JP4291794B2 - Battery separator and battery using the same - Google Patents
Battery separator and battery using the same Download PDFInfo
- Publication number
- JP4291794B2 JP4291794B2 JP2005089185A JP2005089185A JP4291794B2 JP 4291794 B2 JP4291794 B2 JP 4291794B2 JP 2005089185 A JP2005089185 A JP 2005089185A JP 2005089185 A JP2005089185 A JP 2005089185A JP 4291794 B2 JP4291794 B2 JP 4291794B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- component
- melting point
- polyolefin
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Paper (AREA)
- Cell Separators (AREA)
- Secondary Cells (AREA)
Description
本発明は、ニッケル−カドミウム電池、ニッケル−亜鉛電池、ニッケル−水素電池等のアルカリ蓄電池用に好適な電池用セパレータおよびその製造方法に関するものである。 The present invention relates to a battery separator suitable for alkaline storage batteries such as nickel-cadmium batteries, nickel-zinc batteries, nickel-hydrogen batteries, and a method for producing the same.
近年、電池用セパレータとしては、ポリプロピレン等のポリオレフィン系繊維からなる不織布が好ましく使用されており、特にポリオレフィン系極細繊維からなる不織布を親水化処理した電池用セパレータが提案されている。例えば、本出願人において特開平5−186911号公報および特開平5−186964号公報には、メチルペンテン系重合体/ポリオレフィン系重合体の組み合わせからなる分割型複合繊維にスルホン基を導入したスルホン化ポリオレフィン系繊維を60重量%以上含有する繊維集合体を提案している。 In recent years, nonwoven fabrics made of polyolefin fibers such as polypropylene have been preferably used as battery separators, and battery separators in which nonwoven fabrics made of polyolefin ultrafine fibers have been hydrophilized have been proposed. For example, in the present applicant, Japanese Patent Application Laid-Open No. 5-186911 and Japanese Patent Application Laid-Open No. 5-186964 disclose sulfonation in which a sulfo group is introduced into a split type composite fiber comprising a combination of methylpentene polymer / polyolefin polymer. A fiber assembly containing 60% by weight or more of polyolefin fiber is proposed.
また、特開平7−147154号公報には、ポリオレフィン系分割型複合繊維50重量%以上からなる水流絡合不織布をビニルモノマーのグラフト重合、スルホン化処理などの親水化処理した電池用セパレータが開示されている。また、特開平8−273654号公報には、ポリオレフィン系極細繊維が50重量%以上からなり、極細繊維同士を部分的に融着させた水流絡合不織布を親水化処理した電池用セパレータが開示されている。 Japanese Patent Application Laid-Open No. 7-147154 discloses a battery separator obtained by hydrophilizing a hydroentangled nonwoven fabric comprising 50% by weight or more of a polyolefin-based split composite fiber by graft polymerization or sulfonation of a vinyl monomer. ing. JP-A-8-273654 discloses a battery separator in which a hydroentangled non-woven fabric in which polyolefin ultrafine fibers are 50% by weight or more, and the ultrafine fibers are partially fused to each other is hydrophilized. ing.
しかしながら、上記の電池用セパレータには以下の問題点がある。例えば、特開平5−186911号公報および特開平5−186964号公報の繊維集合体を電池用セパレータとして用いると、スルホン化処理後の不織布強力が低くなる傾向にあり、またコスト高となり、十分とはいえない。また、特開平7−147154号公報の電池用セパレータは、ポリプロピレン/ポリエチレンからなる分割型複合繊維を主体とし、ポリプロピレン/低密度ポリエチレンの組合せからなる複合接着繊維により熱接着させているので、不織布強力が低く、効率的に親水化処理できないなど、工程性に劣る。それを解消するために検討がなされた特開平8−273654号公報の電池用セパレータは、分割型複合繊維の1成分である低融点極細繊維同士を融着させた後、分割および絡合させているので、不織布強力においては改善されるものの、極細繊維成分自体を自己融着させるため、空隙の確保が困難となり、保液性の点で不十分である。 However, the battery separator has the following problems. For example, when the fiber assembly of JP-A-5-186911 and JP-A-5-186964 is used as a battery separator, the strength of the nonwoven fabric after the sulfonation treatment tends to be low, and the cost is high. I can't say that. In addition, the battery separator disclosed in Japanese Patent Application Laid-Open No. 7-147154 is mainly composed of split composite fibers made of polypropylene / polyethylene and thermally bonded by composite adhesive fibers made of a combination of polypropylene / low-density polyethylene. However, it is inferior in processability, for example, it cannot be efficiently hydrophilized. In order to solve this problem, the battery separator disclosed in Japanese Patent Laid-Open No. Hei 8-273654 is obtained by fusing together low melting point ultrafine fibers, which are one component of a split type composite fiber, and then splitting and intertwining them. Therefore, although the strength of the nonwoven fabric is improved, since the ultrafine fiber component itself is self-fused, it is difficult to secure voids, which is insufficient in terms of liquid retention.
本発明はこれらの実情に鑑み、優れた保液性および十分な不織布強力を有し、電池寿命を低下させることなく電池容量の向上に寄与しうる電池用セパレータ、および自己放電性の改良など優れた電池特性を有する電池を得ることを目的としてなされたものである。 In view of these circumstances, the present invention has excellent liquid retention and sufficient non-woven fabric strength, battery separators that can contribute to the improvement of battery capacity without reducing battery life, and excellent self-discharge characteristics. It was made for the purpose of obtaining a battery having excellent battery characteristics.
本発明の電池用セパレータは、ポリ(4−メチルペンテン−1)または4−メチルペンテン−1と他のオレフィンとの共重合体からなるメチルペンテン系重合体を第1成分とし、第1成分とは異なるポリオレフィン系重合体またはその共重合体を第2成分とし、繊維断面において2成分が交互に隣接して配置され、2成分のうち少なくとも1成分が2個以上に分割されてなる分割型複合繊維と、高融点成分および低融点成分からなるポリオレフィン系複合繊維の少なくとも2種類の繊維を含有する不織布であって、前記分割型複合繊維および前記ポリオレフィン系複合繊維の含有量がそれぞれ60重量%を超えない範囲であり、前記不織布が親水化処理されており、かつ前記分割型複合繊維の第2成分の融点をD 2m とし、前記ポリオレフィン系複合繊維の高融点成分の融点をB 1m 、低融点成分の融点をB 2m としたときに、D 2m 、B 1m およびB 2m が特定の関係式を満たすことを特徴とする。かかる構成を採ることにより、優れた保液性および十分な不織布強力を有し、電池特性に優れた電池用セパレータが得られることが判り本発明に至った。
The battery separator of the present invention comprises a poly (4-methylpentene-1) or a methylpentene polymer composed of a copolymer of 4-methylpentene-1 and another olefin as a first component, Is a split-type composite in which a different polyolefin polymer or a copolymer thereof is used as the second component, two components are alternately arranged adjacent to each other in the fiber cross section, and at least one of the two components is divided into two or more. A nonwoven fabric comprising at least two types of fibers and a polyolefin-based composite fiber composed of a high-melting-point component and a low-melting-point component, wherein each of the split-type composite fiber and the polyolefin-based composite fiber has a content of 60% by weight. The polyolefin is hydrophilized, the melting point of the second component of the split-type conjugate fiber is D 2m , and the polyolefin D 2m , B 1m, and B 2m satisfy a specific relational expression, where B 1m is the melting point of the high melting point component and B 2m is the melting point of the low melting point component . It has been found that by adopting such a configuration, a battery separator having excellent liquid retention and sufficient nonwoven fabric strength and excellent battery characteristics can be obtained.
本発明の電池用セパレータにおいて、前記分割型複合繊維の含有量は15〜60重量%、前記ポリオレフィン系複合繊維の含有量は20〜60重量%であることが望ましく、他の合成繊維を40重量%を超えない範囲で含有させてもよい。 In the battery separator of the present invention, it is desirable that the content of the split composite fiber is 15 to 60% by weight, the content of the polyolefin-based composite fiber is 20 to 60% by weight, and 40% by weight of other synthetic fibers. You may make it contain in the range which does not exceed%.
前記不織布は、分割型複合繊維を構成する2成分において実質的に溶融することなく、ポリオレフィン系複合繊維の低融点成分により熱融着されていることが望ましい。 The nonwoven fabric is preferably heat-sealed with the low-melting-point component of the polyolefin-based conjugate fiber without substantially melting the two components constituting the split-type conjugate fiber.
