JP3487968B2 - Sulfonated composite fibers and nonwovens - Google Patents

Sulfonated composite fibers and nonwovens

Info

Publication number
JP3487968B2
JP3487968B2 JP13799295A JP13799295A JP3487968B2 JP 3487968 B2 JP3487968 B2 JP 3487968B2 JP 13799295 A JP13799295 A JP 13799295A JP 13799295 A JP13799295 A JP 13799295A JP 3487968 B2 JP3487968 B2 JP 3487968B2
Authority
JP
Japan
Prior art keywords
sulfonated
sulfonation
composite fiber
density polyethylene
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13799295A
Other languages
Japanese (ja)
Other versions
JPH08325932A (en
Inventor
和之 高見
祥夫 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube-Nitto Kasei Co Ltd
Original Assignee
Ube-Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube-Nitto Kasei Co Ltd filed Critical Ube-Nitto Kasei Co Ltd
Priority to JP13799295A priority Critical patent/JP3487968B2/en
Publication of JPH08325932A publication Critical patent/JPH08325932A/en
Application granted granted Critical
Publication of JP3487968B2 publication Critical patent/JP3487968B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Nonwoven Fabrics (AREA)
  • Paper (AREA)
  • Cell Separators (AREA)
  • Filtering Materials (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電池用セパレータ、分
離膜、セメント補強材などに用いられるスルホン化複合
繊維およびスルホン化不織布に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sulfonated composite fiber and a sulfonated non-woven fabric used for battery separators, separators, cement reinforcing materials and the like.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】不織
布は、紡績工程や撚糸工程を経ることなく繊維から直接
製造することができるため、その製造操作が織物や編み
物に比べて簡単である。このような利点を有する不織布
は、現在、紙おむつに代表される衛生材料や衣料材料に
広く利用されている。そして、不織布の材料となる繊維
として、ポリプロピレン繊維等の単一繊維、ポリエチレ
ン−ポリプロピレン系複合繊維やポリエチレン−ポリエ
チレンテレフタレート系複合繊維等の異種ポリマー複合
繊維、共重合ポリエステル−ポリエチレンテレフタレー
ト系複合繊維や共重合ポリプロピレン−ポリプロピレン
系複合繊維等の同種ポリマー複合繊維が開発されてい
る。
2. Description of the Related Art Nonwoven fabrics can be manufactured directly from fibers without undergoing a spinning process or a twisting process, so that the manufacturing operation thereof is simpler than that of a woven fabric or a knitted fabric. Nonwoven fabrics having such advantages are currently widely used as sanitary materials such as paper diapers and clothing materials. Then, as the fibers to be the material of the non-woven fabric, single fibers such as polypropylene fibers, heterogeneous polymer composite fibers such as polyethylene-polypropylene composite fibers and polyethylene-polyethylene terephthalate composite fibers, copolymerized polyester-polyethylene terephthalate composite fibers and co-fibers. Homogeneous polymer composite fibers such as polymerized polypropylene-polypropylene composite fibers have been developed.

【0003】また上記衛生材料や衣料材料以外の用途と
して、電池例えばニッケル−カドミウム電池用のセパレ
ータとして、合成繊維からなる不織布が使用されている
が、電池用セパレータに用いる不織布には適度の機械的
強度、良好なガス透過性、電解液保持能力、電解液耐久
性及び耐酸化性が要求される。現在一般的に使用されて
いるポリアミド繊維からなる不織布は、親水性があり、
電解液保持能力に優れているが、電解液耐久性、耐酸化
性に乏しく、充放電を繰り返すうちにアミド結合から分
解し始め、電解液中に分解物が溶解して、自己放電の原
因となる。
As a separator for batteries such as nickel-cadmium batteries, a non-woven fabric made of synthetic fibers is used for applications other than the above-mentioned hygiene materials and clothing materials. Strength, good gas permeability, electrolyte retention capacity, electrolyte durability and oxidation resistance are required. Nonwoven fabric made of polyamide fiber, which is commonly used at present, has hydrophilicity,
Although it has excellent electrolyte retention capacity, it is poor in electrolyte durability and oxidation resistance, and begins to decompose from amide bonds during repeated charge and discharge, and the decomposed product dissolves in the electrolyte, causing self-discharge. Become.

【0004】これに対して、ポリプロピレン、ポリエチ
レン等のポリオレフィン繊維からなる不織布は、電解液
耐久性、耐酸化性に優れているが、疎水性であるため、
電解液保持能力に乏しい。このため、ポリオレフィン系
繊維に界面活性剤処理を施して親水性を与えた後、使用
することが試みられているが、多数回の充放電により界
面活性剤が溶出し、自己放電特性が悪くなると同時に、
徐々に親水性が悪くなるという欠点がある。
On the other hand, a non-woven fabric made of polyolefin fibers such as polypropylene and polyethylene is excellent in electrolytic solution durability and oxidation resistance, but is hydrophobic,
Poor electrolyte retention capacity. For this reason, it has been attempted to use the polyolefin-based fiber after treating the polyolefin-based fiber with a hydrophilic property to make it hydrophilic, but when the surfactant is eluted by a large number of charging / discharging times and the self-discharge characteristic deteriorates. at the same time,
There is a drawback that the hydrophilicity gradually deteriorates.

【0005】そこでポリオレフィン繊維表面に化学反応
により、親水性官能基を導入して恒久的な親水性を保持
することが考えられる。
Therefore, it is conceivable that a hydrophilic functional group is introduced into the surface of the polyolefin fiber by a chemical reaction to maintain permanent hydrophilicity.

【0006】例えば特開昭57−141862号公報に
は、ポリプロピレン樹脂繊維表面にポリエチレン樹脂を
配置した繊維からなる不織布を基材として用い、親水性
を有するモノマーをグラフト重合することにより、親水
性不織布を得ている。しかしこの公報に記載の方法で
は、ポリオレフィンの中でも反応性の劣るポリエチレン
に親水性モノマーをグラフト重合させようとするもので
あり、グラフト重合時間が長くなり、かつ重合時間を長
くしてもグラフト化が不均一になり、親水性官能基が脱
離しやすいという欠点がある。
For example, in JP-A-57-141862, a hydrophilic non-woven fabric is prepared by graft-polymerizing a hydrophilic monomer by using a non-woven fabric made of fibers having a polyethylene resin arranged on the surface of a polypropylene resin fiber as a substrate. Is getting However, in the method described in this publication, a hydrophilic monomer is attempted to be graft-polymerized to polyethylene, which is poor in reactivity among polyolefins, and the graft-polymerization time becomes long, and even if the polymerization time is lengthened, grafting is not possible. It has the disadvantages that it becomes non-uniform and the hydrophilic functional groups are easily eliminated.

