural modulus (in the range where a good appearance can be maintained), the better, and it is preferably 23 GPa or more. In the inorganic reinforced thermoplastic polyester resin composition of the present invention, the upper limit of the flexural modulus is about 30 GPa.
- the inorganic reinforced thermoplastic polyester resin composition of the present invention is characterized in that this value is in the range of 160 ° C. or more and less than 180 ° C., where TC is a temperature-falling crystallization temperature determined by a differential scanning calorimeter (DSC).
- TC is a temperature-falling crystallization temperature determined by a differential scanning calorimeter (DSC).
- DSC differential scanning calorimeter
- the above TC2 is a differential scanning calorimeter (DSC)
- the temperature is raised to 300 ° C. at a temperature rising rate of 20 ° C./min under a nitrogen stream, and maintained at that temperature for 5 minutes, then 10 ° C./min
- the top temperature of the crystallization peak of the thermogram obtained by decreasing the temperature to 100.degree.
- TC2 is 180 ° C.
- the crystallization speed of the polyester resin composition is increased, and crystallization in the mold occurs quickly, so that the injection pressure propagation speed tends to decrease particularly in the composition containing a large amount of inorganic reinforcement.
- so-called glass floating or the like occurs in which the inorganic reinforcing material such as glass fiber is noticeable on the surface of the molded article due to the insufficient adhesion between the injection product and the mold and the crystallization shrinkage. Will be worse.
- the inorganic reinforced thermoplastic polyester resin composition of the present invention is adjusted to an optimum TC2 in view of the concerns at the time of molding, a good appearance and molding can be obtained even when the mold temperature is 100 ° C. or less. You can get sex.
- the TC2 can be adjusted by adjusting the content of the copolymerized polybutylene terephthalate resin (A) and the polybutylene terephthalate resin (B), and these components greatly affect the shrinkage ratio, releasability, etc.
- the glass fiber-based reinforcing material (F) is contained in an amount of more than 60% by mass in 100% by mass of the inorganic reinforced thermoplastic polyester resin composition.
- the compounding effect of the polybutylene terephthalate resin (A) makes it possible to obtain a good appearance with a wide range of molding conditions.
- the inorganic reinforced thermoplastic polyester resin composition of the present invention when molding is performed at a mold temperature of about 90 ° C. using the inorganic reinforced thermoplastic polyester resin composition of the present invention, it is possible to obtain a good surface appearance under a wide range of injection speeds and a wide range of molding conditions. It is possible to obtain a molded article having a uniform appearance without squeezing and having a very jet-black feeling with respect to the applied mold.
- various well-known additives can be contained in the inorganic reinforced thermoplastic polyester resin composition of this invention in the range which does not impair the characteristic as this invention as needed.
- known additives include colorants such as pigments, release agents, heat stabilizers, antioxidants, ultraviolet absorbers, light stabilizers, plasticizers, modifiers, antistatic agents, flame retardants, dyes and the like. It can be mentioned.
- These various additives can be contained up to 5% by mass in total when the inorganic reinforced thermoplastic polyester resin composition is 100% by mass. That is, the total of (A), (B), (C), (D) and (E) is preferably 95 to 100% by mass in 100% by mass of the inorganic reinforced thermoplastic polyester resin composition.
- a long chain fatty acid or its ester or metal salt, an amide based compound, polyethylene wax, silicone, polyethylene oxide and the like can be mentioned.
- the long chain fatty acid preferably has 12 or more carbon atoms in particular, and examples thereof include stearic acid, 12-hydroxystearic acid, behenic acid, montanic acid, etc. Partial or whole carboxylic acid is esterified with monoglycol or polyglycol Or a metal salt may be formed.
- the amide compounds include ethylene bisterephthalamide, methylene bisstearylamide and the like. These release agents may be used alone or as a mixture.
- the method for producing the inorganic reinforced thermoplastic polyester resin composition of the present invention can be produced by mixing the above-mentioned respective components and, if necessary, various stabilizers, pigments and the like, and melt-kneading them.
- melt-kneading method any method known to those skilled in the art can be used, and a single screw extruder, a twin screw extruder, a pressure kneader, a Banbury mixer, etc. can be used. Above all, it is preferable to use a twin-screw extruder.
- the cylinder temperature is 240 to 290 ° C.
- the kneading time is 2 to 15 minutes.
- the present invention will be more specifically described by way of examples, but the present invention is not limited to these examples.
- the measured value described in the Example is measured by the following method.
- Glass fiber reinforcement (D) fiber diameter, fiber length measured by electron microscopy
- D-1 "CSG 3 PL 830 S” manufactured by Nittobo Co., Ltd., flat cross section, ratio of major axis to minor axis: 2 (breadth 10 ⁇ m, major diameter 20 ⁇ m), average fiber length 3 mm (D-2) "EFH-100-31” manufactured by Central Glass Fibers Co., Ltd., milled fiber (silane treated), average fiber length 100 ⁇ m, average fiber diameter 11 ⁇ m (D-3) "T-120H” manufactured by Nippon Electric Glass Co., Ltd., circular cross section, average fiber length 3 mm, average fiber diameter 11 ⁇ m
- the inorganic reinforced polyester resin compositions of Examples and Comparative Examples were weighed according to the mixing ratio (parts by mass) of the above raw materials shown in Table 1, and cylinder temperature 270 ° C. with a 35 ⁇ twin screw extruder (manufactured by Toshiba Machine Co., Ltd.) It melt-kneaded at 200 rpm of screw rotation speed.
- Raw materials other than the reinforcing material were fed from the hopper to the twin screw extruder, and the reinforcing material was fed from the vent port by side feed (in the case of using two or more kinds of reinforcing materials, they were fed from separate side feeds).
- the pellet of the obtained inorganic reinforced polyester resin composition was molded into various evaluation samples with an injection molding machine. The evaluation results are shown in Table 1.
- a molded article having high strength, high rigidity (bending elastic modulus of more than 20 GPa), and a good surface appearance can be stably obtained in a wide molding condition width, thus contributing to the industry. It is large.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
The present invention is an inorganic reinforced thermoplastic polyester resin composition that contains (A) 20-30 parts by mass of a copolymerized polybutylene terephthalate resin, (B) 1-5 parts by mass of a polybutylene terephthalate resin, (C) 1-10 parts by mass of a polycarbonate resin, (D) 60-70 parts by mass of a glass fiber reinforcing material, and (E) 0.05-2 parts by mass of a transesterification inhibitor, the total of (A)-(E) being 100 parts by mass, and the inorganic reinforced thermoplastic polyester resin composition stably yielding, under a broad range of molding conditions, molded articles having high rigidity (flexural modulus exceeding 20 GPa), high strength, few external defects such as floating of the inorganic reinforcing material, and an embossed external appearance free of unevenness.
Description
本発明は、熱可塑性ポリエステル樹脂とガラス繊維等の無機強化材を含有する無機強化ポリエステル樹脂組成物に関する。詳しくは、高剛性、高強度でありながら成形品の無機強化材の浮き等による外観不良が少なく、かつムラのない均一なシボ外観や鏡面外観を有する成形品を、広い条件幅で得ることができる無機強化ポリエステル樹脂組成物に関する。
The present invention relates to an inorganic reinforced polyester resin composition containing a thermoplastic polyester resin and an inorganic reinforcing material such as glass fiber. Specifically, it is possible to obtain a molded product having high rigidity, high strength, and a small appearance defect due to the floating of the inorganic reinforcing material of the molded product and having a uniform textured and specular appearance without unevenness under a wide condition width. Inorganic reinforced polyester resin composition
一般にポリエステル樹脂は、機械的特性、耐熱性、耐薬品性等に優れ、自動車部品、電気・電子部品、家庭雑貨品等に幅広く使用されている。中でもガラス繊維等の無機強化材で強化されたポリエステル樹脂組成物は、剛性、強度及び耐熱性が飛躍的に向上し、特に剛性に関しては無機強化材の添加量に応じて向上することが知られている。
In general, polyester resins are excellent in mechanical properties, heat resistance, chemical resistance and the like, and are widely used in automobile parts, electric / electronic parts, household goods and the like. Among them, polyester resin compositions reinforced with an inorganic reinforcing material such as glass fiber are known to dramatically improve the rigidity, strength and heat resistance, and in particular, the rigidity improves according to the amount of the inorganic reinforcing material added. ing.
しかしながら、ガラス繊維等の無機強化材の添加量が多くなると、ガラス繊維等の無機強化材が成形品の表面に浮き出しやすくなり、表面光沢が望まれる成形品においては、表面光沢低下が、艶消し表面の成形品においては、シボ外観不良が問題となる場合がある。
特にポリブチレンテレフタレートのような結晶化速度が速いポリエステル樹脂は、成形時の結晶化に伴い、金型への転写性が悪いため、満足する外観を得ることは非常に困難である。 However, when the addition amount of the inorganic reinforcing material such as glass fiber is increased, the inorganic reinforcing material such as glass fiber is easily floated to the surface of the molded product, and in the molded product where the surface gloss is desired, the surface gloss is lowered. In the case of a molded article on the surface, defective embossing may be a problem.
In particular, polyester resins such as polybutylene terephthalate, which have a high crystallization rate, have a poor transferability to the mold as the crystallization during molding, and it is very difficult to obtain a satisfactory appearance.
特にポリブチレンテレフタレートのような結晶化速度が速いポリエステル樹脂は、成形時の結晶化に伴い、金型への転写性が悪いため、満足する外観を得ることは非常に困難である。 However, when the addition amount of the inorganic reinforcing material such as glass fiber is increased, the inorganic reinforcing material such as glass fiber is easily floated to the surface of the molded product, and in the molded product where the surface gloss is desired, the surface gloss is lowered. In the case of a molded article on the surface, defective embossing may be a problem.
In particular, polyester resins such as polybutylene terephthalate, which have a high crystallization rate, have a poor transferability to the mold as the crystallization during molding, and it is very difficult to obtain a satisfactory appearance.
一方、良好なシボ外観を得る方法として、ポリエステル樹脂に、アクリル系エステルゴム状重合体にヒドロキシ基を含有するビニル重合体とをグラフトした共重合体をブレンドする方法が提案されている(例えば特許文献1、2)。ゴムを含むグラフト重合体とポリエステル樹脂とは単純にブレンドするだけでは良好に分散しないので、シボ転写性が一様に悪くなるシボムラの問題がある。特許文献1、2の方法は、このシボムラ抑制には効果があるものの、これからなる成形品は機械的特性、流動性が低くなってしまう問題がある。また、イソフタル酸変性ポリブチレンテレフタレートやポリカーボネート樹脂を利用する方法(例えば特許文献3、4)が提案されているが、特許文献3では、高い機械的強度や高剛性を得るために充填量を増量していくと外観が損なわれる不具合があり、特許文献4では、イソフタル酸変性ポリブチレンテレフタレートやポリカーボネート樹脂の配合量が多量であることが必要であるためか成形安定性や成形サイクルの点で満足できるものではなかった。
これらの欠点を改善したものとして、特許文献5が提案されたが、高剛性が要求される用途においては剛性が不足し、剛性を高めようと強化材を増量すると外観が低下する、さらには成形条件の幅が非常に狭く安定して良品が得にくい等の欠点が認められ、改善が求められていた。 On the other hand, a method of blending a copolymer obtained by grafting an acrylic ester rubber-like polymer and a hydroxyl group-containing vinyl polymer to a polyester resin is proposed as a method of obtaining a good grained appearance (for example, a patent) Documents 1 and 2). Since the graft polymer containing rubber and the polyester resin are not well dispersed by simply blending them, there is a problem of squeeze unevenness in which the emboss transferability is uniformly deteriorated. Although the methods of Patent Literatures 1 and 2 are effective for suppressing squeeze unevenness, there is a problem that the resulting molded article has low mechanical properties and fluidity. In addition, although methods using isophthalic acid-modified polybutylene terephthalate or polycarbonate resin (for example, Patent Documents 3 and 4) have been proposed, Patent Document 3 increases the filling amount to obtain high mechanical strength and high rigidity. There is a problem that the appearance is lost when going on, and in Patent Document 4, the compounding amount of isophthalic acid-modified polybutylene terephthalate and polycarbonate resin needs to be large, so it is satisfactory in terms of molding stability and molding cycle. It was not possible.