また、不織布を構成する分割型複合繊維、ポリオレフィン系複合繊維、および他の合成繊維の繊維長が3〜25mmであると、緻密な不織布が得られ、保液性の点で有利である。 Moreover, when the fiber lengths of the split composite fiber, polyolefin composite fiber, and other synthetic fibers constituting the nonwoven fabric are 3 to 25 mm, a dense nonwoven fabric is obtained, which is advantageous in terms of liquid retention.
前記不織布は、繊維長の異なる繊維ウェブ同士を積層されてなる複合不織布であることが不織布強力を向上させる点で望ましい。 The nonwoven fabric is desirably a composite nonwoven fabric obtained by laminating fiber webs having different fiber lengths from the viewpoint of improving the strength of the nonwoven fabric.
本発明の電池用セパレータの好ましい形態としては、前記不織布の少なくとも一部の層に他のシートを積層してなる複合シートであって、該複合シートが親水化処理されているものが挙げられる。この形態のものは、不織布強力が向上し、卷回性や耐ショート性の点で有利である。 A preferable embodiment of the battery separator of the present invention is a composite sheet obtained by laminating another sheet on at least a part of the nonwoven fabric, and the composite sheet is hydrophilized. This form is advantageous in terms of winding strength and short-circuit resistance because the nonwoven fabric strength is improved.
また、本発明の電池用セパレータの好ましい別の形態において、前記親水化処理された不織布の少なくとも一部の層に他のシートが積層されていることが望ましい。 In another preferred embodiment of the battery separator of the present invention, it is desirable that another sheet is laminated on at least a part of the hydrophilic treated nonwoven fabric.
前記分割型複合繊維は、メチルペンテン系重合体を第1成分とし、ポリプロピレン系重合体を第2成分とすることが望ましい。 It is desirable that the split type composite fiber has a methylpentene polymer as a first component and a polypropylene polymer as a second component.
そして、前記親水化処理は、スルホン化処理であることが望ましく、スルホン化処理のうち、発煙硫酸処理、クロロスルホン酸処理、あるいは無水硫酸処理のいずれか1つを用いると、電池の自己放電性を改良できる点で有利である。また、スルホン化度は、0.4〜2重量%であることが望ましい。 The hydrophilization treatment is preferably a sulfonation treatment. When any one of the fuming treatment, fuming sulfuric acid treatment, chlorosulfonic acid treatment, or anhydrous sulfuric acid treatment is used, the battery is self-dischargeable. This is advantageous in that it can be improved. The sulfonation degree is preferably 0.4 to 2% by weight.
前記のうち、いずれかの電池用セパレータを組み込んだ電池は、自己放電性を改良し、特に電気自動車(PEV)やハイブリッド車(HEV)用に好適である。 Among the above, a battery incorporating any of the battery separators improves self-discharge and is particularly suitable for an electric vehicle (PEV) or a hybrid vehicle (HEV).
本発明の電池用セパレータは、メチルペンテン系重合体とポリオレフィン系重合体からなる分割型複合繊維、および高融点成分および低融点成分からなるポリオレフィン系複合繊維を主体とし、親水化処理を施すことにより、耐熱性を有するとともに、優れた保液性および十分な不織布強力を有し、電池寿命を低下させることなく電池容量を向上させることができる。親水化処理がスルホン化処理であると、特に自己放電性の改良に寄与する。 The battery separator of the present invention is mainly composed of a split type composite fiber composed of a methylpentene polymer and a polyolefin polymer, and a polyolefin composite fiber composed of a high melting point component and a low melting point component, and is subjected to a hydrophilic treatment. In addition to heat resistance, it has excellent liquid retention and sufficient nonwoven fabric strength, and can improve battery capacity without reducing battery life. When the hydrophilization treatment is a sulfonation treatment, it contributes particularly to improvement of self-discharge properties.
以下、本発明の内容を具体的に説明する。
本発明に用いる分割型複合繊維は、ポリ(4−メチルペンテン−1)または4−メチルペンテン−1と他のオレフィンとの共重合体からなるメチルペンテン系重合体を第1成分とし、第1成分とは異なるポリオレフィン系重合体またはその共重合体を第2成分とし、繊維断面において2成分が交互に隣接して配置され、2成分のうち少なくとも1成分が2個以上に分割されてなり、その構成単位は長さ方向に連続し、全構成単位の一部は必ず繊維表面に露出している断面形状を有するものである。具体的には、第1成分および第2成分が図1〜図3のように配列されたものを好ましく使用することができる。
The contents of the present invention will be specifically described below.
The split-type composite fiber used in the present invention has, as a first component, a poly (4-methylpentene-1) or a methylpentene-based polymer composed of a copolymer of 4-methylpentene-1 and another olefin. A polyolefin-based polymer different from the component or a copolymer thereof is used as the second component, two components are alternately arranged adjacent to each other in the fiber cross section, and at least one of the two components is divided into two or more, The structural units are continuous in the length direction, and a part of all the structural units always has a cross-sectional shape exposed on the fiber surface. Specifically, the one in which the first component and the second component are arranged as shown in FIGS. 1 to 3 can be preferably used.
前記分割型複合繊維の第1成分であるメチルペンテン系重合体としては、ポリ(4−メチルペンテン−1)または4−メチルペンテン−1と他のオレフィンとの共重合体が挙げられ、共重合する他のオレフィンとしては、例えばエチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、3−メチル−1−ブテンなどが挙げられる。 Examples of the methylpentene polymer that is the first component of the split composite fiber include poly (4-methylpentene-1) or a copolymer of 4-methylpentene-1 and another olefin. Examples of other olefins include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, and 3-methyl-1-butene.
前記分割型複合繊維の第2成分としては、ポリエチレン、ポリプロピレン、ポリブテン−1などの第1成分とは異なるポリオレフィン系重合体またはその共重合体が用いられ、なかでも融点(D2m)が130℃以上、より好ましくは150℃以上のポリオレフィン系重合体またはその共重合体を使用するとよい。前記第1成分および第2成分からなる組み合わせの分割型複合繊維は、耐熱性に優れ、電池内での過激な反応にも、十分対応が可能である。なかでも、メチルペンテン系重合体を第1成分とし、ポリプロピレン系重合体を第2成分とする組み合わせが最も効果的である。 As the second component of the split type composite fiber, a polyolefin polymer different from the first component such as polyethylene, polypropylene, polybutene-1, or a copolymer thereof is used, and in particular, the melting point (D 2m ) is 130 ° C. As described above, a polyolefin polymer having a temperature of 150 ° C. or higher or a copolymer thereof may be used. The split-type composite fiber composed of the first component and the second component has excellent heat resistance and can sufficiently cope with an extreme reaction in the battery. Of these, a combination in which a methylpentene polymer is the first component and a polypropylene polymer is the second component is the most effective.
前記分割型複合繊維における両成分の分割数は、5〜20が好ましく、両成分の複合比は紡糸工程の容易性の点から第1成分:第2成分が30:70〜70:30程度が好ましい。また、分割型複合繊維の繊度は、分割後の各構成単位の繊度が0.1〜0.5dtexとなるように、分割数や複合比を調整して適宜決定するとよい。分割後の各構成単位の繊度が0.1dtex未満であると、発煙硫酸やクロロスルホン酸での処理を行った場合に急激な劣化を起こし、不織布強力が低下し好ましくない。0.5dtexを超えると、後述する複合繊維あるいは合成繊維との繊度の差が少なくなり、緻密な空隙が確保できないからである。 The division number of both components in the split type composite fiber is preferably 5 to 20, and the composite ratio of both components is about 30:70 to 70:30 for the first component: second component from the viewpoint of easy spinning process. preferable. Further, the fineness of the split-type composite fiber may be appropriately determined by adjusting the number of splits and the composite ratio so that the fineness of each constituent unit after splitting is 0.1 to 0.5 dtex. When the fineness of each constituent unit after the division is less than 0.1 dtex, when the treatment with fuming sulfuric acid or chlorosulfonic acid is performed, rapid deterioration occurs, and the strength of the nonwoven fabric is lowered. This is because if it exceeds 0.5 dtex, the difference in fineness with a composite fiber or synthetic fiber described later is reduced, and a dense void cannot be secured.