【0007】また特開平1−132042号および特開
平1−132044号公報には、ポリプロピレン短繊維
を開繊し分散させた後、ポリエチレンを分散させた有機
溶媒中に均一にふりかけてポリプロピレン繊維同士に結
着性を付与させ、さらに熱ロール間を通過させることに
より各繊維同士を熱融着させて、内部がポリプロピレ
ン、表面層付近がポリエチレンである不織布を得、この
不織布を発煙硫酸中に浸漬させてポリエチレン部分をス
ルホン化させて親水性を付与する方法が開示されてい
る。
In Japanese Patent Laid-Open Nos. 1-132042 and 1-132044, polypropylene short fibers are opened and dispersed, and then uniformly sprinkled in an organic solvent in which polyethylene is dispersed to form polypropylene fibers. The fibers are heat-bonded to each other by giving a binding property and further passing between hot rolls to obtain a nonwoven fabric having polypropylene inside and polyethylene near the surface layer, and immersing the nonwoven fabric in fuming sulfuric acid. A method of imparting hydrophilicity by sulfonation of a polyethylene portion is disclosed.

【0008】しかしこれら公報に記載の方法では、不織
布を製造するまでの工程において、結着剤塗布及び脱溶
媒作業を含むなど操作が煩雑であり、一般的な熱接着性
複合繊維で実施されている簡便な不織布製造方法を採用
することが出来ない。さらにスルホン化されていない部
分も存在しており、スルホン化が不均一である。
However, in the methods described in these publications, operations such as application of a binder and desolvation work are complicated in the steps up to the production of the non-woven fabric, and the conventional heat-adhesive conjugate fiber is used. It is not possible to adopt a simple non-woven fabric manufacturing method. Further, there is a portion that is not sulfonated, and the sulfonation is non-uniform.

【0009】ところで、特開昭59−9255号公報に
は、熱接着性不織布として、直鎖状低密度ポリエチレン
を鞘成分とし、ポリエチレンを芯成分とする複合繊維を
熱接着して得た不織布が開示されている。しかし、この
公報に記載の不織布は、衛生材料への使用を目的とし
て、出来るだけ少ない不織布重量で出来るだけ高い不織
布強力を維持し、かつ出来るだけソフトな風合いを有す
るようにしたものであり、不織布の親水性については全
く着眼していない。
By the way, Japanese Patent Application Laid-Open No. 59-9255 discloses a heat-adhesive non-woven fabric obtained by heat-bonding a composite fiber containing linear low-density polyethylene as a sheath component and polyethylene as a core component. It is disclosed. However, the non-woven fabric described in this publication is intended to be used as a hygienic material while maintaining a high non-woven fabric strength with the least possible non-woven fabric weight and having a soft texture as much as possible. No attention has been paid to the hydrophilicity of.

【0010】ポリオレフィン樹脂の反応性については、
例えば「高分子反応」第8〜17頁(高分子実験学、vo
l 6. 編集;高分子学会高分子実験学編集委員会、共立
出版1978年)に記述があるように、一般的にポリエ
チレンは水素引き抜きによるラジカルが発生し難いため
反応性が悪く、鞘/芯=ポリエチレン/ポリプロピレン
構造の従来の複合繊維では、繊維表面に均一なスルホン
化またはグラフト化反応を行うことが難しいというのが
定説になっていた。
Regarding the reactivity of the polyolefin resin,
For example, "Polymer Reaction", pages 8 to 17 (Polymer Experimental Studies, vo
l 6. Edit: As described in The Society of Polymer Science, Japan Society for Polymer Experiments, Kyoritsu Shuppan 1978), polyethylene generally has poor reactivity because radicals due to hydrogen abstraction are difficult to generate, and sheath / core = With conventional composite fibers having a polyethylene / polypropylene structure, it has been accepted that it is difficult to carry out a uniform sulfonation or grafting reaction on the fiber surface.

【0011】このため均一に親水化処理を行うために
は、処理条件を過酷なものとすることが行われるが、こ
れによって不織布の強度低下の危険性が生じるという欠
点がある。また逆に処理条件を低濃度等ゆるやかなもの
にすると、反応速度の点で処理時間が長くなり、生産性
が低下してしまうという欠点がある。
Therefore, in order to carry out the hydrophilic treatment uniformly, the treatment conditions are made severe, but there is a disadvantage that the strength of the non-woven fabric is lowered. On the other hand, if the treatment conditions are gentle such as low concentration, there is a drawback that the treatment time becomes long in terms of reaction rate and the productivity is lowered.

【0012】従って本発明の目的は、(i) 簡便な方法で
得ることができる、(ii) スルホン化が均一である、(ii
i) スルホン化前に比べて強度の低下が少ない、などの
利点を有するスルホン化複合繊維およびスルホン化不織
布を提供することにある。
Therefore, the object of the present invention is (i) can be obtained by a simple method, (ii) the sulfonation is uniform, (ii)
i) To provide a sulfonated composite fiber and a sulfonated nonwoven fabric, which have advantages such as less reduction in strength as compared with before sulfonation.

【0013】[0013]

【課題を解決するための手段】上述の目的を達成すべく
本発明者は鋭意研究を重ねた結果、直鎖状低密度ポリエ
チレンを鞘成分とし、該直鎖状低密度ポリエチレンより
も融点の高い重合体を芯成分とする鞘芯型複合繊維
(a)または該鞘芯型複合繊維から得られた不織布
(b)を発煙硫酸などの通常のスルホン化剤でスルホン
化処理すると、驚くべきことに上記鞘芯型複合繊維
(a)中および不織布(b)中の直鎖状低密度ポリエチ
レンが、ポリエチレンのカテゴリーに含まれるにも拘ら
ず、スルホン化されやすく、均一にスルホン化されるこ
と、およびスルホン化後の鞘芯型複合繊維(a)および
不織布(b)の強度低下が小さいことを見い出し、本発
明を完成した。
Means for Solving the Problems As a result of intensive studies conducted by the present inventor to achieve the above object, a linear low density polyethylene is used as a sheath component and has a higher melting point than the linear low density polyethylene. Surprisingly, when a sheath-core type composite fiber (a) containing a polymer as a core component or a nonwoven fabric (b) obtained from the sheath-core type composite fiber is subjected to a sulfonation treatment with an ordinary sulfonating agent such as fuming sulfuric acid. The linear low-density polyethylene in the sheath-core type composite fiber (a) and the non-woven fabric (b) is easily sulfonated despite being included in the category of polyethylene, and is uniformly sulfonated, and The present invention was completed by finding that the decrease in strength of the sheath-core type composite fiber (a) and the nonwoven fabric (b) after sulfonation is small.