Although patent document 5 was proposed as what improved these fault, in the application where high rigidity is required, rigidity is insufficient, and if it strengthens in order to increase rigidity, the amount of reinforcements will decrease in appearance, furthermore, molding There has been a drawback that the range of conditions is very narrow and stable, and it is difficult to obtain a good product.
これらの欠点を改善したものとして、特許文献5が提案されたが、高剛性が要求される用途においては剛性が不足し、剛性を高めようと強化材を増量すると外観が低下する、さらには成形条件の幅が非常に狭く安定して良品が得にくい等の欠点が認められ、改善が求められていた。 On the other hand, a method of blending a copolymer obtained by grafting an acrylic ester rubber-like polymer and a hydroxyl group-containing vinyl polymer to a polyester resin is proposed as a method of obtaining a good grained appearance (for example, a patent) Documents 1 and 2). Since the graft polymer containing rubber and the polyester resin are not well dispersed by simply blending them, there is a problem of squeeze unevenness in which the emboss transferability is uniformly deteriorated. Although the methods of Patent Literatures 1 and 2 are effective for suppressing squeeze unevenness, there is a problem that the resulting molded article has low mechanical properties and fluidity. In addition, although methods using isophthalic acid-modified polybutylene terephthalate or polycarbonate resin (for example, Patent Documents 3 and 4) have been proposed, Patent Document 3 increases the filling amount to obtain high mechanical strength and high rigidity. There is a problem that the appearance is lost when going on, and in Patent Document 4, the compounding amount of isophthalic acid-modified polybutylene terephthalate and polycarbonate resin needs to be large, so it is satisfactory in terms of molding stability and molding cycle. It was not possible.
Although patent document 5 was proposed as what improved these fault, in the application where high rigidity is required, rigidity is insufficient, and if it strengthens in order to increase rigidity, the amount of reinforcements will decrease in appearance, furthermore, molding There has been a drawback that the range of conditions is very narrow and stable, and it is difficult to obtain a good product.
近年、成形品の薄肉化・長尺化が進んでおり、さらなる高剛性化(曲げ弾性率が20GPaを超える)が求められている。また外観はこれまでと同等以上の品質が求められており、これらの品質バランスを達成することが非常に重要な課題であった。また、良外観を得るための成形条件幅が極端に狭い状態では様々な形状が存在する実際の生産に対しては使いにくいため、広い条件幅で良外観を得ることができる、使いやすい材料が当然ながら求められている。
In recent years, thinning and lengthening of molded articles are in progress, and a further increase in rigidity (bending elastic modulus exceeding 20 GPa) is required. Also, the appearance is required to have the same or better quality as ever, and achieving these quality balances has been a very important issue. In addition, since it is difficult to use for actual production where various shapes exist when the molding condition width for obtaining a good appearance is extremely narrow, it is an easy-to-use material that can obtain a good appearance under a wide condition width. Naturally it is sought.
本発明は、高剛性(曲げ弾性率が20GPaを超える)、高強度でありながら成形品の無機強化材の浮き等による外観不良及びソリ変形が少なく、かつムラのない均一なシボ外観を有する成形品を得ることができ、さらには非常に広い成形条件幅を有する、無機強化ポリエステル樹脂組成物を提供することを課題とする。
The present invention provides a molded product having high rigidity (bending elastic modulus of more than 20 GPa) and high strength, and having a uniform textured appearance with little unevenness in appearance and warp deformation due to floating of the inorganic reinforcing material of the molded product and the like. It is an object of the present invention to provide an inorganic reinforced polyester resin composition which can be obtained and which has a very wide range of molding conditions.
本発明者らは、上記課題を解決するためにポリエステル系樹脂組成物の構成と特性を鋭意検討した結果、特定の樹脂を適正量含有し、各成分の比率を適正に調整することにより上記課題を達成できることを見出し、本発明を完成させた。
As a result of intensive studies on the constitution and characteristics of the polyester-based resin composition in order to solve the above problems, the present inventors contain an appropriate amount of a specific resin and appropriately adjust the ratio of each component. It has been found that the present invention can be achieved.
すなわち、本発明は以下の構成を有するものである。
[1] 共重合ポリブチレンテレフタレート樹脂(A)20~30質量部、ポリブチレンテレフタレート樹脂(B)1~5質量部、ポリカーボネート系樹脂(C)1~10質量部、ガラス繊維系強化材(D)60~70質量部及びエステル交換防止剤(E)0.05~2質量部を含有し、(A)~(E)の合計が100質量部である無機強化熱可塑性ポリステル樹脂組成物であって、下記要件(1)及び(2)を満たすことを特徴とする無機強化熱可塑性ポリエステル樹脂組成物。
(1)無機強化熱可塑性ポリステル樹脂組成物を射出成形して得られる成形品の曲げ弾性率が20GPaを超える。
(2)無機強化熱可塑性ポリエステル樹脂組成物の示差走査型熱量計(DSC)で求められる降温結晶化温度をTC2(℃)とするとき、160℃≦TC2<180℃の範囲にある。
[2] 共重合ポリブチレンテレフタレート樹脂(A)の共重合成分がイソフタル酸であり、その共重合量が全酸成分の10~40モル%であることを特徴とする[1]に記載の無機強化熱可塑性ポリエステル樹脂組成物。
[3] ガラス繊維系強化材(D)が、繊維断面の長径と短径の比(長径/短径)の平均値が1.3~8である扁平断面ガラス繊維(D1)、繊維長30~150μmのガラス短繊維ミルドファイバー(D2)からなる群より選ばれる1種または2種以上を含むことを特徴とする[1]または[2]に記載の無機強化熱可塑性ポリエステル樹脂組成物。
[4] [1]~[3]のいずれかに記載の無機強化熱可塑性ポリエステル樹脂組成物からなる成形品。 That is, the present invention has the following constitution.
[1] 20 to 30 parts by mass of copolymerized polybutylene terephthalate resin (A), 1 to 5 parts by mass of polybutylene terephthalate resin (B), 1 to 10 parts by mass of polycarbonate resin (C), glass fiber reinforcing material (D An inorganic reinforced thermoplastic polyester resin composition comprising 60 to 70 parts by mass and 0.05 to 2 parts by mass of a transesterification inhibitor (E), wherein the total of (A) to (E) is 100 parts by mass An inorganic reinforced thermoplastic polyester resin composition characterized by satisfying the following requirements (1) and (2).
(1) The flexural modulus of a molded article obtained by injection molding an inorganic reinforced thermoplastic polyester resin composition exceeds 20 GPa.
(2) When temperature-falling crystallization temperature calculated | required by the differential scanning calorimeter (DSC) of an inorganic reinforcement | strengthening thermoplastic polyester resin composition is set to TC2 (degreeC), it exists in the range of 160 degreeC <= TC2 <180 degreeC.
[2] The copolymerized component of the copolymerized polybutylene terephthalate resin (A) is isophthalic acid, and the copolymerized amount thereof is 10 to 40% by mole of the total acid component [1] Reinforced thermoplastic polyester resin composition.
[3] Flat-section glass fiber (D1) having a fiber fiber reinforcing material (D) having an average value of the ratio of major axis to minor axis (major axis / minor axis) of the fiber cross section of 1.3 to 8; fiber length 30 The inorganic reinforced thermoplastic polyester resin composition according to [1] or [2], comprising one or more selected from the group consisting of short glass fiber-milled fibers (D2) of ̃150 μm.
[4] A molded article comprising the inorganic reinforced thermoplastic polyester resin composition according to any one of [1] to [3].
[1] 共重合ポリブチレンテレフタレート樹脂(A)20~30質量部、ポリブチレンテレフタレート樹脂(B)1~5質量部、ポリカーボネート系樹脂(C)1~10質量部、ガラス繊維系強化材(D)60~70質量部及びエステル交換防止剤(E)0.05~2質量部を含有し、(A)~(E)の合計が100質量部である無機強化熱可塑性ポリステル樹脂組成物であって、下記要件(1)及び(2)を満たすことを特徴とする無機強化熱可塑性ポリエステル樹脂組成物。
(1)無機強化熱可塑性ポリステル樹脂組成物を射出成形して得られる成形品の曲げ弾性率が20GPaを超える。
(2)無機強化熱可塑性ポリエステル樹脂組成物の示差走査型熱量計(DSC)で求められる降温結晶化温度をTC2(℃)とするとき、160℃≦TC2<180℃の範囲にある。
[2] 共重合ポリブチレンテレフタレート樹脂(A)の共重合成分がイソフタル酸であり、その共重合量が全酸成分の10~40モル%であることを特徴とする[1]に記載の無機強化熱可塑性ポリエステル樹脂組成物。
[3] ガラス繊維系強化材(D)が、繊維断面の長径と短径の比(長径/短径)の平均値が1.3~8である扁平断面ガラス繊維(D1)、繊維長30~150μmのガラス短繊維ミルドファイバー(D2)からなる群より選ばれる1種または2種以上を含むことを特徴とする[1]または[2]に記載の無機強化熱可塑性ポリエステル樹脂組成物。
[4] [1]~[3]のいずれかに記載の無機強化熱可塑性ポリエステル樹脂組成物からなる成形品。 That is, the present invention has the following constitution.
[1] 20 to 30 parts by mass of copolymerized polybutylene terephthalate resin (A), 1 to 5 parts by mass of polybutylene terephthalate resin (B), 1 to 10 parts by mass of polycarbonate resin (C), glass fiber reinforcing material (D An inorganic reinforced thermoplastic polyester resin composition comprising 60 to 70 parts by mass and 0.05 to 2 parts by mass of a transesterification inhibitor (E), wherein the total of (A) to (E) is 100 parts by mass An inorganic reinforced thermoplastic polyester resin composition characterized by satisfying the following requirements (1) and (2).
(1) The flexural modulus of a molded article obtained by injection molding an inorganic reinforced thermoplastic polyester resin composition exceeds 20 GPa.
(2) When temperature-falling crystallization temperature calculated | required by the differential scanning calorimeter (DSC) of an inorganic reinforcement | strengthening thermoplastic polyester resin composition is set to TC2 (degreeC), it exists in the range of 160 degreeC <= TC2 <180 degreeC.
[2] The copolymerized component of the copolymerized polybutylene terephthalate resin (A) is isophthalic acid, and the copolymerized amount thereof is 10 to 40% by mole of the total acid component [1] Reinforced thermoplastic polyester resin composition.
[3] Flat-section glass fiber (D1) having a fiber fiber reinforcing material (D) having an average value of the ratio of major axis to minor axis (major axis / minor axis) of the fiber cross section of 1.3 to 8; fiber length 30 The inorganic reinforced thermoplastic polyester resin composition according to [1] or [2], comprising one or more selected from the group consisting of short glass fiber-milled fibers (D2) of ̃150 μm.