前記分割型複合繊維が本発明の電池用セパレータに占める割合は、60重量%を超えない範囲であり、15〜60重量%であることが好ましい。より好ましくは、20〜60重量%である。分割型複合繊維の含有量が少なすぎると、メチルペンテン系重合体の比率が少なすぎるため、強い親水化条件でないと十分な親水基の導入ができなくなり、不織布強力の低下を招いたり、コスト高となる。60重量%を超えると、親水化処理後の不織布強力が低くなる傾向にあり、またコスト高となるからである。 The proportion of the split composite fiber in the battery separator of the present invention is in a range not exceeding 60% by weight, and preferably 15 to 60% by weight. More preferably, it is 20 to 60% by weight. If the content of the split-type composite fiber is too small, the ratio of methylpentene polymer is too small, so it is impossible to introduce sufficient hydrophilic groups unless the conditions are strongly hydrophilic, leading to a decrease in the strength of the nonwoven fabric and high costs. It becomes. This is because if it exceeds 60% by weight, the strength of the nonwoven fabric after hydrophilization tends to be low, and the cost increases.
本発明に用いる高融点成分および低融点成分からなるポリオレフィン系複合繊維は、ポリエチレン、ポリプロピレン、ポリブテン−1、ポリ−4−メチルペンテン−1、エチレン−ビニルアルコール共重合体などのポリオレフィン系重合体またはその共重合体が用いられる。高融点成分の融点をB1m、低融点成分の融点をB2mとすると、低融点成分は以下の関係を満たす。
(1)B1m>B2m
(2)120℃<B2m<D2m
上記の関係を満たすポリオレフィン系複合繊維としては、例えば、高密度ポリエチレン/ポリプロピレン、エチレン−プロピレン共重合体/ポリプロピレンなどが挙げられ、これらを用いると、繊維強力にも優れ、2成分樹脂間の層間剥離も少なく、十分な融着強力が得られる点で好ましい。
The polyolefin-based composite fiber composed of a high melting point component and a low melting point component used in the present invention is a polyolefin polymer such as polyethylene, polypropylene, polybutene-1, poly-4-methylpentene-1, ethylene-vinyl alcohol copolymer, or the like. The copolymer is used. Melting point B 1 m of high melting point component and the melting point of the low melting point component and B 2m, low melting component satisfying the following relationships.
(1) B 1m > B 2m
(2) 120 ° C. <B 2m <D 2m
Examples of the polyolefin-based composite fibers satisfying the above relationship include high-density polyethylene / polypropylene, ethylene-propylene copolymer / polypropylene, and the like. It is preferable in that peeling is small and sufficient fusion strength is obtained.
複合繊維の繊維形態は特に限定されず、同心円または偏心の鞘芯型複合繊維、並列型複合繊維、あるいは前記素材が2種類以上混合されてなる単一繊維が挙げられ、断面形状も円形、異形などいずれであってもよい。 The fiber form of the conjugate fiber is not particularly limited, and examples thereof include concentric or eccentric sheath-core conjugate fibers, parallel conjugate fibers, or single fibers in which two or more of the above materials are mixed, and the cross-sectional shape is also circular or irregular. Any of these may be used.
本発明においては、特に、高密度ポリエチレン/ポリプロピレンの組み合わせからなる同心円鞘芯型複合繊維が、不織布の熱処理時における加工温度領域が広く、得られた不織布の強力が大きく、耐薬品性、耐酸化劣化に優れている点で好ましい。 In the present invention, in particular, a concentric sheath / core composite fiber made of a combination of high density polyethylene / polypropylene has a wide processing temperature range during heat treatment of the nonwoven fabric, and the resulting nonwoven fabric has high strength, chemical resistance, and oxidation resistance. It is preferable at the point which is excellent in deterioration.
そして、前記ポリオレフィン系複合繊維は、60重量%を超えない範囲であり、20〜60重量%含有することが好ましい。より好ましくは、40〜60重量%である。ポリオレフィン系複合繊維の含有量が少なすぎると、十分な不織布強力が得られず、60重量%を超えると、空隙の確保が困難となり、保液性の点で不十分であるからである。 And the said polyolefin-type composite fiber is the range which does not exceed 60 weight%, and it is preferable to contain 20 to 60 weight%. More preferably, it is 40 to 60% by weight. This is because if the content of the polyolefin-based composite fiber is too small, sufficient strength of the nonwoven fabric cannot be obtained, and if it exceeds 60% by weight, it is difficult to secure voids, which is insufficient in terms of liquid retention.
さらに、本発明の電池用セパレータには、他の合成繊維を40重量%を超えない範囲で混合してもよい。より好ましくは、20〜40重量%である。他の合成繊維の含有量が40重量%を超えると、親水化処理の効果が少なくなり必要な性能が得られないからである。例えば、繊維間で形成される空隙を確保するためであれば、分割型複合繊維の分割により形成される分割後の各構成単位の繊度よりも大きく、ポリオレフィン系複合繊維の繊度と同じまたは小さい合成繊維を使用すればよく、また親水性をさらに向上させるのであれば、親水化剤等を樹脂中に予め混合させた合成繊維を使用してもよい。そして、他の合成繊維は、ポリオレフィン系複合繊維の溶融する温度では実質的に溶融しないものから選ばれ、ポリプロピレン、ポリエステル、ナイロン等、汎用されている合成繊維を使用することができる。なかでも繊度が0.5〜5dtex、繊維強度が6〜15cN/dtexからなるポリプロピレン繊維が耐薬品性が高い点で好ましい。 Furthermore, you may mix the other synthetic fiber in the battery separator of this invention in the range which does not exceed 40 weight%. More preferably, it is 20 to 40% by weight. This is because if the content of other synthetic fibers exceeds 40% by weight, the effect of the hydrophilic treatment is reduced and the required performance cannot be obtained. For example, if the gap formed between the fibers is to be secured, the synthesis is greater than the fineness of each constituent unit after splitting formed by splitting the split-type composite fiber, and is equal to or smaller than the fineness of the polyolefin-based composite fiber. A fiber may be used, and if the hydrophilicity is further improved, a synthetic fiber in which a hydrophilizing agent or the like is premixed in a resin may be used. The other synthetic fibers are selected from those that do not substantially melt at the temperature at which the polyolefin-based composite fiber melts, and commonly used synthetic fibers such as polypropylene, polyester, and nylon can be used. Among these, a polypropylene fiber having a fineness of 0.5 to 5 dtex and a fiber strength of 6 to 15 cN / dtex is preferable in terms of high chemical resistance.
前記構成繊維を含有してなる繊維ウェブの形態は、カード法、エアレイ法などにより得た乾式ウェブ、湿式法により得た湿式ウェブ、あるいはメルトブロー法やスパンボンド法などの直接法により得た長繊維ウェブである。なかでも前記構成繊維の繊維長が3〜25mmからなる湿式ウェブが均質なウェブを得る点で好ましい。より好ましい繊維長は5〜15mmである。繊維長が3mm未満では後述する高圧水流処理時に繊維が飛散し、繊維間の交絡が不十分となり、工程上好ましくなく、25mmを超えると特に湿式抄紙法によって不織布を製造する場合、スラリー中における繊維の分散性が悪くなり均一な不織布を得ることができないからである。 The form of the fiber web containing the constituent fibers is a dry fiber obtained by a card method, an air lay method or the like, a wet web obtained by a wet method, or a long fiber obtained by a direct method such as a melt blow method or a spun bond method. The web. Among these, a wet web having a fiber length of 3 to 25 mm is preferable from the viewpoint of obtaining a homogeneous web. A more preferable fiber length is 5 to 15 mm. If the fiber length is less than 3 mm, the fibers are scattered during the high-pressure water flow treatment described later, resulting in insufficient entanglement between the fibers. This is not preferable in the process, and if the fiber length exceeds 25 mm, the fibers in the slurry are particularly produced by wet papermaking. This is because the dispersibility of the resin deteriorates and a uniform nonwoven fabric cannot be obtained.
これらの繊維ウェブは、熱カレンダー処理、熱風加工処理、高圧水流処理等の方法により処理される。このとき、少なくとも分割型複合繊維を構成する2成分において実質的に溶融することなく、ポリオレフィン系複合繊維の低融点成分により熱融着されていることが好ましい。ここでいう、実質的に溶融するとは、熱圧着などにより軟化して扁平し、繊維同士が密着したようなものではなく、完全に繊維の一部が溶融したものを指す。構成繊維同士がポリオレフィン系複合繊維の低融点成分のみの熱融着であると、分割型複合繊維が分割して得られた極細繊維および他の合成繊維が空隙を確保しつつ、複合繊維の高融点成分が繊維強力を維持して融着させるので、不織布強力のばらつきが少なく、緻密な空隙が確保できる。 These fiber webs are treated by methods such as thermal calendaring, hot air processing, and high-pressure water flow. At this time, it is preferable that at least the two components constituting the split-type conjugate fiber are not melted substantially and are thermally fused by the low melting point component of the polyolefin-based conjugate fiber. The term “substantially melted” as used herein refers to a material in which a part of the fiber is completely melted, not softened and flattened by thermocompression bonding or the like, and the fibers are not in close contact with each other. When the constituent fibers are heat-sealed only with the low-melting-point component of the polyolefin-based composite fiber, the ultrafine fiber and other synthetic fibers obtained by dividing the split-type composite fiber ensure voids, and the high Since the melting point component maintains the fiber strength and is fused, there is little variation in the strength of the nonwoven fabric, and a dense void can be secured.