【0014】従って本発明は、直鎖状低密度ポリエチレ
ンを鞘成分とし、該直鎖状低密度ポリエチレンよりも融
点の高い重合体を芯成分とする鞘芯型複合繊維からな
り、鞘成分の直鎖状低密度ポリエチレンがスルホン化さ
れていることを特徴とするスルホン化複合繊維を要旨と
する。
Therefore, the present invention comprises a sheath-core type composite fiber comprising a linear low-density polyethylene as a sheath component and a polymer having a melting point higher than that of the linear low-density polyethylene as a core component. The gist is a sulfonated composite fiber, which is characterized in that chain low-density polyethylene is sulfonated.

【0015】また本発明は、直鎖状低密度ポリエチレン
を鞘成分とし、該直鎖状低密度ポリエチレンよりも融点
の高い重合体を芯成分とする鞘芯型複合繊維から得られ
た不織布からなり、鞘成分の直鎖状低密度ポリエチレン
がスルホン化されていることを特徴とするスルホン化不
織布を要旨とする。
The present invention also comprises a non-woven fabric obtained from a sheath-core type composite fiber having a linear low density polyethylene as a sheath component and a polymer having a melting point higher than that of the linear low density polyethylene as a core component. A sulfonated non-woven fabric is characterized in that a linear low-density polyethylene as a sheath component is sulfonated.

【0016】先ず本発明のスルホン化複合繊維について
説明する。本発明のスルホン化複合繊維を構成する鞘成
分は直鎖状低密度ポリエチレン(以下L−LDPEとい
う)である。用いられるL−LDPEは、密度が低いも
のほどスルホン化の反応性が向上する。従って、密度は
0.945以下が好ましいが、密度が0.90未満とな
ると軟化点が低くなりすぎて1デニール以下の細径繊維
化が困難になる。従ってL−LDPEの好ましい密度範
囲は0.90〜0.945である。L−LDPEの具体
例としては、エチレンと炭素数4〜8のα−オレフィン
とをイオン重合触媒の存在下で共重合させて得られるも
ので、直鎖状ポリマーにエチル基、ブチル基、ヘキシル
基、2−メチルプロピル基等の側鎖が形成された構造を
有しており、一般に直鎖状低密度ポリエチレンと称して
市販されているものの中から選ぶことができる。
First, the sulfonated composite fiber of the present invention will be described. The sheath component constituting the sulfonated conjugate fiber of the present invention is linear low density polyethylene (hereinafter referred to as L-LDPE). L-LDPE used is etc. Ho those low density is improved reactivity of the scan sulfonated. Therefore, the density is preferably 0.945 or less, but if the density is less than 0.90, the softening point becomes too low, and it becomes difficult to form fine fibers having a denier of 1 or less. Therefore, the preferable density range of L-LDPE is 0.90 to 0.945. Specific examples of L-LDPE include those obtained by copolymerizing ethylene and an α-olefin having 4 to 8 carbon atoms in the presence of an ionic polymerization catalyst, wherein a linear polymer is an ethyl group, a butyl group, or a hexyl group. Group, a structure in which a side chain such as a 2-methylpropyl group is formed, and can be selected from commercially available products generally called linear low-density polyethylene.

【0017】鞘成分のL−LDPEには、密度が0.9
45を超えない範囲で従来一般に市販されている低密度
ポリエチレン、中密度ポリエチレンまたは高密度ポリエ
チレン等の単独重合体や、ポリプロピレンを主成分とす
る共重合体(エチレン−プロピレンランダムコポリマ
ー、エチレン−プロピレン−ブテン−1ランダムコポリ
マー等)等の共重合体を混合することができる。
The sheath component L-LDPE has a density of 0.9.
Homopolymers such as low-density polyethylene, medium-density polyethylene, or high-density polyethylene that have hitherto been commercially available within a range not exceeding 45, and copolymers containing polypropylene as a main component (ethylene-propylene random copolymer, ethylene-propylene- Copolymers such as butene-1 random copolymers) can be mixed.

【0018】一方、芯成分の重合体は、上記L−LDP
Eよりも融点が高い重合体が用いられ、好ましくは融点
が15℃以上高い重合体が用いられる。このような重合
体としては、例えばポリプロピレン、ポリプロピレン−
ポリエチレン共重合体、ポリエステル、ポリアミド等の
溶融紡糸可能な重合体がいずれも使用可能である。
On the other hand, the polymer of the core component is the above L-LDP.
A polymer having a melting point higher than that of E is used, and preferably a polymer having a melting point of 15 ° C. or higher is used. Examples of such a polymer include polypropylene and polypropylene-
Melt-spinnable polymers such as polyethylene copolymers, polyesters and polyamides can all be used.

【0019】上記鞘成分と芯成分からなる複合繊維の構
造は、従来公知の各種構造、例えば同心型、偏心型など
の任意の構造をとることができるが、鞘成分が複合成分
の表面の少なくとも一部を長さ方向に連続して形成する
ように配置されなくてはならない。また鞘/芯断面積比
の範囲は30/70〜70/30が好ましい。
The structure of the composite fiber composed of the sheath component and the core component can be any conventionally known structure such as concentric type or eccentric type structure. The sheath component is at least the surface of the composite component. It must be arranged so that a part is formed continuously in the longitudinal direction. The range of the sheath / core cross-sectional area ratio is preferably 30/70 to 70/30.

【0020】この複合繊維は、通常の鞘芯型複合繊維の
製造方法に基づいて紡糸及び延伸し、所望の長さにカッ
トすることにより得られる。例えば、溶融紡糸温度を1
80〜250℃として、紡出された未延伸糸を0.5〜
30デニールの範囲で通常2〜6倍に熱延伸することに
よって、複合繊維を得ることができる。
This composite fiber is obtained by spinning and drawing according to the usual method for producing a sheath-core type composite fiber, and cutting it into a desired length. For example, a melt spinning temperature of 1
The temperature is 80 to 250 ° C., and the spun undrawn yarn is 0.5 to
The composite fiber can be obtained by heat drawing usually 2 to 6 times in the range of 30 denier.

【0021】以上スルホン化されていない複合繊維につ
いて説明してきたが、本発明のスルホン化複合繊維は、
複合繊維における鞘成分のL−LDPEがスルホン化さ
れていることを特徴とする。スルホン化は、発煙硫酸、
クロル硫酸、濃硫酸などの公知のスルホン化剤を用いて
行なわれる。L−LDPEの好ましいスルホン化度は3
〜10%である。その理由はスルホン化度が3%未満で
あると十分な親水性が得られず、一方10%を超える
と、複合繊維の強度が低下するからである。
Although the non-sulfonated conjugate fiber has been described above, the sulfonated conjugate fiber of the present invention is
The sheath component L-LDPE in the composite fiber is sulfonated. Sulfonation is fuming sulfuric acid,
It is carried out using a known sulfonating agent such as chlorosulfuric acid or concentrated sulfuric acid. The preferred degree of sulfonation of L-LDPE is 3.
-10%. The reason is that if the degree of sulfonation is less than 3%, sufficient hydrophilicity cannot be obtained, and if it exceeds 10%, the strength of the conjugate fiber is reduced.

