JPH08311765A - Polyolefin nonwoven fabric - Google Patents

Polyolefin nonwoven fabric

Info

Publication number
JPH08311765A
JPH08311765A JP7114535A JP11453595A JPH08311765A JP H08311765 A JPH08311765 A JP H08311765A JP 7114535 A JP7114535 A JP 7114535A JP 11453595 A JP11453595 A JP 11453595A JP H08311765 A JPH08311765 A JP H08311765A
Authority
JP
Japan
Prior art keywords
polyolefin
nonwoven fabric
woven fabric
air permeability
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7114535A
Other languages
Japanese (ja)
Inventor
Akira Watanabe
渡邉  朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP7114535A priority Critical patent/JPH08311765A/en
Publication of JPH08311765A publication Critical patent/JPH08311765A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Cell Separators (AREA)

Abstract

PURPOSE: To produce a nonwoven fabric which is excellent in air permeability, hydrophilic properties, chemical resistance and tensile strength at breakage and suitably useful as a battery separator by surface-modifying a polyolefin nonwoven fabric by treatment with atmospheric pressure plasma. CONSTITUTION: A nonwoven fabric comprising a polyolefin sheath-core type conjugated fiber in which the core component is polypropylene and the sheath component is polyethylene is surface-modified with atmospheric pressure plasma in an argon/acetone mixed gas to give the objective nonwoven fabric of 0.1-0.5 O/C elementary ratio according to the ESCA measurement, <=0.01 O/C ratio according to the organic elementary analysis, with a thickness of 50-300μm, preferably 100-300μm, a unit weight of 20-120g/m<2> , preferably 30-100g/m<2> , a tensile strength at break of 20kgf/2cm and air permeability of 5-150cm<3> /cm<2> /see, preferably 10-150cm<3> /cm<2> /sec.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は通気性、親水性、耐薬品
性、引張破断強度に優れたポリオレフィン系不織布に関
する。詳しくは、主に電池セパレータに使用される不織
布に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyolefin-based non-woven fabric having excellent breathability, hydrophilicity, chemical resistance and tensile breaking strength. Specifically, it relates to a nonwoven fabric mainly used for battery separators.

【0002】[0002]

【従来の技術】従来ニッケル−カドミウム蓄電池用のセ
パレータとして、ナイロン不織布が多く用いられてき
た。これはナイロン不織布が適度な強度、ガス透過性及
び親水性を有しているためである。
2. Description of the Related Art Nylon nonwoven fabric has been widely used as a separator for nickel-cadmium storage batteries. This is because nylon nonwoven fabric has appropriate strength, gas permeability and hydrophilicity.

【0003】しかし、ナイロンは耐アルカリ性、耐酸化
性が十分であるとは言い難く、特に45℃以上の温度で
は比較的簡単に分解してしまうことが知られている。す
なわち、高温で電池を充電した場合には、電池内で発生
した酸素ガスによりナイロンが炭酸ガス、水、アンモニ
ア等に分解され、この炭酸ガスやアンモニアは電池特性
に悪影響を及ぼす。また、更に分解が進むとセパレータ
としての絶縁能力が低下し、ついには電池内部短絡を引
き起こす。
However, it is difficult to say that nylon has sufficient alkali resistance and oxidation resistance, and it is known that it decomposes relatively easily at a temperature of 45 ° C. or higher. That is, when the battery is charged at a high temperature, the oxygen gas generated in the battery decomposes nylon into carbon dioxide gas, water, ammonia and the like, and the carbon dioxide gas and ammonia adversely affect the battery characteristics. Further, when the decomposition is further advanced, the insulating ability as a separator is lowered, and finally an internal short circuit of the battery is caused.

【0004】この問題を解決するためにセパレータの素
材をポリオレフィン系の樹脂に変更しようとする試みが
続けられている。特に高温下で使用される電池を中心に
ポリオレフィン系不織布が使用されるようになってき
た。
In order to solve this problem, attempts are being made to change the material of the separator to a polyolefin resin. In particular, polyolefin-based nonwoven fabrics have come to be used mainly in batteries used at high temperatures.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、ポリオ
レフィン系不織布は耐アルカリ性、耐酸化性等の耐薬品
性は良好であるが、電解液との親和性に乏しく、その保
持性に劣るという欠点を有している。ポリオレフィン系
不織布の有する問題を解決し、電解液保持能力を向上さ
せるために、界面活性剤の塗布する方法(特開昭60−
255107号公報)があるが、この場合界面活性剤の
流出が問題となる。しかも、ひとたび乾燥させると、も
はや親水性を示さなくなり根本的な解決にはならない。
However, although the polyolefin-based non-woven fabric has good chemical resistance such as alkali resistance and oxidation resistance, it has a drawback that it has poor affinity with the electrolytic solution and poor retention. are doing. A method of applying a surfactant in order to solve the problems of the polyolefin-based non-woven fabric and to improve the electrolyte retaining ability (JP-A-60-
255107), but in this case, the outflow of the surfactant becomes a problem. Moreover, once dried, it no longer exhibits hydrophilicity and is not a fundamental solution.