そして、他の不織布の形態としては、上記構成繊維の範囲内で混合率を適宜変更して積層させた、あるいは繊維長の異なる繊維ウェブ同士を積層させた複合不織布であってもよい。例えば、後者であれば、前記繊維長3〜25mmの構成繊維からなる湿式抄紙法による繊維ウェブに、繊維長25mmを超えるステープル繊維からなる繊維ウェブ、あるいは長繊維ウェブを少なくとも一方の面に積層することができる。繊維長の異なる繊維ウェブ同士を積層させると、繊維長の短い繊維ウェブが緻密性に寄与し、繊維長の長い繊維ウェブが不織布強力が向上に寄与して、電池組み込み時の生産性に優れるので都合がよい。これらの繊維ウェブは、カードウェブなどの未結合ウェブ、構成繊維の一部を接着剤や自己接着などで結合させた結合不織布、あるいはニードルパンチや高圧水流処理により交絡させた不織布などいずれの形態であってもよい。積層方法としては、未結合ウェブ同士を積層した後に繊維同士を交絡させてもよいし、少なくとも一方の繊維ウェブを予め上記の結合または交絡方法で不織布化したものを積層した後に繊維同士を交絡させてもよい。 And as another form of a nonwoven fabric, the composite nonwoven fabric which laminated | stacked by changing suitably the mixing rate within the range of the said structural fiber, or laminated | stacked the fiber web from which fiber length differs may be sufficient. For example, in the case of the latter, a fiber web made of a staple paper having a fiber length of more than 25 mm or a long fiber web is laminated on at least one surface of the fiber web by a wet papermaking method made of constituent fibers having a fiber length of 3 to 25 mm. be able to. When fiber webs with different fiber lengths are laminated, the fiber webs with short fiber lengths contribute to the denseness, and the fiber webs with long fiber lengths contribute to the improvement of nonwoven fabric strength, resulting in excellent productivity when incorporating batteries. convenient. These fiber webs are in any form, such as unbonded webs such as card webs, bonded nonwoven fabrics in which some of the constituent fibers are bonded by an adhesive or self-adhesion, or nonwoven fabrics entangled by needle punching or high-pressure water flow treatment. There may be. As a laminating method, fibers may be entangled after laminating unbonded webs, or at least one fiber web is previously woven with a non-woven fabric by the above bonding or entanglement method, and then the fibers are entangled. May be.
さらに、別の不織布の形態としては、前記不織布の少なくとも一部の層に他のシートを積層させてもよい。ここでは、前記不織布の少なくとも一部の層に他のシートを積層して予め複合シートを作製しておいた後、親水化処理を施したものであってもよいし、前記不織布を予め親水化処理しておいた後、少なくとも一部の層に他のシートを積層されたものであってもよい。ここでいう他のシートとは、繊維長が3〜25mmの繊維からなる湿式不織布、繊維長が25mmを超える繊維からなる構成繊維の一部を接着剤や自己接着などで結合させた結合不織布、ニードルパンチや高圧水流処理により交絡させた不織布、あるいは多孔性フィルムなどを指す。前記他のシートのうち繊維長が3〜25mmの繊維からなる湿式不織布を用いると、低目付でありながら貫通孔の発生する割合が少ない不織布が得られ、電池におけるショート率を軽減させることができる。また、繊維長が25mmを超える繊維あるいは多孔性フィルムを用いれば、さらに不織布強力を向上させることができる。 Furthermore, as another form of the nonwoven fabric, another sheet may be laminated on at least a part of the layer of the nonwoven fabric. Here, another sheet may be laminated on at least a part of the nonwoven fabric in advance to prepare a composite sheet, and then a hydrophilic treatment may be performed, or the nonwoven fabric may be hydrophilized in advance. After the treatment, another sheet may be laminated on at least a part of the layers. The other sheet here is a wet nonwoven fabric composed of fibers having a fiber length of 3 to 25 mm, a bonded nonwoven fabric obtained by bonding a part of constituent fibers composed of fibers having a fiber length of more than 25 mm by an adhesive or self-adhesion, Non-woven fabric or porous film entangled by needle punching or high-pressure water flow treatment. When a wet nonwoven fabric made of fibers having a fiber length of 3 to 25 mm is used among the other sheets, a nonwoven fabric with a low basis weight and a small percentage of through-holes can be obtained, and the short-circuit rate in the battery can be reduced. . Further, if a fiber or a porous film having a fiber length exceeding 25 mm is used, the strength of the nonwoven fabric can be further improved.
前記他のシートの素材としては特に限定されず、ポリオレフィン系樹脂、ポリアミド系樹脂、あるいはポリエステル系樹脂などいずれであってもよい。また、積層方法も少なくとも一部の層に他のシートが積層されていれば特に限定されず、本発明の不織布の片面、あるいは両面に他のシートを積層してもよいし、前記不織布の間に他のシートを挿入しておいてもよい。さらに上記積層体を2層以上に積層してもよい。そして、上記積層体における各層間の結合方法についても特に限定されず、例えば、高圧水流処理により本発明の不織布を予め作製しておき、他のシートと積層させた後、熱風や熱ロールなどの熱処理により結合してもよいし、本発明を構成する繊維ウェブと他のシートを予め積層させた後、高圧水流処理により結合させてもよい。 The material of the other sheet is not particularly limited, and may be any of polyolefin resin, polyamide resin, polyester resin, and the like. Further, the lamination method is not particularly limited as long as another sheet is laminated on at least a part of the layers, and another sheet may be laminated on one side or both sides of the nonwoven fabric of the present invention. Another sheet may be inserted into the sheet. Furthermore, the above laminate may be laminated in two or more layers. And the bonding method between each layer in the laminate is not particularly limited, for example, the nonwoven fabric of the present invention is prepared in advance by high-pressure water flow treatment and laminated with other sheets, and then hot air, a hot roll, etc. It may be bonded by heat treatment, or may be bonded by high-pressure water flow treatment after previously laminating the fiber web constituting the present invention and another sheet.
前記不織布あるいは複合シートの目付は、繊維の量によって調節しうるが30〜100g/m2にすることが望ましい。30g/m2未満では不織布の強力が低くなるため、正極と負極の間でショートが発生しやすくなり、100g/m2を超えると通気性等が低下するからである。 The basis weight of the non-woven fabric or composite sheet can be adjusted depending on the amount of fibers, but is preferably 30 to 100 g / m 2 . Since the strength of the nonwoven fabric becomes low at less than 30 g / m 2, short circuit easily occurs between the positive electrode and the negative electrode, exceeds 100 g / m 2 breathable like is lowered.
そして、前述した不織布あるいは複合シートは、親水化処理されていることが好ましい。親水化処理としては、ビニルモノマーのグラフト共重合処理、フッ素ガス処理、スルホン化処理、コロナ放電処理、プラズマ処理などが挙げられるが、なかでもスルホン化処理が電池の自己放電性を改良する点で優れており、スルホン化処理としては、濃硫酸処理、発煙硫酸処理、クロロスルホン酸処理、無水硫酸処理などが挙げられ、スルホン化処理のうち、発煙硫酸処理、クロロスルホン酸処理、あるいは無水硫酸処理が反応性が高く、比較的容易にスルホン化処理できるので好ましい。また、スルホン化度は、0.4〜2重量%であることが好ましく、0.7〜1.5重量%がさらに好ましい。スルホン化度が0.4重量%未満であると、電池の自己放電性の改良が不十分であり、2重量%を超えると、処理コストの増大を招くだけでなく、不織布の強力低下に繋がるからである。親水化処理は、不織布形成後に行うのが生産性の面で好ましいが、不織布が積層体の場合、少なくとも分割型複合繊維を含有する不織布が親水化処理されていればよい。 And it is preferable that the nonwoven fabric or composite sheet mentioned above is hydrophilized. Hydrophilic treatment includes vinyl monomer graft copolymerization treatment, fluorine gas treatment, sulfonation treatment, corona discharge treatment, plasma treatment, etc. Among them, sulfonation treatment improves the self-discharge property of the battery. Excellent sulfonation treatment includes concentrated sulfuric acid treatment, fuming sulfuric acid treatment, chlorosulfonic acid treatment, sulfuric anhydride treatment, etc. Among the sulfonation treatment, fuming sulfuric acid treatment, chlorosulfonic acid treatment, or sulfuric anhydride treatment Is preferable because of its high reactivity and relatively easy sulfonation treatment. Further, the degree of sulfonation is preferably 0.4 to 2% by weight, and more preferably 0.7 to 1.5% by weight. When the degree of sulfonation is less than 0.4% by weight, the improvement of the self-discharge property of the battery is insufficient, and when it exceeds 2% by weight, not only the treatment cost is increased, but also the strength of the nonwoven fabric is reduced. Because. The hydrophilization treatment is preferably performed after the formation of the nonwoven fabric in terms of productivity. However, when the nonwoven fabric is a laminate, it is sufficient that at least the nonwoven fabric containing the split-type conjugate fiber is hydrophilized.
次に本発明の電池用セパレータの製造方法の一例について説明する。本発明のセパレータの基材となる不織布の製造方法としては湿式抄紙法が望ましく、湿式抄紙は通常の方法で行えばよい。まず分割型複合繊維15〜60重量%と、ポリオレフィン系複合繊維20〜60重量%と、40重量%を超えない範囲で他の合成繊維を混合して、0.01〜0.6%の濃度になるように水に分散させ、スラリーを調製する。このとき少量の分散剤を加えてもよい。スラリーは短網式、円網式、あるいは両者を組み合わせた抄紙機等を用いて抄紙される。次いで、ポリオレフィン系複合繊維を溶融させて繊維間を軽く結合させておくと、不織布の取り扱い性がよいので好ましい。ポリオレフィン系複合繊維の溶融は、抄紙工程における乾燥処理の際に乾燥と同時に行ってもよく、また一旦、湿式不織布としたのち加熱処理して行ってもよい。 Next, an example of the manufacturing method of the battery separator of the present invention will be described. As a method for producing the nonwoven fabric used as the base material of the separator of the present invention, the wet papermaking method is desirable, and the wet papermaking may be performed by an ordinary method. First, 15 to 60% by weight of split-type composite fiber, 20 to 60% by weight of polyolefin-based composite fiber, and other synthetic fibers are mixed within a range not exceeding 40% by weight, and a concentration of 0.01 to 0.6% Disperse in water to prepare a slurry. At this time, a small amount of a dispersant may be added. The slurry is made using a short net type, a circular net type, or a paper machine using a combination of both. Next, it is preferable to melt the polyolefin-based composite fiber so that the fibers are lightly bonded to each other because the nonwoven fabric is easy to handle. The polyolefin-based composite fiber may be melted at the same time as drying during the drying process in the paper making process, or may be carried out by heat treatment after making the wet nonwoven fabric once.
そして、ポリオレフィン系複合繊維の溶融により繊維間を軽く結合させ、形態を安定化させた状態にしてから、高圧水流処理を施し、分割型複合繊維を分割させて極細繊維を形成させるとともに繊維間を交絡させるとよい。高圧水流処理は孔径0.05〜0.5mmのオリフィスが0.5〜1.5mmの間隔で設けられたノズルから、水圧5〜20MPa の柱状水流を不織布の表裏にそれぞれ1回以上噴射するとよい。得られた交絡不織布は、120〜D2m℃、好ましくは130〜145℃で乾燥と同時にポリオレフィン系複合繊維の低融点成分で構成繊維同士を熱融着させるとよい。 Then, the fibers are lightly bonded by melting the polyolefin-based composite fiber and the form is stabilized, and then subjected to a high-pressure water flow treatment to divide the split-type composite fiber to form ultrafine fibers and between the fibers. It is good to entangle. In the high-pressure water flow treatment, a columnar water flow having a water pressure of 5 to 20 MPa is preferably sprayed once or more on the front and back of the nonwoven fabric from a nozzle in which orifices having a hole diameter of 0.05 to 0.5 mm are provided at intervals of 0.5 to 1.5 mm. . The obtained entangled nonwoven fabric may be dried at 120 to D 2 m ° C., preferably 130 to 145 ° C., and simultaneously heat-bonded the constituent fibers with the low melting point component of the polyolefin-based composite fiber.
しかるのちに不織布は、発煙硫酸反応槽、クロロスルホン酸反応槽、あるいは無水硫酸反応槽に浸漬され、スルホン基が導入される。スルホン化処理条件は、スルホン化度が0.4〜2重量%となるように適宜設定すればよく、例えば、無水硫酸処理であれば、三酸化イオウのガス濃度を10〜80体積%、反応温度を10〜90℃、反応時間を10〜600秒として処理するとよい。このとき、スルホン化を促進させるために、紫外線または放射線により不織布表面を活性化させた後、スルホン化処理を施してもよい。 Thereafter, the nonwoven fabric is immersed in a fuming sulfuric acid reaction tank, a chlorosulfonic acid reaction tank, or a sulfuric anhydride reaction tank, and a sulfone group is introduced. The sulfonation treatment conditions may be set as appropriate so that the sulfonation degree is 0.4 to 2% by weight. For example, in the case of sulfuric anhydride treatment, the sulfur trioxide gas concentration is 10 to 80% by volume, the reaction The treatment may be performed at a temperature of 10 to 90 ° C. and a reaction time of 10 to 600 seconds. At this time, in order to promote sulfonation, the surface of the nonwoven fabric may be activated by ultraviolet rays or radiation and then subjected to sulfonation treatment.
さらに、不織布に親水化処理を施した後、浸漬法、スプレー法、ロールタッチ法等により親水性界面活性剤を均一に付着させてもよいし、他の親水化処理法を組み合わせてもよい。しかるのち熱カレンダー処理して、所定の厚みに調整され、本発明の電池用セパレータが得られる。 Furthermore, after a hydrophilic treatment is performed on the nonwoven fabric, a hydrophilic surfactant may be uniformly attached by a dipping method, a spray method, a roll touch method, or the like, or other hydrophilic treatment methods may be combined. Thereafter, it is heat calendered, adjusted to a predetermined thickness, and the battery separator of the present invention is obtained.
以下、本発明の内容を実施例を挙げて説明する。なお、引張強力、保液率、ショート率、容量保存率、サイクル寿命、およびスルホン化度は、以下の方法により測定した。 Hereinafter, the contents of the present invention will be described with reference to examples. The tensile strength, liquid retention rate, short rate, capacity storage rate, cycle life, and degree of sulfonation were measured by the following methods.
(1)タテ引張強力
JIS L 1096に準じ、不織布のタテ方向に対して、幅5cm、長さ15cmの試料片をつかみ間隔10cmで把持し、定速伸長型引張試験機を用いて引張速度30cm/分で伸長し、切断時の荷重値を引張強力とした。
(1) Vertical tensile strength In accordance with JIS L 1096, a sample piece having a width of 5 cm and a length of 15 cm is gripped at a spacing of 10 cm with respect to the vertical direction of the nonwoven fabric, and a tensile speed of 30 cm using a constant-speed extension type tensile tester. The tensile strength was taken as the load value at the time of cutting.
(2)保液率
試験片の水分平衡状態の重量(W)を1mgまで測定する。次に比重1.30のKOH溶液中に試験片を浸漬し、KOH溶液を1時間吸収させたのち液中から引き上げて10分間放置した後、試験片の重量(W1) を測定し、保液率(%)=((W1 −W)/W)×100の式より保液率を算出した。
(2) Liquid retention rate The weight (W) of the test piece in a water equilibrium state is measured to 1 mg. Then the test piece was immersed in KOH solution having a specific gravity of 1.30, after standing KOH solution is pulled up from the later solution imbibed 1 hour 10 minutes, and weighed (W 1) of the test specimen, holding The liquid retention rate was calculated from the formula: liquid ratio (%) = ((W 1 −W) / W) × 100.
(3)円筒形密閉ニッケル水素電池
負極は、水素吸蔵合金、カルボニルニッケル、カルボキシメチルセルロース(CMC)、ポリテトラフルオロエチレン(PTFE)に水を加え混練りしスラリーを調整した。このスラリーをニッケルメッキしたパンチングメタルに浸漬塗りした後80℃で乾燥し、加圧成型して水素吸蔵合金負極を作成した。正極は、公知の焼結式ニッケル極を使用した。上記の負極、正極の間に各セパレーターを挟み電槽缶に挿入し、電解液を注液することで、円筒形密閉ニッケル水素電池を作製した。
(3) Cylindrical sealed nickel metal hydride battery The negative electrode was prepared by adding water to a hydrogen storage alloy, carbonyl nickel, carboxymethylcellulose (CMC), and polytetrafluoroethylene (PTFE) and kneading to prepare a slurry. This slurry was dip-coated on nickel-plated punching metal, dried at 80 ° C., and pressure-molded to prepare a hydrogen storage alloy negative electrode. A known sintered nickel electrode was used as the positive electrode. Each separator was sandwiched between the negative electrode and the positive electrode, inserted into a battery case, and an electrolytic solution was injected to prepare a cylindrical sealed nickel metal hydride battery.
(4)容量保存率
前記作製した円筒形密閉ニッケル水素電池を、充電0.1C率で12時間、休止0.5時間、放電0.1C率で終止電圧1.0Vとし、10サイクル充放電を繰り返し、電池初期活性を行った。
そして、初期活性を行った後、充電0.1C率で12時間、休止0.5時間、放電0.1C率で終止電圧1.0Vとし、5サイクル繰り返した後の放電容量に対し、同条件(0.1C率)で充電後、45℃下で14日間放置したときの残存容量(0.1C率放電、終止電圧1.0V)の比を自己放電後の容量保存率とした。充放電は25℃で行った。
(4) Capacity Preservation Rate The produced cylindrical sealed nickel metal hydride battery was charged at a 0.1C rate for 12 hours, rested for 0.5 hour, discharged at a 0.1C rate and a final voltage of 1.0 V, and charged and discharged for 10 cycles. Repeatedly, the initial battery activity was performed.
After the initial activation, the charge 0.1 C rate for 12 hours, the rest 0.5 hour, the discharge 0.1 C rate and the final voltage 1.0 V, the same conditions for the discharge capacity after 5 cycles repeated The ratio of the remaining capacity (0.1 C rate discharge, final voltage 1.0 V) when left at 45 ° C. for 14 days after charging at (0.1 C rate) was defined as the capacity storage rate after self-discharge. Charging / discharging was performed at 25 degreeC.
(5)ショート率
円筒形密閉ニッケル水素電池を100個組み立てたときに、短絡が起きた割合をショート率とした。
(5) Short-circuit rate When 100 cylindrical sealed nickel-metal hydride batteries were assembled, the rate at which a short circuit occurred was defined as the short-circuit rate.
(6)サイクル寿命
初期活性を行った円筒形密閉ニッケル水素電池を、充電0.1C率で、10時間、休止時間0.5時間、放電0.1C率(終止電圧1.0V)で理論容量に対する利用率が90%以下になったときのサイクル数を求めた。充放電は25℃で行った。
(6) Cycle life The theoretical capacity of a cylindrical sealed nickel-metal hydride battery that was initially activated was charged at a rate of 0.1 C, 10 hours, downtime 0.5 hours, and discharged at a rate of 0.1 C (end voltage 1.0 V). The number of cycles was obtained when the utilization ratio for the ratio was 90% or less. Charging / discharging was performed at 25 degreeC.
(7)スルホン化度
試料より5cm×5cmの試験片を採取し、13%KOH水溶液に30分間浸漬した。その後、水道水で30分間洗浄し、さらに純水で30分間洗浄した試料を60℃にて1時間乾燥させて試料を調整した。そして、蛍光X線測定装置を用いて、不織布中の硫黄元素濃度を測定し、全元素濃度で除して100倍したものをスルホン化度とした。
(7) Degree of sulfonation A test piece of 5 cm × 5 cm was taken from the sample and immersed in a 13% KOH aqueous solution for 30 minutes. Thereafter, the sample was washed with tap water for 30 minutes, and the sample washed with pure water for 30 minutes was dried at 60 ° C. for 1 hour to prepare a sample. And the sulfur element density | concentration in a nonwoven fabric was measured using the fluorescent X-ray-measurement apparatus, and what was remove | divided by the total element density | concentration and made 100 times was made into the sulfonation degree.
(8)繊維の準備
原料として、以下の繊維を準備した。
[繊維1] 第1成分を融点(D1m)240℃のメチルペンテン系共重合体(三井化学(株)製)とし、第2成分を融点(D2m)163℃のポリプロピレン(日本ポリケム(株)製)として、複合比が50:50、図1に示す繊維断面を有する繊度2.3dtex、繊維長6mmの分割型複合繊維。
(8) Preparation of fibers The following fibers were prepared as raw materials.
[Fiber 1] The first component is a methylpentene copolymer having a melting point (D 1m ) of 240 ° C. (manufactured by Mitsui Chemicals), and the second component is polypropylene having a melting point (D 2m ) of 163 ° C. (Nippon Polychem Corporation) 1), a split type composite fiber having a composite ratio of 50:50, a fineness of 2.3 dtex having a fiber cross section shown in FIG. 1, and a fiber length of 6 mm.
[繊維2] 第1成分を融点(D1m)240℃のメチルペンテン系共重合体(三井化学(株)製)とし、第2成分を融点(D2m)163℃のポリプロピレン(日本ポリケム(株)製)として、複合比が50:50、図1に示す繊維断面を有する繊度2.3dtex、繊維長45mmの分割型複合繊維。 [Fiber 2] The first component is a methylpentene copolymer having a melting point (D 1m ) of 240 ° C. (manufactured by Mitsui Chemicals), and the second component is polypropylene having a melting point (D 2m ) of 163 ° C. (Nippon Polychem Corporation) 1), a split type composite fiber having a composite ratio of 50:50, a fineness of 2.3 dtex having a fiber cross section shown in FIG. 1, and a fiber length of 45 mm.
[繊維3] 鞘成分を融点(B2m)132℃の高密度ポリエチレン(日本ポリケム(株)製)とし、芯成分を融点(B1m)163℃のポリプロピレン(日本ポリケム(株)製)として、複合比が50:50、繊度1.7dtex、繊維長10mmの同心円鞘芯型複合繊維。 [Fiber 3] The sheath component is a high-density polyethylene (manufactured by Nippon Polychem Co., Ltd.) having a melting point (B 2m ) of 132 ° C., and the core component is polypropylene (manufactured by Nippon Polychem Co., Ltd.) having a melting point (B 1m ) 163 ° C. A concentric sheath-core type composite fiber having a composite ratio of 50:50, a fineness of 1.7 dtex, and a fiber length of 10 mm.
[繊維4] 鞘成分を融点(B2m)105℃の低密度ポリエチレン(日本ポリケム(株)製)とし、芯成分を融点(B1m)163℃のポリプロピレン(日本ポリケム(株)製)として、複合比が50:50、繊度1.7dtex、繊維長10mmの同心円鞘芯型複合繊維。 [Fiber 4] The sheath component is a low density polyethylene (manufactured by Nippon Polychem Co., Ltd.) having a melting point (B 2m ) of 105 ° C., and the core component is polypropylene (manufactured by Nippon Polychem Co., Ltd.) having a melting point (B 1m ) of 163 ° C. A concentric sheath-core type composite fiber having a composite ratio of 50:50, a fineness of 1.7 dtex, and a fiber length of 10 mm.
[繊維5] 鞘成分を融点(B2m)132℃の高密度ポリエチレン(日本ポリケム(株)製)とし、芯成分を融点(B1m)163℃のポリプロピレン(日本ポリケム(株)製)として、複合比が50:50、繊度1.7dtex、繊維長51mmの同心円鞘芯型複合繊維。 [Fiber 5] The sheath component is a high-density polyethylene (manufactured by Nippon Polychem Co., Ltd.) having a melting point (B 2m ) of 132 ° C., and the core component is polypropylene (manufactured by Nippon Polychem Co., Ltd.) having a melting point (B 1m ) of 163 ° C. A concentric sheath-core type composite fiber having a composite ratio of 50:50, a fineness of 1.7 dtex, and a fiber length of 51 mm.
[繊維6] 融点163℃のポリプロピレン(日本ポリケム(株)製)からなり、繊度0.8dtex、繊維長10mmのポリプロピレン繊維。 [Fiber 6] Polypropylene fiber made of polypropylene (manufactured by Nippon Polychem Co., Ltd.) having a melting point of 163 ° C., having a fineness of 0.8 dtex and a fiber length of 10 mm.