【0022】本発明のスルホン化複合繊維は、溶融紡糸
後、約2倍以上に熱延伸した繊維のままで、FRC(繊
維強化セメント)用繊維といった耐アルカリ性と親水性
という相反する特性を必要とする補強繊維用途に用いて
もよいが、また後記するような通常の手段により不織布
を得たのち、電池用セパレータ、電気透析用隔膜、電解
隔離膜、電気浸透隔膜、ガス分離膜、液−液分離膜、燃
料電池用隔膜、帯電防止印刷用シートなど、耐アルカリ
性、親水性、高強度、制電性等を必要とする各種用途に
用いるのが好ましい。
The sulfonated composite fiber of the present invention is a fiber that has been subjected to hot-drawing by a factor of about 2 or more after melt spinning, and needs to have contradictory characteristics such as a fiber for FRC (fiber reinforced cement) such as alkali resistance and hydrophilicity. Although it may be used for the reinforcing fiber application, after obtaining a nonwoven fabric by a usual means as described below, a battery separator, an electrodialysis membrane, an electrolytic isolation membrane, an electroosmosis membrane, a gas separation membrane, a liquid-liquid. It is preferably used for various applications requiring alkali resistance, hydrophilicity, high strength, antistatic property, etc., such as separation membranes, fuel cell membranes and antistatic printing sheets.

【0023】次に本発明のスルホン化不織布について説
明する。本発明のスルホン化不織布を構成する不織布
は、L−LDPEを鞘成分とし、L−LDPEよりも融
点の高い重合体を芯成分とする、前述の鞘芯型複合繊維
を、通常用いられているローラーカード、フラットカー
ド等のカード機を用いて常法により処理し、ウェッブを
作製した後、目的とする不織布の用途等に応じて熱風融
着法、熱ロール融着法、ニードルパンチ法、水流絡合法
等の常法によりウェッブを接合あるいは絡合することに
より得たものである。また本発明のスルホン化不織布を
構成する不織布は、上記の鞘芯型複合繊維を短カットし
たのち、これを湿式抄紙法により抄紙することにより得
たものでもよい。
Next, the sulfonated nonwoven fabric of the present invention will be described. The non-woven fabric constituting the sulfonated non-woven fabric of the present invention is usually the above-mentioned sheath-core type composite fiber having L-LDPE as a sheath component and a polymer having a higher melting point than L-LDPE as a core component. After processing by a conventional method using a card machine such as a roller card and a flat card to prepare a web, a hot air fusion method, a heat roll fusion method, a needle punch method, and a water stream according to the intended use of the nonwoven fabric. It is obtained by joining or entanglement of webs by a conventional method such as an entanglement method. Further, the non-woven fabric constituting the sulfonated non-woven fabric of the present invention may be obtained by short-cutting the above-mentioned sheath-core type composite fiber and then making a paper by a wet paper making method.

【0024】以上スルホン化されていない不織布につい
て説明してきたが、本発明のスルホン化不織布は、不織
布を構成する鞘芯型複合繊維中の芯成分のL−LDPE
がスルホン化されていることを特徴とする。スルホン化
は、既に述べたように発煙硫酸、クロル硫酸、濃硫酸な
どの公知のスルホン化剤を用いて行なわれる。L−LD
PEの好ましいスルホン化度は3〜10%である。その
理由はスルホン化度が3%未満であると十分な親水性が
得られず、一方10%を超えると、複合繊維の強度が低
下するからである。
Although the non-sulfonated non-woven fabric has been described above, the sulfonated non-woven fabric of the present invention is L-LDPE which is the core component in the sheath-core type composite fiber constituting the non-woven fabric.
Is sulfonated. The sulfonation is carried out using a known sulfonating agent such as fuming sulfuric acid, chlorosulfuric acid and concentrated sulfuric acid as described above. L-LD
The preferred degree of sulfonation of PE is 3 to 10%. The reason is that if the degree of sulfonation is less than 3%, sufficient hydrophilicity cannot be obtained, and if it exceeds 10%, the strength of the conjugate fiber is reduced.

【0025】本発明のスルホン化不織布において、不織
布の目付は30g/m2を超え、100g/m2以下であ
るのが好ましい。その理由は、30g/m2以下では電
池用セパレータなどの用途を考えたときに十分な不織布
強度が得られず、一方100g/m2を超えると、電池
用セバレータ、ガス分離膜などの用途を考えたときに十
分な透気度が得られないからである。
In the sulfonated nonwoven fabric of the present invention, the basis weight of the nonwoven fabric is preferably more than 30 g / m 2 and 100 g / m 2 or less. The reason is that if the amount is 30 g / m 2 or less, sufficient nonwoven fabric strength cannot be obtained when considering applications such as battery separators, while if it exceeds 100 g / m 2 , applications such as battery separators and gas separation membranes are not possible. This is because sufficient air permeability cannot be obtained when thinking.

【0026】本発明のスルホン化不織布は、電池用セパ
レータ、電気透析用隔膜、電解隔離膜、電気浸透隔膜、
ガス分離膜、液−液分離膜、燃料電池用隔膜、帯電防止
印刷用シートなど、耐アルカリ性、親水性、高強度、制
電性等を必要とする各種用途に用いるのが好ましい。
The sulfonated nonwoven fabric of the present invention comprises a battery separator, an electrodialysis membrane, an electrolytic isolation membrane, an electroosmotic membrane,
It is preferably used for various applications requiring alkali resistance, hydrophilicity, high strength, antistatic property, etc. such as gas separation membranes, liquid-liquid separation membranes, fuel cell membranes and antistatic printing sheets.

【0027】[0027]

【作用】L−LDPEが、直鎖状高密度ポリエチレンと
比較して、スルホン化反応速度が速い理由は、次のよう
に推察される。L−LDPEは、炭素数4〜8のα−オ
レフィンを共重合成分としてエチレンモノマーを配位ア
ニオン重合させたものであり、直鎖状の長いポリエチレ
ン鎖に短い側鎖が多数存在した構造をしている。主鎖と
側鎖の分岐点の炭素原子は不斉炭素であり、この炭素と
結合する水素原子は他の水素原子と比較して引き抜かれ
やすい傾向にあり、このためラジカル反応を起こしやす
い。またこの短側鎖が存在するため、直鎖状高密度ポリ
エチレンよりも密度が低く、反応試薬の浸透性にも優れ
る。この2つの効果によってL−LDPEのスルホン化
反応速度が速くなるものと思われる。
[Function] L-LDPE is a linear high-density polyethylene
The reason why the sulfonation reaction rate is high in comparison is as follows.
Be inferred. L-LDPE is an α-o having 4 to 8 carbon atoms.
Coordination of ethylene monomer with reffin as copolymerization component
Nion-polymerized, long linear polyethylene
It has a structure with many short side chains in the chain. With the main chain
The carbon atom at the branch point of the side chain is an asymmetric carbon.
The bonding hydrogen atom is extracted compared to other hydrogen atoms.
It tends to be easy, so it is easy to cause a radical reaction
Yes. Also, due to the presence of this short side chain, linear high-density poly
It has a lower density than ethylene and has excellent permeability for reaction reagents.
It Due to these two effects, sulfonation of L-LDPE
It seems that the reaction rate becomes faster.