【0006】また、疎水性高分子表面に親水性モノマー
をグラフトさせる種々の方法が提案されている(特公昭
56−44098号公報)。しかし、反応が複雑であ
り、主鎖の切断、架橋、グラフト効率等の相互の絡み合
いの調整が困難であり、高分子多孔体の空間内部にまで
均一にグラフト重合が進行し難い等の問題がある。
Various methods for grafting a hydrophilic monomer onto the surface of a hydrophobic polymer have been proposed (Japanese Patent Publication No. 56-44098). However, the reaction is complicated, it is difficult to cut the main chain, crosslink, it is difficult to adjust the mutual entanglement such as grafting efficiency, and there is a problem that it is difficult to uniformly carry out the graft polymerization even inside the space of the polymer porous body. is there.

【0007】また、数Torr以下の圧力状態で低温プ
ラズマ処理をする方法が挙げられる(特開昭58−94
752号公報、特開平6−79832号公報など)。し
かし、この方法では高真空条件が必要であり、大型材料
の連続処理が困難であり、更に装置コストが高くバッテ
リーセパレータ用不織布のように大面積を多量に処理す
るのに不適当である。
Further, there is a method of performing low temperature plasma treatment under a pressure condition of several Torr or less (Japanese Patent Laid-Open No. 58-94).
752, JP-A-6-79832, etc.). However, this method requires high vacuum conditions, continuous treatment of large-sized materials is difficult, the apparatus cost is high, and it is unsuitable for treating a large area in a large amount like a nonwoven fabric for battery separators.

【0008】[0008]

【課題を解決するための手段】本発明者は、上記課題を
鑑み鋭意検討した結果、ポリオレフィン系不織布に特定
の元素組成比になるよう大気圧プラズマ処理を施すと、
ポリオレフィン系不織布の強度を損なうことなく、吸液
性、親水性および保液性が向上することを見出し本発明
に到達した。すなわち、本発明の要旨は、大気圧プラズ
マ処理によって表面改質されたポリオレフィン系不織布
であって、該不織布のESCA測定による炭素に対する
酸素の元素組成比(O/C)が0.1〜0.5、かつ、
有機元素分析によるO/Cが0.01以下であることを
特徴とするポリオレフィン系不織布に存する。
Means for Solving the Problems The inventors of the present invention have made extensive studies in view of the above problems, and as a result, when a polyolefin-based nonwoven fabric is subjected to atmospheric pressure plasma treatment so as to have a specific element composition ratio,
The inventors have found that the liquid absorbing property, the hydrophilic property, and the liquid retaining property are improved without impairing the strength of the polyolefin-based nonwoven fabric, and thus the present invention has been accomplished. That is, the gist of the present invention is a polyolefin nonwoven fabric surface-modified by atmospheric pressure plasma treatment, and the elemental composition ratio (O / C) of oxygen to carbon by ESCA measurement of the nonwoven fabric is 0.1 to 0. 5, and
O / C by organic element analysis is 0.01 or less, and it exists in the polyolefin nonwoven fabric characterized by the above-mentioned.

【0009】以下、本発明を詳細に説明する。本発明の
ポリオレフィン系不織布は、ESCA(Electron Spect
roscopy forChemical Analysis)測定による炭素に対す
る酸素の元素組成比(O/C)が0.1〜0.5、か
つ、有機元素分析による炭素に対する酸素の元素組成比
(O/C)が0.01以下であることを特徴とする。
The present invention will be described in detail below. The polyolefin non-woven fabric of the present invention is an ESCA (Electron Spect
The elemental composition ratio of oxygen to carbon (O / C) measured by roscopy for chemical analysis (O / C) is 0.1 to 0.5, and the elemental composition ratio of oxygen to carbon (O / C) determined by organic element analysis is 0.01 or less. Is characterized in that.

【0010】ポリオレフィン系不織布は、大気圧プラズ
マ処理を行うことにより、不織布を構成する繊維の表面
に酸素を導入する。これにより、ポリオレフィン系不織
布のアルカリ電解液に対する濡れ性が向上し、また、電
解液の吸液性、保液性も上がる。ポリオレフィン性不織
布の表面に導入する酸素量は、ESCA測定による炭素
に対する酸素の元素組成比率が、0.1〜0.5の範囲
である。この割合が0.1に満たないと、表面を改質す
るに足るプラズマ処理がなされていないことを示してお
り、親水性が不十分である。逆に、0.5を超えても、
もはやその効果は増加せず、ポリオレフィン繊維からな
る不織布の強度が低下する。
The polyolefin-based nonwoven fabric is subjected to atmospheric pressure plasma treatment to introduce oxygen into the surface of the fibers constituting the nonwoven fabric. As a result, the wettability of the polyolefin-based nonwoven fabric with the alkaline electrolyte is improved, and the electrolyte absorbability and liquid retention are also improved. Regarding the amount of oxygen introduced to the surface of the polyolefin nonwoven fabric, the elemental composition ratio of oxygen to carbon measured by ESCA is in the range of 0.1 to 0.5. If this ratio is less than 0.1, it means that plasma treatment sufficient to modify the surface is not performed, and the hydrophilicity is insufficient. Conversely, even if it exceeds 0.5,
The effect no longer increases, and the strength of the nonwoven fabric made of polyolefin fibers decreases.

【0011】なお、ここでESCA測定による元素組成
とは、PERKIN ELEMERPHI社製のESC
A−5500MCを使用し、線源をAlとして14k
V、150W(モノクロメータ使用、取出角65度)の
条件で測定したものをいう。本発明のポリオレフィン系
不織布は、有機元素分析により測定された、炭素に対す
る酸素の元素組成比(O/C)が0.01以下である。
この比率が大きくなるということは、ポリオレフィン系
不織布の内部にまで酸素が固定されていることを示す。
この比率が0.01を超えると、ポリオレフィンの内部
構造に変化が起こり、ポリオレフィンの特徴である耐熱
性や強度が低下するので好ましくない。
Here, the elemental composition measured by ESCA means ESC manufactured by PERKIN ELEMERPHI.
A-5500MC is used, and the radiation source is Al, 14k
Measured under the conditions of V and 150 W (using a monochromator, take-out angle of 65 degrees). The polyolefin-based nonwoven fabric of the present invention has an elemental composition ratio of oxygen to carbon (O / C) of 0.01 or less measured by organic elemental analysis.
The increase in this ratio means that oxygen is fixed even inside the polyolefin-based nonwoven fabric.
If this ratio exceeds 0.01, the internal structure of the polyolefin changes, and the heat resistance and strength, which are the characteristics of the polyolefin, decrease, which is not preferable.

【0012】なお、ここで有機元素分析により測定され
た元素組成とは、PERKIN ELEMER PHI
社製の有機元素分析装置240Cを使用し、燃焼管温度
920℃、還元温度600℃の条件で炭素、水素、窒素
を測定し、残部を酸素としたときの元素組成である。
The elemental composition measured by organic elemental analysis means the PERKIN ELEMER PHI.
Using an organic elemental analyzer 240C manufactured by the same company, carbon, hydrogen and nitrogen were measured under the conditions of a combustion tube temperature of 920 ° C. and a reduction temperature of 600 ° C., and the balance was oxygen.

【0013】ここで用いるポリオレフィン繊維として
は、通常ポリエチレン、ポリプロピレン等の単独重合体
や共重合体、エチレンを7割以上含有するエチレン−酢
酸ビニル共重合体等の炭化水素系ポリオレフィン繊維が
挙げられ、好ましくは芯鞘構造を有する繊維を含有し、
さらに好ましくは不織布を構成する繊維の30%以上が
芯鞘構造を有する繊維であることが望ましい。
Examples of the polyolefin fibers used herein include homopolymers and copolymers such as polyethylene and polypropylene, and hydrocarbon-based polyolefin fibers such as ethylene-vinyl acetate copolymer containing 70% or more of ethylene. Preferably containing a fiber having a core-sheath structure,
More preferably, 30% or more of the fibers constituting the non-woven fabric are desirably fibers having a core-sheath structure.

【0014】芯鞘構造を有する繊維とは、芯成分と鞘成
分が、繊維断面に同心円状に配列している構造(SHEATH-
CORE)を有する繊維や、芯成分が偏心している並列構造
(SIDEBY SIDE)を有する繊維(サイドバイサイド型)で
ある。芯と鞘の割合は任意のものが用いることができ
る。好ましくは断面の面積比で芯:鞘=10:1〜1:
10の繊維が好適に用いられる。
A fiber having a core-sheath structure means a structure in which core components and sheath components are concentrically arranged in the fiber cross section (SHEATH-
(CORE) and parallel structure with eccentric core components
It is a fiber (SIDE BY SIDE) (side by side type). Any ratio of the core and the sheath can be used. Preferably, the area ratio of the cross section is core: sheath = 10: 1 to 1: 1.
Ten fibers are preferably used.

【0015】芯鞘構造を有する繊維としては、芯成分が
ポリプロピレン、鞘成分がポリエチレンであるものが好
ましい。芯成分としてポリプロピレンを用いることによ
り、短絡や過充電その他により電池が高温にさらされた
際に、セパレータの構造を維持することができ、また、
電池組み立て時の強度を出すことができ、鞘成分として
ポリエチレンを使用することにより、繊維同士を容易に
熱融着する事ができ、強度に優れた不織布を製造するこ
とができる。
The fibers having a core-sheath structure are preferably those in which the core component is polypropylene and the sheath component is polyethylene. By using polypropylene as the core component, it is possible to maintain the structure of the separator when the battery is exposed to high temperature due to a short circuit, overcharge, or the like.
The strength at the time of assembling the battery can be obtained, and by using polyethylene as the sheath component, the fibers can be easily heat-sealed, and a non-woven fabric having excellent strength can be manufactured.

【0016】本発明のポリオレフィン系不織布は、公知
の方法で製造することができる。例えば、繊維を水中に
均一に懸濁し、これを金網等ですくいシート状にする湿
式製造法や、繊維を空気中に飛散させた後、金網に集め
てカード状にするエアーレイド法や、紡糸機から直接ウ
ェブを形成するスパンボンド法やメルトブロー法などが
挙げられる。
The polyolefin nonwoven fabric of the present invention can be manufactured by a known method. For example, a wet manufacturing method in which fibers are uniformly suspended in water and formed into a rake sheet with a wire mesh, an air raid method in which fibers are scattered in the air, and then collected in a wire mesh to form a card, spinning A spun bond method and a melt blow method, which form a web directly from a machine, can be used.

【0017】本発明のポリオレフィン系不織布は、不織
化前または後のポリオレフィン繊維を大気圧プラズマ処
理することにより得られる。このうち、処理工程の簡便
さの点から、不織布自体の処理が好ましい。本発明にお
ける大気圧プラズマ処理とは、1気圧付近でグロー放電
を行い、プラズマを照射する方法であり、特開平4−7
4525号公報、特開平6−182195号公報等に挙
げられる種々の公知の方法を用いることができる。例え
ば、アルゴン、ヘリウム等の不活性元素含有ガスををプ
ラズマ発生装置に導入し、1気圧付近下でグロー放電を
行い、プラズマ励起を行うことによって、プラズマ発生
装置内の電極間に設置された不織布を構成する繊維表面
を処理する。
The polyolefin-based nonwoven fabric of the present invention can be obtained by subjecting polyolefin fibers before or after non-woven to atmospheric pressure plasma treatment. Of these, the treatment of the nonwoven fabric itself is preferable from the viewpoint of the ease of the treatment process. The atmospheric pressure plasma treatment in the present invention is a method of irradiating with plasma by performing glow discharge at around 1 atm.
Various known methods such as those disclosed in JP-A-4525 and JP-A-6-182195 can be used. For example, by introducing an inert element-containing gas such as argon or helium into the plasma generator, performing glow discharge at about 1 atm and performing plasma excitation, a non-woven fabric installed between electrodes in the plasma generator. The surface of the fibers constituting the is treated.

【0018】大気圧プラズマ処理は、低圧プラズマ処理
に比べ、真空チャンバーや真空ポンプが不要であり、設
備的にも、処理準備の時間短縮においても、真空プラズ
マ処理に比べ工業的に有利である。また、大気圧プラズ
マ処理は数kHzで処理を行うものであり、数MHzの
高周波であるラジオ波を用いて処理する低圧プラズマ処
理に比べ、低い放電周波数で処理できるので、不織布へ
のダメージを低減できるという利点もある。
The atmospheric pressure plasma treatment does not require a vacuum chamber or a vacuum pump as compared with the low pressure plasma treatment, and is industrially advantageous as compared with the vacuum plasma treatment in terms of equipment and shortening the time for treatment preparation. Further, the atmospheric pressure plasma treatment is performed at several kHz, and compared with the low pressure plasma treatment which is performed by using a high frequency radio wave of several MHz, it can be performed at a lower discharge frequency, which reduces damage to the nonwoven fabric. There is also an advantage that you can.

【0019】このようにして得られたポリオレフィン系
不織布は、電池セパレータとして用いるためには、その
厚みは、通常50〜300μm、好ましくは100〜3
00μmの範囲であることが望ましい。50mμより薄
いと坪量が低下し、通気度の最適化が困難になる等の問
題が生ずる。また、300mμよりも厚いと電池の小型
化の点で不利である。
The polyolefin non-woven fabric thus obtained has a thickness of usually 50 to 300 μm, preferably 100 to 3 for use as a battery separator.
The range is preferably 00 μm. When the thickness is less than 50 mμ, the basis weight decreases, and problems such as difficulty in optimizing air permeability occur. On the other hand, if it is thicker than 300 mμ, it is disadvantageous in terms of downsizing of the battery.

【0020】坪量は、通常15〜150g/m2、好ま
しくは30〜100g/m2の範囲であることが望まし
い。15g/m2よりも少ない場合は、充分な強度が得
られない。また、150g/m2より多い場合には厚み
の上昇や通気度の低下が生じる。引張破断強度は、通常
2〜20kgf/2cmの範囲であることが望ましい。
2kgf/2cm未満では、電池の組み立ての際にフィ
ルムの破断が発生する恐れがある。
The basis weight is usually 15 to 150 g / m 2 , and preferably 30 to 100 g / m 2 . If it is less than 15 g / m 2 , sufficient strength cannot be obtained. On the other hand, when the amount is more than 150 g / m 2 , the thickness increases and the air permeability decreases. It is desirable that the tensile strength at break is usually in the range of 2 to 20 kgf / 2 cm.
If it is less than 2 kgf / 2 cm, the film may be broken during the assembly of the battery.

【0021】通気度は、フラジール法により測定した場
合に、通常5〜150cm3/cm2/sec、好ましく
は10〜150cm3/cm2/secの範囲であること
が望ましい。5cm3/cm2/secよりも少ないと電
池内部抵抗が大きくなり、150cm3/cm2/sec
よりも大きくなると厚みや坪量のバランスから強度不足
を生じる。これらのポリオレフィン系不織布は単層で
も、2種以上の不織布を積層したものでもよい。
The air permeability, when measured by the Frazier method, is usually 5 to 150 cm 3 / cm 2 / sec, preferably 10 to 150 cm 3 / cm 2 / sec. If it is less than 5 cm 3 / cm 2 / sec, the internal resistance of the battery becomes large, and 150 cm 3 / cm 2 / sec
If it is larger than that, strength is insufficient due to the balance of thickness and basis weight. These polyolefin-based nonwoven fabrics may be a single layer or a laminate of two or more types of nonwoven fabrics.

【0022】[0022]

【実施例】次に本発明を実施例により詳細に説明する
が、本発明はその要旨を越えない限り、以下の実施例に
限定されるものではない。なお、以下の諸例において、
各測定は次の方法によって行った。
EXAMPLES Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to the following examples unless it exceeds the gist. In the following examples,
Each measurement was performed by the following method.

【0023】(1)ESCA測定 PERKIN ELMER PHI社製のESCA−5
500MCを用いてサンプルの表面元素組成分析を行っ
た。測定条件としては、使用した励起源はAl−Kα線
で、出力14kV、150W、モノクロメーター使用、
分析面積0.8mm×3.5mm、取出角65度とし
た。
(1) ESCA measurement ESCA-5 manufactured by PERKIN ELMER PHI
The surface elemental composition analysis of the sample was performed using 500 MC. As the measurement conditions, the excitation source used was Al-Kα ray, output 14 kV, 150 W, monochromator used,
The analysis area was 0.8 mm × 3.5 mm and the take-out angle was 65 degrees.

【0024】(2)有機元素分析 PERKIN ELMER PHI社製の有機元素分析
装置240Cを用いて、燃焼管温度920℃、還元温度
600℃の条件でサンプル全体の炭素、水素、窒素の分
析を行った。含まれる酸素量は全重量から炭素、水素、
窒素の重量を引いて計算した。
(2) Organic element analysis Using an organic element analyzer 240C manufactured by PERKIN ELMER PHI, carbon, hydrogen and nitrogen of the entire sample were analyzed under the conditions of a combustion tube temperature of 920 ° C and a reduction temperature of 600 ° C. . The amount of oxygen contained is carbon, hydrogen,
It was calculated by subtracting the weight of nitrogen.

【0025】(3)引張破断強度 インストロン型万能試験機を用いてサンプル幅20m
m、チャック間50mm、引っ張り速度200mm/m
inで引っ張り、破断時の応力を測定した。
(3) Tensile breaking strength A sample width of 20 m was measured using an Instron type universal testing machine.
m, 50 mm between chucks, pulling speed 200 mm / m
It was pulled in and the stress at break was measured.

【0026】(4)電解液の吸液高さ 幅25mmの短冊状にサンプルを切断し、サンプル端を
30重量%の水酸化カリウム水溶液に浸漬し、気温24
℃、湿度65%の部屋に鉛直に立てて30分間静置した
時の水酸化カリウム水溶液の吸収上昇高さを測定した。 (5)通気度 JIS L1096−1979に従い、株式会社東洋精
機製作所製の通気度試験機で測定した。
(4) Electrolyte absorption height The sample was cut into a strip having a width of 25 mm, the sample end was immersed in a 30 wt% potassium hydroxide aqueous solution, and the temperature was adjusted to 24
The height of absorption rise of the aqueous potassium hydroxide solution was measured when it was placed vertically in a room at 65 ° C and a humidity of 65% and left standing for 30 minutes. (5) Air permeability According to JIS L1096-1979, the air permeability was measured by a gas permeability tester manufactured by Toyo Seiki Seisakusho.

【0027】参考例1 芯成分がポリプロピレン、鞘成分がポリエチレンであ
り、芯鞘の比率が1:1である1.5デニールの繊維7
2%と、偏心した芯成分がポリプロピレンで鞘成分がポ
リエチレンである(サイドバイサイド型)3デニールの
繊維8%と、融点が132℃であるポリエチレン繊維2
0%からなる湿式法で製造した不織布(坪量59g/m
2、厚み250μm、通気度90cm3/cm2/se
c)の各種物性値を測定した。測定結果を表−1に示
す。ESCA測定値も有機元素分析値も、O/Cの値は
0であり、親水性がなく電解液が染み込まなかった。
Reference Example 1 A fiber having a denier of 1.5 and a core component of polypropylene and a sheath component of polyethylene and a core-sheath ratio of 1: 1.
2%, eccentric core component is polypropylene, and sheath component is polyethylene (side-by-side type) 3% denier fiber 8%, and melting point is 132 ° C. polyethylene fiber 2
Nonwoven fabric manufactured by wet method consisting of 0% (basis weight 59 g / m
2 , thickness 250 μm, air permeability 90 cm 3 / cm 2 / se
Various physical properties of c) were measured. The measurement results are shown in Table-1. Both the ESCA measured value and the organic elemental analysis value had an O / C value of 0, and there was no hydrophilicity, and the electrolytic solution did not permeate.

【0028】実施例1 参考例1の不織布を下記条件で大気圧プラズマ処理を行
った。 プラズマ処理条件: ガス:アルゴン+アセトン 処理圧力:1気圧 電気:5kHz、150W 処理時間:60秒
Example 1 The nonwoven fabric of Reference Example 1 was subjected to atmospheric pressure plasma treatment under the following conditions. Plasma treatment conditions: Gas: Argon + acetone Treatment pressure: 1 atm Electricity: 5 kHz, 150 W Treatment time: 60 seconds

【0029】反応終了後、ESCA測定、有機元素分
析、電解液の吸液高さ、坪量、引張破断強度、通気度を
測定した。結果を表−1に示す。未処理物である参考例
1に比べ坪量、通気度、強度の低下なしに、電解液の吸
液高さが向上した。
After completion of the reaction, ESCA measurement, organic elemental analysis, liquid absorption height of electrolyte, basis weight, tensile strength at break, and air permeability were measured. The results are shown in Table 1. As compared with the untreated product of Reference Example 1, the liquid absorption height of the electrolytic solution was improved without lowering the basis weight, air permeability, and strength.

【0030】実施例2 参考例1記載の不織布を以下のプラズマ処理条件で処理
した。 プラズマ処理条件: ガス:アルゴン+アセトン 処理圧力:1気圧 電気:5kHz、150W 処理時間:20秒
Example 2 The nonwoven fabric described in Reference Example 1 was treated under the following plasma treatment conditions. Plasma processing conditions: Gas: Argon + acetone Processing pressure: 1 atm Electricity: 5 kHz, 150 W Processing time: 20 seconds

【0031】反応終了後、ESCA測定、有機元素分
析、電解液の吸液高さ、坪量、引っ張り破断強度、通気
度を測定した。結果を表−1に示す。プラズマ処理前に
比べて、坪量、通気度、強度は変化せず、電解液の吸液
高さが向上した。
After completion of the reaction, ESCA measurement, organic element analysis, liquid absorption height of electrolyte, basis weight, tensile rupture strength, and air permeability were measured. The results are shown in Table 1. The basis weight, air permeability and strength did not change and the liquid absorption height was improved compared to before plasma treatment.

【0032】参考例2 芯成分がポリプロピレンで鞘成分がポリエチレンであ
り、芯鞘の比率が1:1である1.5デニールの繊維7
0%と融点125℃であるポリエチレン繊維30%から
なる湿式で製造した不織布(坪量59g/m2、厚み1
60μm、通気度36cm3/cm2/sec)の各種物
性を測定した。測定結果を表−1に示す。ESCA測定
値も有機元素分析値も、O/Cの値は0であり、親水性
がなく電解液が染み込まなかった。
Reference Example 2 1.5 denier fiber 7 in which the core component is polypropylene and the sheath component is polyethylene, and the ratio of the core and the sheath is 1: 1.
Wet-produced non-woven fabric composed of 0% and 30% polyethylene fiber having a melting point of 125 ° C. (grammage 59 g / m 2 , thickness 1
Various physical properties of 60 μm and air permeability of 36 cm 3 / cm 2 / sec) were measured. The measurement results are shown in Table-1. Both the ESCA measured value and the organic elemental analysis value had an O / C value of 0, and there was no hydrophilicity, and the electrolytic solution did not permeate.

【0033】実施例3 参考例2の長尺の不織布を連続的に大気圧プラズマ処理
した。 プラズマ処理条件: ガス:アルゴン+CO2 処理圧力:1気圧 電気:5kHz、150W ライン速度:2m/min
Example 3 The long nonwoven fabric of Reference Example 2 was continuously subjected to atmospheric pressure plasma treatment. Plasma processing conditions: Gas: Argon + CO 2 Processing pressure: 1 atm Electricity: 5 kHz, 150 W Line speed: 2 m / min

【0034】反応終了後、ESCA、有機元素分析、電
解液の吸液高さ、坪量、引っ張り破断強度、通気度を測
定した。結果を表−1に示す。坪量、通気度、強度は変
化せず、酸素が導入されたことが分かる。プラズマ処理
前の不織布(参考例2)に比べ電解液の吸液高さが向上
した。
After completion of the reaction, ESCA, organic elemental analysis, liquid absorption height of electrolyte, basis weight, tensile strength at break and air permeability were measured. The results are shown in Table 1. The basis weight, air permeability and strength did not change, indicating that oxygen was introduced. As compared with the non-woven fabric before plasma treatment (Reference Example 2), the height of electrolyte absorption was improved.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【発明の効果】本発明のポリオレフィン系不織布は、簡
便な方法により処理したにもかかわらず、高度の親水性
を有し、しかも、ポリオレフィン繊維不織布自身の持つ
強度等の特性を損なうことがなく、その工業的価値は高
い。
EFFECT OF THE INVENTION The polyolefin-based nonwoven fabric of the present invention has a high degree of hydrophilicity, despite being treated by a simple method, and does not impair the properties such as strength of the polyolefin fiber nonwoven fabric itself. Its industrial value is high.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 D01F 8/06 D01F 8/06 D04H 1/42 D04H 1/42 K H01M 2/16 H01M 2/16 P // D06M 101:20 D06M 10/00 G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location D01F 8/06 D01F 8/06 D04H 1/42 D04H 1/42 K H01M 2/16 H01M 2/16 P // D06M 101: 20 D06M 10/00 G

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】大気圧プラズマ処理によって表面改質され
たポリオレフィン系不織布であって、該不織布のESC
A測定による炭素に対する酸素の元素組成比(O/C)
が0.1〜0.5、かつ、有機元素分析によるO/Cが
0.01以下であることを特徴とするポリオレフィン系
不織布。
1. A polyolefin-based non-woven fabric surface-modified by atmospheric pressure plasma treatment, wherein the non-woven fabric ESC
Elemental composition ratio of oxygen to carbon measured by A (O / C)
Of 0.1 to 0.5 and O / C of 0.01 or less by organic element analysis.
【請求項2】ポリオレフィン系不織布の厚みが50〜3
00μm、坪量が20〜120g/m2、引張破断強度
が2〜20kgf/2cm、通気度が5〜150cm3
/cm2/secであることを特徴とする請求項1に記
載のポリオレフィン系不織布。
2. The thickness of the polyolefin-based nonwoven fabric is 50 to 3
00 μm, basis weight 20 to 120 g / m 2 , tensile breaking strength 2 to 20 kgf / 2 cm, air permeability 5 to 150 cm 3.
/ Cm < 2 > / sec, The polyolefin type nonwoven fabric of Claim 1 characterized by the above-mentioned.
【請求項3】ポリオレフィン系不織布の厚みが100〜
300μm、坪量が30〜100g/m2、引張破断強
度が2〜20kgf/2cm、通気度が10〜150c
3/cm2/secであることを特徴とする請求項1に
記載のポリオレフィン系不織布。
3. The thickness of the polyolefin non-woven fabric is 100 to.
300 μm, basis weight 30 to 100 g / m 2 , tensile breaking strength 2 to 20 kgf / 2 cm, air permeability 10 to 150 c
The polyolefin non-woven fabric according to claim 1, which has a m 3 / cm 2 / sec.
【請求項4】ポリオレフィン系不織布を構成する繊維
が、芯成分がポリプロピレン、鞘成分がポリエチレンで
ある芯鞘構造を有する繊維を含むことを特徴とする請求
項1ないし3いずれか一項に記載のポリオレフィン系不
織布。
4. The fiber constituting the polyolefin-based non-woven fabric contains a fiber having a core-sheath structure in which a core component is polypropylene and a sheath component is polyethylene. Polyolefin non-woven fabric.
【請求項5】請求項1ないし4いずれか一項に記載のポ
リオレフィン系不織布を用いた電池セパレータ。
5. A battery separator using the polyolefin nonwoven fabric according to any one of claims 1 to 4.
JP7114535A 1995-05-12 1995-05-12 Polyolefin nonwoven fabric Pending JPH08311765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7114535A JPH08311765A (en) 1995-05-12 1995-05-12 Polyolefin nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7114535A JPH08311765A (en) 1995-05-12 1995-05-12 Polyolefin nonwoven fabric

Publications (1)

Publication Number Publication Date
JPH08311765A true JPH08311765A (en) 1996-11-26

Family

ID=14640197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7114535A Pending JPH08311765A (en) 1995-05-12 1995-05-12 Polyolefin nonwoven fabric

Country Status (1)

Country Link
JP (1) JPH08311765A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0921580A1 (en) * 1997-11-25 1999-06-09 Sanyo Electric Co., Ltd. Manufacturing method of alkali storage cell
JP2000317280A (en) * 1999-05-06 2000-11-21 Teijin Ltd Filter using ultrahigh molecular weight polyethylene porous membrane as filter medium
JP2001058858A (en) * 1999-08-20 2001-03-06 Daiwabo Co Ltd Polyolefin-based fiber for cement reinforcement and its production
JP2001148237A (en) * 1999-09-08 2001-05-29 Toshiba Battery Co Ltd Nickel/hydrogen secondary battery
JP2002227074A (en) * 2001-02-01 2002-08-14 Daiwabo Co Ltd Polyolefin-based fiber for reinforcing cement and method for producing the same
JP2003089559A (en) * 2001-09-14 2003-03-28 Daiwabo Co Ltd Polyolefin-based fiber for reinforcing cement and method for producing the same
JP2016081621A (en) * 2014-10-14 2016-05-16 Tdk株式会社 Separator and lithium ion secondary battery using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0921580A1 (en) * 1997-11-25 1999-06-09 Sanyo Electric Co., Ltd. Manufacturing method of alkali storage cell
JP2000317280A (en) * 1999-05-06 2000-11-21 Teijin Ltd Filter using ultrahigh molecular weight polyethylene porous membrane as filter medium
JP2001058858A (en) * 1999-08-20 2001-03-06 Daiwabo Co Ltd Polyolefin-based fiber for cement reinforcement and its production
JP4558859B2 (en) * 1999-08-20 2010-10-06 ダイワボウホールディングス株式会社 Manufacturing method of polyolefin fiber for cement reinforcement
JP2001148237A (en) * 1999-09-08 2001-05-29 Toshiba Battery Co Ltd Nickel/hydrogen secondary battery
JP2002227074A (en) * 2001-02-01 2002-08-14 Daiwabo Co Ltd Polyolefin-based fiber for reinforcing cement and method for producing the same
JP2003089559A (en) * 2001-09-14 2003-03-28 Daiwabo Co Ltd Polyolefin-based fiber for reinforcing cement and method for producing the same
JP2016081621A (en) * 2014-10-14 2016-05-16 Tdk株式会社 Separator and lithium ion secondary battery using the same

Similar Documents

Publication Publication Date Title
EP0316916B1 (en) Separator material for storage batteries and method for making the same
KR100415797B1 (en) Alkaline battery separator and process for producing same
US6821680B2 (en) Battery separator, process for producing the same, and alkaline battery
JPH06207321A (en) Sulfonated conjugate fiber, nonwoven fabric, cell separator and production of cell separator
JPH08311765A (en) Polyolefin nonwoven fabric
EP0989619B1 (en) Alkaline battery separator
JPH0679832A (en) Hydrophilic fiber sheet and production thereof
EP1073131B1 (en) Alkaline battery separator and process for producing the same
JP3366412B2 (en) Alkaline battery separator
JP3306412B2 (en) Surface treatment method for polyphenylene sulfide fiber or polysulfone fiber
JPH0949158A (en) Nonwoven cloth and its production
JPH11293564A (en) Olefinic nonwoven cloth and alkali secondary cell separator
GB2098636A (en) Separator for electrochemical energy-storage units and a process for its manufacture
JP3494805B2 (en) Grafted polyolefin-based nonwoven fabric
JP3487968B2 (en) Sulfonated composite fibers and nonwovens
JP3510156B2 (en) Battery separator and battery
JPH10101830A (en) Surface treatment of polyolefin-based resin molded form
JP3395996B2 (en) Battery separator and manufacturing method thereof
JP2000164191A (en) Separator for alkaline battery
JP2001003254A (en) Hydrophilic non-woven fabric, battery separator using the same and battery
JPH11312507A (en) Separator for battery, and battery
JPH11297295A (en) Separator for battery and its manufacture and battery using it
JPH09124813A (en) Hydrophilic polyolefin-based polymeric porous material, its production and application thereof to battery separator
JPH10208722A (en) Manufacture of battery separator
JP2002083582A (en) Separator for secondary battery and its manufacturing method