[4] A molded article comprising the inorganic reinforced thermoplastic polyester resin composition according to any one of [1] to [3].
本発明によれば、ガラス繊維系強化材が多量に配合された樹脂組成物においても、金型内での樹脂組成物の固化(結晶化)速度(TC2が代替メジャーとなる)を特定の範囲に設定することにより、成形品表面のガラス繊維系強化材の浮き出しを抑制できるため、成形品の外観を大きく改善させることができる。さらに、特定のガラス繊維系強化材を特定の範囲で含有することにより、成形サイクルの大幅な増加をもたらすことなく、高強度・高剛性でありながら良好な鏡面外観の成形品を得ることができる上に、シボのある成形品に関して、漆黒感のある低輝度(グロス)でかつシボムラのない、非常に意匠性に優れた成形品を、広い成形条件幅で作製することが可能となる。
According to the present invention, even in a resin composition containing a large amount of glass fiber reinforcing material, the solidification (crystallization) speed (TC2 becomes an alternative measure) of the resin composition in the mold is in a specific range By setting to, it is possible to suppress the embossing of the glass fiber-based reinforcing material on the surface of the molded article, it is possible to greatly improve the appearance of the molded article. Furthermore, by containing a specific glass fiber reinforcing material in a specific range, it is possible to obtain a molded article having a good mirror appearance while having high strength and high rigidity without causing a significant increase in molding cycle. In addition, with respect to molded articles having emboss, it is possible to produce a molded article with extremely excellent designability and low brightness (gloss) with no jetty and with no emboss unevenness, in a wide molding condition width.
以下、本発明を詳細に説明する。以下に説明する、無機強化熱可塑性ポリステル樹脂組成物を構成する各成分の含有量は質量部で記載し、(A)~(E)成分の合計が100質量部とした時の質量部である。
Hereinafter, the present invention will be described in detail. The content of each component constituting the inorganic reinforced thermoplastic polyester resin composition described below is described in parts by mass, and the total amount of the components (A) to (E) is 100 parts by mass. .
本発明における共重合ポリブチレンテレフタレート樹脂(A)は、本発明の樹脂組成物中の全ポリエステル樹脂中で主要成分の樹脂である。全ポリエステル樹脂中で、最も含有量が多いことが好ましい。構成する全酸成分を100モル%、構成する全グリコール成分を100モル%としたとき、1,4-ブタンジオールが80モル%以上かつ、テレフタル酸と1,4-ブタンジオールの合計が120~190モル%を占める樹脂である。共重合成分として、イソフタル酸、セバシン酸、アジピン酸、トリメリット酸、2,6-ナフタレンジカルボン酸、エチレングリコール、ジエチレングリコール、ネオペンチルグリコール、1,4-シクロへキサンジメタノール、1,2-プロパンジオール、1,3-プロパンジオール、及び2-メチル-1,3-プロパンジオールからなる群より選ばれる少なくとも1種以上を共重合成分として含むことができる。中でも共重合成分として好ましいのはイソフタル酸であり、共重合ポリブチレンテレフタレート樹脂(A)を構成する全酸成分を100モル%としたとき、イソフタル酸の共重合割合は10~40モル%が好ましく、20~40モル%がより好ましく、20~30モル%がさらに好ましい。共重合割合が10モル%未満では、金型への転写性が劣り、充分な外観が得にくい傾向があり、共重合量が40モル%を超えると、その添加量から成形サイクルの低下、離型性の低下を引き起こすことがある。
The copolymerized polybutylene terephthalate resin (A) in the present invention is a resin of the main component in all polyester resins in the resin composition of the present invention. It is preferable that the content is the highest in the entire polyester resin. Assuming that the total acid component constituting is 100 mol% and the total glycol component constituting is 100 mol%, 80 mol% or more of 1,4-butanediol and 120 to the total of terephthalic acid and 1,4-butanediol It is a resin that occupies 190 mol%. As copolymerization components, isophthalic acid, sebacic acid, adipic acid, trimellitic acid, 2,6-naphthalenedicarboxylic acid, ethylene glycol, diethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, 1,2-propane At least one selected from the group consisting of a diol, 1,3-propanediol, and 2-methyl-1,3-propanediol can be included as a copolymerization component. Among them, isophthalic acid is preferable as a copolymerization component, and when the total acid component constituting the copolymerized polybutylene terephthalate resin (A) is 100 mol%, the copolymerization ratio of isophthalic acid is preferably 10 to 40 mol%. 20 to 40 mol% is more preferable, and 20 to 30 mol% is more preferable. If the copolymerization ratio is less than 10 mol%, the transferability to the mold tends to be poor and a sufficient appearance tends to be difficult to obtain. If the copolymerization amount exceeds 40 mol%, the molding cycle decreases from the addition amount, May cause a decrease in moldability.
共重合ポリブチレンテレフタレート樹脂(A)の分子量としては、具体的な共重合組成により若干異なるが、還元粘度(0.1gのサンプルをフェノール/テトラクロロエタン(重量比6/4)の混合溶媒25mlに溶解し、ウベローデ粘度管を用いて30℃で測定)が0.4~1.5dl/gであることが好ましく、0.4~1.3dl/gがより好ましい。0.4dl/g未満ではタフネス性が低下する傾向があり、1.5dl/gを超えると流動性が低下する傾向がある。
The molecular weight of the copolymerized polybutylene terephthalate resin (A) varies slightly depending on the specific copolymer composition, but reduced viscosity (0.1 g of sample to 25 ml of mixed solvent of phenol / tetrachloroethane (weight ratio 6/4) Preferably, it is 0.4 to 1.5 dl / g, more preferably 0.4 to 1.3 dl / g, after being dissolved and measured at 30 ° C. using a Ubbelohde viscosity tube. If it is less than 0.4 dl / g, the toughness tends to decrease, and if it exceeds 1.5 dl / g, the fluidity tends to decrease.
共重合ポリブチレンテレフタレート樹脂(A)の含有量は、20~30質量部であり、好ましくは25~30質量部である。20質量部未満であると、ガラス繊維等の浮きや金型転写不良による外観不良に対する成形条件幅が狭くなる傾向にあり、30質量部を超えると、成形品の外観は良好となるものの、成形サイクルが長くなってしまうため好ましくない。
The content of the copolymerized polybutylene terephthalate resin (A) is 20 to 30 parts by mass, preferably 25 to 30 parts by mass. If the amount is less than 20 parts by mass, the width of the molding condition tends to be narrow against appearance defects due to floating of glass fibers etc. and mold transfer defects, and if it exceeds 30 parts by mass, the appearance of the molded article becomes good. It is not preferable because the cycle becomes long.
本発明におけるポリブチレンテレフタレート樹脂(B)は、特に制限されないが、構成する全酸成分を100モル%、構成する全グリコール成分を100モル%としたとき、テレフタル酸と1,4-ブタンジオールの合計が190モル%を超える樹脂であることが好ましく、共重合可能な成分としては、共重合ポリブチレンテレフタレート樹脂(A)と同様である。ポリブチレンテレフタレート樹脂(B)としては、テレフタル酸と1,4-ブタンジオールからなるホモ重合体が好ましく用いられる。
The polybutylene terephthalate resin (B) in the present invention is not particularly limited, but when the total acid component constituting is 100 mol% and the total glycol component constituting is 100 mol%, terephthalic acid and 1,4-butanediol The total amount is preferably a resin exceeding 190 mol%, and the copolymerizable component is the same as the copolymerized polybutylene terephthalate resin (A). As the polybutylene terephthalate resin (B), a homopolymer comprising terephthalic acid and 1,4-butanediol is preferably used.
ポリブチレンテレフタレート樹脂(B)の分子量としては、還元粘度(0.1gのサンプルをフェノール/テトラクロロエタン(重量比6/4)の混合溶媒25mlに溶解し、ウベローデ粘度管を用いて30℃で測定)が、0.5~0.7dl/gの範囲が好ましく、より好ましくは0.6~0.7dl/gの範囲である。0.5dl/g未満の場合は、樹脂のタフネス性が大きく低下するため、及び流動性が高すぎることによりバリが発生しやすくなる傾向がある。一方、0.7dl/gを超えると、本組成物では流動性が低下する影響でシボ成形品に対し均一な圧力がかかりにくくなるため、良好なシボ外観を得ることが困難になる(成形条件幅が狭くなる)傾向がある。
The molecular weight of the polybutylene terephthalate resin (B) is determined by dissolving a reduced viscosity (0.1 g sample in 25 ml of a mixed solvent of phenol / tetrachloroethane (weight ratio 6/4)) and measuring at 30 ° C. using a Ubbelohde viscosity tube. Is preferably in the range of 0.5 to 0.7 dl / g, more preferably in the range of 0.6 to 0.7 dl / g. If it is less than 0.5 dl / g, the toughness of the resin is greatly reduced, and if the fluidity is too high, burrs tend to be generated. On the other hand, if it exceeds 0.7 dl / g, in the present composition, it becomes difficult to apply uniform pressure to the emboss molded product due to the influence of the decrease in fluidity, and it becomes difficult to obtain a good emboss appearance (molding conditions) There is a tendency to narrow the width).
ポリブチレンテレフタレート樹脂(B)の含有量は、1~5質量部であり、好ましくは2~5質量部であり、より好ましくは3~5質量部である。この範囲内にポリブチレンテレフタレート樹脂(B)を配合することにより、ガラス繊維等の浮きによる外観不良を起こすことなく、ヒケの発生による外観不良も起こさず、さらには離型性を良好にして成形サイクルを向上させることが可能となる。
The content of the polybutylene terephthalate resin (B) is 1 to 5 parts by mass, preferably 2 to 5 parts by mass, and more preferably 3 to 5 parts by mass. By blending polybutylene terephthalate resin (B) within this range, appearance defects due to floating of glass fibers and the like are not caused, appearance defects due to the occurrence of sink marks are not caused, and further, moldability is improved and molding is performed. It is possible to improve the cycle.
本発明で用いられるポリカーボネート系樹脂(C)中のポリカーボネートは、溶剤法、すなわち、塩化メチレン等の溶剤中で公知の酸受容体、分子量調整剤の存在下、二価フェノールとホスゲンのようなカーボネート前駆体との反応または二価フェノールとジフェニルカーボネートのようなカーボネート前駆体とのエステル交換反応によって製造することができる。ここで、好ましく用いられる二価フェノールとしてはビスフェノール類があり、特に2,2-ビス(4-ヒドロキシフェニル)プロパン、つまりビスフェノールAがある。また、ビスフェノールAの一部または全部を他の二価フェノールで置換したものであっても良い。ビスフェノールA以外の二価フェノールとしては、例えばハイドロキノン、4,4-ジヒドロキシジフェニル、ビス(4-ヒドロキシフェニル)アルカンのような化合物やビス(3,5-ジブロモー4-ヒドロキシフェニル)プロパン、ビス(3,5-ジクロロー4-ヒドロキシフェニル)プロパンのようなハロゲン化ビスフェノール類をあげることができる。ポリカーボネートは、二価フェノールを1種用いたホモポリマーまたは2種以上用いたコポリマーであっても良い。ポリカーボネート系樹脂(C)は、ポリカーボネートのみからなる樹脂が好ましく用いられる。ポリカーボネート系樹脂(C)としては、本発明の効果を損なわない範囲(20質量%以下)でポリカーボネート以外の成分(例えばポリエステル成分)を共重合した樹脂であっても良い。
The polycarbonate in the polycarbonate resin (C) used in the present invention is a solvent method, that is, a known acid acceptor in a solvent such as methylene chloride, and a carbonate such as dihydric phenol and phosgene in the presence of a molecular weight modifier. It can be produced by the reaction with a precursor or the transesterification reaction of a dihydric phenol with a carbonate precursor such as diphenyl carbonate. Here, preferable dihydric phenols include bisphenols, and in particular, 2,2-bis (4-hydroxyphenyl) propane, that is, bisphenol A. Moreover, what substituted some or all of bisphenol A by the other dihydric phenol may be used. Examples of dihydric phenols other than bisphenol A include compounds such as hydroquinone, 4,4-dihydroxydiphenyl, bis (4-hydroxyphenyl) alkane, bis (3,5-dibromo-4-hydroxyphenyl) propane, bis (3 Mention may be made of halogenated bisphenols such as 5, 5-dichloro-4-hydroxyphenyl) propane. The polycarbonate may be a homopolymer using one dihydric phenol or a copolymer using two or more. As the polycarbonate resin (C), a resin consisting only of polycarbonate is preferably used. The polycarbonate resin (C) may be a resin obtained by copolymerizing a component (for example, a polyester component) other than polycarbonate within a range (20% by mass or less) which does not impair the effect of the present invention.