【0028】本発明によれば、上述のように、スルホン
化反応速度の速いL−LDPEを鞘成分とする複合繊維
および該複合繊維から得られた不織布を原材料として用
いることにより、簡便な方法で、その表層部が均一にス
ルホン化されたスルホン化複合繊維およびスルホン化不
織布を、繊維強度を低下させることなく得ることができ
る。
According to the present invention, as described above, by using the composite fiber containing L-LDPE having a fast sulfonation reaction rate as the sheath component and the nonwoven fabric obtained from the composite fiber as a raw material, a simple method can be obtained. It is possible to obtain a sulfonated composite fiber and a sulfonated non-woven fabric whose surface layer is uniformly sulfonated, without lowering the fiber strength.

【0029】[0029]

【実施例】以下実施例により本発明をさらに説明する。The present invention will be further described with reference to the following examples.

【0030】(実施例1)各種ポリエチレンのスルホン
化速度を試験し比較した。
Example 1 The sulfonation rates of various polyethylenes were tested and compared.

【0031】試験したポリエチレンの原料は以下のとお
りである。
The polyethylene raw materials tested are as follows:

【0032】 (a)エスプレンSPO No.377 (住友化学社製L-LDPE、ρ=0.89) (b)GA−801 (住友化学社製L-LDPE、ρ=0.92) (c)ネオゼックス45200 (三井石油化学社製L-LDPE、ρ=0.945) (d)J−310 (旭化成工業社製HDPE(高密度ポリエチレ ン)ρ=0.962) 上記4種の原料を200℃に加熱して100kg/cm2
加圧条件下で成形して、厚さ約0.2mmのフィルムを作
製し、これを試験フィルムとした。
(A) Esplen SPO No.377 (L-LDPE manufactured by Sumitomo Chemical Co., ρ = 0.89) (b) GA-801 (L-LDPE manufactured by Sumitomo Chemical Co., ρ = 0.92) (c) NeoZex 45200 (Mitsui Petrochemical L-LDPE, ρ = 0.945) (d) J-310 (Asahi Kasei Kogyo HDPE (high density polyethylene) ρ = 0.962) 100 kg / cm 2 by heating the above four kinds of raw materials to 200 ° C. The film was molded under the pressure condition of 1 to prepare a film having a thickness of about 0.2 mm, which was used as a test film.

【0033】サンプル瓶(容量100ml)に発煙硫酸
(SO3濃度20%)を80ml入れ、50×100mmサ
イズの試験用フィルムを投入して、所定時間、25℃に
て浸漬処理した。処理後直ちに濃硫酸中に3分間浸漬
し、続けて50%硫酸、10%硫酸にそれぞれ3分浸漬
した後、水洗した。
80 ml of fuming sulfuric acid (SO 3 concentration: 20%) was placed in a sample bottle (capacity: 100 ml), a test film of 50 × 100 mm size was placed therein, and immersed at 25 ° C. for a predetermined time. Immediately after the treatment, it was dipped in concentrated sulfuric acid for 3 minutes, successively dipped in 50% sulfuric acid and 10% sulfuric acid for 3 minutes each, and then washed with water.

【0034】スルホン化後に得られた試験用フィルムに
おけるスルホン化度を次のようにして測定した。スルホ
ン化後の試験フィルムを乾燥させた後、FT−IR分析
を行った(ATR法;入射角45°)。得られたIRス
ペクトルにおいて、脂肪族飽和炭化水素のC−H対称変
角振動(約1460cm-1)による吸収スペクトルの高さ
に対するスルホン基のS=0伸縮振動(約1180c
m-1)による吸収スペクトルの高さの比を計算し、この
値をピーク比とした。そしてXPS測定(X線光電子分
光分析法)により、スルホン化処理した試験フィルムの
スルホン化度を測定し、検量線を作成した。各試験フィ
ルムのスルホン化度は、FT−IR分析によって求めた
ピーク比と、作成した検量線とから算出した。
The degree of sulfonation in the test film obtained after sulfonation was measured as follows. After the sulfonated test film was dried, FT-IR analysis was performed (ATR method; incident angle 45 °). In the obtained IR spectrum, the S = 0 stretching vibration (about 1180c) of the sulfone group with respect to the absorption spectrum height of the C-H symmetric bending vibration (about 1460 cm -1 ) of the saturated aliphatic hydrocarbon
The height ratio of the absorption spectrum by m -1 ) was calculated, and this value was used as the peak ratio. Then, the degree of sulfonation of the sulfonation-treated test film was measured by XPS measurement (X-ray photoelectron spectroscopy) to prepare a calibration curve. The sulfonation degree of each test film was calculated from the peak ratio obtained by FT-IR analysis and the prepared calibration curve.

【0035】各種ポリエチレン試験フィルムのスルホン
化処理時間とスルホン化度との関係を図−1に示す。本
図より明らかに、ρ=0.962のHDPEよりも、ρ
=0.945、ρ=0.92およびρ=0.89のL−
LDPEのほうがスルホン化され易いことが分かる。
The relationship between the sulfonation treatment time and the sulfonation degree of various polyethylene test films is shown in FIG. From this figure, it is clear that ρ = 0.962
= −0.945, ρ = 0.92 and ρ = 0.89 L−
It can be seen that LDPE is more easily sulfonated.

【0036】(実施例2) (1)鞘芯型複合繊維の製造 鞘成分として、MFR値が20g/10分、ρ=0.9
2g/ccのL−LDPE(製品名:GA801、住友化
学社製)を用い、芯成分としてMFR値20g/10分
のポリプロピレン(製品名:130MV、宇部興産社
製)を用いて、一軸押出し機2台とホール径0.4mmの
複合繊維用円形ノズルとを備えた複合紡糸設備により、
紡糸温度200〜240℃で、引き取り速度500m/
分の条件で紡糸して、鞘部と芯部の断面積比が50/5
0で単糸デニールが3.1deである複合繊維(未延伸
糸)を得た。
Example 2 (1) Production of sheath-core type composite fiber As a sheath component, MFR value is 20 g / 10 min, ρ = 0.9
A uniaxial extruder using 2 g / cc of L-LDPE (product name: GA801, manufactured by Sumitomo Chemical Co., Ltd.) and polypropylene (product name: 130 MV, manufactured by Ube Industries, Ltd.) having a MFR value of 20 g / 10 min as a core component. With a composite spinning equipment equipped with two units and a circular nozzle for composite fibers with a hole diameter of 0.4 mm,
At a spinning temperature of 200 to 240 ° C., a take-up speed of 500 m /
And the cross-sectional area ratio of the sheath and the core is 50/5.
A composite fiber (undrawn yarn) having a single yarn denier of 3.1 de was obtained at 0.

【0037】得られた未延伸糸を3.1倍で延伸し、繊
維長5mm、単糸デニール1.0deのファイバーからなる
鞘芯型複合繊維を得た。
The obtained undrawn yarn was drawn 3.1 times to obtain a sheath-core type composite fiber composed of fibers having a fiber length of 5 mm and a single yarn denier of 1.0 de.

【0038】(2)湿式法による不織布の製造 上記ファイバー2.6gを、界面活性剤を加えた水10
リットル中に均一に分散させ、寸法250mm×200mm
のメッシュ上に抄紙して、湿ったウェッブを作製した。
得られたウェッブを2枚の加熱板間に挾持し、温度12
0〜125℃で10分間プレスして乾燥すると共に、複
合繊維の鞘部を溶融させて、繊維間を接合して不織布を
作製した。
(2) Manufacture of non-woven fabric by wet method 2.6 g of the above fiber was added to a water 10 containing a surfactant.
Dispersed evenly in the liter, dimensions 250 mm x 200 mm
Paper was made on the No. 3 mesh to make a wet web.
The obtained web was held between two heating plates and the temperature was adjusted to 12
While pressing and drying at 0 to 125 ° C. for 10 minutes, the sheath portion of the composite fiber was melted and the fibers were joined together to produce a nonwoven fabric.

【0039】(3)スルホン化不織布の製造 得られた不織布をメタノール中に浸漬させて付着オイル
を除去したのち、発煙硫酸(SO3濃度20%)中に浸
漬し、25℃で5分間スルホン化処理した。このように
して本発明のスルホン化不織布を得た。
(3) Production of Sulfonated Nonwoven Fabric The obtained nonwoven fabric is dipped in methanol to remove adhering oil, and then dipped in fuming sulfuric acid (SO 3 concentration 20%) and sulfonated at 25 ° C. for 5 minutes. Processed. Thus, the sulfonated nonwoven fabric of the present invention was obtained.

【0040】得られたスルホン化不織布の吸水性試験を
次のようにして行なった。スルホン化処理済の不織布を
水中に静かに浸漬させ、15分間静置した。その後この
不織布を取り出し、30秒間空中にて吊り下げた後に重
量を測定して、下式により吸水率を求めた。
The water absorption test of the obtained sulfonated nonwoven fabric was conducted as follows. The sulfonated non-woven fabric was gently dipped in water and allowed to stand for 15 minutes. After that, this non-woven fabric was taken out, suspended in the air for 30 seconds, and then weighed to determine the water absorption rate by the following formula.

【0041】吸水率(%)=[(吸水後の重量−吸水前
の重量)/吸水前の重量]×100 本発明で得られたスルホン化不織布は、水中に浮かべる
と直ちに水面から没し、吸水率は210%となり、電池
用セパレータとして用いるときの親水性の目標値である
200%をクリアーすることが出来た。
Water absorption rate (%) = [(weight after water absorption−weight before water absorption) / weight before water absorption] × 100 The sulfonated nonwoven fabric obtained in the present invention immediately sinks from the water surface when floated in water, The water absorption rate was 210%, and it was possible to clear the target value of 200% of hydrophilicity when used as a battery separator.

【0042】(実施例3)鞘成分の原料として、MFR
値が20g/分、密度が0.945g/ccのL−LDP
E(製品名:ネオゼックス45200、三井石油化学社製)
を用い、且つスルホン化処理時間を10分間としたこと
以外は、実施例1と同様にして、スルホン化不織布を
得、同じく実施例1と同様に吸水率測定を行った。
(Example 3) As a raw material for the sheath component, MFR
L-LDP with a value of 20 g / min and a density of 0.945 g / cc
E (Product name: Neo-Zex 45200, manufactured by Mitsui Petrochemical Co., Ltd.)
Was used, and a sulfonated nonwoven fabric was obtained in the same manner as in Example 1 except that the sulfonation treatment time was 10 minutes, and the water absorption rate was measured in the same manner as in Example 1.

【0043】本実施例で得られたスルホン化不織布は、
水中に浮かべると直ちに水面から没し、吸水率は205
%となり、親水性の目標値である200%をクリアする
ことが出来た。
The sulfonated nonwoven fabric obtained in this example is
Immediately when it floats in the water, it sinks from the surface and the water absorption rate is 205.
%, And the target value of 200% for hydrophilicity could be cleared.

【0044】(比較例1)鞘成分の原料として、MFR
値が20g/分、密度が0.962g/ccの高密度ポリ
エチレン(製品名:J310、旭化成工業社製)を用い
たこと以外は実施例1と同様にして、スルホン化不織布
を得、同じく実施例1と同様に吸水率測定を行った。
Comparative Example 1 MFR was used as a raw material for the sheath component.
A sulfonated nonwoven fabric was obtained in the same manner as in Example 1 except that high density polyethylene (product name: J310, manufactured by Asahi Kasei Corporation) having a value of 20 g / min and a density of 0.962 g / cc was used. Water absorption was measured in the same manner as in Example 1.

【0045】得られたスルホン化不織布は、水中に浸漬
させても浮上して吸水率は130%となり、親水性不織
布としては不十分であった。
The obtained sulfonated nonwoven fabric floated even when immersed in water and had a water absorption rate of 130%, which was insufficient as a hydrophilic nonwoven fabric.

【0046】(実施例4〜6)鞘成分の原料として、下
記のL−LDPEを用いて実施例1と同様の方法でスル
ホン化不織布を作製した。
(Examples 4 to 6) A sulfonated nonwoven fabric was produced in the same manner as in Example 1 by using the following L-LDPE as a raw material for the sheath component.

【0047】 実施例4…エスプレンSPO No.377 (住友化学社製L-LDPE、ρ=0.89) 実施例5…CS5005 (住友化学社製L-LDPE、ρ=0.91) 実施例6…GA−801 (住友化学社製L-LDPE、ρ=0.92) これら実施例4〜6で得られたスルホン化不織布は、水
中に浮かべると直ちに水面から没し、吸水率は200%
を超え、親水性の目標値である200%をクリアーする
ことが出来た。
Example 4 ... Esplen SPO No.377 (L-LDPE manufactured by Sumitomo Chemical Co., ρ = 0.89) Example 5 ... CS5005 (L-LDPE manufactured by Sumitomo Chemical Co., ρ = 0.91) Example 6 ... GA-801 (L-LDPE manufactured by Sumitomo Chemical Co., ρ = 0.92) The sulfonated nonwoven fabrics obtained in Examples 4 to 6 immediately sink into the water when floated in water, and the water absorption rate is 200%.
It was possible to clear the target value of 200% for hydrophilicity.

【0048】(スルホン化処理時間と吸水率の関係)実
施例2〜6および比較例1におけるスルボン化処理時間
と吸水率の関係を表1に示した。
(Relationship between Sulfonation Treatment Time and Water Absorption) Table 1 shows the relation between the sulfonation treatment time and water absorption in Examples 2 to 6 and Comparative Example 1.

【0049】[0049]

【表1】 [Table 1]

【0050】表1より、密度0.945以下のL−LD
PEを鞘成分とした実施例2〜6の不織布では、スルホ
ン化処理時間が5〜10分で親水性の目標値(200
%)を達成することが出来るのに対して、比較例1の従
来品は、30〜40分以上必要とすることが分かる。
From Table 1, L-LD having a density of 0.945 or less
In the nonwoven fabrics of Examples 2 to 6 in which PE was used as the sheath component, the sulfonation treatment time was 5 to 10 minutes and the target value of the hydrophilicity (200
%, Whereas the conventional product of Comparative Example 1 requires 30 to 40 minutes or more.

【0051】(スルホン化不織布の機械的強度)実施例
2および比較例1で得られたスルホン化不織布から幅5
0mm、長さ140mmの試料を切り出し、この試料につい
てチャック間隔100mm、引張速度100mm/minの条
件で、スルホン化処理時間毎の引き裂け強力(Kg)を測
定した。その結果を表2に示す。
(Mechanical Strength of Sulfonated Nonwoven Fabric) From the sulfonated nonwoven fabrics obtained in Example 2 and Comparative Example 1, a width of 5 was obtained.
A sample having a length of 0 mm and a length of 140 mm was cut out, and the tear strength (Kg) was measured for each sulfonation time under the conditions of a chuck interval of 100 mm and a pulling speed of 100 mm / min. The results are shown in Table 2.

【0052】[0052]

【表2】 [Table 2]

【0053】表2より、実施例2および比較例1におい
て、不織布の機械的強度の低下は、スルホン化処理時間
10分では大差ないが、前掲の表1より、比較例1では
スルホン化処理時間が10分では吸水率が168%と低
く、吸水率を目標値の200%以上にするためには60
分のスルホン化処理時間が必要であり、そうすると、不
織布の機械的強度が16.2Kgから13.0Kgに低下し
てしまう。これに対して実施例2では、表1に示すよう
にスルホン化処理時間が5分でも吸水率が目標値の20
0%を超える210%であり、このときの不織布の機械
的強度は17.4Kgであり、スルホン化処理前の値と殆
んど変化がない。
From Table 2, in Example 2 and Comparative Example 1, the decrease in the mechanical strength of the non-woven fabric is not so different when the sulfonation treatment time is 10 minutes, but from Table 1 above, Comparative Example 1 shows the sulfonation treatment time. However, the water absorption rate is as low as 168% at 10 minutes, and it is 60
It requires a sulfonation treatment time of a minute, which reduces the mechanical strength of the nonwoven fabric from 16.2 kg to 13.0 kg. On the other hand, in Example 2, as shown in Table 1, even if the sulfonation treatment time was 5 minutes, the water absorption was 20% of the target value.
It is 210% which exceeds 0%, and the mechanical strength of the nonwoven fabric at this time is 17.4 kg, which is almost the same as the value before the sulfonation treatment.

【0054】上掲の表1および表2の結果より、本発明
のスルホン化不織布がスルホン化度および機械的強度の
点で従来品よりも著しく優れていることが明らかとなっ
た。
From the results shown in Tables 1 and 2 above, it was revealed that the sulfonated nonwoven fabric of the present invention is significantly superior to the conventional products in terms of sulfonation degree and mechanical strength.

【0055】(実施例7) (1)鞘芯型複合繊維の製造 鞘成分として、MFR値が20g/10分、ρ=0.9
2g/ccのL−LDPE(製品名:GA801、住友化
学社製)を用い、芯成分としてMFR値20g/10分
のポリプロピレン(製品名:130MV、宇部興産社
製)を用いて、一軸押出し機2台とホール径0.4mmの
複合繊維用円形ノズルとを備えた複合紡糸設備により、
紡糸温度200〜240℃で、引き取り速度500m/
分の条件で紡糸して、鞘部と芯部の断面積比が50/5
0で単糸デニールが3.1deである複合繊維(未延伸
糸)を得た。
(Example 7) (1) Production of sheath-core type composite fiber As a sheath component, MFR value was 20 g / 10 min, ρ = 0.9.
A uniaxial extruder using 2 g / cc of L-LDPE (product name: GA801, manufactured by Sumitomo Chemical Co., Ltd.) and polypropylene (product name: 130 MV, manufactured by Ube Industries, Ltd.) having a MFR value of 20 g / 10 min as a core component. With a composite spinning equipment equipped with two units and a circular nozzle for composite fibers with a hole diameter of 0.4 mm,
At a spinning temperature of 200 to 240 ° C., a take-up speed of 500 m /
And the cross-sectional area ratio of the sheath and the core is 50/5.
A composite fiber (undrawn yarn) having a single yarn denier of 3.1 de was obtained at 0.

【0056】得られた未延伸糸を3.1倍で延伸し、繊
維長5mm、単糸デニール1.0deのファイバーからなる
鞘芯型複合繊維を得た。
The obtained undrawn yarn was drawn 3.1 times to obtain a sheath-core type composite fiber composed of fibers having a fiber length of 5 mm and a single yarn denier of 1.0 de.

【0057】(2)スルホン化複合繊維の製造 得られた複合繊維をメタノール中に浸漬させて付着オイ
ルを除去したのち、発煙硫酸(SO3濃度20%)中に
浸漬し、25℃で5分間スルホン化処理した。このよう
にして本発明のスルホン化複合繊維を得た。得られたス
ルホン化複合繊維のスルホン化度は4%であった。
(2) Production of Sulfonated Composite Fiber The obtained composite fiber was dipped in methanol to remove adhering oil, and then dipped in fuming sulfuric acid (SO 3 concentration 20%) at 25 ° C. for 5 minutes. Sulfonated. Thus, the sulfonated composite fiber of the present invention was obtained. The degree of sulfonation of the obtained sulfonated composite fiber was 4%.

【0058】[0058]

【発明の効果】以上述べたように、本発明によれば、
(i) 簡便な方法で得ることができる、(ii) スルホン化
が均一である、(iii) スルホン化前に比べて強度の低下
が少ない、などの利点を有するスルホン化複合繊維およ
びスルホン化不織布が提供された。
As described above, according to the present invention,
(i) Sulfonated composite fiber and sulfonated non-woven fabric, which have the advantages that they can be obtained by a simple method, (ii) uniform sulfonation, and (iii) less reduction in strength compared to before sulfonation. Was provided.

【0059】これらは、電池用セパレータ、分離膜、セ
メント補強材などの親水性、耐酸性、耐アルカリ性を要
求される用途に用いられる。
These are used in applications requiring hydrophilicity, acid resistance and alkali resistance such as battery separators, separation membranes and cement reinforcing materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】各種ポリエチレンのスルホン化速度を示すグラ
FIG. 1 is a graph showing the sulfonation rate of various polyethylenes.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI D21H 13/12 D21H 13/12 15/10 15/10 H01M 2/16 H01M 2/16 P // D06M 101:20 D06M 101:20 (58)調査した分野(Int.Cl.7,DB名) D06M 11/55 B01D 39/16 D01D 5/34 D01F 8/06 D04H 1/42 D21H 13/12 D21H 15/10 H01M 2/16 D06M 101:20 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI D21H 13/12 D21H 13/12 15/10 15/10 H01M 2/16 H01M 2/16 P // D06M 101: 20 D06M 101: 20 (58) Fields surveyed (Int.Cl. 7 , DB name) D06M 11/55 B01D 39/16 D01D 5/34 D01F 8/06 D04H 1/42 D21H 13/12 D21H 15/10 H01M 2/16 D06M 101: 20

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 直鎖状低密度ポリエチレンを鞘成分と
し、該直鎖状低密度ポリエチレンよりも融点の高い重合
体を芯成分とする鞘芯型複合繊維からなり、鞘成分の直
鎖状低密度ポリエチレンがスルホン化されていることを
特徴とするスルホン化複合繊維。
1. A sheath-core type composite fiber comprising a linear low-density polyethylene as a sheath component and a polymer having a melting point higher than that of the linear low-density polyethylene as a core component. A sulfonated composite fiber characterized in that density polyethylene is sulfonated.
【請求項2】 直鎖状低密度ポリエチレンにおけるスル
ホン化度が3〜10%である、請求項1に記載のスルホ
ン化複合繊維。
2. The sulfonated composite fiber according to claim 1, wherein the degree of sulfonation in the linear low-density polyethylene is 3 to 10%.
【請求項3】 直鎖状低密度ポリエチレンを鞘成分と
し、該直鎖状低密度ポリエチレンよりも融点の高い重合
体を芯成分とする鞘芯型複合繊維から得られた不織布か
らなり、鞘成分の直鎖状低密度ポリエチレンがスルホン
化されていることを特徴とするスルホン化不織布。
3. A non-woven fabric obtained from a sheath-core type composite fiber comprising a linear low-density polyethylene as a sheath component and a polymer having a melting point higher than that of the linear low-density polyethylene as a core component. A sulfonated non-woven fabric characterized in that the linear low-density polyethylene of 1. is sulfonated.
【請求項4】 直鎖状低密度ポリエチレンにおけるスル
ホン化度が3〜10%である、請求項3に記載のスルホ
ン化不織布。
4. The sulfonated nonwoven fabric according to claim 3, wherein the degree of sulfonation in the linear low-density polyethylene is 3 to 10%.
【請求項5】 不織布の目付が30g/m2を超え10
0g/m2以下である、請求項3に記載のスルホン化不
織布。
5. The basis weight of the non-woven fabric exceeds 30 g / m 2 and 10
The sulfonated non-woven fabric according to claim 3, which is 0 g / m 2 or less.
JP13799295A 1995-06-05 1995-06-05 Sulfonated composite fibers and nonwovens Expired - Fee Related JP3487968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13799295A JP3487968B2 (en) 1995-06-05 1995-06-05 Sulfonated composite fibers and nonwovens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13799295A JP3487968B2 (en) 1995-06-05 1995-06-05 Sulfonated composite fibers and nonwovens

Publications (2)

Publication Number Publication Date
JPH08325932A JPH08325932A (en) 1996-12-10
JP3487968B2 true JP3487968B2 (en) 2004-01-19

Family

ID=15211540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13799295A Expired - Fee Related JP3487968B2 (en) 1995-06-05 1995-06-05 Sulfonated composite fibers and nonwovens

Country Status (1)

Country Link
JP (1) JP3487968B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4095190B2 (en) * 1998-12-17 2008-06-04 宇部日東化成株式会社 Sheath-core composite polyolefin fiber and grafted polyolefin nonwoven fabric
JP3510156B2 (en) * 1999-06-25 2004-03-22 大和紡績株式会社 Battery separator and battery
JP5128035B2 (en) * 2001-09-28 2013-01-23 日本バイリーン株式会社 Battery separator and battery using the same
CN102903877B (en) * 2011-07-28 2016-01-20 三菱制纸株式会社 Battery separator
CN102903878B (en) * 2011-07-28 2015-09-30 三菱制纸株式会社 Battery separator

Also Published As

Publication number Publication date
JPH08325932A (en) 1996-12-10

Similar Documents

Publication Publication Date Title
US4110143A (en) Process for making a wettable polyolefin battery separator
EP0450449B1 (en) Separator material for storage batteries and method for making the same
US5487944A (en) Non-woven fabric sheet separator material for storage batteries and method for making the same
JPH1140129A (en) Battery separator consisting of extra fine complex fiber nonwoven cloth and manufacture thereof
JP3487968B2 (en) Sulfonated composite fibers and nonwovens
JP5844987B2 (en) Separator material and battery using the same
Gahan et al. A review of the melt blown process
JP4095190B2 (en) Sheath-core composite polyolefin fiber and grafted polyolefin nonwoven fabric
JPH0679832A (en) Hydrophilic fiber sheet and production thereof
JP3678081B2 (en) Battery separator and battery using the same
JP3494805B2 (en) Grafted polyolefin-based nonwoven fabric
EP0989619B1 (en) Alkaline battery separator
JPH11283602A (en) Separator for battery
JP3510156B2 (en) Battery separator and battery
JP4291794B2 (en) Battery separator and battery using the same
JP4377773B2 (en) Battery separator and battery
JP2003031200A (en) Separator material, its manufacturing method and cell incorporating above
JP4139454B2 (en) Alkaline battery separator and method for producing the same
JPH10325060A (en) Hydrophilic nonwoven fabric
JP3471255B2 (en) Nonwoven fabric for battery separator and battery using the same
JPH10326607A (en) Battery separator and its manufacture
JPH11219693A (en) Separator for battery
JP4651796B2 (en) Battery separator and method for producing the same
JP3383823B2 (en) Battery separator, method of manufacturing the same, and battery using the same
JP2001307710A (en) Separator for battery and its manufacturing method and battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031016

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees