JP2000317280A - Filter using ultrahigh molecular weight polyethylene porous membrane as filter medium - Google Patents

Filter using ultrahigh molecular weight polyethylene porous membrane as filter medium

Info

Publication number
JP2000317280A
JP2000317280A JP11125778A JP12577899A JP2000317280A JP 2000317280 A JP2000317280 A JP 2000317280A JP 11125778 A JP11125778 A JP 11125778A JP 12577899 A JP12577899 A JP 12577899A JP 2000317280 A JP2000317280 A JP 2000317280A
Authority
JP
Japan
Prior art keywords
molecular weight
weight polyethylene
filter
porous membrane
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11125778A
Other languages
Japanese (ja)
Inventor
Takeshi Yamazaki
剛 山崎
Isao Kawada
功 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP11125778A priority Critical patent/JP2000317280A/en
Publication of JP2000317280A publication Critical patent/JP2000317280A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive filter capable of use even in a electronics filed, that an elution component does not substantially exsist, and a problem of the disposal is not caused. SOLUTION: The filter using an ultrahigh molecular weight polyethylene porous membrane as a filter medium, is produced by gelatinizing a >=4×105 ultrahigh molecular weight polyethylene solution to make a film, removing a solvent and then stretching to at least one direction to make porous. the polyethylene porous membrane having 10-300 μm thickness, a 30-90% void ratio, a 0.03-5.0 μm average pore size, and >=10 MPa tensile strength at least in one direction, is laminated in a nonwoven fabric state due to fibrillation at a stretching time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超高分子量ポリエ
チレン多孔質膜を濾過媒体として使用するフィルターに
関するものであり、特に物理加工であるプラズマ親水化
加工処理をほぼ大気圧に近い雰囲気下で行った親水化フ
ィルターに関している。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filter using an ultra-high molecular weight polyethylene porous membrane as a filtration medium, and more particularly to performing a plasma hydrophilization process as a physical process in an atmosphere near atmospheric pressure. A hydrophilic filter.

【0002】[0002]

【従来の技術】多孔質膜はフィルターの濾過媒体として
従来から使用されてきた。エレクトロニクス分野、特に
半導体分野においては、化学的な安定性からも、PTF
E(ポリ4フッ化エチレン)などのフッ素系の多孔質膜を
用いたフィルターが幅広く使用されてきた。しかし、フ
ッ素系膜に関しては、最近オゾン層破壊に関連しての廃
棄の問題が生じてきている。特にISO14000を取得した場
合には、廃棄の方法を明記することが求められ、焼却が
難しいフッ素系の膜は使用を避ける方向にある。ポリエ
チレン膜では、焼却による環境問題がフッ素系膜に比べ
るとはるかに少ない。焼却後の生成物が二酸化炭素と水
であるというクリーンさが、使用上の利点とみなされる
ようになった。また、価格においてもポリエチレン膜が
フッ素系の膜に比べ安価であり、この点でも使用拡大の
要求は大きい。
2. Description of the Related Art Porous membranes have been conventionally used as filtration media for filters. In the field of electronics, especially in the field of semiconductors, PTF
Filters using a fluorine-based porous membrane such as E (polytetrafluoroethylene) have been widely used. However, regarding the fluorine-based membrane, there has recently been a problem of disposal related to ozone layer destruction. In particular, when ISO14000 is acquired, it is required to specify the disposal method, and the use of fluorine-based membranes, which are difficult to incinerate, is being avoided. Environmental problems due to incineration are much less with polyethylene membranes than with fluorine-based membranes. The cleanliness that the products after incineration are carbon dioxide and water has come to be regarded as a use advantage. Also, the price of polyethylene films is lower than that of fluorine-based films, and there is a great demand for expanded use in this respect as well.

【0003】しかるに、ポリエチレン膜は基本的には親
油性の膜であり、溶剤系の溶液における濾過の場合につ
いては親油性のために、なんら前処理無しに使用できる
が、水系の溶液に対して使用する場合は、例えば、親水
性の有機溶媒であるアルコール類やケトン類の水溶液で
事前に濡らしておいてから使用する等の前処理が必要で
あった。この、不便さを解消するための親水化の方法が
さまざま試みられてきた。
However, a polyethylene membrane is basically a lipophilic membrane, and can be used without any pretreatment in the case of filtration in a solvent-based solution because of its lipophilicity. In the case of use, for example, pretreatment such as wetting with an aqueous solution of a hydrophilic organic solvent such as alcohols or ketones before use is necessary. Various methods of hydrophilization for solving this inconvenience have been tried.

【0004】疎水性の膜に親水性を付与する方法として
は、大きく3つの方法がある。1)親水化剤、界面活性剤
で膜を処理して、親水化する方法、2)膜表面、細孔内部
等に親水性材料を被覆、充填する方法、3)物理加工で表
面を親水化する方法の3つである。親水化剤、界面活性
剤としては、特にスルホン化剤やフッ素系の界面活性剤
などがある。親水性材料の被覆、充填では放射線や紫外
線の照射による表面での親水性官能基を持つモノマーの
グラフト重合や、親水性であるセルロース系、アミド系
樹脂の溶液に浸漬後乾燥する方法などがある。物理加工
では、オゾンガス、フッ素ガスの接触による表面加工、
水中で高圧をかけての親水化、コロナ放電やプラズマ加
工による表面処理があげられる。
There are three main methods for imparting hydrophilicity to a hydrophobic film. 1) A method of treating a membrane with a hydrophilizing agent or surfactant to make it hydrophilic, 2) A method of coating and filling a hydrophilic material on the membrane surface, inside of pores, etc., 3) Making the surface hydrophilic by physical processing There are three ways to do this. Examples of the hydrophilizing agent and the surfactant include a sulfonating agent and a fluorine-based surfactant. For the coating and filling of a hydrophilic material, there are methods such as graft polymerization of a monomer having a hydrophilic functional group on the surface by irradiation with radiation or ultraviolet light, and a method of immersing in a solution of a hydrophilic cellulose-based or amide-based resin and then drying. . In physical processing, surface processing by contact of ozone gas and fluorine gas,
Examples include surface treatment by applying a high pressure in water to make the surface hydrophilic, corona discharge and plasma processing.

【0005】親水化後の超高分子量ポリエチレン多孔膜
をフィルター濾過媒体として使用する場合、フィルター
からの他成分の溶出は好ましくない。特に、フッ素系膜
のフィルターの代替を目的とする場合は、溶出物が少な
いことが求められる。エレクトロニクス分野など、精密
フィルターを使用する業界では、フィルターからの溶出
物量が多い場合は、製品歩留まりにも影響し、溶出金属
成分の濃度はppbのオーダーが求められるほどである。
このため、親水化剤が遊離しやすい方法は、エレクトロ
ニクス用の精密フィルターの分野では使用できない。
[0005] When the ultrahigh molecular weight polyethylene porous membrane after hydrophilization is used as a filter filtration medium, elution of other components from the filter is not preferred. In particular, when the purpose is to substitute a filter of a fluorine-based membrane, it is required that the amount of eluted substances is small. In the industry where precision filters are used, such as in the electronics field, when the amount of eluted substances from the filter is large, it also affects the product yield, and the concentration of the eluted metal component is on the order of ppb.
Therefore, a method in which the hydrophilizing agent is easily released cannot be used in the field of precision filters for electronics.

【0006】[0006]

【発明が解決しようとする課題】本発明は、エレクトロ
ニクス分野でも使用可能な、溶出成分が実質的に存在せ
ず、廃棄の問題も発生しない、安価なフィルターを提供
することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an inexpensive filter which can be used in the field of electronics and has substantially no eluted components and does not cause disposal problems.

【0007】[0007]

【課題を解決するための手段】上記目的に鑑み、鋭意検
討の結果、本発明者らは、成膜後の延伸時のフィブリル
化により不織布状の積層体を形成している超高分子量ポ
リエチレン多孔質膜を、物理加工であるプラズマ加工で
親水化加工することで効率的に処理しうることを見出
し、本発明に到達した。
Means for Solving the Problems In view of the above-mentioned objects, as a result of intensive studies, the present inventors have found that ultra-high molecular weight polyethylene porous material forming a nonwoven fabric laminate by fibrillation during stretching after film formation. The present inventors have found that a porous membrane can be efficiently treated by performing hydrophilic processing by plasma processing, which is physical processing, and arrived at the present invention.

【0008】すなわち、本発明は 1)分子量4×105以上の超高分子量ポリエチレンを
ゲル成膜、溶媒除去後に少なくとも1方向に延伸するこ
とにより、積層された不織布状にフィブリル化されてな
る、厚みが10〜300μm、空隙率が30〜90%、
平均細孔径が0.03〜5.0μm、引張り強度が少なくとも一
方向に対して10MPa以上である超高分子量ポリエチ
レン多孔質膜を濾過媒体とするフィルターであり、好ま
しくは該超高分子量ポリエチレン多孔質膜の少なくとも
片面に、ポリオレフィン系の織布あるいは不織布からな
る補強材を積層したものであり、さらに好ましくは該超
高分子量ポリエチレン多孔質膜が、水との接触角が45
°以下、望ましくは40°以下、あるいは水面と接触さ
せた際に水が内部に浸透して変色するに要する時間が6
0秒以内、望ましくは30秒以内で表される親水性を有
する超高分子量ポリエチレン多孔質膜であるものであ
る。
That is, the present invention provides: 1) an ultra-high molecular weight polyethylene having a molecular weight of 4 × 10 5 or more, which is formed into a laminated non-woven fabric by forming a gel film, stretching the solvent in at least one direction after removing the solvent, The thickness is 10 to 300 μm, the porosity is 30 to 90%,
The average pore diameter is 0.03 to 5.0 μm, a tensile strength is a filter using a ultra-high-molecular-weight polyethylene porous membrane having a tensile strength of at least 10 MPa or more in at least one direction as a filtration medium, preferably at least the ultra-high-molecular-weight polyethylene porous membrane One side is laminated with a reinforcing material made of a polyolefin-based woven or nonwoven fabric. More preferably, the ultra-high molecular weight polyethylene porous membrane has a contact angle with water of 45.
° or less, desirably 40 ° or less, or the time required for water to penetrate into the interior and discolor when contacted with water.
It is a porous ultrahigh molecular weight polyethylene membrane having hydrophilicity expressed within 0 seconds, preferably within 30 seconds.

【0009】また本発明は、 2)分子量4×105以上の超高分子量ポリエチレン多
孔質膜からなり、該膜は積層された不織布状にフィブリ
ル化されており、厚みが10〜300μm、空隙率が3
0〜90%、平均細孔径が0.03〜5.0μm、引張り強度が
少なくとも一方向に対して10MPa以上である、超高
分子量ポリエチレン多孔質膜を濾過媒体とするフィルタ
ーであり、好ましくは、該超高分子量ポリエチレン多孔
質膜が、水との接触角が45°以下、望ましくは40°
以下、あるいは水面と接触させた際に水が内部に浸透し
て変色するに要する時間が60秒以内、望ましくは30
秒以内で表される親水性を有する超高分子量ポリエチレ
ン多孔質膜であるものである。
The present invention also relates to 2) a porous ultra-high molecular weight polyethylene membrane having a molecular weight of 4 × 10 5 or more, wherein the membrane is fibrillated into a laminated nonwoven fabric, and has a thickness of 10 to 300 μm and a porosity. Is 3
0 to 90%, an average pore diameter of 0.03 to 5.0 μm, and a tensile strength of 10 MPa or more in at least one direction. A filter using a ultrahigh molecular weight polyethylene porous membrane as a filtration medium. The molecular weight polyethylene porous membrane has a contact angle with water of 45 ° or less, preferably 40 °.
The time required for water to penetrate into the inside and discolor when contacted with the water surface is 60 seconds or less, preferably 30 seconds or less.
It is an ultra-high molecular weight polyethylene porous membrane having hydrophilicity expressed within seconds.

【0010】かかる本発明のフィルターは、超高分子量
ポリエチレンをポリエチレンを充分に溶解できる溶媒で
あるポロゲン(ノナン、デカン、ウンデカン、ドデカ
ン、デカリンおよびパラフィン油で代表される脂肪族又
は環式炭化水素あるいは類似の沸点を有する鉱油留分)
と混合して加熱し、ポロゲンとポリマーからなる溶液を
形成し、例えば非常に広いスリット形状のダイから押出
してフィルムに成形し、フィルムにゲル化が生じる程度
に冷却し、溶媒を蒸発により除去した後に少なくとも1
方向に延伸することでフィブリル化した、微多孔性の不
織布状フィルムを使用している。このフィルムは、押出
しスリットの形状、供給溶液量、溶剤の蒸発条件、延伸
条件等に従ってコントロールされる膜厚み、空隙率、孔
径の値により、望みの目的の濾過に使用できる。濾過媒
体として用いるために、厚みが10〜300μm、空隙
率が30〜90%、平均細孔径が0.03〜5.0μm、引張り
強度が少なくとも一方向に対して10MPa以上である
ことが望ましい。また、原料の超高分子量ポリエチレン
に可塑剤等の添加物を入れずに成形加工できるため、本
質的に非常にクリーンで、濾過時に溶出する不純物が少
ないフィルムである。
[0010] The filter of the present invention comprises a porogen (an aliphatic or cyclic hydrocarbon represented by nonane, decane, undecane, dodecane, decalin and paraffin oil) which is a solvent capable of sufficiently dissolving ultra-high molecular weight polyethylene. Mineral oil fraction with similar boiling point)
And heated to form a solution consisting of a porogen and a polymer, extruded from a very wide slit-shaped die into a film, cooled to a point where the film gelled, and the solvent was removed by evaporation. At least one later
A microporous nonwoven-like film fibrillated by stretching in the direction is used. This film can be used for desired filtration depending on the film thickness, porosity, and pore size controlled according to the shape of the extrusion slit, the amount of the supplied solution, the evaporation conditions of the solvent, the stretching conditions, and the like. For use as a filtration medium, it is desirable that the thickness is 10 to 300 μm, the porosity is 30 to 90%, the average pore diameter is 0.03 to 5.0 μm, and the tensile strength is 10 MPa or more in at least one direction. Further, since the raw material ultrahigh molecular weight polyethylene can be molded without adding an additive such as a plasticizer, the film is essentially very clean and has little impurities eluted during filtration.

【0011】しかるに、超高分子量ポリエチレンは本質
的には疎水性を有している。有機溶剤系の液の濾過にお
いては超高分子量ポリエチレンのフィルター膜は、その
ままで使用できる。この性質の液に対する濾過の例とし
て、例えば、半導体の配線加工に使用されるフォトレジ
スト液の濾過がある。この場合は、液が有機溶媒系のた
め、疎水性の超高分子量ポリエチレン膜は強い親和力を
有しており、液充填時の空気たまりの発生等の問題点は
通常の注意で十分に回避できる。しかるに、半導体分野
でもフォトレジストを感光した後のエッチング液、フォ
トレジストの剥離工程で使用される現像液や剥離液は水
溶液であることが多く、これらの液に対しては、そのま
までこの発明の超高分子量ポリエチレン多孔膜使用フィ
ルターを使用することはできず、何らかの親水化処理が
必要になる。疎水性の膜に対する従来の親水化の方法と
しては1)親水化剤を用いる、2)親水性の材料で被覆、充
填する、3)物理的に親水化する、の3つの方法がある。
このうち、親水化剤の使用としては、界面活性剤やスル
ホン酸系の親水化剤、アルコール類等の親水性の液で表
面を濡らしてから水を導入するという使用法等がある。
使用前のアルコール類液の処理は、使用する担当者の手
間が大きく、使用上問題が残る。親水性の材料による表
面被覆の例としては、放射線、紫外線の照射による表面
での親水基含有モノマーのグラフト重合、親水性の材料
の溶液に含浸、乾燥することによる親水化等がある。物
理的な親水化の方法としては、コロナ放電処理、プラズ
マ処理、オゾンガスやフッ素ガスを含むガスとの接触処
理等がある。先にも記したが、エレクトロニクス分野、
特に半導体分野に使用しようとした場合、不純物、特に
金属成分による汚染は、製品品質の確保、歩留まりの向
上の点からして避けなくてはならない、重要な管理項目
の1つである。親水化超高分子量ポリエチレンフィルム
を使用する場合においても、不純物による汚染が生じな
いような材質を保つ必要がある。この点から、界面活性
剤やスルホン酸系の化合物による表面親水化は親水化剤
そのものの溶出の可能性が強く使用は難しい。同様に表
面を親水性物質で被覆するならば、濾過中に溶出しない
様な強い結合が要求される。物理処理は、第3成分の溶
出の可能性は少なくなるが、経時的な親水性の低下があ
るので、製品の親水性をいかに保証するかが大きな課題
となる。
However, ultra-high molecular weight polyethylene is essentially hydrophobic. In the filtration of the organic solvent-based liquid, the ultrahigh molecular weight polyethylene filter membrane can be used as it is. As an example of filtration for a liquid having this property, there is, for example, filtration of a photoresist liquid used for wiring a semiconductor. In this case, since the liquid is an organic solvent system, the hydrophobic ultra-high molecular weight polyethylene membrane has a strong affinity, and problems such as the occurrence of air pockets at the time of liquid filling can be sufficiently avoided by ordinary caution. . However, even in the semiconductor field, the etching solution after exposing the photoresist, the developing solution and the removing solution used in the photoresist removing step are often aqueous solutions, and these solutions are used as they are of the present invention. A filter using an ultrahigh molecular weight polyethylene porous membrane cannot be used, and some hydrophilic treatment is required. There are three conventional methods for hydrophilizing a hydrophobic membrane: 1) using a hydrophilizing agent, 2) coating and filling with a hydrophilic material, and 3) physically hydrophilizing.
Among them, examples of the use of the hydrophilizing agent include a method of wetting the surface with a hydrophilic liquid such as a surfactant, a sulfonic acid-based hydrophilizing agent, or an alcohol, and then introducing water.
The treatment of the alcoholic solution before use requires much time and effort for the person in charge, and there remains a problem in use. Examples of the surface coating with a hydrophilic material include graft polymerization of a hydrophilic group-containing monomer on the surface by irradiation with radiation or ultraviolet light, and hydrophilicization by impregnating with a solution of a hydrophilic material and drying. Examples of the method of physical hydrophilization include a corona discharge treatment, a plasma treatment, and a contact treatment with a gas containing ozone gas or fluorine gas. As mentioned earlier, the electronics field,
In particular, when used in the semiconductor field, contamination by impurities, particularly metal components, is one of the important management items that must be avoided from the viewpoint of securing product quality and improving yield. Even when a hydrophilic ultra-high molecular weight polyethylene film is used, it is necessary to maintain a material that does not cause contamination by impurities. From this point, it is difficult to use the surface hydrophilization by a surfactant or a sulfonic acid compound because the possibility of elution of the hydrophilizing agent itself is strong. Similarly, if the surface is coated with a hydrophilic substance, a strong bond that does not elute during filtration is required. In the physical treatment, the possibility of elution of the third component is reduced, but there is a decrease in hydrophilicity over time.

【0012】物理加工による親水化についてもいくつか
の方法が有るが、親水性の寿命、親水化のコストから有
効な方法は限られてくる。
Although there are several methods for hydrophilization by physical processing, effective methods are limited due to the life of the hydrophilicity and the cost of hydrophilization.

【0013】プラズマ処理による親水化法の多くは、親
水化したい材料に減圧下で高電圧によるプラズマを照射
するもので、処理がバッチ式で時間を要し大量処理に向
いていない。最近、大気圧に近い圧力でのプラズマ処理
が開発されてきた。大気圧に近いためロール状のフィル
ムの連続処理が可能となり、コスト面での競争力に結び
つく。
Many of the hydrophilization methods by plasma treatment involve irradiating a material to be hydrophilized with high-voltage plasma under reduced pressure, and require a batch-type process, which is not suitable for mass processing. Recently, plasma processing at near atmospheric pressure has been developed. Since the pressure is close to the atmospheric pressure, continuous processing of a roll-shaped film becomes possible, leading to cost competitiveness.

【0014】プラズマ処理をする際の雰囲気は、親水化
の効果を長引かせるため、炭化水素系のガス雰囲気とす
ることが多い。これは、プラズマ処理により表面に発生
した親水性をもたらす活性な部位が、内部からの電子移
動のために失活するのをふせぐための薄膜が炭化水素雰
囲気下で形成されるためと推定されている。
The atmosphere for the plasma treatment is often a hydrocarbon gas atmosphere in order to prolong the effect of hydrophilization. This is presumed to be due to the fact that a thin film is formed in a hydrocarbon atmosphere to prevent active sites that provide hydrophilicity generated on the surface by the plasma treatment from being deactivated due to electron transfer from the inside. I have.

【0015】親水化された超高分子量ポリエチレン多孔
質フィルムを濾過材としてフィルターが作られる。多孔
質フィルムは単独では物理的な強度が十分でないため、
少なくとも片側には濾過前或いは濾過後の液の流路とも
なる補強材を積層する。補強材の種類としては、溶出物
が少なく、十分な強度を持ち、濾過面積・流量を維持し
うるようなタフタ等の織布やスパンボンド、メルトブロ
ーによる不織布または高分子樹脂製の網状物などがあ
り、使用目的、条件等にしたがって、従来の知見から最
適のものを選び使用する。フィルターへの加工時にも、
必要濾過面積により、濾過材にプリーツ加工等を加えて
もよい。フィルター加工の条件は、従来からの膜使用に
よる加工法、条件を材質の違いから微調整するだけでな
されることができる。
A filter is made using a hydrophilic ultra-high molecular weight polyethylene porous film as a filtering material. Since the porous film alone has insufficient physical strength,
At least one side is laminated with a reinforcing material that also serves as a liquid flow path before or after filtration. As the type of reinforcing material, woven fabric such as taffeta, spun bond, non-woven fabric by melt-blowing or mesh material made of polymer resin, which has a small amount of eluted material, has sufficient strength, and can maintain the filtration area and flow rate, etc. Yes, according to the purpose of use, conditions, etc., select and use the best one from the conventional knowledge. When processing into a filter,
Depending on the required filtration area, pleating or the like may be added to the filtering material. The conditions of the filter processing can be achieved only by finely adjusting the conventional processing method and conditions using a film from the difference in the material.

【0016】[0016]

【実施例】以下に本発明の実施例を示す。なお、実施例
における試験方法はつぎの通りである。
Examples of the present invention will be described below. In addition, the test method in an Example is as follows.

【0017】(1)親水性−1:処理後のフィルム表面に
おける純水との接触角で表す。接触角で45°以下、望
ましくは40°以下で親水性ありとみなす。
(1) Hydrophilicity-1: Expressed as a contact angle with pure water on the film surface after the treatment. A contact angle of 45 ° or less, desirably 40 ° or less is regarded as hydrophilic.

【0018】(2)親水性−2:処理後のフィルムを水面
と接触させた際に、浸透による変色に要する時間で評価
する。例えば、容器に入れた水に2cmx2cmのフィ
ルムサンプルの小片を浮かべ、毛管吸引力で水がフィル
ム下面から上面に染み出る際の変色(多孔質の白色から
透明状になる)の様子で判断する。変化に要する時間が
60秒以内、望ましくは30秒以内で親水性ありと判断し
た。
(2) Hydrophilicity-2: Evaluated by the time required for discoloration due to penetration when the treated film is brought into contact with the water surface. For example, a small piece of a 2 cm × 2 cm film sample is floated on water placed in a container, and the discoloration (from porous white to transparent) when water seeps from the lower surface of the film to the upper surface by capillary suction is determined. Time to change
The hydrophilicity was determined within 60 seconds, preferably within 30 seconds.

【0019】(3)平均細孔径:ASTM F316−8
6、JIS K3832に基づいているPerm-Porometer
(PMI社製)による、WETとDRYの通気量測定からの計算値
を採用した。
(3) Average pore size: ASTM F316-8
6. Perm-Porometer based on JIS K3832
The calculated value from the measurement of the air permeability of WET and DRY by (PMI) was adopted.

【0020】(4)接 触 角:サンプルを電子天秤に吊
るして、表面張力既知の液中に沈める過程、引き上げる
過程から動的接触角を求める、Wilhelmy平板法を利用し
て測定した。接触角としては沈める過程の接触角(前進
接触角)、引き上げる過程の接触角(後退接触角)が通常
同じ値をとらず、ヒステリシスを生じるため、今回の測
定値は両者の平均値で表している。
(4) Contact angle: The Wilhelmy plate method, in which a dynamic contact angle is determined from a process of suspending a sample on an electronic balance and submerging it into a liquid having a known surface tension and a process of pulling the sample up, is used. As the contact angle in the process of sinking (advance contact angle) and the contact angle in the process of lifting (receding contact angle) do not usually take the same value and cause hysteresis, the measured value this time is expressed as the average value of both. I have.

【0021】[比較例1]平均分子量3.3×106の超
高分子量ポリエチレン(三井化学製、ハイゼックスミリ
オン、340M)5部をデカリン95部に170℃に加熱
攪拌して溶解し、スリットから押出してフィルム成形
し、溶媒を加熱除去後、縦横各3倍に2軸延伸して多孔
質フィルムを得た。このフィルムに補強用のスパンボン
ド不織布(厚み:0.2mm、材質高密度ポリエチレン)を積
層し、フィルター用のメンブレンとした。このメンブレ
ンに使用しているPE膜の物性値を表1に示す。
Comparative Example 1 Five parts of ultra high molecular weight polyethylene having an average molecular weight of 3.3 × 10 6 (manufactured by Mitsui Chemicals, Hyzex Million, 340M) was dissolved in 95 parts of decalin by heating and stirring at 170 ° C. After extruding to form a film and removing the solvent by heating, the film was biaxially stretched three times vertically and horizontally to obtain a porous film. A spunbonded nonwoven fabric (thickness: 0.2 mm, high-density polyethylene) was laminated on the film to form a filter membrane. Table 1 shows the physical property values of the PE film used for this membrane.

【0022】[実施例1]上記の比較例1の超高分子量
ポリエチレン多孔膜積層メンブレンは疎水性であるの
で、常圧プラズマ処理を加えて親水化した。プラズマ処
理の条件は周波数5KHz、印加時間20秒、雰囲気は
アセトン含有アルゴン、圧力は常圧(約0.1Mpa)である。
このメンブレンのPE膜の物性も表1にあわせて示す。
Example 1 Since the ultrahigh molecular weight polyethylene porous membrane-laminated membrane of Comparative Example 1 was hydrophobic, it was hydrophilized by normal pressure plasma treatment. The conditions of the plasma treatment are a frequency of 5 KHz, an application time of 20 seconds, an atmosphere of argon containing acetone, and a pressure of normal pressure (about 0.1 Mpa).
The physical properties of the PE film of this membrane are also shown in Table 1.

【0023】[比較例2]超高分子量ポリエチレン多孔
質膜としてSoluporフィルム(オランダ DSMSolutec
h社製)を使用して比較例1と同様に補強用のスパンボ
ンド不織布と積層してフィルター用のメンブレンを得
た。PE膜の物性は表1にあわせて示す。
[Comparative Example 2] A Solupor film (DSM Solutec, The Netherlands) was used as an ultrahigh molecular weight polyethylene porous membrane.
(manufactured by Company h) and laminated with a spunbonded nonwoven fabric for reinforcement in the same manner as in Comparative Example 1 to obtain a membrane for a filter. The physical properties of the PE film are shown in Table 1.

【0024】[実施例2]比較例2のメンブレンを実施
例1と同じ条件で常圧プラズマ処理による親水化を行っ
た。この親水化メンブレンに使用のPE膜の物性値も表
1に示す。
Example 2 The membrane of Comparative Example 2 was hydrophilized under normal pressure plasma treatment under the same conditions as in Example 1. Table 1 also shows the physical property values of the PE membrane used for the hydrophilized membrane.

【0025】[0025]

【表1】 [Table 1]

【0026】[実施例3]実施例1のメンブレンを用い
て長さ25cmのフィルターカートリッジを試作した。
このカートリジの粒子補足率を測定したところ、1μmの
ポリスチレンラテックス粒子の補足率99.9%以上、0.5
μmのラテックス粒子の補足率は92%であった。
Example 3 Using the membrane of Example 1, a 25 cm long filter cartridge was prototyped.
When the particle entrapment rate of this cartridge was measured, the entrapment rate of 1 μm polystyrene latex particles was 99.9% or more,
The capture rate of μm latex particles was 92%.

【0027】[実施例4]実施例2のメンブレンを用いて
実施例3と同様に試作した実施例4のカートリッジでの
0.1μmラテックス粒子の補足率は99.9%以上であり、充
分な粒子補足率を有していることがわかった。
[Embodiment 4] A cartridge manufactured in the same manner as in Embodiment 3 was manufactured using the membrane in Embodiment 2 with the cartridge of Embodiment 4.
The capture ratio of the 0.1 μm latex particles was 99.9% or more, indicating that the particles had a sufficient particle capture ratio.

【0028】[0028]

【発明の効果】以上詳述したように、本発明のフィルタ
ーは大気圧に近いプラズマ処理により親水化されてお
り、本来疎水性を示す超高分子量ポリエチレン多孔質膜
と高密度ポリオレフィン不織布を積層したメンブレンが
親水化処理により接触角が変化したことが明らかになっ
た。この結果、有機溶剤系の液のみならず、水系の現像
液、剥離液においても事前の親水処理無しに使用できる
フィルターが完成した。このフィルターは、可塑剤等の
添加物が少ないため、化学、製薬、食品等の分野での各
種用途に好適であり、不純物特に金属成分の溶出を嫌う
エレクトロニクス、とりわけ半導体等の分野に特に好適
である。
As described in detail above, the filter of the present invention has been hydrophilized by a plasma treatment near atmospheric pressure, and is formed by laminating an ultra-high molecular weight polyethylene porous membrane originally showing hydrophobicity and a high-density polyolefin nonwoven fabric. It became clear that the contact angle of the membrane was changed by the hydrophilization treatment. As a result, a filter was completed which can be used not only in organic solvent-based liquids but also in aqueous-based developing solutions and stripping solutions without prior hydrophilic treatment. This filter is suitable for various uses in the fields of chemistry, pharmaceuticals, foods, etc., because it has a small amount of additives such as plasticizers, and is particularly suitable for electronics, particularly semiconductors, which dislike elution of impurities, particularly metal components. is there.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D006 GA02 MA03 MA06 MA22 MA24 MA31 MB06 MB09 MB16 MB20 MC22X MC88 NA03 NA32 NA66 PA01 PA02 PB08 PB12 PB14 PC01 4D019 AA03 BA13 BB08 BC13 BD01 CB06 CB08  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D006 GA02 MA03 MA06 MA22 MA24 MA31 MB06 MB09 MB16 MB20 MC22X MC88 NA03 NA32 NA66 PA01 PA02 PB08 PB12 PB14 PC01 4D019 AA03 BA13 BB08 BC13 BD01 CB06 CB08

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 分子量4×105以上の超高分子量ポリ
エチレンをゲル成膜、溶媒除去後に少なくとも1方向に
延伸することにより、積層された不織布状にフィブリル
化されてなる、厚みが10〜300μm、空隙率が30
〜90%、平均細孔径が0.03〜5.0μm、引張り強度が少
なくとも一方向に対して10MPa以上である超高分子
量ポリエチレン多孔質膜を濾過媒体とするフィルター。
An ultra-high-molecular-weight polyethylene having a molecular weight of 4 × 10 5 or more is formed into a gel and formed into a laminated non-woven fabric by stretching in at least one direction after removing a solvent, and has a thickness of 10 to 300 μm. Porosity is 30
A filter using an ultrahigh molecular weight polyethylene porous membrane having a filtration medium of about 90%, an average pore diameter of 0.03 to 5.0 μm, and a tensile strength of 10 MPa or more in at least one direction.
【請求項2】 該超高分子量ポリエチレン多孔質膜の少
なくとも片面に、ポリオレフィン系の織布あるいは不織
布からなる補強材を積層した請求項1に記載のフィルタ
ー。
2. The filter according to claim 1, wherein a reinforcing material made of a polyolefin-based woven or nonwoven fabric is laminated on at least one surface of the ultrahigh molecular weight polyethylene porous membrane.
【請求項3】 該超高分子量ポリエチレン多孔質膜が、
水との接触角が45°以下、望ましくは40°以下、あ
るいは水面と接触させた際に水が内部に浸透して変色す
るに要する時間が60秒以内、望ましくは30秒以内で
表される親水性を有する超高分子量ポリエチレン多孔質
膜である、請求項1ないし2に記載のフィルター。
3. The ultra high molecular weight polyethylene porous membrane,
The contact angle with water is 45 ° or less, preferably 40 ° or less, or the time required for water to penetrate into the inside and discolor when contacted with the water surface is represented within 60 seconds, preferably within 30 seconds. 3. The filter according to claim 1, which is a porous ultrahigh molecular weight polyethylene membrane having hydrophilicity.
【請求項4】 該親水性が、物理加工による親水化によ
り賦与されたものである、請求項3記載のフィルター。
4. The filter according to claim 3, wherein said hydrophilicity is imparted by hydrophilization by physical processing.
【請求項5】 該物理加工が、ほぼ大気圧(雰囲気圧
力:0.05〜0.2MPa)でのプラズマ加工である請求項4記
載のフィルター。
5. The filter according to claim 4, wherein said physical processing is plasma processing at substantially atmospheric pressure (atmospheric pressure: 0.05 to 0.2 MPa).
【請求項6】 分子量4×105以上の超高分子量ポリ
エチレン多孔質膜からなり、該膜は積層された不織布状
にフィブリル化されており、厚みが10〜300μm、
空隙率が30〜90%、平均細孔径が0.03〜5.0μm、引
張り強度が少なくとも一方向に対して10MPa以上で
ある、超高分子量ポリエチレン多孔質膜を濾過媒体とす
るフィルター。
6. An ultra-high molecular weight polyethylene porous membrane having a molecular weight of 4 × 10 5 or more, wherein the membrane is fibrillated into a laminated nonwoven fabric, and has a thickness of 10 to 300 μm.
A filter using a ultrahigh molecular weight polyethylene porous membrane having a porosity of 30 to 90%, an average pore diameter of 0.03 to 5.0 μm, and a tensile strength of at least 10 MPa in at least one direction as a filtration medium.
【請求項7】 該超高分子量ポリエチレン多孔質膜が、
水との接触角が45°以下、望ましくは40°以下、あ
るいは水面と接触させた際に水が内部に浸透して変色す
るに要する時間が60秒以内、望ましくは30秒以内で
表される親水性を有する超高分子量ポリエチレン多孔質
膜である、請求項6記載のフィルター。
7. The ultra high molecular weight polyethylene porous membrane,
The contact angle with water is 45 ° or less, preferably 40 ° or less, or the time required for water to penetrate into the inside and discolor when contacted with the water surface is represented within 60 seconds, preferably within 30 seconds. 7. The filter according to claim 6, which is a porous ultrahigh molecular weight polyethylene membrane having hydrophilicity.
JP11125778A 1999-05-06 1999-05-06 Filter using ultrahigh molecular weight polyethylene porous membrane as filter medium Pending JP2000317280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11125778A JP2000317280A (en) 1999-05-06 1999-05-06 Filter using ultrahigh molecular weight polyethylene porous membrane as filter medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11125778A JP2000317280A (en) 1999-05-06 1999-05-06 Filter using ultrahigh molecular weight polyethylene porous membrane as filter medium

Publications (1)

Publication Number Publication Date
JP2000317280A true JP2000317280A (en) 2000-11-21

Family

ID=14918618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11125778A Pending JP2000317280A (en) 1999-05-06 1999-05-06 Filter using ultrahigh molecular weight polyethylene porous membrane as filter medium

Country Status (1)

Country Link
JP (1) JP2000317280A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004008873A (en) * 2002-06-05 2004-01-15 Sumitomo Chem Co Ltd Porous membrane for oil-water separation
JP2004176235A (en) * 2002-11-29 2004-06-24 Mitsui Chemicals Inc Nonwoven fabric and filtration material for filter
JP2004275845A (en) * 2003-03-13 2004-10-07 Nippon Muki Co Ltd Filter medium for organic solvent or organic detergent and its filter
JP2004531393A (en) * 2001-06-29 2004-10-14 ミリポア・コーポレイション Laminated edge filter structure and method of manufacturing the same
JP2008302359A (en) * 2000-06-23 2008-12-18 Lg Chemical Co Ltd Multicomponent composite separation membrane and its manufacturing method
JP2009072251A (en) * 2007-09-19 2009-04-09 Fujifilm Corp Toxic substance removing material and toxic substance removal method
JP2009148276A (en) * 2001-04-20 2009-07-09 Emembrane Inc Highly volumetric method for separating, purifying, concentrating, fixing and synthesizing compound, and use based on the same
JP2009535433A (en) * 2006-04-03 2009-10-01 インテグリス・インコーポレーテッド Atmospheric pressure microwave plasma treated porous membrane
JP2015533626A (en) * 2012-08-24 2015-11-26 フジフィルム・マニュファクチュアリング・ヨーロッパ・ベスローテン・フエンノートシャップ Method for treating porous substrate and production of membrane
KR20180095453A (en) 2017-02-17 2018-08-27 아사히 가세이 가부시키가이샤 Polyethylene-based polymer and method for producing same
US10130914B2 (en) 2016-03-11 2018-11-20 Jnc Corporation Pleat cartridge filter
US20190062952A1 (en) * 2016-03-11 2019-02-28 Es Fibervisions Co., Ltd. Low-elution polyethylene-based fibers and nonwoven fabric using same
WO2020022321A1 (en) * 2018-07-25 2020-01-30 帝人株式会社 Base material for liquid filters
JP7434860B2 (en) 2019-12-05 2024-02-21 東レ株式会社 porous membrane

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60242035A (en) * 1984-04-27 1985-12-02 Toa Nenryo Kogyo Kk Microporous polyethylene film and production thereof
JPH0380924A (en) * 1989-08-22 1991-04-05 Mitsubishi Kasei Corp Filtration membrane for cartridge filter
JPH04334531A (en) * 1991-05-09 1992-11-20 Tonen Chem Corp Separaiton membrane and method
JPH06142468A (en) * 1992-11-11 1994-05-24 Dainippon Ink & Chem Inc Production of surface hydrophilic film having pores
JPH0653826B2 (en) * 1992-05-18 1994-07-20 東燃株式会社 Polyethylene microporous membrane
JPH07246322A (en) * 1994-03-11 1995-09-26 Mitsubishi Chem Corp Modified polyolefin porous membrane and filter using the same
JPH08311765A (en) * 1995-05-12 1996-11-26 Mitsubishi Chem Corp Polyolefin nonwoven fabric
JPH09157423A (en) * 1995-10-05 1997-06-17 Mitsubishi Chem Corp Porous film having high strength and its production
JPH1160790A (en) * 1997-08-08 1999-03-05 Mitsui Chem Inc Polyethylene microporous film and its production

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60242035A (en) * 1984-04-27 1985-12-02 Toa Nenryo Kogyo Kk Microporous polyethylene film and production thereof
JPH0380924A (en) * 1989-08-22 1991-04-05 Mitsubishi Kasei Corp Filtration membrane for cartridge filter
JPH04334531A (en) * 1991-05-09 1992-11-20 Tonen Chem Corp Separaiton membrane and method
JPH0653826B2 (en) * 1992-05-18 1994-07-20 東燃株式会社 Polyethylene microporous membrane
JPH06142468A (en) * 1992-11-11 1994-05-24 Dainippon Ink & Chem Inc Production of surface hydrophilic film having pores
JPH07246322A (en) * 1994-03-11 1995-09-26 Mitsubishi Chem Corp Modified polyolefin porous membrane and filter using the same
JPH08311765A (en) * 1995-05-12 1996-11-26 Mitsubishi Chem Corp Polyolefin nonwoven fabric
JPH09157423A (en) * 1995-10-05 1997-06-17 Mitsubishi Chem Corp Porous film having high strength and its production
JPH1160790A (en) * 1997-08-08 1999-03-05 Mitsui Chem Inc Polyethylene microporous film and its production

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302359A (en) * 2000-06-23 2008-12-18 Lg Chemical Co Ltd Multicomponent composite separation membrane and its manufacturing method
JP2009148276A (en) * 2001-04-20 2009-07-09 Emembrane Inc Highly volumetric method for separating, purifying, concentrating, fixing and synthesizing compound, and use based on the same
JP2004531393A (en) * 2001-06-29 2004-10-14 ミリポア・コーポレイション Laminated edge filter structure and method of manufacturing the same
JP2004008873A (en) * 2002-06-05 2004-01-15 Sumitomo Chem Co Ltd Porous membrane for oil-water separation
JP2004176235A (en) * 2002-11-29 2004-06-24 Mitsui Chemicals Inc Nonwoven fabric and filtration material for filter
JP2004275845A (en) * 2003-03-13 2004-10-07 Nippon Muki Co Ltd Filter medium for organic solvent or organic detergent and its filter
US8668093B2 (en) 2006-04-03 2014-03-11 Entegris, Inc. Atmospheric pressure microwave plasma treated porous membranes
JP2009535433A (en) * 2006-04-03 2009-10-01 インテグリス・インコーポレーテッド Atmospheric pressure microwave plasma treated porous membrane
JP2014057956A (en) * 2006-04-03 2014-04-03 Entegris Inc Atmospheric pressure microwave plasma treated porous membrane
JP2009072251A (en) * 2007-09-19 2009-04-09 Fujifilm Corp Toxic substance removing material and toxic substance removal method
JP2015533626A (en) * 2012-08-24 2015-11-26 フジフィルム・マニュファクチュアリング・ヨーロッパ・ベスローテン・フエンノートシャップ Method for treating porous substrate and production of membrane
US10130914B2 (en) 2016-03-11 2018-11-20 Jnc Corporation Pleat cartridge filter
US20190062952A1 (en) * 2016-03-11 2019-02-28 Es Fibervisions Co., Ltd. Low-elution polyethylene-based fibers and nonwoven fabric using same
EP3426828A4 (en) * 2016-03-11 2019-09-18 ES FiberVisions Co., Ltd. Low-elution polyethylene-based fibers and nonwoven fabric using same
KR20180095453A (en) 2017-02-17 2018-08-27 아사히 가세이 가부시키가이샤 Polyethylene-based polymer and method for producing same
WO2020022321A1 (en) * 2018-07-25 2020-01-30 帝人株式会社 Base material for liquid filters
JPWO2020022321A1 (en) * 2018-07-25 2020-08-06 帝人株式会社 Liquid filter base material
CN112437695A (en) * 2018-07-25 2021-03-02 帝人株式会社 Base material for liquid filter
JP7434860B2 (en) 2019-12-05 2024-02-21 東レ株式会社 porous membrane

Similar Documents

Publication Publication Date Title
TWI500447B (en) Composition comprising a multi-layer halogenated polyolefin microporous membrane, a filter comprising it and a method of making the same
JP2000317280A (en) Filter using ultrahigh molecular weight polyethylene porous membrane as filter medium
JP4939124B2 (en) Fluororesin porous membrane
CN101678279A (en) Modified porous membranes, methods of membrane pore modification, and methods of use thereof
JP2000512902A (en) Products and methods including surface modified films
KR101914277B1 (en) Hydrophilizing ptfe membranes
JPWO2002072248A1 (en) Microporous membrane and method for producing the same
US20140231341A1 (en) Ptfe membrane
US20130043183A1 (en) Electron Source Modification Of Microporous Halocarbon Filter Membranes
KR101915280B1 (en) Ptfe/pfsa blended membrane
JPH11106552A (en) Microporous hydrophilized polyolefin membrane and its production
TWI813727B (en) Substrate for liquid filter
JP3638401B2 (en) Method for producing polyolefin microporous membrane
JP2009183804A (en) Manufacturing method of hydrophilic fine porous membrane
JPH0679658B2 (en) Method for producing polyethylene microporous membrane
JPH07304888A (en) Method for making porous material made of fluororesin hydrophilic
JP3967421B2 (en) Method for producing polyolefin microporous membrane
JP3250870B2 (en) Polyolefin microporous membrane, battery separator and filter using the same
JPS5819475A (en) Continuously purifying method for etching solution
JPH11106533A (en) Polyolefin porous membrane
JP4562074B2 (en) Battery separator manufacturing method
JP2004035582A (en) Method for producing surface-treated polymeric microporous membrane
JP3250886B2 (en) Method for producing microporous polyolefin membrane
JP2004154613A (en) Manufacturing method of functional porous membrane
JPH11106535A (en) Polyolefin porous membrane and its manufacture and battery separator therefrom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930