本発明で用いられるポリカーボネート系樹脂(C)は特に高流動性のものが好ましく、300℃、荷重1.2kgで測定したメルトボリュームレート(単位:cm3/10min)が20~100のものが好ましく用いられ、より好ましくは25~95、さらに好ましくは30~90である。20未満のものを用いると流動性の大幅な低下を招き、ストランド安定性が低下したり、成形性が悪化したりする場合がある。メルトボリュームレートが100超では、分子量が低すぎることにより物性低下を招いたり、分解によるガス発生等の問題が起こりやすくなる。
Polycarbonate-based resin used in the present invention (C) is preferably particularly high fluidity, 300 ° C., melt volume rate measured at a load 1.2 kg (unit: cm 3 / 10min) thereof is preferably 20 to 100 More preferably, it is 25 to 95, more preferably 30 to 90. If it is less than 20, the flowability may be significantly reduced, the strand stability may be reduced, or the formability may be deteriorated. If the melt volume rate is more than 100, if the molecular weight is too low, the physical properties may be degraded, and problems such as gas generation due to decomposition may easily occur.
本発明で用いられるポリカーボネート系樹脂(C)の含有量は、1~10質量部であり、好ましくは2~8質量部である。1質量部未満であると、シボ外観に対する改善効果が少なく、10質量部を超えると結晶性の低下による成形サイクルの悪化や、流動性の低下による外観不良等が発生しやすくなるため、好ましくない。
The content of the polycarbonate resin (C) used in the present invention is 1 to 10 parts by mass, preferably 2 to 8 parts by mass. If the amount is less than 1 part by mass, the improvement effect on the textured appearance is small, and if it exceeds 10 parts by mass, deterioration of the molding cycle due to a decrease in crystallinity and appearance defects due to a decrease in fluidity tend to occur. .
本発明におけるガラス繊維系強化材(D)は、平均繊維径4~20μm程度で、カット長30~150μm程度のガラス短繊維であるミルドファイバー、平均繊維径1~20μm程度で、繊維長1~20mm程度に切断されたチョップドストランド状のものが好ましく使用できる。ガラス繊維の断面形状としては、円形断面及び非円形断面のガラス繊維を用いることができる。円形断面形状のガラス繊維としては、平均繊維径が4~20μm程度、カット長が2~6mm程度であり、ごく一般的なものを使用することができる。非円形断面のガラス繊維としては、繊維長の長さ方向に対して垂直な断面において略楕円形、略長円形、略繭形であるものをも含み、偏平度が1.3~8であることが好ましい。ここで偏平度とは、ガラス繊維の長手方向に対して垂直な断面に外接する最小面積の長方形を想定し、この長方形の長辺の長さを長径とし、短辺の長さを短径としたときの、長径/短径の比である。ガラス繊維の太さは特に限定されるものではないが、短径が1~20μm、長径2~100μm程度のものを使用できる。これらのガラス繊維は1種類を単独で使用してもよく、2種類以上を併用しても良い。
ガラス繊維系強化材(D)は、外観、弾性率の観点から繊維断面の長径と短径の比(長径/短径)の平均値が1.3~8である扁平断面ガラス繊維(D1)が好ましく、ガラス浮きの抑制の観点から繊維長30~150μmのガラス短繊維ミルドファイバー(D2)が好ましい。ガラス繊維系強化材(D)としては、扁平断面ガラス繊維(D1)を必須成分として用いることがより好ましい。さらに好ましい態様は、扁平断面ガラス繊維(D1)とガラス短繊維ミルドファイバー(D2)を併用することである。この場合、ガラス繊維系強化材(D)の合計量を100質量%とすると、扁平断面ガラス繊維(D1)が60~100質量%、ガラス短繊維ミルドファイバー(D2)が0~40質量%であることが好ましく、より好ましくは扁平断面ガラス繊維(D1)が65~90質量%、ガラス短繊維ミルドファイバー(D2)が10~35質量%である。
ガラス繊維の平均繊維径、平均繊維長は電子顕微鏡観察にて測定することができる。 The glass fiber reinforcing material (D) in the present invention is a milled fiber which is a short glass fiber having an average fiber diameter of about 4 to 20 μm and a cut length of about 30 to 150 μm, and an average fiber diameter of about 1 to 20 μm. The chopped strand-like one cut into about 20 mm can be preferably used. As a cross-sectional shape of glass fiber, glass fiber of circular cross section and non-circular cross section can be used. As the glass fiber having a circular cross-sectional shape, an average fiber diameter is about 4 to 20 μm and a cut length is about 2 to 6 mm, and a very general one can be used. The glass fibers having a non-circular cross section include those having a substantially oval shape, a substantially oval shape, or a substantially wedge shape in a cross section perpendicular to the length direction of the fiber length, and the flatness is 1.3 to 8 Is preferred. Here, the flatness is assumed to be a rectangle having a minimum area circumscribing the cross section perpendicular to the longitudinal direction of the glass fiber, and the length of the long side of this rectangle is the long diameter, and the length of the short side is the short diameter. Ratio of major axis / minor axis when The thickness of the glass fiber is not particularly limited, but one having a short diameter of 1 to 20 μm and a long diameter of about 2 to 100 μm can be used. One of these glass fibers may be used alone, or two or more thereof may be used in combination.
The glass fiber reinforcing material (D) has a flat cross section glass fiber (D1) in which the average value of the ratio of the major axis to the minor axis (major axis / minor axis) of the fiber cross section is 1.3 to 8 from the viewpoint of appearance and elastic modulus From the viewpoint of suppression of glass floating, glass short fiber milled fibers (D2) with a fiber length of 30 to 150 μm are preferable. As the glass fiber-based reinforcing material (D), it is more preferable to use a flat cross-section glass fiber (D1) as an essential component. A further preferred embodiment is to use a flat cross-section glass fiber (D1) and a short glass fiber milled fiber (D2) in combination. In this case, if the total amount of the glass fiber reinforcing material (D) is 100% by mass, 60 to 100% by mass of the flat cross section glass fiber (D1) and 0 to 40% by mass of the glass short fiber milled fiber (D2) The flat cross section glass fiber (D1) is more preferably 65 to 90% by mass, and the short glass fiber milled fiber (D2) is preferably 10 to 35% by mass.
The average fiber diameter and the average fiber length of the glass fibers can be measured by electron microscope observation.
ガラス繊維系強化材(D)は、外観、弾性率の観点から繊維断面の長径と短径の比(長径/短径)の平均値が1.3~8である扁平断面ガラス繊維(D1)が好ましく、ガラス浮きの抑制の観点から繊維長30~150μmのガラス短繊維ミルドファイバー(D2)が好ましい。ガラス繊維系強化材(D)としては、扁平断面ガラス繊維(D1)を必須成分として用いることがより好ましい。さらに好ましい態様は、扁平断面ガラス繊維(D1)とガラス短繊維ミルドファイバー(D2)を併用することである。この場合、ガラス繊維系強化材(D)の合計量を100質量%とすると、扁平断面ガラス繊維(D1)が60~100質量%、ガラス短繊維ミルドファイバー(D2)が0~40質量%であることが好ましく、より好ましくは扁平断面ガラス繊維(D1)が65~90質量%、ガラス短繊維ミルドファイバー(D2)が10~35質量%である。
ガラス繊維の平均繊維径、平均繊維長は電子顕微鏡観察にて測定することができる。 The glass fiber reinforcing material (D) in the present invention is a milled fiber which is a short glass fiber having an average fiber diameter of about 4 to 20 μm and a cut length of about 30 to 150 μm, and an average fiber diameter of about 1 to 20 μm. The chopped strand-like one cut into about 20 mm can be preferably used. As a cross-sectional shape of glass fiber, glass fiber of circular cross section and non-circular cross section can be used. As the glass fiber having a circular cross-sectional shape, an average fiber diameter is about 4 to 20 μm and a cut length is about 2 to 6 mm, and a very general one can be used. The glass fibers having a non-circular cross section include those having a substantially oval shape, a substantially oval shape, or a substantially wedge shape in a cross section perpendicular to the length direction of the fiber length, and the flatness is 1.3 to 8 Is preferred. Here, the flatness is assumed to be a rectangle having a minimum area circumscribing the cross section perpendicular to the longitudinal direction of the glass fiber, and the length of the long side of this rectangle is the long diameter, and the length of the short side is the short diameter. Ratio of major axis / minor axis when The thickness of the glass fiber is not particularly limited, but one having a short diameter of 1 to 20 μm and a long diameter of about 2 to 100 μm can be used. One of these glass fibers may be used alone, or two or more thereof may be used in combination.
The glass fiber reinforcing material (D) has a flat cross section glass fiber (D1) in which the average value of the ratio of the major axis to the minor axis (major axis / minor axis) of the fiber cross section is 1.3 to 8 from the viewpoint of appearance and elastic modulus From the viewpoint of suppression of glass floating, glass short fiber milled fibers (D2) with a fiber length of 30 to 150 μm are preferable. As the glass fiber-based reinforcing material (D), it is more preferable to use a flat cross-section glass fiber (D1) as an essential component. A further preferred embodiment is to use a flat cross-section glass fiber (D1) and a short glass fiber milled fiber (D2) in combination. In this case, if the total amount of the glass fiber reinforcing material (D) is 100% by mass, 60 to 100% by mass of the flat cross section glass fiber (D1) and 0 to 40% by mass of the glass short fiber milled fiber (D2) The flat cross section glass fiber (D1) is more preferably 65 to 90% by mass, and the short glass fiber milled fiber (D2) is preferably 10 to 35% by mass.
The average fiber diameter and the average fiber length of the glass fibers can be measured by electron microscope observation.
これらのガラス繊維は、有機シラン系化合物、有機チタン系化合物、有機ボラン系化合物及びエポキシ系化合物等の、従来公知のカップリング剤で予め処理をしてあるものが好ましく使用することが出来る。
As these glass fibers, those which have been previously treated with a conventionally known coupling agent such as organosilane compounds, organotitanium compounds, organoborane compounds and epoxy compounds can be preferably used.
本発明の無機強化熱可塑性ポリエステル樹脂組成物には、目的に応じて、また特性を損なわない範囲において、上記のガラス繊維以外の無機強化材を併用することができる。具体的には、一般的に市販されている、マイカ、ワラストナイト、針状ワラストナイト、ガラスフレーク、ガラスビーズ等が挙げられ、これらは一般的に公知のカップリング剤で処理されているものでも問題なく使用できる。ガラス繊維以外の無機強化材を併用した場合、本発明の無機強化熱可塑性ポリエステル樹脂組成物の各成分の含有量を考える際、ガラス繊維とそれ以外の無機強化材を合わせた量をガラス繊維系強化材(D)の含有量とする。ガラス繊維とそれ以外の無機強化材を併用する場合、ガラス繊維系強化材(D)中、ガラス繊維は50質量%以上使用することが好ましく、70質量%以上使用することがより好ましく、80質量%以上使用することがさらに好ましい。ただし、無機強化材としては、大きな核剤効果を発現する(たとえばタルクのような)ものは、少量の添加であっても本発明において規定している材料の降温結晶化温度(TC2)の範囲を超えてくるため、好ましくない。
In the inorganic reinforced thermoplastic polyester resin composition of the present invention, an inorganic reinforcing material other than the above-mentioned glass fiber can be used in combination depending on the purpose and in a range not to impair the characteristics. Specifically, mica, wollastonite, needle-like wollastonite, glass flakes, glass beads, etc., which are generally commercially available, may be mentioned, and these are generally treated with known coupling agents. Even things can be used without problems. When an inorganic reinforcing material other than glass fiber is used in combination, when considering the content of each component of the inorganic reinforced thermoplastic polyester resin composition of the present invention, the amount of the glass fiber and the other inorganic reinforcing material combined is a glass fiber system Let it be the content of reinforcement (D). When using together glass fiber and the inorganic reinforcing material other than that, it is preferable to use 50 mass% or more in a glass fiber type | system | group reinforcing material (D), and using 70 mass% or more is more preferable, and 80 mass It is more preferable to use% or more. However, as the inorganic reinforcing material, a material that exerts a large nucleating agent effect (such as talc) is a temperature-falling crystallization temperature (TC2) range of the material specified in the present invention even if a small amount is added. Is not preferable because it
本発明におけるガラス繊維系強化材(D)の含有量は、剛性・強度の観点から60~70質量部であり、好ましくは62~65質量部である。
The content of the glass fiber-based reinforcing material (D) in the present invention is 60 to 70 parts by mass, preferably 62 to 65 parts by mass from the viewpoint of rigidity and strength.
本発明の無機強化熱可塑性ポリエステル樹脂組成物は、ガラス繊維系強化材(D)の合計量を100質量%とすると、扁平断面ガラス繊維(D1)60~100質量%、ガラス短繊維ミルドファイバー(D2)0~40質量%にすることにより、高い機械特性を持ちながら、良好な外観をも得ることができる。
In the inorganic reinforced thermoplastic polyester resin composition of the present invention, when the total amount of the glass fiber reinforcing material (D) is 100% by mass, 60 to 100% by mass of flat cross section glass fiber (D1), glass short fiber milled fiber ( D2) By setting the content to 0 to 40% by mass, it is possible to obtain a good appearance while having high mechanical properties.
本発明で用いられるエステル交換防止剤(E)とは、その名のとおり、ポリエステル系樹脂のエステル交換反応を防止する安定剤である。ポリエステル樹脂同士のアロイ等では、製造時の条件をどれほど適正化しようとしても、熱履歴が加わることによりエステル交換は少なからず発生している。その程度が非常に大きくなると、アロイにより期待する特性が得られなくなってくる。特に、ポリブチレンテレフタレートとポリカーボネートのエステル交換はよく起こるため、この場合はポリブチレンテレフタレートの結晶性が大きく低下してしまうので好ましくない。本発明では、(E)成分を添加することにより、特にポリブチレンテレフタレート樹脂(B)とポリカーボネート系樹脂(C)とのエステル交換反応が防止され、これにより適切な結晶性を保持することができる。
エステル交換防止剤(E)としては、ポリエステル系樹脂の触媒失活効果を有するリン系化合物を好ましく用いることができ、例えば、株式会社ADEKA製「アデカスタブAX-71」が使用可能である。 The transesterification inhibitor (E) used by this invention is a stabilizer which prevents the transesterification of polyester-based resin as the name. In the case of an alloy of polyester resins or the like, transesterification has occurred not a little due to the addition of heat history, regardless of how appropriate the conditions at the time of production are made. If the degree becomes very large, the desired characteristics can not be obtained by alloying. In particular, transesterification of polybutylene terephthalate and polycarbonate often occurs, and in this case, the crystallinity of polybutylene terephthalate is greatly reduced, which is not preferable. In the present invention, by the addition of the component (E), transesterification between the polybutylene terephthalate resin (B) and the polycarbonate resin (C) is particularly prevented, whereby appropriate crystallinity can be maintained. .
As the transesterification inhibitor (E), a phosphorus-based compound having a catalyst-deactivating effect of a polyester-based resin can be preferably used, and for example, "ADEKA STAB AX-71" manufactured by ADEKA CO., LTD. Can be used.
エステル交換防止剤(E)としては、ポリエステル系樹脂の触媒失活効果を有するリン系化合物を好ましく用いることができ、例えば、株式会社ADEKA製「アデカスタブAX-71」が使用可能である。 The transesterification inhibitor (E) used by this invention is a stabilizer which prevents the transesterification of polyester-based resin as the name. In the case of an alloy of polyester resins or the like, transesterification has occurred not a little due to the addition of heat history, regardless of how appropriate the conditions at the time of production are made. If the degree becomes very large, the desired characteristics can not be obtained by alloying. In particular, transesterification of polybutylene terephthalate and polycarbonate often occurs, and in this case, the crystallinity of polybutylene terephthalate is greatly reduced, which is not preferable. In the present invention, by the addition of the component (E), transesterification between the polybutylene terephthalate resin (B) and the polycarbonate resin (C) is particularly prevented, whereby appropriate crystallinity can be maintained. .
As the transesterification inhibitor (E), a phosphorus-based compound having a catalyst-deactivating effect of a polyester-based resin can be preferably used, and for example, "ADEKA STAB AX-71" manufactured by ADEKA CO., LTD. Can be used.
本発明で用いられるエステル交換防止剤(E)の添加量は、0.05~2質量部が好ましく、0.05~1質量部がより好ましく、0.1~0.5質量部がさらに好ましい。0.05質量部未満の場合は求めるエステル交換防止性能が発揮されない場合が多く、2質量部を超えて添加してもその効果の向上はあまり認められないばかりか、逆にガス等を増やす要因となる場合がある。
The addition amount of the transesterification inhibitor (E) used in the present invention is preferably 0.05 to 2 parts by mass, more preferably 0.05 to 1 parts by mass, and still more preferably 0.1 to 0.5 parts by mass. . If the amount is less than 0.05 parts by mass, the desired transesterification preventing performance is not exhibited in many cases, and even if it is added in excess of 2 parts by mass, the improvement of the effect is not recognized so much, conversely, a factor to increase gas etc. It may be
本発明の無機強化熱可塑性ポリステル樹脂組成物は、ガラス繊維系強化材(D)を60~70質量部含有するため、無機強化熱可塑性ポリステル樹脂組成物を射出成形して得られる成形品の曲げ弾性率が20GPaを超えることが可能である。(良好な外観が維持できる範囲で)曲げ弾性率は高いほどよく、好ましくは23GPa以上である。本発明の無機強化熱可塑性ポリステル樹脂組成物では、曲げ弾性率の上限は、30GPa程度である。
Since the inorganic reinforced thermoplastic polyester resin composition of the present invention contains 60 to 70 parts by mass of the glass fiber reinforcing material (D), it bends in a molded article obtained by injection molding the inorganic reinforced thermoplastic polyester resin composition. It is possible that the modulus of elasticity exceeds 20 GPa. The higher the flexural modulus (in the range where a good appearance can be maintained), the better, and it is preferably 23 GPa or more. In the inorganic reinforced thermoplastic polyester resin composition of the present invention, the upper limit of the flexural modulus is about 30 GPa.
本発明の無機強化熱可塑性ポリエステル樹脂組成物は、示差走査熱量計(DSC)で求められる降温結晶化温度をTC2とするとき、この値が160℃以上180℃未満の範囲にあることを特徴とする。なお、上記TC2とは、示差走査熱量計(DSC)を用い、窒素気流下で20℃/分の昇温速度で300℃まで昇温し、その温度で5分間保持したあと、10℃/分の速度で100℃まで降温させることにより得られるサーモグラムの結晶化ピークのトップ温度である。TC2が180℃以上になると、ポリエステル樹脂組成物の結晶化速度が速くなり金型内での結晶化が早く起こるため、特に無機強化材を多く含む組成では射出圧力の伝播速度が低下する傾向になり、射出物と金型との密着が不十分になることや結晶化収縮の影響により、ガラス繊維等の無機強化材が成形品表面で目立つ、いわゆるガラス浮き等が発生し、成形品の外観が悪くなってしまう。その場合、金型温度を120~130℃と高温にして成形品の固化を遅延させる方法が考えられるが、この方法では金型内で射出圧力が高い中心部分では表面光沢、外観が改善されるが、射出圧力が加わりにくい末端部分では、ガラス浮き等の不良が発生しやすくなるため、均一に良好な外観を得られにくい。また金型から取り出された後の成形品の温度が高くなるため、成形品のソリが大きくなってしまう。
逆に、TC2が160℃未満の場合は、結晶化速度が遅くなりすぎ、結晶化が遅いゆえに金型への張り付き等による離型不良が発生したり、突き出し時に変形が起こったりすることがある。また、成形時の圧力によりシボのより奥深くまで樹脂がはいりこむことが容易になるため、金型内の樹脂の収縮時や離型の際にシボがずれたりすることでシボの深さが不均一になりやすくなり、良好なシボ外観を得ることが困難になってくる。本発明の無機強化熱可塑性ポリエステル樹脂組成物は、これらの成形時懸念点を鑑み、最適なTC2となるよう調整を実施したものであるため、金型温度が100℃以下でも良好な外観と成形性を得ることができる。 The inorganic reinforced thermoplastic polyester resin composition of the present invention is characterized in that this value is in the range of 160 ° C. or more and less than 180 ° C., where TC is a temperature-falling crystallization temperature determined by a differential scanning calorimeter (DSC). Do. The above TC2 is a differential scanning calorimeter (DSC), and the temperature is raised to 300 ° C. at a temperature rising rate of 20 ° C./min under a nitrogen stream, and maintained at that temperature for 5 minutes, then 10 ° C./min The top temperature of the crystallization peak of the thermogram obtained by decreasing the temperature to 100.degree. When TC2 is 180 ° C. or higher, the crystallization speed of the polyester resin composition is increased, and crystallization in the mold occurs quickly, so that the injection pressure propagation speed tends to decrease particularly in the composition containing a large amount of inorganic reinforcement. As a result, so-called glass floating or the like occurs in which the inorganic reinforcing material such as glass fiber is noticeable on the surface of the molded article due to the insufficient adhesion between the injection product and the mold and the crystallization shrinkage. Will be worse. In such a case, it is conceivable to make the mold temperature as high as 120 to 130 ° C. to delay the solidification of the molded product, but this method improves the surface gloss and appearance at the central portion where the injection pressure is high in the mold. However, in the end portion where injection pressure is not easily applied, defects such as glass floating are likely to occur, so it is difficult to obtain a uniform good appearance. In addition, since the temperature of the molded product after being taken out of the mold becomes high, the warpage of the molded product becomes large.
On the other hand, when TC2 is less than 160 ° C., the crystallization rate is too slow, and the crystallization may be slow, so that mold release failure may occur due to sticking to the mold, or deformation may occur during extrusion. . In addition, since it is easy for the resin to be embedded deep into the emboss by the pressure at the time of molding, the emboss depth is uneven due to the emboss shifting when the resin in the mold shrinks or is released. It tends to be uniform, and it becomes difficult to obtain a good textured appearance. Since the inorganic reinforced thermoplastic polyester resin composition of the present invention is adjusted to an optimum TC2 in view of the concerns at the time of molding, a good appearance and molding can be obtained even when the mold temperature is 100 ° C. or less. You can get sex.
逆に、TC2が160℃未満の場合は、結晶化速度が遅くなりすぎ、結晶化が遅いゆえに金型への張り付き等による離型不良が発生したり、突き出し時に変形が起こったりすることがある。また、成形時の圧力によりシボのより奥深くまで樹脂がはいりこむことが容易になるため、金型内の樹脂の収縮時や離型の際にシボがずれたりすることでシボの深さが不均一になりやすくなり、良好なシボ外観を得ることが困難になってくる。本発明の無機強化熱可塑性ポリエステル樹脂組成物は、これらの成形時懸念点を鑑み、最適なTC2となるよう調整を実施したものであるため、金型温度が100℃以下でも良好な外観と成形性を得ることができる。 The inorganic reinforced thermoplastic polyester resin composition of the present invention is characterized in that this value is in the range of 160 ° C. or more and less than 180 ° C., where TC is a temperature-falling crystallization temperature determined by a differential scanning calorimeter (DSC). Do. The above TC2 is a differential scanning calorimeter (DSC), and the temperature is raised to 300 ° C. at a temperature rising rate of 20 ° C./min under a nitrogen stream, and maintained at that temperature for 5 minutes, then 10 ° C./min The top temperature of the crystallization peak of the thermogram obtained by decreasing the temperature to 100.degree. When TC2 is 180 ° C. or higher, the crystallization speed of the polyester resin composition is increased, and crystallization in the mold occurs quickly, so that the injection pressure propagation speed tends to decrease particularly in the composition containing a large amount of inorganic reinforcement. As a result, so-called glass floating or the like occurs in which the inorganic reinforcing material such as glass fiber is noticeable on the surface of the molded article due to the insufficient adhesion between the injection product and the mold and the crystallization shrinkage. Will be worse. In such a case, it is conceivable to make the mold temperature as high as 120 to 130 ° C. to delay the solidification of the molded product, but this method improves the surface gloss and appearance at the central portion where the injection pressure is high in the mold. However, in the end portion where injection pressure is not easily applied, defects such as glass floating are likely to occur, so it is difficult to obtain a uniform good appearance. In addition, since the temperature of the molded product after being taken out of the mold becomes high, the warpage of the molded product becomes large.
On the other hand, when TC2 is less than 160 ° C., the crystallization rate is too slow, and the crystallization may be slow, so that mold release failure may occur due to sticking to the mold, or deformation may occur during extrusion. . In addition, since it is easy for the resin to be embedded deep into the emboss by the pressure at the time of molding, the emboss depth is uneven due to the emboss shifting when the resin in the mold shrinks or is released. It tends to be uniform, and it becomes difficult to obtain a good textured appearance. Since the inorganic reinforced thermoplastic polyester resin composition of the present invention is adjusted to an optimum TC2 in view of the concerns at the time of molding, a good appearance and molding can be obtained even when the mold temperature is 100 ° C. or less. You can get sex.
TC2の調整は共重合ポリブチレンテレフタレート樹脂(A)とポリブチレンテレフタレート樹脂(B)の含有量の調整によって可能であり、これらの成分は収縮率や離型性等にも大きく影響するため、これらの調整でTC2を狙いの範囲にすることにより、良好な外観が得られる成形条件幅が極めて広く、他特性に悪影響を与えずに成形が可能となることを見出した。本発明によれば、無機強化熱可塑性ポリエステル樹脂組成物100質量%中に、ガラス繊維系強化材(F)が60質量%を超えて含まれる、ガラス浮きが極めて生じやすい組成においても、共重合ポリブチレンテレフタレート樹脂(A)の配合効果により広い成形条件幅で良好な外観を得ることができる。
The TC2 can be adjusted by adjusting the content of the copolymerized polybutylene terephthalate resin (A) and the polybutylene terephthalate resin (B), and these components greatly affect the shrinkage ratio, releasability, etc. By making TC2 into the aim range by adjustment of, it discovered that the shaping | molding condition width | variety which can obtain a favorable external appearance was very wide, and shaping | molding becomes possible, without exerting a bad influence on other characteristics. According to the present invention, even in a composition in which the glass fiber-based reinforcing material (F) is contained in an amount of more than 60% by mass in 100% by mass of the inorganic reinforced thermoplastic polyester resin composition The compounding effect of the polybutylene terephthalate resin (A) makes it possible to obtain a good appearance with a wide range of molding conditions.
したがって、本発明の無機強化熱可塑性ポリエステル樹脂組成物を用いて、金型温度90℃程度で成形すると、幅広い射出速度、幅広い成形条件で良好な表面外観を得ることが可能であり、特にシボ加工の施した金型に対して、非常に漆黒感のある、シボムラのない均一な外観を有した成形品を得ることができる。
Therefore, when molding is performed at a mold temperature of about 90 ° C. using the inorganic reinforced thermoplastic polyester resin composition of the present invention, it is possible to obtain a good surface appearance under a wide range of injection speeds and a wide range of molding conditions. It is possible to obtain a molded article having a uniform appearance without squeezing and having a very jet-black feeling with respect to the applied mold.
その他、本発明の無機強化熱可塑性ポリエステル樹脂組成物には、必要に応じて、本発明としての特性を損なわない範囲において、公知の各種添加剤を含有させることができる。公知の添加剤としては、例えば顔料等の着色剤、離型剤、耐熱安定剤、酸化防止剤、紫外線吸収剤、光安定剤、可塑剤、変性剤、帯電防止剤、難燃剤、染料等が挙げられる。これら各種添加剤は、無機強化熱可塑性ポリエステル樹脂組成物を100質量%とした時、合計で5質量%まで含有させることができる。つまり、無機強化熱可塑性ポリエステル樹脂組成物100質量%中、前記(A)、(B)、(C)、(D)、及び(E)の合計は95~100質量%であることが好ましい。
In addition, various well-known additives can be contained in the inorganic reinforced thermoplastic polyester resin composition of this invention in the range which does not impair the characteristic as this invention as needed. Examples of known additives include colorants such as pigments, release agents, heat stabilizers, antioxidants, ultraviolet absorbers, light stabilizers, plasticizers, modifiers, antistatic agents, flame retardants, dyes and the like. It can be mentioned. These various additives can be contained up to 5% by mass in total when the inorganic reinforced thermoplastic polyester resin composition is 100% by mass. That is, the total of (A), (B), (C), (D) and (E) is preferably 95 to 100% by mass in 100% by mass of the inorganic reinforced thermoplastic polyester resin composition.
離型剤としては、長鎖脂肪酸またはそのエステルや金属塩、アマイド系化合物、ポリエチレンワックス、シリコン、ポリエチレンオキシド等が挙げられる。長鎖脂肪酸としては、特に炭素数12以上が好ましく、例えばステアリン酸、12-ヒドロキシステアリン酸、ベヘン酸、モンタン酸等が挙げられ、部分的もしくは全カルボン酸が、モノグリコールやポリグリコールによりエステル化されていてもよく、または金属塩を形成していても良い。アマイド系化合物としては、エチレンビステレフタルアミド、メチレンビスステアリルアミド等が挙げられる。これら離型剤は、単独であるいは混合物として用いても良い。
As a mold release agent, a long chain fatty acid or its ester or metal salt, an amide based compound, polyethylene wax, silicone, polyethylene oxide and the like can be mentioned. The long chain fatty acid preferably has 12 or more carbon atoms in particular, and examples thereof include stearic acid, 12-hydroxystearic acid, behenic acid, montanic acid, etc. Partial or whole carboxylic acid is esterified with monoglycol or polyglycol Or a metal salt may be formed. Examples of the amide compounds include ethylene bisterephthalamide, methylene bisstearylamide and the like. These release agents may be used alone or as a mixture.
本発明の無機強化熱可塑性ポリエステル樹脂組成物を製造する方法としては、上述した各成分及び必要に応じて各種安定剤や顔料等を混合し、溶融混練することによって製造できる。溶融混練方法は当業者に周知のいずれの方法を用いることが可能であり、単軸押し出し機、二軸押出し機、加圧ニーダー、バンバリーミキサー等を使用することができる。中でも二軸押出し機を使用することが好ましい。一般的な溶融混練条件としては、二軸押出し機ではシリンダー温度は240~290℃、混練時間は2~15分である。
The method for producing the inorganic reinforced thermoplastic polyester resin composition of the present invention can be produced by mixing the above-mentioned respective components and, if necessary, various stabilizers, pigments and the like, and melt-kneading them. As the melt-kneading method, any method known to those skilled in the art can be used, and a single screw extruder, a twin screw extruder, a pressure kneader, a Banbury mixer, etc. can be used. Above all, it is preferable to use a twin-screw extruder. As general melt-kneading conditions, in a twin-screw extruder, the cylinder temperature is 240 to 290 ° C., and the kneading time is 2 to 15 minutes.
以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例に記載された測定値は、以下の方法によって測定したものである。
Hereinafter, the present invention will be more specifically described by way of examples, but the present invention is not limited to these examples. In addition, the measured value described in the Example is measured by the following method.
(1)ポリエステル樹脂の還元粘度
0.1gのサンプルをフェノール/テトラクロロエタン(重量比6/4)の混合溶媒25mlに溶解し、ウベローデ粘度管を用いて30℃で測定した。(単位:dl/g)
(2)降温結晶化温度(TC2)
示差走査熱量計(DSC)を用い、窒素気流下で20℃/分の昇温速度で300℃まで昇温し、その温度で5分間保持したあと、10℃/分の速度で100℃まで降温させることにより得られるサーモグラムの結晶化ピークのトップ温度で求めた。 (1) Reduced viscosity of polyester resin A sample of 0.1 g was dissolved in 25 ml of a mixed solvent of phenol / tetrachloroethane (weight ratio 6/4) and measured at 30 ° C. using a Ubbelohde viscosity tube. (Unit: dl / g)
(2) Cooling temperature (TC2)
Using a differential scanning calorimeter (DSC), raise the temperature to 300 ° C at a heating rate of 20 ° C / min under a nitrogen stream, hold at that temperature for 5 minutes, and then lower the temperature to 100 ° C at a rate of 10 ° C / min. The temperature was determined at the top temperature of the crystallization peak of the thermogram obtained by
0.1gのサンプルをフェノール/テトラクロロエタン(重量比6/4)の混合溶媒25mlに溶解し、ウベローデ粘度管を用いて30℃で測定した。(単位:dl/g)
(2)降温結晶化温度(TC2)
示差走査熱量計(DSC)を用い、窒素気流下で20℃/分の昇温速度で300℃まで昇温し、その温度で5分間保持したあと、10℃/分の速度で100℃まで降温させることにより得られるサーモグラムの結晶化ピークのトップ温度で求めた。 (1) Reduced viscosity of polyester resin A sample of 0.1 g was dissolved in 25 ml of a mixed solvent of phenol / tetrachloroethane (weight ratio 6/4) and measured at 30 ° C. using a Ubbelohde viscosity tube. (Unit: dl / g)
(2) Cooling temperature (TC2)
Using a differential scanning calorimeter (DSC), raise the temperature to 300 ° C at a heating rate of 20 ° C / min under a nitrogen stream, hold at that temperature for 5 minutes, and then lower the temperature to 100 ° C at a rate of 10 ° C / min. The temperature was determined at the top temperature of the crystallization peak of the thermogram obtained by
(3)成形品外観(ガラス繊維浮き、ヒケ)
シリンダー温度275℃、金型温度90℃にて、20mm×150mm×3mmの短冊状成形品を射出成形により成形する際、充填時間が1.6秒になる射出速度範囲で成形し、その外観をガラス繊維浮き、ヒケの観点からそれぞれ目視により観察した。
○:表面にガラス繊維等の浮きやヒケ(またはジェッティング)による外観不良がなく、良好
△:一部(特に成形品の末端部分等)に、若干の外観不良が発生している
×:目視で容易に確認できる外観不良が発生している (3) Molded product appearance (glass fiber float, sink)
When molding a 20 mm × 150 mm × 3 mm strip-shaped molded article at a cylinder temperature of 275 ° C. and a mold temperature of 90 ° C. by injection molding, the filling time is 1.6 seconds, and the appearance is It observed by visual observation from the viewpoint of glass fiber float and sink.
:: There is no appearance defect due to floating or sinking (or jetting) of glass fibers on the surface, and good △: Some appearance defect occurs in some parts (especially the end part of the molded product etc.) There is an appearance defect that can be easily checked
シリンダー温度275℃、金型温度90℃にて、20mm×150mm×3mmの短冊状成形品を射出成形により成形する際、充填時間が1.6秒になる射出速度範囲で成形し、その外観をガラス繊維浮き、ヒケの観点からそれぞれ目視により観察した。
○:表面にガラス繊維等の浮きやヒケ(またはジェッティング)による外観不良がなく、良好
△:一部(特に成形品の末端部分等)に、若干の外観不良が発生している
×:目視で容易に確認できる外観不良が発生している (3) Molded product appearance (glass fiber float, sink)
When molding a 20 mm × 150 mm × 3 mm strip-shaped molded article at a cylinder temperature of 275 ° C. and a mold temperature of 90 ° C. by injection molding, the filling time is 1.6 seconds, and the appearance is It observed by visual observation from the viewpoint of glass fiber float and sink.
:: There is no appearance defect due to floating or sinking (or jetting) of glass fibers on the surface, and good △: Some appearance defect occurs in some parts (especially the end part of the molded product etc.) There is an appearance defect that can be easily checked
(4)離型性
上記(3)の条件で成形する際、射出工程終了後の冷却時間を7秒に設定したときの離型性で判定を実施した(トータル成形サイクルは20秒)。10ショット連続で成形可能な場合は「○」、10ショット未満で、もしくは毎ショット離型不良が発生する場合は「×」とした。 (4) Releasability When molding was performed under the above condition (3), determination was made based on the releasability when the cooling time after completion of the injection step was set to 7 seconds (total molding cycle is 20 seconds). When formation was possible in 10 consecutive shots, "o", less than 10 shots, or "x" when release failure occurred every shot.
上記(3)の条件で成形する際、射出工程終了後の冷却時間を7秒に設定したときの離型性で判定を実施した(トータル成形サイクルは20秒)。10ショット連続で成形可能な場合は「○」、10ショット未満で、もしくは毎ショット離型不良が発生する場合は「×」とした。 (4) Releasability When molding was performed under the above condition (3), determination was made based on the releasability when the cooling time after completion of the injection step was set to 7 seconds (total molding cycle is 20 seconds). When formation was possible in 10 consecutive shots, "o", less than 10 shots, or "x" when release failure occurred every shot.
(5)曲げ弾性率
ISO-178に準じて測定した。試験片は、シリンダー温度275℃、金型温度90℃の条件で射出成形した。 (5) Flexural modulus Measured according to ISO-178. The test piece was injection molded under the conditions of a cylinder temperature of 275 ° C. and a mold temperature of 90 ° C.
ISO-178に準じて測定した。試験片は、シリンダー温度275℃、金型温度90℃の条件で射出成形した。 (5) Flexural modulus Measured according to ISO-178. The test piece was injection molded under the conditions of a cylinder temperature of 275 ° C. and a mold temperature of 90 ° C.
実施例、比較例において使用した配合成分を次に示す。
[共重合ポリブチレンテレフタレート樹脂(A)]
(A-1)TPA/IPA//1,4-BD=70/30//100(モル%)の組成比の共重合体、東洋紡社製、東洋紡バイロン(登録商標)の試作品、還元粘度0.73dl/g
(略号はそれぞれ、TPA:テレフタル酸、IPA:イソフタル酸、1,4-BD:1,4-ブタンジオール成分を示す。)
(A-2)TPA/IPA//1,4-BD=80/20//100(モル%)の組成比の共重合体、東洋紡社製、東洋紡バイロン(登録商標)の試作品、還元粘度0.90dl/g
[ポリブチレンテレフタレート樹脂(B)]
(B)ポリブチレンテレフタレート:東洋紡社製 還元粘度0.58dl/g The blending components used in Examples and Comparative Examples are shown below.
[Copolymerized polybutylene terephthalate resin (A)]
(A-1) A copolymer having a composition ratio of TPA / IPA // 1,4-BD = 70/30 // 100 (mol%), a prototype of Toyobo Co., Ltd., Toyobo Byron (registered trademark), reduced viscosity 0.73 dl / g
(The abbreviations respectively indicate TPA: terephthalic acid, IPA: isophthalic acid, 1,4-BD: 1,4-butanediol component.)
(A-2) A copolymer having a composition ratio of TPA / IPA // 1,4-BD = 80/20 // 100 (mol%), a prototype of Toyobo Co., Ltd., a Toyobo Byron (registered trademark), a reduced viscosity 0.90 dl / g
[Polybutylene terephthalate resin (B)]
(B) Polybutylene terephthalate: Toyobo Co., Ltd. Reduced viscosity 0.58 dl / g
[共重合ポリブチレンテレフタレート樹脂(A)]
(A-1)TPA/IPA//1,4-BD=70/30//100(モル%)の組成比の共重合体、東洋紡社製、東洋紡バイロン(登録商標)の試作品、還元粘度0.73dl/g
(略号はそれぞれ、TPA:テレフタル酸、IPA:イソフタル酸、1,4-BD:1,4-ブタンジオール成分を示す。)
(A-2)TPA/IPA//1,4-BD=80/20//100(モル%)の組成比の共重合体、東洋紡社製、東洋紡バイロン(登録商標)の試作品、還元粘度0.90dl/g
[ポリブチレンテレフタレート樹脂(B)]
(B)ポリブチレンテレフタレート:東洋紡社製 還元粘度0.58dl/g The blending components used in Examples and Comparative Examples are shown below.
[Copolymerized polybutylene terephthalate resin (A)]
(A-1) A copolymer having a composition ratio of TPA / IPA // 1,4-BD = 70/30 // 100 (mol%), a prototype of Toyobo Co., Ltd., Toyobo Byron (registered trademark), reduced viscosity 0.73 dl / g
(The abbreviations respectively indicate TPA: terephthalic acid, IPA: isophthalic acid, 1,4-BD: 1,4-butanediol component.)
(A-2) A copolymer having a composition ratio of TPA / IPA // 1,4-BD = 80/20 // 100 (mol%), a prototype of Toyobo Co., Ltd., a Toyobo Byron (registered trademark), a reduced viscosity 0.90 dl / g
[Polybutylene terephthalate resin (B)]
(B) Polybutylene terephthalate: Toyobo Co., Ltd. Reduced viscosity 0.58 dl / g
[ポリカーボネート系樹脂(C)]
(C)ポリカーボネート:住化ポリカーボネート社製、「カリバー200-80」、メルトボリュームレート(300℃、荷重1.2kg)80cm3/10min [Polycarbonate resin (C)]
(C) polycarbonate Sumika polycarbonate Co., Ltd., "CALIBER 200-80", melt volume rate (300 ℃, load 1.2kg) 80cm 3 / 10min
(C)ポリカーボネート:住化ポリカーボネート社製、「カリバー200-80」、メルトボリュームレート(300℃、荷重1.2kg)80cm3/10min [Polycarbonate resin (C)]
(C) polycarbonate Sumika polycarbonate Co., Ltd., "CALIBER 200-80", melt volume rate (300 ℃, load 1.2kg) 80cm 3 / 10min
[ガラス繊維系強化材(D)](繊維径、繊維長は電子顕微鏡観察による測定値)
(D-1)日東紡社製「CSG3PL830S」、偏平断面、長径と短径の比:2(短径10μm、長径20μm)、平均繊維長3mm
(D-2)セントラルグラスファイバー社製「EFH-100-31」、ミルドファイバー(シラン処理)、平均繊維長100μm、平均繊維径11μm
(D-3)日本電気硝子社製「T-120H」、円形断面、平均繊維長3mm、平均繊維径11μm [Glass fiber reinforcement (D)] (fiber diameter, fiber length measured by electron microscopy)
(D-1) "CSG 3 PL 830 S" manufactured by Nittobo Co., Ltd., flat cross section, ratio of major axis to minor axis: 2 (breadth 10 μm, major diameter 20 μm), average fiber length 3 mm
(D-2) "EFH-100-31" manufactured by Central Glass Fibers Co., Ltd., milled fiber (silane treated), average fiber length 100 μm, average fiber diameter 11 μm
(D-3) "T-120H" manufactured by Nippon Electric Glass Co., Ltd., circular cross section, average fiber length 3 mm, average fiber diameter 11 μm
(D-1)日東紡社製「CSG3PL830S」、偏平断面、長径と短径の比:2(短径10μm、長径20μm)、平均繊維長3mm
(D-2)セントラルグラスファイバー社製「EFH-100-31」、ミルドファイバー(シラン処理)、平均繊維長100μm、平均繊維径11μm
(D-3)日本電気硝子社製「T-120H」、円形断面、平均繊維長3mm、平均繊維径11μm [Glass fiber reinforcement (D)] (fiber diameter, fiber length measured by electron microscopy)
(D-1) "CSG 3 PL 830 S" manufactured by Nittobo Co., Ltd., flat cross section, ratio of major axis to minor axis: 2 (breadth 10 μm, major diameter 20 μm), average fiber length 3 mm
(D-2) "EFH-100-31" manufactured by Central Glass Fibers Co., Ltd., milled fiber (silane treated), average fiber length 100 μm, average fiber diameter 11 μm
(D-3) "T-120H" manufactured by Nippon Electric Glass Co., Ltd., circular cross section, average fiber length 3 mm, average fiber diameter 11 μm
[エステル交換防止剤(E)]
(E)エステル交換防止剤:ADEKA社製 「アデカスタブAX-71」 [Anti-ester exchange agent (E)]
(E) Transesterification inhibitor: "ADEKA Stub AX-71" manufactured by Adeka
(E)エステル交換防止剤:ADEKA社製 「アデカスタブAX-71」 [Anti-ester exchange agent (E)]
(E) Transesterification inhibitor: "ADEKA Stub AX-71" manufactured by Adeka
実施例、比較例の無機強化ポリエステル樹脂組成物は、上記原料を表1に示した配合比率(質量部)に従い計量して、35φ二軸押出機(東芝機械社製)でシリンダー温度270℃、スクリュー回転数200rpmにて溶融混練した。強化材以外の原料はホッパーから二軸押出機へ投入し、強化材はベント口からサイドフィードで投入した(強化材を2種以上使用した場合は別々のサイドフィードから投入した)。得られた無機強化ポリエステル樹脂組成物のペレットは、乾燥後、射出成形機にて各種評価用サンプルを成形した。評価結果は表1に示した。
The inorganic reinforced polyester resin compositions of Examples and Comparative Examples were weighed according to the mixing ratio (parts by mass) of the above raw materials shown in Table 1, and cylinder temperature 270 ° C. with a 35φ twin screw extruder (manufactured by Toshiba Machine Co., Ltd.) It melt-kneaded at 200 rpm of screw rotation speed. Raw materials other than the reinforcing material were fed from the hopper to the twin screw extruder, and the reinforcing material was fed from the vent port by side feed (in the case of using two or more kinds of reinforcing materials, they were fed from separate side feeds). After drying, the pellet of the obtained inorganic reinforced polyester resin composition was molded into various evaluation samples with an injection molding machine. The evaluation results are shown in Table 1.
表1から明らかなように、実施例1~8では、曲げ弾性率20Gpa以上の高剛性でありながら、TC2が160℃≦TC2<180℃の範囲にあることで、比較的長尺の成形品に対し低速の成形条件においても良好な外観を得ることが可能であることがわかる。
一方、比較例1~5では、特に外観と離型性の両立が困難であることが、実施例に比べ劣る理由となる。すなわち、良好な外観および適正な成形サイクルによる連続成形が可能となる成形条件が見出せないか、もしくは非常にピンポイントとなってしまう可能性が高いため、さまざまな形状に対しての自由度がないばかりか、生産性が低下する問題がある。 As is clear from Table 1, in Examples 1 to 8, relatively long molded articles having TC2 in the range of 160 ° C. ≦ TC2 <180 ° C. while having high rigidity of 20 Gpa or more in flexural modulus. On the other hand, it is understood that it is possible to obtain a good appearance even under low-speed molding conditions.
On the other hand, in Comparative Examples 1 to 5, in particular, it is difficult to simultaneously achieve the appearance and the releasability, which is the reason for being inferior to the examples. In other words, there is no freedom for various shapes because there is no possibility of finding a molding condition that enables continuous molding with a good appearance and a proper molding cycle, or it is very likely to be pinpointed. Besides, there is a problem that productivity falls.
一方、比較例1~5では、特に外観と離型性の両立が困難であることが、実施例に比べ劣る理由となる。すなわち、良好な外観および適正な成形サイクルによる連続成形が可能となる成形条件が見出せないか、もしくは非常にピンポイントとなってしまう可能性が高いため、さまざまな形状に対しての自由度がないばかりか、生産性が低下する問題がある。 As is clear from Table 1, in Examples 1 to 8, relatively long molded articles having TC2 in the range of 160 ° C. ≦ TC2 <180 ° C. while having high rigidity of 20 Gpa or more in flexural modulus. On the other hand, it is understood that it is possible to obtain a good appearance even under low-speed molding conditions.
On the other hand, in Comparative Examples 1 to 5, in particular, it is difficult to simultaneously achieve the appearance and the releasability, which is the reason for being inferior to the examples. In other words, there is no freedom for various shapes because there is no possibility of finding a molding condition that enables continuous molding with a good appearance and a proper molding cycle, or it is very likely to be pinpointed. Besides, there is a problem that productivity falls.
本発明によれば、高強度、高剛性(曲げ弾性率20GPaを超える)で、かつ良好な表面外観の成形品を広い成形条件幅で安定して得ることができるため、産業界に寄与すること大である。
According to the present invention, a molded article having high strength, high rigidity (bending elastic modulus of more than 20 GPa), and a good surface appearance can be stably obtained in a wide molding condition width, thus contributing to the industry. It is large.
Claims (4)
- 共重合ポリブチレンテレフタレート樹脂(A)20~30質量部、ポリブチレンテレフタレート樹脂(B)1~5質量部、ポリカーボネート系樹脂(C)1~10質量部、ガラス繊維系強化材(D)60~70質量部及びエステル交換防止剤(E)0.05~2質量部を含有し、(A)~(E)の合計が100質量部である無機強化熱可塑性ポリステル樹脂組成物であって、下記要件(1)及び(2)を満たすことを特徴とする無機強化熱可塑性ポリエステル樹脂組成物。
(1)無機強化熱可塑性ポリステル樹脂組成物を射出成形して得られる成形品の曲げ弾性率が20GPaを超える。
(2)無機強化熱可塑性ポリエステル樹脂組成物の示差走査型熱量計(DSC)で求められる降温結晶化温度をTC2(℃)とするとき、160℃≦TC2<180℃の範囲にある。 Copolymerized polybutylene terephthalate resin (A) 20 to 30 parts by mass, polybutylene terephthalate resin (B) 1 to 5 parts by mass, polycarbonate resin (C) 1 to 10 parts by mass, glass fiber reinforcing material (D) 60 to An inorganic reinforced thermoplastic polyester resin composition comprising 70 parts by mass and 0.05 to 2 parts by mass of a transesterification inhibitor (E), wherein the total of (A) to (E) is 100 parts by mass, comprising An inorganic reinforced thermoplastic polyester resin composition characterized by satisfying the requirements (1) and (2).
(1) The flexural modulus of a molded article obtained by injection molding an inorganic reinforced thermoplastic polyester resin composition exceeds 20 GPa.
(2) When temperature-falling crystallization temperature calculated | required by the differential scanning calorimeter (DSC) of an inorganic reinforcement | strengthening thermoplastic polyester resin composition is set to TC2 (degreeC), it exists in the range of 160 degreeC <= TC2 <180 degreeC. - 共重合ポリブチレンテレフタレート樹脂(A)の共重合成分がイソフタル酸であり、その共重合量が全酸成分の10~40モル%であることを特徴とする請求項1に記載の無機強化熱可塑性ポリエステル樹脂組成物。 The inorganic reinforced thermoplastic resin according to claim 1, wherein the copolymerization component of the copolymerized polybutylene terephthalate resin (A) is isophthalic acid, and the copolymerization amount thereof is 10 to 40 mol% of the total acid component. Polyester resin composition.
- ガラス繊維系強化材(D)が、繊維断面の長径と短径の比(長径/短径)の平均値が1.3~8である扁平断面ガラス繊維(D1)、繊維長30~150μmのガラス短繊維ミルドファイバー(D2)からなる群より選ばれる1種または2種以上を含むことを特徴とする請求項1または2に記載の無機強化熱可塑性ポリエステル樹脂組成物。 The glass fiber reinforcing material (D) has a flat cross section glass fiber (D1) having a fiber length of 30 to 150 μm, the average value of the ratio of the major axis to the minor axis of the fiber cross section (major axis / minor axis) being 1.3 to 8. The inorganic reinforced thermoplastic polyester resin composition according to claim 1 or 2, comprising one or more selected from the group consisting of glass short fiber milled fibers (D2).
- 請求項1~3のいずれかに記載の無機強化熱可塑性ポリエステル樹脂組成物からなる成形品。
A molded article comprising the inorganic reinforced thermoplastic polyester resin composition according to any one of claims 1 to 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019506449A JP7120212B2 (en) | 2017-10-06 | 2018-10-04 | Inorganic reinforced thermoplastic polyester resin composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017195884 | 2017-10-06 | ||
JP2017-195884 | 2017-10-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019070025A1 true WO2019070025A1 (en) | 2019-04-11 |
Family
ID=65994669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/037213 WO2019070025A1 (en) | 2017-10-06 | 2018-10-04 | Inorganic reinforced thermoplastic polyester resin composition |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7120212B2 (en) |
WO (1) | WO2019070025A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02283758A (en) * | 1989-02-23 | 1990-11-21 | General Electric Co <Ge> | Blend of polyester and high-flow polycarbonate |
JPH0496966A (en) * | 1990-08-16 | 1992-03-30 | Mitsubishi Gas Chem Co Inc | Thermoplastic resin composition |
JP2001181494A (en) * | 1999-12-24 | 2001-07-03 | Sumitomo Dow Ltd | Resin composition for heat-resistant plastic card |
JP2008120925A (en) * | 2006-11-13 | 2008-05-29 | Wintech Polymer Ltd | Polybutylene terephthalate resin composition and molding thereof |
JP2009155449A (en) * | 2007-12-26 | 2009-07-16 | Wintech Polymer Ltd | Mobile terminal part |
WO2015008831A1 (en) * | 2013-07-19 | 2015-01-22 | 東洋紡株式会社 | Inorganic reinforced thermoplastic polyester resin composition |
JP2016121276A (en) * | 2014-12-25 | 2016-07-07 | 住化スタイロンポリカーボネート株式会社 | Resin composition for plastic card |
JP2017039878A (en) * | 2015-08-21 | 2017-02-23 | 東洋紡株式会社 | Organic reinforced thermoplastic polyester resin composition |
-
2018
- 2018-10-04 WO PCT/JP2018/037213 patent/WO2019070025A1/en active Application Filing
- 2018-10-04 JP JP2019506449A patent/JP7120212B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02283758A (en) * | 1989-02-23 | 1990-11-21 | General Electric Co <Ge> | Blend of polyester and high-flow polycarbonate |
JPH0496966A (en) * | 1990-08-16 | 1992-03-30 | Mitsubishi Gas Chem Co Inc | Thermoplastic resin composition |
JP2001181494A (en) * | 1999-12-24 | 2001-07-03 | Sumitomo Dow Ltd | Resin composition for heat-resistant plastic card |
JP2008120925A (en) * | 2006-11-13 | 2008-05-29 | Wintech Polymer Ltd | Polybutylene terephthalate resin composition and molding thereof |
JP2009155449A (en) * | 2007-12-26 | 2009-07-16 | Wintech Polymer Ltd | Mobile terminal part |
WO2015008831A1 (en) * | 2013-07-19 | 2015-01-22 | 東洋紡株式会社 | Inorganic reinforced thermoplastic polyester resin composition |
JP2016121276A (en) * | 2014-12-25 | 2016-07-07 | 住化スタイロンポリカーボネート株式会社 | Resin composition for plastic card |
JP2017039878A (en) * | 2015-08-21 | 2017-02-23 | 東洋紡株式会社 | Organic reinforced thermoplastic polyester resin composition |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019070025A1 (en) | 2020-09-10 |
JP7120212B2 (en) | 2022-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6657662B2 (en) | Inorganic reinforced thermoplastic polyester resin composition | |
JP6414467B2 (en) | Inorganic reinforced thermoplastic polyester resin composition | |
JP7302653B2 (en) | Reinforced thermoplastic polyester resin composition | |
CN111801372B (en) | Inorganic reinforced thermoplastic polyester resin composition | |
JP7288752B2 (en) | Thermoplastic resin composition and molded article | |
JP7397418B2 (en) | Molded product decorated with polyester resin composition and hot stamp foil | |
WO2019070025A1 (en) | Inorganic reinforced thermoplastic polyester resin composition | |
JP5701126B2 (en) | Resin composition and molded body comprising the resin composition | |
JP7548302B2 (en) | Inorganic reinforced thermoplastic polyester resin composition and method for producing same | |
JP7262282B2 (en) | Thermoplastic resin composition and molded article | |
CN114341265B (en) | Inorganic reinforced thermoplastic polyester resin composition and molded article formed from the same | |
JP7409372B2 (en) | Polybutylene terephthalate resin composition | |
WO2022034845A1 (en) | Inorganic material-reinforced thermoplastic polyester resin composition and method for producing same | |
KR102724782B1 (en) | Weapon-reinforced thermoplastic polyester resin composition and method for producing the same | |
JP7288751B2 (en) | Thermoplastic resin composition and molded article | |
JP2001071365A (en) | Polycarbonate resin/abs resin extrusion plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019506449 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18864582 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18864582 Country of ref document: EP Kind code of ref document: A1 |