[繊維7] 融点163℃のポリプロピレン(日本ポリケム(株)製)からなり、繊度0.8dtex、繊維長51mmのポリプロピレン繊維。 [Fiber 7] Polypropylene fiber made of polypropylene (manufactured by Nippon Polychem Co., Ltd.) having a melting point of 163 ° C., having a fineness of 0.8 dtex and a fiber length of 51 mm.
[繊維8] 第1成分をエチレン−ビニルアルコール共重合体(エチレン含有量38モル%)とし、第2成分をポリプロピレンとして、複合比が50:50、図2に示す繊維断面を有する繊度3.3dtex、繊維長6mmの分割型複合繊維。 [Fiber 8] 2. The first component is an ethylene-vinyl alcohol copolymer (ethylene content 38 mol%), the second component is polypropylene, the composite ratio is 50:50, and the fineness having the fiber cross section shown in FIG. Split composite fiber with 3dtex and 6mm fiber length.
[実施例1]
繊維1を40重量%、繊維3を40重量%、繊維6を20重量%を混合して0.5%の濃度になるようにスラリーを調製し、湿式抄紙して目付80g/m2の原紙を得た。そして原紙の表裏面より10MPaの圧力で高圧柱状水流を噴射することにより、繊維1を分割させて極細繊維を形成させるとともに繊維間を交絡させ、135℃で乾燥と同時に熱融着させ不織布を得た。
[Example 1]
40% by weight of
得られた不織布をクロロスルホン酸50重量%、濃硫酸50重量%を混合した液温40℃の処理浴で1時間浸漬処理し、その後希硫酸中に10分間浸漬後KOH溶液に1時間浸漬して中和を行った。その後水洗・乾燥させた後、熱カレンダー処理を施して、目付65g/m2、厚み0.15mmの電池用セパレータを得た。 The obtained non-woven fabric was immersed in a treatment bath at 40 ° C. mixed with 50% by weight of chlorosulfonic acid and 50% by weight of concentrated sulfuric acid for 1 hour, then immersed in dilute sulfuric acid for 10 minutes and then immersed in KOH solution for 1 hour. Neutralization. Thereafter, the plate was washed with water and dried, and then subjected to a heat calendar treatment to obtain a battery separator having a basis weight of 65 g / m 2 and a thickness of 0.15 mm.
[実施例2]
処理液としてクロロスルホン酸100%を用いた以外は、実施例1と同じ方法で目付65g/m2、厚み0.15mmの電池用セパレータを得た。
[Example 2]
A battery separator having a basis weight of 65 g / m 2 and a thickness of 0.15 mm was obtained in the same manner as in Example 1 except that 100% chlorosulfonic acid was used as the treatment liquid.
[実施例3]
処理液として、発煙硫酸20重量%、濃硫酸80重量%の混合液とした以外は、実施例1と同じ方法で目付65g/m2、厚み0.15mmの電池用セパレータを得た。
[Example 3]
A battery separator having a basis weight of 65 g / m 2 and a thickness of 0.15 mm was obtained in the same manner as in Example 1 except that the treatment liquid was a mixed liquid of fuming sulfuric acid 20% by weight and concentrated sulfuric acid 80% by weight.
[実施例4]
繊維1を40重量%、繊維3を40重量%、繊維6を20重量%を混合して0.5%の濃度になるようにスラリーを調製し、湿式抄紙して目付55g/m2の原紙を得た。そして原紙の表裏面より10MPaの圧力で高圧柱状水流を噴射することにより、繊維1を分割させて極細繊維を形成させるとともに繊維間を交絡させ、135℃で乾燥と同時に熱融着させ不織布を得た。
[Example 4]
The
得られた不織布を、アクリル酸水溶液に浸漬した後、紫外線を照射してアクリル酸モノマーをグラフト共重合させた。この不織布を洗浄して未反応のアクリル酸を除去した後、乾燥して熱カレンダー処理を施して、目付65g/m2、厚み0.15mmの電池用セパレータを得た。 The obtained nonwoven fabric was immersed in an aqueous acrylic acid solution, and then irradiated with ultraviolet rays to graft copolymerize acrylic acid monomers. The nonwoven fabric was washed to remove unreacted acrylic acid, and then dried and subjected to a heat calendering process to obtain a battery separator having a basis weight of 65 g / m 2 and a thickness of 0.15 mm.
[参考例1]
繊維2を40重量%、繊維4を40重量%、繊維7を20重量%を混合してセミランダムカード機を用いて目付30g/m2の繊維ウェブを作製した。そして、前記繊維ウェブの表裏面より5MPaの圧力で高圧柱状水流を噴射することにより、繊維2を分割させて極細繊維を形成させるとともに繊維間を交絡させ、135℃で乾燥と同時に熱融着させ目付30g/m2の乾式不織布を得た。
[ Reference Example 1 ]
40% by weight of
次に、湿式抄紙機において、ヤンキードライヤーの入り口側に前記不織布を設置し、実施例1の構成繊維からなる0.5%濃度のスラリーを調整し、目付が50g/m2となるように湿式抄紙しながら、予め設置した乾式不織布を積層し、135℃のヤンキードライヤーで熱処理を施し、両層の熱融着性繊維を融着させて複合不織布を得た。 Next, in the wet paper machine, the non-woven fabric is installed on the entrance side of the Yankee dryer, and a slurry with a concentration of 0.5% composed of the constituent fibers of Example 1 is prepared, so that the basis weight is 50 g / m 2. While making paper, laminated dry non-woven fabrics were laminated and heat-treated with a 135 ° C. Yankee dryer, and the heat-fusible fibers in both layers were fused to obtain a composite non-woven fabric.
得られた不織布をクロロスルホン酸50重量%、濃硫酸50重量%を混合した液温40℃の処理浴で1時間浸漬処理し、その後希硫酸中に10分間浸漬後KOH溶液に1時間浸漬して中和を行った。その後水洗・乾燥させた後、熱カレンダー処理を施して、目付65g/m2、厚み0.15mmの電池用セパレータを得た。 The obtained non-woven fabric was immersed in a treatment bath at 40 ° C. mixed with 50% by weight of chlorosulfonic acid and 50% by weight of concentrated sulfuric acid for 1 hour, then immersed in dilute sulfuric acid for 10 minutes and then immersed in KOH solution for 1 hour. Neutralization. Thereafter, the plate was washed with water and dried, and then subjected to a heat calendar treatment to obtain a battery separator having a basis weight of 65 g / m 2 and a thickness of 0.15 mm.
[参考例2]
原料として繊維3の代わりに繊維4を使用した以外は、実施例1と同じ方法で目付65g/m2、厚み0.15mmの電池用セパレータを得た。
[ Reference Example 2 ]
A battery separator having a basis weight of 65 g / m 2 and a thickness of 0.15 mm was obtained in the same manner as in Example 1 except that the fiber 4 was used instead of the fiber 3 as a raw material.
[実施例5]
繊維の混合割合を、繊維1を10重量%、繊維3を50重量%、繊維6を40重量%とした以外は、実施例1と同じ方法で目付65g/m2、厚み0.15mmの電池用セパレータを得た。
[Example 5 ]
A battery having a basis weight of 65 g / m 2 and a thickness of 0.15 mm in the same manner as in Example 1 except that the mixing ratio of the fibers was 10% by weight for
[実施例6]
実施例1の不織布を三酸化イオウガス中で30秒間処理した後、水酸化ナトリウムで中和しイオン交換水で洗浄した後、60℃で乾燥させた。熱カレンダー処理を施して、目付65g/m2、厚み0.15mmの電池用セパレータを得た。
[Example 6 ]
The nonwoven fabric of Example 1 was treated in sulfur trioxide gas for 30 seconds, neutralized with sodium hydroxide, washed with ion-exchanged water, and dried at 60 ° C. A thermal calendar process was performed to obtain a battery separator having a basis weight of 65 g / m 2 and a thickness of 0.15 mm.
[比較例1]
原料として繊維1の代わりに繊維8を使用した以外は、実施例1と同じ方法で目付65g/m2、厚み0.15mmの電池用セパレータを得た。
以下、実施例1〜6、参考例1および2、比較例1の物性を表1に示す。
[Comparative Example 1]
A battery separator having a basis weight of 65 g / m 2 and a thickness of 0.15 mm was obtained in the same manner as in Example 1 except that the fiber 8 was used instead of the
The physical properties of Examples 1 to 6 , Reference Examples 1 and 2, and Comparative Example 1 are shown in Table 1.
実施例4は、スルホン基を有しないため、サイクル寿命がやや短く、実施例5は、メチルペンテン系重合体とポリオレフィン系重合体からなる分割型複合繊維の混合量が少ないため、親水基の導入量が少ないだけでなく、セパレータの緻密性に欠き、容量保存率およびサイクル寿命がやや低くなったものの、実施例1〜3、6においては、親水化処理の後でも十分な強力を保持し、かつ電池に組み込んだ際の容量保存率も80%近くを保持し、自己放電性の改良に寄与していた。一方、比較例1は、スルホン化処理のような過酷な親水化処理によって、必要以上に繊維が損傷し、タテ方向の引張強力が極端に低下して組み立て時に破損が生じ、ショート率が高くなり生産性が著しく低下した。
Since Example 4 does not have a sulfone group, the cycle life is slightly short, and Example 5 has a small amount of mixed composite fibers composed of a methylpentene polymer and a polyolefin polymer, so that hydrophilic groups are introduced. Although not only the amount is small, the separator lacks the denseness, the capacity storage rate and the cycle life are slightly lowered, but in Examples 1 to 3 and 6 , the sufficient strength is retained even after the hydrophilic treatment, In addition, the capacity preservation rate when incorporated in a battery was maintained at about 80%, which contributed to the improvement of self-discharge. On the other hand, in Comparative Example 1, the fiber is damaged more than necessary due to the harsh hydrophilic treatment such as sulfonation treatment, the tensile strength in the vertical direction is extremely lowered, causing breakage during assembly, and the short-circuit rate is increased. Productivity was significantly reduced.
本発明の電池用セパレータを組み込んだ電池は、自己放電性が改良され、特に電気自動車(PEV)やハイブリッド車(HEV)用に好適である。 A battery incorporating the battery separator of the present invention has improved self-discharge characteristics, and is particularly suitable for electric vehicles (PEV) and hybrid vehicles (HEV).
1.第1成分
2.第2成分
1. First component Second component
Claims (14)
分割型複合繊維の第2成分の融点をD 2m とし、ポリオレフィン系複合繊維の高融点成分の融点をB 1m 、低融点成分の融点をB 2m としたときに、D 2m 、B 1m およびB 2m が下記の関係式(1)および(2)を満たすことを特徴とする電池用セパレータ。
(1)B 1m >B 2m
(2)120℃<B 2m <D 2m A battery separator in which a non-woven fabric made of a fiber (excluding a resin having a molecular structure of syndiotactic poly (1,2-butadiene)) is hydrophilized, and the non-woven fabric is made of poly (4 -Methylpentene-1) or a polyolefin-based polymer different from the first component, or a copolymer thereof, comprising a methylpentene-based polymer comprising a copolymer of 4-methylpentene-1 and another olefin as the first component A split component composite fiber in which two components are alternately arranged adjacent to each other in the fiber cross section, and at least one of the two components is divided into two or more, and a high melting point component and a low melting point component A non-woven fabric containing at least two types of polyolefin-based composite fibers, wherein the split-type composite fibers and the content of the polyolefin-based composite fibers are Is in a range not exceeding 60 wt%, the nonwoven fabric has been subjected to a hydrophilic treatment,
When the melting point of the second component of the split-type conjugate fiber is D 2m , the melting point of the high melting point component of the polyolefin-based conjugate fiber is B 1m , and the melting point of the low melting point component is B 2m , D 2m , B 1m and B 2m Satisfies the following relational expressions (1) and (2) .
(1) B 1m > B 2m
(2) 120 ° C. <B 2m <D 2m
(1)B 1m >B 2m
(2)120℃<B 2m <D 2m
を満たす2種類の繊維を含有し、該分割型複合繊維および該ポリオレフィン系複合繊維の含有量がそれぞれ60重量%を超えない範囲である湿式抄紙ウェブ(分子構造がシンジオタクチックポリ(1,2−ブタジエン)構造である樹脂から成る繊維を含むものを除く)を作製すること、
該ポリオレフィン系複合繊維の低融点成分を溶融させること、および
該湿式抄紙ウェブに高圧水流処理を施して、分割型複合繊維を分割させて極細繊維を形成するとともに繊維間を交絡させること
を含む方法により不織布を作製すること、ならびに
該不織布を親水化処理すること
を含む電池セパレータの製造方法。 A methylpentene polymer comprising a copolymer of poly (4-methylpentene-1) or 4-methylpentene-1 and another olefin is used as a first component, and a polyolefin polymer different from the first component or its A split type composite fiber in which a copolymer is a second component, two components are alternately arranged adjacent to each other in the fiber cross section, and at least one of the two components is divided into two or more, a high melting point component and a low melting point component At least two types of polyolefin composite fibers composed of a melting point component, the melting point of the second component of the split type composite fiber is D 2 m , the melting point of the high melting point component of the polyolefin composite fiber is B 1m , and the low melting point component the melting point is taken as B 2m, D 2m, B 1m and B 2m relation formula (1) and (2):
(1) B 1m > B 2m
(2) 120 ° C. <B 2m <D 2m
A wet papermaking web (with a molecular structure of syndiotactic poly (1,2) in which the content of the split type composite fiber and the polyolefin type composite fiber does not exceed 60% by weight, respectively. -Butadiene), except those containing fibers made of resin of structure) ,
Melting the low melting point component of the polyolefin-based composite fiber, and subjecting the wet papermaking web to high-pressure water flow treatment to split the split-type composite fiber to form ultrafine fibers and entangle the fibers A method for producing a battery separator, comprising producing a non-woven fabric by the method, and hydrophilizing the non-woven fabric.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005089185A JP4291794B2 (en) | 1998-11-16 | 2005-03-25 | Battery separator and battery using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32485798 | 1998-11-16 | ||
JP2005089185A JP4291794B2 (en) | 1998-11-16 | 2005-03-25 | Battery separator and battery using the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31208499A Division JP3678081B2 (en) | 1998-11-16 | 1999-11-02 | Battery separator and battery using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005276842A JP2005276842A (en) | 2005-10-06 |
JP4291794B2 true JP4291794B2 (en) | 2009-07-08 |
Family
ID=35176221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005089185A Expired - Fee Related JP4291794B2 (en) | 1998-11-16 | 2005-03-25 | Battery separator and battery using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4291794B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013225381A (en) * | 2012-04-19 | 2013-10-31 | Aion Kk | Alkaline secondary battery separator |
WO2014078186A1 (en) * | 2012-11-14 | 2014-05-22 | E. I. Du Pont De Nemours And Company | Separator media for electrochemical cells |
-
2005
- 2005-03-25 JP JP2005089185A patent/JP4291794B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005276842A (en) | 2005-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8486554B2 (en) | Alkaline battery separator, process for production thereof and alkaline batteries | |
KR100415797B1 (en) | Alkaline battery separator and process for producing same | |
JP2012216426A (en) | Separator material and method for manufacturing the same, and battery comprising the same | |
JP3678081B2 (en) | Battery separator and battery using the same | |
TW466795B (en) | Battery separator and battery using the same | |
JP4291794B2 (en) | Battery separator and battery using the same | |
JP4372393B2 (en) | Separator material, manufacturing method thereof, and battery | |
JP4384391B2 (en) | Separator material manufacturing method and battery incorporating the same | |
JP3949366B2 (en) | Battery separator, manufacturing method thereof, and battery incorporating the same | |
JPH11283602A (en) | Separator for battery | |
JP4139454B2 (en) | Alkaline battery separator and method for producing the same | |
JP3510156B2 (en) | Battery separator and battery | |
JP4410394B2 (en) | Battery separator | |
JP4377773B2 (en) | Battery separator and battery | |
JP4061012B2 (en) | Battery separator and battery using the same | |
JP3403647B2 (en) | Battery separator, method of manufacturing the same, and battery | |
JP3383823B2 (en) | Battery separator, method of manufacturing the same, and battery using the same | |
JP3471255B2 (en) | Nonwoven fabric for battery separator and battery using the same | |
KR100533124B1 (en) | Battery separator and method for manufacturing the same, and battery | |
JP3114072B2 (en) | Alkaline battery separator | |
JP2005116514A (en) | Separator for battery and its manufacturing method | |
JP2001291503A (en) | Separator for battery | |
JP2003109568A (en) | Separator for battery, and battery using the same | |
JP4202525B2 (en) | Alkaline battery separator | |
JP4047412B2 (en) | Alkaline battery separator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080916 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081113 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090317 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090403 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4291794 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120410 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130410 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130410 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130410 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130410 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140410 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |