JP4562074B2 - Battery separator manufacturing method - Google Patents

Battery separator manufacturing method Download PDF

Info

Publication number
JP4562074B2
JP4562074B2 JP2004266244A JP2004266244A JP4562074B2 JP 4562074 B2 JP4562074 B2 JP 4562074B2 JP 2004266244 A JP2004266244 A JP 2004266244A JP 2004266244 A JP2004266244 A JP 2004266244A JP 4562074 B2 JP4562074 B2 JP 4562074B2
Authority
JP
Japan
Prior art keywords
solvent
cleaning
battery separator
molecular weight
porous membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004266244A
Other languages
Japanese (ja)
Other versions
JP2006083194A (en
Inventor
かおり 水谷
充宏 金田
孝幸 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2004266244A priority Critical patent/JP4562074B2/en
Priority to CNB2005101096163A priority patent/CN100481580C/en
Publication of JP2006083194A publication Critical patent/JP2006083194A/en
Application granted granted Critical
Publication of JP4562074B2 publication Critical patent/JP4562074B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

本発明は、製膜後に溶媒等の低分子量物を含有する多孔質膜から洗浄溶剤を用いて低分子量物を除去する工程を含む電池用セパレータの製造方法に関する。 The present invention, after the film a step to remove low molecular weight substance with a washing solvent from the porous membrane containing a low molecular weight substance method of manufacturing a separator for including batteries such as solvents.

ポリオレフィン系樹脂の多孔質膜は、電池用セパレータ、電解コンデンサー隔膜、透湿防水材、各種フィルター等に用いられている。中でも電池用セパレーターは、電池として軽量・高起電力・高エネルギーが得られ、しかも自己放電が少ないリチウム二次電池の重要な部材として注目を集めており、今後は電気自動車用バッテリーの構成部材としても期待されている。   Polyolefin resin porous membranes are used for battery separators, electrolytic capacitor diaphragms, moisture-permeable waterproof materials, various filters, and the like. In particular, battery separators are attracting attention as important components for lithium secondary batteries that are lightweight, have high electromotive force and high energy, and have little self-discharge. Is also expected.

このような電池用セパレータは、通常、正極負極間のリチウムイオンの透過性を確保するために、多数の微細孔を有する微多孔膜を用いているが、このような電池膜用微多孔膜には、電池特性に関係して、種々の特性が要求される。なかでも、高強度で高空孔率であり、更に、温度上昇時の寸法安定性にすぐれることが重要な要求特性である。微多孔膜が高空孔率を有することは、セパレーターとしてのイオン透過性を向上させ、充放電特性、特に、高電流密度での充放電特性を向上させるため重要な要求特性である。   Such a battery separator usually uses a microporous film having a large number of micropores in order to ensure lithium ion permeability between the positive electrode and the negative electrode. Therefore, various characteristics are required in relation to battery characteristics. Among them, it is an important required characteristic to have high strength and high porosity and to have excellent dimensional stability when the temperature rises. The microporous membrane having a high porosity is an important requirement for improving ion permeability as a separator and improving charge / discharge characteristics, particularly charge / discharge characteristics at a high current density.

このような微多孔膜の製造方法としては、従来、超高分子量ポリオレフィン樹脂を含むポリオレフィン樹脂を溶媒中で、加熱・溶解させて混練り物とし、これからゲル状シートを調製し、延伸し、脱溶媒する等、種々の方法が提案されている。   As a method for producing such a microporous membrane, conventionally, a polyolefin resin containing an ultrahigh molecular weight polyolefin resin is heated and dissolved in a solvent to obtain a kneaded product, from which a gel sheet is prepared, stretched, and desolvated. Various methods have been proposed.

そのなかで、空孔率の大きい微多孔膜の製造方法として、さまざまな手法が提案されている。例えば、ポリオレフィン樹脂中にスチレンブロックと水素添加されたイソプレンブロックからなる飽和型熱可塑性エラストマーをポリオレフィン樹脂と共に用いることで高空孔率を達成する方法が知られている(例えば、特許文献1参照)。また、重量平均分子量50万以上の超高分子量ポリオレフィン(A)又は重量平均分子量50万以上の超高分子量ポリオレフィンを含む組成物(B)からなるポリオレフィン微多孔膜により、高空孔率な多孔質膜を形成する方法が提案されている(例えば、特許文献2参照)。   Among them, various methods have been proposed as a method for producing a microporous film having a high porosity. For example, a method for achieving a high porosity by using a saturated thermoplastic elastomer comprising a styrene block and a hydrogenated isoprene block in a polyolefin resin together with the polyolefin resin is known (see, for example, Patent Document 1). Further, a porous film having a high porosity is obtained by a polyolefin microporous film comprising an ultrahigh molecular weight polyolefin (A) having a weight average molecular weight of 500,000 or more or a composition (B) containing an ultrahigh molecular weight polyolefin having a weight average molecular weight of 500,000 or more. Has been proposed (see, for example, Patent Document 2).

ただし、これらの手法では空孔率の調整に材料自体の変更を伴うために、空孔率を調製した膜それぞれの最終的な膜の特性が微妙に異なってしまうなどの問題が生じる。また、ポリオレフィン系樹脂以外の樹脂を使用するものでは、非常に高い空孔率を有する膜を形成することが可能である。しかしながら材料系が大幅に異なるために本質的に異なる膜となってしまう。   However, in these methods, the adjustment of the porosity is accompanied by a change of the material itself, so that problems such as a slight difference in the final film characteristics of the films for which the porosity has been adjusted arise. In addition, when a resin other than the polyolefin resin is used, it is possible to form a film having a very high porosity. However, the material system is significantly different, resulting in essentially different films.

一方、製膜条件を大幅に変更することなく、製膜後の溶媒除去に用いる洗浄溶剤の選定により、空孔率を制御することも提案されている。例えば、製膜後のシートを非水系溶剤で洗浄後、より低沸点のハイドロフルオロカーボンで浸漬洗浄した後、これを乾燥させる方法が知られている(例えば、特許文献3参照)。   On the other hand, it has also been proposed to control the porosity by selecting a cleaning solvent used for solvent removal after film formation without significantly changing the film formation conditions. For example, a method is known in which a film-formed sheet is washed with a non-aqueous solvent, dipped and washed with a lower boiling point hydrofluorocarbon, and then dried (see, for example, Patent Document 3).

しかしながら、この方法では、洗浄に低沸点の溶剤を用いても、洗浄後の乾燥にある程度時間がかかるため、膜の収縮が生じてしまい、空孔率が十分向上しないことが判明した。また、特に連続工程への適用を想定すると、浸漬洗浄により徐々に不純物(製膜溶媒や非水系溶剤)の濃度が高くなるため、乾燥時の溶剤の蒸発速度が低下して、空孔率の低下が顕著になる。この問題を防止するには、不純物の少ない洗浄溶剤を用いる必要があり、洗浄溶剤の消費量が多くなったり、リサイクル使用時の純度を高くする必要があるなどの問題があった。
特開2000−72908号公報 国際公開WO00/49073号公報 特開2000−12695号公報
However, in this method, it has been found that even if a low boiling point solvent is used for cleaning, it takes some time for drying after cleaning, so that the film shrinks and the porosity is not sufficiently improved. In particular, assuming application to a continuous process, the concentration of impurities (film-forming solvent and non-aqueous solvent) gradually increases by immersion cleaning, so the evaporation rate of the solvent during drying decreases and the porosity is reduced. The decrease becomes noticeable. In order to prevent this problem, it is necessary to use a cleaning solvent with few impurities, and there are problems such as an increase in consumption of the cleaning solvent and an increase in purity during recycling.
JP 2000-72908 A International Publication WO00 / 49073 JP 2000-12695 A

そこで、本発明の目的は、洗浄溶剤の純度が低くても、洗浄溶剤の乾燥時間が短縮できるため、多孔質膜の収縮を抑制して空孔率の高い多孔質膜を安定して得ることができる電池用セパレータの製造方法を提供することにある。 Accordingly, an object of the present invention is to stably obtain a porous film having a high porosity by suppressing the shrinkage of the porous film because the drying time of the cleaning solvent can be shortened even if the purity of the cleaning solvent is low. it is to provide a method for producing a Ru batteries separator can.

本発明者らは、前記課題を解決するべく鋭意検討した結果、電池用セパレータを製造する際の洗浄工程として、溶媒等を浸漬洗浄した後、洗浄溶剤の蒸気を用いて凝縮・乾燥させることで、不純物濃度が高い溶剤でも高空孔率を得られること、収縮を抑制することができることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors, as a washing step when manufacturing a battery separator , after immersing and washing a solvent and the like, condensing and drying using a vapor of the washing solvent The inventors have found that a high porosity can be obtained even with a solvent having a high impurity concentration and that shrinkage can be suppressed, and the present invention has been completed.

即ち、本発明の電池用セパレータの製造方法は、製膜後に低分子量物を含有する多孔質膜から洗浄溶剤を用いて低分子量物を除去する工程を含む電池用セパレータの製造方法において、前記多孔質膜から液体の洗浄溶剤を用いて低分子量物を除去する工程と、同一又は別の洗浄溶剤の蒸気に多孔質膜を接触させて前記洗浄溶剤を凝縮させる工程と、凝縮した洗浄溶剤を多孔質膜から乾燥させる工程とを含むことを特徴とする。 That is, the method for manufacturing a battery separator of the present invention is a method of manufacturing a battery separator comprising the step of removing the low molecular weight substance with a washing solvent from the porous membrane containing a low molecular weight substance after the film, the porous Removing a low molecular weight substance from the membrane using a liquid washing solvent, contacting the porous membrane with vapor of the same or another washing solvent to condense the washing solvent, and removing the condensed washing solvent And a step of drying from the membrane.

本発明の電池用セパレータの製造法によると、洗浄溶剤を蒸気成分で多孔質膜に供給できるため、洗浄溶剤が不純物を含む場合でも、沸点の違いによって蒸気中の不純物濃度が低くなるので、沸点上昇が生じにくく乾燥時の洗浄溶剤の蒸発速度が速くなる。また、洗浄溶剤を凝縮させた後に多孔質膜を乾燥させるため、乾燥時に洗浄溶剤の温度がその飽和温度に近い温度となるので、洗浄溶剤の蒸発速度が速くなる。その結果、洗浄溶剤の純度が低くても、洗浄溶剤の乾燥時間が短縮できるため、多孔質膜の収縮を抑制して空孔率の高い多孔質膜を安定して得ることができるようになる。 According to the method for manufacturing a battery separator of the present invention, since the cleaning solvent can be supplied to the porous film with a vapor component, the impurity concentration in the vapor is lowered due to the difference in boiling point even when the cleaning solvent contains impurities. It is difficult to increase, and the evaporation rate of the cleaning solvent during drying is increased. Further, since the porous film is dried after condensing the cleaning solvent, the temperature of the cleaning solvent is close to the saturation temperature at the time of drying, so that the evaporation rate of the cleaning solvent is increased. As a result, even when the purity of the cleaning solvent is low, the drying time of the cleaning solvent can be shortened, so that the porous film having a high porosity can be stably obtained by suppressing the shrinkage of the porous film. .

上記において、ポリオレフィン系樹脂及び炭化水素系溶媒を含む樹脂組成物を溶融混練し、得られた溶融混練物を冷却してシート状物を得た後、一軸方向以上に延伸する工程を含むことが好ましい。このようにして製膜された多孔質膜は、一般に強度に優れ、空孔率も高いなど電池用セパレータに適した性能を有し、上記本発明により更に空孔率を改善することができる。   In the above, the method includes melt-kneading a resin composition containing a polyolefin-based resin and a hydrocarbon-based solvent, cooling the obtained melt-kneaded material to obtain a sheet-like material, and then extending a uniaxial direction or more. preferable. The porous film thus formed has performances suitable for battery separators such as generally excellent strength and high porosity, and the porosity can be further improved by the present invention.

また、前記洗浄溶剤を凝縮させる工程で、凝縮した洗浄溶剤の一部を多孔質膜から流出させて洗浄溶剤の置換を行うことが好ましい。洗浄溶剤を凝縮・乾燥させるだけでも、不純物の蒸発促進効果が得られるが、このような洗浄溶剤の置換を行うことにより、不純物を抽出除去して希釈化する効果が高まるため、洗浄効率をより高めて、空孔率を更に改善することができる。   In the step of condensing the cleaning solvent, it is preferable that a part of the condensed cleaning solvent is discharged from the porous membrane to replace the cleaning solvent. Even if the cleaning solvent is condensed and dried, the effect of accelerating the evaporation of impurities can be obtained.However, by replacing such a cleaning solvent, the effect of extracting and diluting the impurities is increased, so that the cleaning efficiency is further improved. The porosity can be further improved.

また、連続する前記多孔質膜を用いて、膜幅方向の延伸又は固定を行いながら、前記洗浄溶剤を凝縮させる工程と乾燥させる工程とを連続して実施することが好ましい。膜幅方向の延伸又は固定を行いながら、両工程を一連の工程として行う(より好ましくは液体洗浄工程の直後に連続して行う)ことにより、初期の乾燥速度を高めながら、しかも膜の収縮を効果的に防止できるようになる。   In addition, it is preferable that the step of condensing the cleaning solvent and the step of drying are continuously performed while stretching or fixing in the film width direction using the continuous porous film. While stretching or fixing in the film width direction, both processes are performed as a series of processes (more preferably, performed immediately after the liquid washing process), thereby increasing the initial drying rate and reducing the film shrinkage. It can be effectively prevented.

更に、前記洗浄溶剤の蒸気は、オゾン破壊係数がゼロのフッ素系溶剤を含有することが好ましい。フッ素系溶剤は、一般に揮発性が高く、引火点が無く又は不燃性で、他の成分の溶解性も良好で、回収も容易である。また、オゾン破壊係数がゼロであるため、地球環境的にも良好である。   Further, the cleaning solvent vapor preferably contains a fluorine-based solvent having an ozone depletion coefficient of zero. Fluorinated solvents are generally highly volatile, have no flash point or are nonflammable, have good solubility in other components, and are easy to recover. Moreover, since the ozone depletion coefficient is zero, it is also good for the global environment.

本発明の電池用セパレータの製造方法は、製膜後に低分子量物を含有する多孔質膜から洗浄溶剤を用いて低分子量物を除去する工程を含むものである。 The method for producing a battery separator of the present invention includes a step of removing a low molecular weight substance from a porous film containing a low molecular weight substance after film formation using a cleaning solvent.

多孔質膜としては、例えばポリオレフィン系樹脂、PVDF(ポリフッ化ビニリデン)、PSF(ポリスルホン)、PES(ポリエーテルスルホン)、PPES(ポリフェニルスルホン)、PVA、PTFE、セルロース系樹脂、ポリアミド、ポリアクリロニトリル、ポリイミドなどが挙げられる。   Examples of the porous membrane include polyolefin resin, PVDF (polyvinylidene fluoride), PSF (polysulfone), PES (polyethersulfone), PPES (polyphenylsulfone), PVA, PTFE, cellulose resin, polyamide, polyacrylonitrile, Examples thereof include polyimide.

製膜方法としては、製膜後に低分子量物が残存する方法であれば、特に限定されず、溶剤法、非溶媒誘起型湿式相分離法、熱誘起型湿式相分離法、乾式相分離法、開孔延伸法など何れでもよい。   The film forming method is not particularly limited as long as a low molecular weight substance remains after film formation, and is a solvent method, a non-solvent induced wet phase separation method, a heat induced wet phase separation method, a dry phase separation method, Any method such as open hole stretching may be used.

また、除去する低分子量物としては、製膜溶媒、可塑剤、膨潤剤、ゲル化制御剤、溶解性無機塩類、残存モノマー成分などいずれでもよい。また、残存する低分子量物は、孔内、微細組織の表面、または微細組織の内部に存在するものなど、いずれでもよい。   The low molecular weight product to be removed may be any of a film-forming solvent, a plasticizer, a swelling agent, a gelation control agent, a soluble inorganic salt, a residual monomer component, and the like. The remaining low molecular weight substance may be any of those present in the pores, on the surface of the fine structure, or in the fine structure.

本発明は、多孔質膜の製膜工程が、ポリオレフィン系樹脂及び炭化水素系溶媒を含む樹脂組成物を溶融混練し、得られた溶融混練物を冷却してシート状物を得た後、これを一軸方向以上に延伸する工程とを含む場合が有効である。これらの一連の工程で得られるポリオレフィン系の多孔質膜には、多孔質構造中に流動パラフィンなどの炭化水素系溶媒を含有している。以下、この製膜工程を例にとって説明する。   In the present invention, after the porous film forming step melts and kneads a resin composition containing a polyolefin resin and a hydrocarbon solvent, the obtained melt kneaded material is cooled to obtain a sheet-like material, It is effective to include a step of stretching in a uniaxial direction or more. The polyolefin-based porous membrane obtained by these series of steps contains a hydrocarbon-based solvent such as liquid paraffin in the porous structure. Hereinafter, this film forming process will be described as an example.

ポリオレフィン系樹脂としては、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−へキセン等のオレフィンの単独重合体、共重合体、およびこれらのブレンド物等のポリオレフィンが好ましい。これらのなかでは、重量平均分子量が5×10以上の超高分子量ポリオレフィンを、好ましくは5重量%以上用いるのが望ましい。中でも得られる多孔質フィルムの機械的強度の観点から、超高分子量ポリエチレンが素材として特に好ましい。 As the polyolefin resin, polyolefins such as homopolymers, copolymers, and blends of olefins such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, and 1-hexene are preferable. Among these, it is desirable to use an ultrahigh molecular weight polyolefin having a weight average molecular weight of 5 × 10 5 or more, preferably 5% by weight or more. Among these, ultrahigh molecular weight polyethylene is particularly preferable as a material from the viewpoint of mechanical strength of the obtained porous film.

本発明に用いることのできる溶媒としては、多孔質膜を構成する樹脂の溶解性や膨潤性に優れたものであれば、通常用いられる公知のものを限定されることなく用いることができる。例えば、ポリオレフィン系樹脂に対しては、ノナン、デカン、ウンデカン、ドデカン、デカリン、テトラリン、流動パラフィン等の脂肪族又は環式の炭化水素、沸点がこれらに対応する鉱油留分等が挙げられ、これらの中では、流動パラフィンなどの不揮発性溶媒が好ましい。   As the solvent that can be used in the present invention, any conventionally known solvent can be used without limitation as long as it is excellent in solubility and swelling of the resin constituting the porous membrane. For example, for polyolefin resins, nonane, decane, undecane, dodecane, decalin, tetralin, aliphatic hydrocarbons such as liquid paraffin, mineral oil fractions with boiling points corresponding to these, etc. Of these, non-volatile solvents such as liquid paraffin are preferred.

ポリオレフィン系樹脂及び溶媒の混合割合は、ポリオレフィン系樹脂の種類、溶解性などの材料条件や混練時間、混練温度などの混練条件により異なるため、一概には決定できないが、ポリオレフィン系樹脂および溶媒とのスラリー状樹脂混合組成物を溶融混練した際にシート状に成形できる程度であれば特に限定されない。例えば、樹脂成分の配合量は混合物中の5〜30重量%が好ましく、10〜30重量%がより好ましく、10〜25重量%がさらに好ましい。樹脂成分の配合量は、得られる多孔質フィルムの強度を向上させる観点から、5重量%以上が好ましく、また、ポリオレフィンを十分に溶媒に溶解させて、混練することができる観点から、30重量%以下が好ましい。   The mixing ratio of the polyolefin resin and solvent varies depending on the type of polyolefin resin, material conditions such as solubility, and kneading conditions such as kneading time and kneading temperature. The slurry-like resin mixture composition is not particularly limited as long as it can be formed into a sheet shape when melt-kneaded. For example, the blending amount of the resin component is preferably 5 to 30% by weight in the mixture, more preferably 10 to 30% by weight, and still more preferably 10 to 25% by weight. The blending amount of the resin component is preferably 5% by weight or more from the viewpoint of improving the strength of the obtained porous film, and 30% by weight from the viewpoint that the polyolefin can be sufficiently dissolved in a solvent and kneaded. The following is preferred.

混合物中の溶媒の配合量は70〜95重量%が好ましく、75〜90重量%がより好ましい。該配合量は、混練性適度で特性的に優れる観点から、70重量%以上が好ましく、また、押出す際にダイスでの成形が容易になる観点から、95重量%以下が好ましい。   The amount of the solvent in the mixture is preferably 70 to 95% by weight, more preferably 75 to 90% by weight. The blending amount is preferably 70% by weight or more from the viewpoint of appropriate kneadability and excellent characteristics, and is preferably 95% by weight or less from the viewpoint of facilitating molding with a die during extrusion.

また、シャツトダウン機能(電池膜内の温度上昇時に、発火等の事故を防止するため、微多孔膜が溶融して微多孔膜を目詰まりさせ、電流を遮断する機能)を付与する目的として、重量平均分子量5×10未満のポリオレフィン類、熱可塑性エラストマー、グラフトコポリマーが1種類以上含有されてもよい。 In addition, for the purpose of providing a shirt down function (a function of blocking the current by clogging the microporous film to prevent accidents such as ignition when the temperature in the battery film rises) One or more kinds of polyolefins having a weight average molecular weight of less than 5 × 10 5 , thermoplastic elastomers, and graft copolymers may be contained.

重量平均分子量が5×10未満のポリオレフィン類としては、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、エチレン−アクリルモノマー共重合体、エチレン−酢酸ビニル共重合体等の変性ポリオレフィン樹脂が挙げられる。熱可塑性エラストマーとしては、ポリスチレン系や、ポリオレフィン系、ポリジエン系、塩化ビニル系、ポリエステル系等の熱可塑性エラストマーが挙げられる。 Examples of polyolefins having a weight average molecular weight of less than 5 × 10 5 include polyolefin resins such as polyethylene and polypropylene, and modified polyolefin resins such as ethylene-acrylic monomer copolymers and ethylene-vinyl acetate copolymers. Examples of the thermoplastic elastomer include thermoplastic elastomers such as polystyrene, polyolefin, polydiene, vinyl chloride, and polyester.

グラフトコポリマーとしては、主鎖にポリオレフィン、側鎖に非相性基を有するビニル系ポリマーを側鎖としたグラフトコポリマーが挙げられるが、ポリアクリル類、ポリメタクリル類、ポリスチレン、ポリアクリロニトリル、ポリオキシアルキレン類が好ましい。なお、ここで非相溶性基とは、ポリオレフィンに対して非相溶性基を意味する。   Examples of the graft copolymer include graft copolymers in which the main chain is a polyolefin and the side chain is a vinyl polymer having a non-compatible group in the side chain, but polyacryls, polymethacrylates, polystyrene, polyacrylonitrile, polyoxyalkylenes. Is preferred. In addition, an incompatible group here means an incompatible group with respect to polyolefin.

これらの5×10未満のポリオレフィン類、熱可塑性エラストマー、グラフトコポリマーの含有量は、適時要求されるシャツトダウン温度により設定されるが、多孔質フィルムの原料樹脂混合物中、70重量%以下が好ましく、50重量%以下が更に好ましい。該含有量は、高分子量ポリオレフィンの架橋点を十分確保し、十分な耐熱性が得られるという観点から70重量%以下が好ましい。 The content of these polyolefins less than 5 × 10 5 , the thermoplastic elastomer, and the graft copolymer is set according to the shirt down temperature required as occasion demands, but is preferably 70% by weight or less in the raw material resin mixture of the porous film. 50% by weight or less is more preferable. The content is preferably 70% by weight or less from the viewpoint of sufficiently securing the crosslinking point of the high molecular weight polyolefin and obtaining sufficient heat resistance.

なお、前記樹脂組成物には、必要に応じて、酸化防止剤、帯電防止剤、紫外線吸収剤、染料、造核剤、顔料、難燃剤、充填剤等の添加剤を、本発明の目的を損なわない範囲で添加しても良い。   Note that additives such as an antioxidant, an antistatic agent, an ultraviolet absorber, a dye, a nucleating agent, a pigment, a flame retardant, and a filler are added to the resin composition as necessary. You may add in the range which does not impair.

得られる樹脂組成物を溶融混練する工程は、通常用いられる公知の方法により行うことができる。その際に高分子量ポリオレフィンのポリマー鎖の十分な絡み合いを得るために混合物に十分なせん断力を作用させて行なうことが好ましい。例えば、樹脂組成物をバンバリーミキサー、ニーダー等を用いてバッチ式で混練したり、連続押出機などを用いたりしてもよい。連続混練機としては単軸混練機や二軸押出機、プラネタリー式などの多軸混練機を用いてもよく、またこれら装置を複数組み合わせた工程でも良い。   The step of melt-kneading the obtained resin composition can be performed by a commonly used known method. In this case, it is preferable to carry out by applying a sufficient shearing force to the mixture in order to obtain sufficient entanglement of polymer chains of the high molecular weight polyolefin. For example, the resin composition may be kneaded batch-wise using a Banbury mixer, a kneader, or the like, or a continuous extruder may be used. As the continuous kneader, a multi-screw kneader such as a single-screw kneader, a twin-screw extruder, or a planetary type may be used, or a process combining a plurality of these devices may be used.

混合物を溶解混練する際の温度は、溶媒が高分子量ポリオレフィンを溶解開始させる温度(溶融開始温度)〜+60℃の範囲で行なうことが好ましい。該温度は、高分子量ポリオレフィンが効率よく分散する観点から、溶解開始温度以上が好ましい。なお、高分子量ポリオレフィンの熱分解や酸化劣化を抑制するため、溶解後の混練時に、膜特性を低下させない程度に温度を下げても問題はない。   The temperature at which the mixture is dissolved and kneaded is preferably in the range of the temperature at which the solvent starts dissolving the high molecular weight polyolefin (melting start temperature) to + 60 ° C. The temperature is preferably equal to or higher than the dissolution start temperature from the viewpoint of efficiently dispersing the high molecular weight polyolefin. In order to suppress thermal decomposition and oxidative degradation of the high molecular weight polyolefin, there is no problem even if the temperature is lowered to such an extent that the film characteristics are not deteriorated during kneading after dissolution.

シート状に成形する工程は、通常用いられる公知の方法により行うことができる。方法としては、特に限定されず、例えば、押し出し機先端にTダイ等を取り付ける方法が挙げられる。また、カレンダー成形やプレス成形によりシート化してもよい。   The step of forming into a sheet can be performed by a commonly used known method. The method is not particularly limited, and examples thereof include a method of attaching a T-die or the like to the tip of the extruder. Further, the sheet may be formed by calendar molding or press molding.

得られたシート状押出し物を好ましくは50℃以下、より好ましくは−10℃以下に冷却した金属板に挟み込み冷却して、シート状に成形することが望ましい。このようにして得られるシート状成形物の厚みとしては、特に限定されないが、その後の工程における処理のしやすさから、2〜25mmのものが好ましい。   The obtained sheet-like extrudate is preferably sandwiched between metal plates cooled to 50 ° C. or lower, more preferably −10 ° C. or lower, and cooled to form a sheet. Although it does not specifically limit as thickness of the sheet-like molding obtained in this way, The thing of 2-25 mm is preferable from the ease of the process in a subsequent process.

次に得られたシート状成形物を延伸処理する。延伸処理の方法は特に限定されるものではなく、通常のテンター法、ロール法、またはこれらの方法の組み合わせであってもよい。また、一軸延伸、二軸延伸等のいずれの方法をも適用することができ、二軸延伸の場合は、縦横同時延伸または逐次延伸のいずれでもよいが、強度向上の観点から、縦横同時延伸が好ましい。   Next, the obtained sheet-like molded product is stretched. The method for the stretching treatment is not particularly limited, and may be a normal tenter method, a roll method, or a combination of these methods. In addition, any method such as uniaxial stretching and biaxial stretching can be applied, and in the case of biaxial stretching, either longitudinal and transverse simultaneous stretching or sequential stretching may be used. preferable.

延伸倍率は、目的とする空孔率や強度により適時設定できるが、好ましくは、延伸前の面積に対し通常5〜250倍の範囲で行う。   The draw ratio can be set as appropriate depending on the desired porosity and strength, but is preferably in the range of usually 5 to 250 times the area before drawing.

延伸処理時の温度は、高分子量ポリオレフィンの融点+5℃以下の温度が好ましい。温度が高すぎると構造が崩れて強度が低下する恐れがある。またあまりにも低い温度であると延伸時に、膜の破断や延伸後の収縮が大きくなる恐れがある。   The temperature during the stretching treatment is preferably a temperature of the melting point of the high molecular weight polyolefin + 5 ° C. or less. If the temperature is too high, the structure may collapse and the strength may decrease. On the other hand, if the temperature is too low, the film may be broken or shrinkage may be increased after stretching.

次に延伸処理後のシート状成形物の洗浄処理を行なうが、本発明では、まず、前記多孔質膜から液体の洗浄溶剤(以下、単に「溶剤」という場合がある)を用いて低分子量物を除去する工程を実施する。洗浄処理は、例えば、シート状成形物を溶剤で洗浄して残留する溶媒を除去することにより行なうことが出来る。   Next, the sheet-like molded product after the stretching treatment is washed. In the present invention, first, a low molecular weight product is used from the porous film using a liquid washing solvent (hereinafter sometimes simply referred to as “solvent”). A step of removing is performed. The washing treatment can be performed, for example, by washing the sheet-like molded product with a solvent to remove the remaining solvent.

洗浄溶剤は、樹脂混合物の調製に用いた溶媒に応じて無機系あるいは有機系の溶剤を適宜選択することが出来る。具体的な有機系の溶剤としては、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、イソノナン等の脂肪族炭化水素、シクロペンタン、シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素、塩化メチレン、四塩化炭素等の塩素化炭化水素、ジエチルエーテル、ジオキサン等のエーテル類、メタノール、エタノール等のアルコール類、アセトン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、メチルシクロヘキサノン等のケトン類などの易揮発性溶剤があげられる。なおこれらは単独、または2種以上を混合して用いることもできる。   As the cleaning solvent, an inorganic or organic solvent can be appropriately selected according to the solvent used for preparing the resin mixture. Specific examples of organic solvents include aliphatic hydrocarbons such as pentane, hexane, heptane, octane, nonane, decane, and isononane, alicyclic hydrocarbons such as cyclopentane, cyclohexane, and methylcyclohexane, methylene chloride, and tetrachloride. Examples include volatile solvents such as chlorinated hydrocarbons such as carbon, ethers such as diethyl ether and dioxane, alcohols such as methanol and ethanol, and ketones such as acetone, methyl ethyl ketone, cyclohexanone, cyclopentanone, and methylcyclohexanone. . In addition, these can also be used individually or in mixture of 2 or more types.

上記の溶剤で溶媒除去を行った後、乾燥が速いフッ素系溶剤等で仕上げ洗浄を行う多段洗浄を行っても良い。フッ素系溶剤としては、鎖状フルオロカーボン、環状フルオロカーボン、パーフルオロカーボン、パーフルオロエーテル等である。   After removing the solvent with the above-mentioned solvent, multi-stage cleaning may be performed in which final cleaning is performed with a fluorine-based solvent that is quickly dried. Examples of the fluorine-based solvent include chain fluorocarbon, cyclic fluorocarbon, perfluorocarbon, perfluoroether and the like.

かかる溶剤を用いた洗浄方法は特に限定されず、例えば、シート状成形物を溶剤を投入した浴に浸漬して溶媒を抽出する方法、溶剤をシート状成形物にスプレーノズル等からシャワーする方法、蒸気で溶媒除去する方法等が挙げられる。これらの方法は、単独または2種類以上の方法を組み合わせて洗浄を行うことも出来るが、最終工程には乾燥速度を高めるという観点から蒸気を用いた洗浄工程とする。   The cleaning method using such a solvent is not particularly limited, for example, a method of extracting the solvent by immersing the sheet-like molded product in a bath charged with the solvent, a method of showering the solvent into the sheet-like molded product from a spray nozzle, For example, a method of removing the solvent with steam may be used. These methods can be washed alone or in combination of two or more methods, but the final step is a washing step using steam from the viewpoint of increasing the drying rate.

即ち、本発明の製造方法は、上記洗浄溶剤と同一又は別の洗浄溶剤の蒸気に多孔質膜を接触させて前記洗浄溶剤を凝縮させる工程(以下、「蒸気洗浄」という)と、凝縮した洗浄溶剤を多孔質膜から乾燥させる工程とを含むものである。   That is, the production method of the present invention comprises a step of bringing the porous membrane into contact with vapor of the same or different cleaning solvent as the cleaning solvent to condense the cleaning solvent (hereinafter referred to as “vapor cleaning”), and a condensed cleaning. And a step of drying the solvent from the porous membrane.

溶媒除去の最終工程である濯ぎ洗浄および仕上げ洗浄を行う際、これらの洗浄方法を施した多孔質膜の特性は溶剤中の不純物の濃度に大きく影響を受ける。従って、蒸気圧の違いによって不純物濃度が低く、かつ溶剤温度が高いことで蒸発速度が速くなり、微多孔膜の収縮が抑制される蒸気を用いた洗浄を行う。   When performing rinsing and finishing cleaning, which are the final steps of solvent removal, the characteristics of the porous film subjected to these cleaning methods are greatly affected by the concentration of impurities in the solvent. Therefore, cleaning is performed using steam that has a low impurity concentration and a high solvent temperature due to the difference in vapor pressure, thereby increasing the evaporation rate and suppressing the shrinkage of the microporous film.

蒸気の発生方法としては、恒温槽などを用いた溶剤の加熱や、超音波による溶剤の温度上昇、減圧による溶剤の蒸発、ミスト化を併用する方法などが挙げられる。   Examples of the method for generating steam include a method in which heating of a solvent using a thermostatic bath or the like, a temperature increase of the solvent by ultrasonic waves, evaporation of the solvent by decompression, and mist formation are used in combination.

蒸気と多孔質膜との接触方法としては、蒸気を充満させた雰囲気中に多孔質膜をバッチ式又は連続式に導入する方法、蒸気をノズルで吹き付ける方法などいずれの方法でも良い。作業効率の点からは、積極的に蒸気を吹き付ける方法が好ましい。また、蒸気洗浄を行う前に温調した溶剤に多孔質膜を浸漬させて洗浄を行ってもよい。   As a method for contacting the vapor and the porous membrane, any method such as a method of introducing the porous membrane in a batch or continuous manner into an atmosphere filled with vapor, or a method of spraying the vapor with a nozzle may be used. From the viewpoint of work efficiency, a method of positively spraying steam is preferable. Further, the cleaning may be performed by immersing the porous membrane in a temperature-controlled solvent before performing the steam cleaning.

洗浄溶剤を凝縮させる方法は、単に、洗浄溶剤の蒸気に多孔質膜を接触させるだけでも、不純物(製膜溶媒や先に用いた溶剤など)により沸点上昇が生じるため、膜表面へ洗浄溶剤を凝縮させることができるが、凝縮速度を高めるには、冷却を併用するのが好ましい。冷却は、室温下に放置する方法、冷媒により冷却する方法など特に限定されない。ただし、自然蒸発による溶剤の損失の問題や、膜の表面で蒸気を凝縮させ置換を促すためにも、外部からの積極的な冷却を行うことが好ましい。   The method of condensing the cleaning solvent simply brings the porous film into contact with the cleaning solvent vapor, and the boiling point rises due to impurities (such as the film-forming solvent and the solvent previously used). Although it can be condensed, it is preferable to use cooling together in order to increase the condensation rate. The cooling is not particularly limited, such as a method of leaving it at room temperature or a method of cooling with a refrigerant. However, it is preferable to actively cool from the outside in order to promote solvent substitution by condensing vapor on the surface of the film due to the problem of solvent loss due to natural evaporation.

本発明では、前記洗浄溶剤を凝縮させる工程で、凝縮した洗浄溶剤の一部を多孔質膜から流出させて洗浄溶剤の置換を行うことが好ましい。洗浄溶剤の置換方法としては、多孔質膜から洗浄溶剤を自然に流下または落下させる方法、弾性体ブレードでかき取りを行う方法、サクションロール等を使用して吸引する方法などが挙げられる。中でも、連続工程又はバッチ式工程において、溶剤を入れた容器から蒸気を発生させながら、その上方の空間に導入した多孔質膜に溶剤を凝縮させ、凝縮した溶剤の一部を自然に流下または落下させて容器に戻す方法が、特に好ましい。その際、多孔質膜を垂直又は傾斜させて導入することで溶剤の流下を促進することがより好ましい。   In the present invention, in the step of condensing the cleaning solvent, it is preferable that a part of the condensed cleaning solvent is caused to flow out of the porous membrane to replace the cleaning solvent. Examples of the method for replacing the cleaning solvent include a method in which the cleaning solvent naturally flows or drops from the porous membrane, a method in which the cleaning solvent is scraped off with an elastic blade, and a method in which suction is performed using a suction roll. Above all, in a continuous process or batch process, while generating vapor from a container containing the solvent, the solvent is condensed in the porous film introduced into the space above it, and a part of the condensed solvent flows down or drops naturally. The method of returning to the container is particularly preferable. At that time, it is more preferable to promote the flow of the solvent by introducing the porous film vertically or inclined.

蒸気洗浄に用いる溶剤は、液体洗浄に用いる溶剤と同一でも異なっていてもよく、多孔質膜に含有される溶媒等の低分子量物に応じて、無機系あるいは有機系の溶剤を適宜選択することが出来る。但し、低温で蒸発洗浄を行い易いように、沸点が100℃以下の溶剤を使用するのが好ましく、沸点が80℃以下の溶剤がより好ましい。なお、安全性の点から、不燃性溶剤が好ましい。   The solvent used for the steam cleaning may be the same as or different from the solvent used for the liquid cleaning, and an inorganic or organic solvent is appropriately selected according to a low molecular weight material such as a solvent contained in the porous membrane. I can do it. However, it is preferable to use a solvent having a boiling point of 100 ° C. or lower, more preferably a solvent having a boiling point of 80 ° C. or lower so that evaporative cleaning can be easily performed at a low temperature. In view of safety, a nonflammable solvent is preferable.

蒸気洗浄に使用する溶剤としては、液体の洗浄溶剤として例示した溶剤が何れも使用できるが、なかでも前記したフッ素系溶剤が好ましい。また、フッ素系溶剤としては、オゾン破壊係数がゼロのものが好ましい。特に、オゾン破壊係数が0で低沸点のフッ素系溶剤としては、例えばパーフルオロペンタン、パーフルオロヘキサン、パーフルオロヘプタンなどのパーフルオロカーボン、ペンタフルオロブタン、ヘプタフルオロブタン、ノナフルオロペンタン、ウンデカフルオロヘキサン、ウンデカフルオロヘキサン、ヘプタフルオロシクロペンタン、ノナフルオロシクロヘキサンなどのハイドロフルオロカーボン等が挙げられる。   As the solvent used for the steam cleaning, any of the solvents exemplified as the liquid cleaning solvent can be used, and among them, the above-mentioned fluorine-based solvent is preferable. Moreover, as a fluorine-type solvent, a thing with an ozone destruction coefficient of zero is preferable. In particular, examples of fluorine solvents having an ozone depletion coefficient of 0 and a low boiling point include perfluorocarbons such as perfluoropentane, perfluorohexane, and perfluoroheptane, pentafluorobutane, heptafluorobutane, nonafluoropentane, and undecafluorohexane. And hydrofluorocarbons such as undecafluorohexane, heptafluorocyclopentane, and nonafluorocyclohexane.

蒸気洗浄に使用する溶剤は、1種又は2種以上混合して使用する事も可能であり、沸点が異なる溶剤の混合物や不純物を含むものでも、前述した理由から使用することができる。従来の浸漬洗浄(液体洗浄)では、前述したように洗浄溶剤の純度管理が重要となるため、洗浄溶剤の消費量が多くなったり、リサイクル使用時の純度を高くする必要があるなどの問題があったが、本発明では、蒸気を用いる洗浄により、これらの問題が回避できる。   The solvent used for the steam cleaning may be used alone or in combination of two or more. Even a solvent containing a mixture of solvents having different boiling points or impurities may be used for the reason described above. In the conventional immersion cleaning (liquid cleaning), as described above, the purity control of the cleaning solvent is important, so there are problems such as an increase in the consumption of the cleaning solvent and the need to increase the purity during recycling. However, in the present invention, these problems can be avoided by cleaning with steam.

本発明では、連続する前記多孔質膜を用いて、膜幅方向の延伸又は固定を行いながら、前記洗浄溶剤を凝縮させる工程と乾燥させる工程とを連続して実施することが好ましい。従来の液体溶剤による洗浄では、装置設計上と安全上の観点から洗浄工程と乾燥工程との間に距離を置く必要があり、その間に自然乾燥が生じて初期の乾燥速度が低下するという問題があった。これに対して、本発明では、液体による洗浄工程の直後に、蒸気洗浄を行うことができ、自然乾燥による問題をなくすことができる。特に、膜幅方向の延伸又は固定を行いながら、前記洗浄溶剤の凝縮工程と乾燥工程とを連続して実施する場合、膜が収縮することなく、乾燥ゾーンに導入できるため、乾燥速度の向上と膜収縮の防止の理由から、空孔率の高い多孔質膜を安定して得られるようになる。   In the present invention, it is preferable to continuously perform the step of condensing the cleaning solvent and the step of drying while stretching or fixing in the width direction of the membrane using the continuous porous membrane. In the conventional cleaning with a liquid solvent, it is necessary to provide a distance between the cleaning process and the drying process from the viewpoint of equipment design and safety, and there is a problem that natural drying occurs during that time and the initial drying speed decreases. there were. On the other hand, in the present invention, steam cleaning can be performed immediately after the liquid cleaning step, and problems due to natural drying can be eliminated. In particular, when the washing solvent condensing step and the drying step are continuously carried out while stretching or fixing in the membrane width direction, the membrane can be introduced into the drying zone without shrinking, thereby improving the drying rate. For the reason of preventing membrane shrinkage, a porous membrane having a high porosity can be obtained stably.

なお、以上の洗浄処理は延伸前に行なってもよい。また延伸処理前に洗浄処理を行った後、再度、延伸処理後に洗浄処理を行って、残存溶媒を除去する工程をとってもよい。   In addition, you may perform the above washing process before extending | stretching. Moreover, after performing a washing process before a extending | stretching process, you may take the process of performing a washing process after an extending | stretching process again, and removing a residual solvent.

また、本発明では、延伸処理後および洗浄処理の前後に、表面性や特性改善のためさらに圧延処理を行なってもよい。例えば、前記多孔質膜を延伸処理と洗浄処理(延伸と洗浄の順序はいずれが先でもよい)を行なってから圧延処理に供してもよく、また多孔質膜を延伸処理してから延伸処理と洗浄処理を行なってもよい。また延伸処理後と洗浄処理後の双方で圧延処理を行ってもよい。   In the present invention, after the stretching process and before and after the cleaning process, a rolling process may be further performed to improve surface properties and characteristics. For example, the porous film may be subjected to a stretching process and a cleaning process (the order of stretching and cleaning may be any order) and then subjected to a rolling process, or the porous film may be stretched and then stretched. A cleaning process may be performed. Further, the rolling treatment may be performed both after the stretching treatment and after the washing treatment.

次に、前記の工程により得られた多孔質構造を有する成形物の収縮抑制や構造固定化のためにヒートセット処理を行うのが好ましい。   Next, it is preferable to perform a heat setting treatment for suppressing shrinkage or fixing the structure of the molded product having a porous structure obtained by the above-described steps.

ヒートセット処理は一回で熱処理する一段式熱処理法でも、最初に低温でまず熱処理し、その後さらに高温での熱処理を行なう多段式の熱処理法でもよく、あるいは昇温しながら熱処理する昇温式熱処理法でもよいが、ガーレ値等の多孔質フィルムの元の諸特性を損なうことなく処理することが望ましい。   The heat setting treatment may be a one-stage heat treatment method in which heat treatment is performed at a time, a multi-stage heat treatment method in which heat treatment is first performed at a low temperature, and then heat treatment is performed at a higher temperature, or a temperature rising heat treatment in which heat treatment is performed while raising the temperature Although the method may be used, it is desirable to treat the porous film without impairing the original characteristics of the porous film such as the Gurley value.

ヒートセット処理の際の温度は、一段式熱処理の場合には、ポリオレフィン系樹脂の融点−20℃以上、融点以下の温度が好ましい。温度で表した場合、ポリオレフィン系樹脂の融点や、多孔質フィルムの組成によるが40〜140℃が好ましい。   In the case of a one-step heat treatment, the temperature during the heat setting treatment is preferably a temperature of the melting point of the polyolefin resin of −20 ° C. or more and the melting point or less. When expressed in terms of temperature, it is preferably 40 to 140 ° C. depending on the melting point of the polyolefin resin and the composition of the porous film.

また諸特性を損なわずに、短時間で熱処理を完了するためには、多段式あるいは昇温式熱処理法も好ましい。この場合の熱処理時間は、使用するポリオレフィン系樹脂によるが、ポリオレフィン系樹脂の融点−20℃以上、融点以下の温度が好ましい。温度で表した場合、ポリオレフィン系樹脂の融点や、多孔質フィルムの組成により一概には決められないが例えば115℃であれば30分以上であることが好ましい。   Further, in order to complete the heat treatment in a short time without impairing various properties, a multistage type or a temperature rising type heat treatment method is also preferable. The heat treatment time in this case depends on the polyolefin resin used, but a temperature of the melting point of the polyolefin resin of −20 ° C. or more and the melting point or less is preferable. When expressed in terms of temperature, it is not generally determined by the melting point of the polyolefin-based resin or the composition of the porous film, but it is preferably 30 minutes or longer at 115 ° C., for example.

また、必要に応じてさらに高温で、さらに短時間の3段目以降の熱処理を行なってもよい。   Further, if necessary, the third and subsequent heat treatments may be performed at a higher temperature and for a shorter time.

具体的な熱処理方法としては、多孔質フィルムの四隅を固定し熱処理炉に投入する、ロールに巻回して熱処理炉に投入する、テンターで面積方向を固定して連続的に熱処理炉に通す等の公知の方法が用いられる。   As specific heat treatment methods, the four corners of the porous film are fixed and put into a heat treatment furnace, wound into a roll and put into the heat treatment furnace, the area direction is fixed with a tenter and continuously passed through the heat treatment furnace, etc. A known method is used.

このようにして得られた多孔質フィルムは溶剤乾燥時に安全であり、また大幅な成形条件を変更する必要なく、空孔率を向上することが期待できる。   The porous film thus obtained is safe when the solvent is dried, and it can be expected to improve the porosity without having to change the molding conditions significantly.

以下、本発明の構成と効果を具体的に示す実施例等について説明する。なお、各種特性については、下記要領にて測定を行なった。   Examples and the like specifically showing the configuration and effects of the present invention will be described below. Various characteristics were measured as follows.

[フィルム厚]
1/10000mm表示可能なシックネスゲージにより測定し、25点の平均値を用いた。
[Film thickness]
Measurement was performed with a thickness gauge capable of displaying 1/10000 mm, and an average value of 25 points was used.

[空孔率]
測定対象の多孔質フィルムを5cmの正方形に切り抜き、その体積と重量を求め、得られる結果から次式を用いて計算する。空孔率(体積%)=100×(体積(cm)−重量(g)/樹脂及び無機物の平均密度(g/cm))/体積(cm
[乾燥速度]
溶剤を含有した多孔質膜を13cm角に切り取り、これを天秤上に置き、乾燥時における重量変化を完全に乾燥するまでの総重量の約1/2程度までの乾燥時間における、単位時間当たりの重量減少量として示した。
[Porosity]
The porous film to be measured is cut into a 5 cm square, its volume and weight are determined, and the following results are calculated from the obtained results. Porosity (volume%) = 100 × (volume (cm 3 ) −weight (g) / average density of resin and inorganic substance (g / cm 3 )) / volume (cm 3 )
[Drying speed]
A porous membrane containing a solvent is cut into a 13 cm square, placed on a balance, and the change in weight at the time of drying is about 1/2 of the total weight until complete drying. Expressed as weight loss.

「評価用多孔質シートの形成」
超高分子量ポリエチレン(重量平均分子量:10、融点:約140℃)12.5重量部と、溶媒である流動パラフィン75重量部、および熱可塑性エラストマー(住友化学製TPE821)2.5重量部、酸化防止剤(チバ・スペシャリティ・ケミカルズ社製、イルガノックス1010)0.47重量部をスラリー状に均一混合し、得られた樹脂組成物を二軸連続混練機を用い、150℃で溶融混練した。その後、得られた混練物を金属板に挟み込み、シート状に70度まで急冷した。さらに急冷結晶化させたシート状成形物を約130℃、ギャップ1.3mmでプレスし、シート状成形物を圧延、延伸した。これらの急冷シートを約130℃の温度で押し出し方向1.5倍×幅方向3.8倍に縦横同時二軸延伸し多孔質構造中に溶媒を含んだシート状樹脂を得た。
"Formation of porous sheet for evaluation"
12.5 parts by weight of ultra high molecular weight polyethylene (weight average molecular weight: 10 6 , melting point: about 140 ° C.), 75 parts by weight of liquid paraffin as a solvent, and 2.5 parts by weight of a thermoplastic elastomer (TPE821 manufactured by Sumitomo Chemical) 0.47 parts by weight of an antioxidant (manufactured by Ciba Specialty Chemicals, Irganox 1010) was uniformly mixed into a slurry, and the resulting resin composition was melt-kneaded at 150 ° C. using a biaxial continuous kneader. . Thereafter, the obtained kneaded material was sandwiched between metal plates and rapidly cooled to 70 degrees in a sheet form. Further, the rapidly cooled and crystallized sheet-like molded product was pressed at about 130 ° C. and a gap of 1.3 mm, and the sheet-like molded product was rolled and stretched. These quenched sheets were biaxially stretched both vertically and horizontally at a temperature of about 130 ° C. in the extrusion direction 1.5 times × width direction 3.8 times to obtain a sheet-like resin containing a solvent in the porous structure.

〔実施例1〕
溶媒を含んだシート状樹脂を切り出してSUS製枠に固定した後、デカン中で洗浄処理を3分行った。さらに同様の洗浄処理を2回繰り返した。その後、40℃に調節したペンタフルオロブタン(沸点40℃)の蒸気中に枠固定したシートを立てて10分間保持し、気化した溶剤を膜表面にて凝縮・流下させることで置換による洗浄を行った。その後、室温(23℃)、風速0.6m/secの条件下で乾燥を行った。その後、ヒートセットのため、金属枠に固定した状態で85℃×12h+116℃×2hの空気中で熱処理を行ない、多孔質フィルムを得た。
[Example 1]
The sheet-like resin containing the solvent was cut out and fixed to the SUS frame, and then washed in decane for 3 minutes. Further, the same washing treatment was repeated twice. After that, a sheet fixed in a frame is held in a vapor of pentafluorobutane (boiling point 40 ° C.) adjusted to 40 ° C., held for 10 minutes, and the evaporated solvent is condensed and allowed to flow down on the film surface to perform cleaning by substitution. It was. Thereafter, drying was performed under conditions of room temperature (23 ° C.) and wind speed of 0.6 m / sec. Then, for heat setting, heat treatment was performed in air at 85 ° C. × 12 h + 116 ° C. × 2 h in a state of being fixed to a metal frame to obtain a porous film.

〔実施例2〕
実施例1において、ペンタフルオロブタンを用いる代わりに、40℃に調節したペンタフルオロブタン(沸点40℃)/デカン(沸点174℃)=90/10(重量比)の混合溶剤を用いること以外は、実施例1と同じ条件で多孔質膜を洗浄し、乾燥、ヒートセットを行った。
[Example 2]
In Example 1, instead of using pentafluorobutane, a mixed solvent of pentafluorobutane (boiling point 40 ° C.) / Decane (boiling point 174 ° C.) = 90/10 (weight ratio) adjusted to 40 ° C. was used. The porous membrane was washed under the same conditions as in Example 1, dried and heat set.

〔実施例3〕
実施例1において、ペンタフルオロブタンを用いる代わりに、40℃に調節したペンタフルオロブタン(沸点40℃)/デカン(沸点174℃)=80/20(重量比)の混合溶剤を用いること以外は、実施例1と同じ条件で多孔質膜を洗浄し、乾燥、ヒートセットを行った。
Example 3
In Example 1, instead of using pentafluorobutane, a mixed solvent of pentafluorobutane (boiling point 40 ° C.) / Decane (boiling point 174 ° C.) = 80/20 (weight ratio) adjusted to 40 ° C. is used. The porous membrane was washed under the same conditions as in Example 1, dried and heat set.

〔比較例1〕
実施例1と同様に製膜されたシート状樹脂に対し、デカン(沸点174℃)中で洗浄処理を3分行った。さらに同様の洗浄処理を2回繰り返した。その後、実施例1と同様に乾燥、ヒートセットを行った。
[Comparative Example 1]
The sheet-like resin formed in the same manner as in Example 1 was washed in decane (boiling point 174 ° C.) for 3 minutes. Further, the same washing treatment was repeated twice. Thereafter, drying and heat setting were performed in the same manner as in Example 1.

〔比較例2〕
実施例1と同様に製膜されたシート状樹脂に対し、ヘプタン(沸点98℃)中で洗浄処理を3分行った。さらに同様の洗浄処理を2回繰り返した。その後、実施例1と同様に乾燥、ヒートセットを行った。
[Comparative Example 2]
The sheet-like resin formed in the same manner as in Example 1 was washed in heptane (boiling point 98 ° C.) for 3 minutes. Further, the same washing treatment was repeated twice. Thereafter, drying and heat setting were performed in the same manner as in Example 1.

〔比較例3〕
実施例1と同様に製膜されたシート状樹脂に対し、デカン中で洗浄処理を3分行った。さらに同様の洗浄処理を2回繰り返した。その後、ペンタフルオロブタンに10分間浸漬した。その後、実施例1と同様に乾燥、ヒートセットを行った。
[Comparative Example 3]
The sheet-like resin formed in the same manner as in Example 1 was washed in decane for 3 minutes. Further, the same washing treatment was repeated twice. Then, it was immersed in pentafluorobutane for 10 minutes. Thereafter, drying and heat setting were performed in the same manner as in Example 1.

〔比較例4〕
実施例1と同様に製膜されたシート状樹脂に対し、デカン中で洗浄処理を3分行った。さらに同様の洗浄処理を2回繰り返した。その後、ペンタフルオロブタン/デカン=90/10(重量比)の混合溶剤に10分間浸漬した。その後、実施例1と同様に乾燥、ヒートセットを行った。
[Comparative Example 4]
The sheet-like resin formed in the same manner as in Example 1 was washed in decane for 3 minutes. Further, the same washing treatment was repeated twice. Thereafter, it was immersed in a mixed solvent of pentafluorobutane / decane = 90/10 (weight ratio) for 10 minutes. Thereafter, drying and heat setting were performed in the same manner as in Example 1.

Figure 0004562074
表1の結果のうち、実施例1と比較例3とを対比することで、ペンタフルオロブタンを用いた蒸気洗浄と浸漬洗浄との比較を行うことができるが、蒸気洗浄を行う実施例1では乾燥速度の向上による空孔率の改善が見られる。また、実施例1〜3を対比することで、ペンタフルオロブタンにデカン(浸漬溶媒)が混合して純度が低下する場合の結果が分かるが、いずれも十分な空孔率を維持している。特に、デカン濃度が10重量%の実施例2と比較例4とを対比すると、空孔率が顕著に増加しており、不純物を含む場合でも蒸気洗浄が有効なことがわかる。更に、従来法であるデカンやヘプタンを用いて浸漬洗浄を行った比較例1〜2と実施例1〜3とを対比すると、低沸点溶剤を用いた蒸気洗浄が特に有効であることが分かる。
Figure 0004562074
By comparing Example 1 and Comparative Example 3 among the results in Table 1, it is possible to compare the steam cleaning using pentafluorobutane with the immersion cleaning, but in Example 1 in which steam cleaning is performed, The porosity is improved by increasing the drying speed. Moreover, although the result when a decane (immersion solvent) mixes with pentafluorobutane and purity falls by comparing Examples 1-3 is understood, all maintain sufficient porosity. In particular, when Example 2 having a decane concentration of 10% by weight is compared with Comparative Example 4, the porosity is remarkably increased, and it can be seen that steam cleaning is effective even when impurities are included. Further, when Comparative Examples 1-2 and Examples 1-3, which were subjected to immersion cleaning using decane or heptane, which are conventional methods, are compared, it can be seen that steam cleaning using a low boiling point solvent is particularly effective.

Claims (5)

製膜後に低分子量物を含有する多孔質膜から洗浄溶剤を用いて低分子量物を除去する工程を含む電池用セパレータの製造方法において、
前記多孔質膜から液体の洗浄溶剤を用いて低分子量物を除去する工程と、同一又は別の洗浄溶剤の蒸気に多孔質膜を接触させて前記洗浄溶剤を凝縮させる工程と、凝縮した洗浄溶剤を多孔質膜から乾燥させる工程とを含むことを特徴とする電池用セパレータの製造方法。
In the method for producing a battery separator including a step of removing a low molecular weight substance from a porous film containing a low molecular weight substance after film formation using a cleaning solvent,
A step of removing low molecular weight substances from the porous membrane using a liquid washing solvent; a step of bringing the porous membrane into contact with vapor of the same or another washing solvent to condense the washing solvent; and a condensed washing solvent method for producing a battery separator, wherein a and a step of drying the porous membrane.
ポリオレフィン系樹脂及び炭化水素系溶媒を含む樹脂組成物を溶融混練し、得られた溶融混練物を冷却してシート状物を得た後、一軸方向以上に延伸する工程を含む請求項1に記載の電池用セパレータの製造方法。 2. The method according to claim 1, comprising melt-kneading a resin composition containing a polyolefin-based resin and a hydrocarbon-based solvent, cooling the obtained melt-kneaded material to obtain a sheet-like material, and then stretching the resin composition in a uniaxial direction or more. Manufacturing method for battery separator . 前記洗浄溶剤を凝縮させる工程で、凝縮した洗浄溶剤の一部を多孔質膜から流出させて洗浄溶剤の置換を行う請求項1又は2に記載の電池用セパレータの製造方法。 The method for producing a battery separator according to claim 1 or 2, wherein in the step of condensing the cleaning solvent, a part of the condensed cleaning solvent flows out of the porous membrane to replace the cleaning solvent. 連続する前記多孔質膜を用いて、膜幅方向の延伸又は固定を行いながら、前記洗浄溶剤を凝縮させる工程と乾燥させる工程とを連続して実施する請求項1〜3のいずれかに記載の電池用セパレータの製造方法。 4. The method according to claim 1, wherein the step of condensing the cleaning solvent and the step of drying are continuously performed while stretching or fixing in the membrane width direction using the continuous porous membrane. Manufacturing method of battery separator . 前記洗浄溶剤の蒸気は、オゾン破壊係数がゼロのフッ素系溶剤を含有する請求項1〜4のいずれかに記載の電池用セパレータの製造方法。 The method for producing a battery separator according to any one of claims 1 to 4, wherein the cleaning solvent vapor contains a fluorine-based solvent having an ozone depletion coefficient of zero.
JP2004266244A 2004-09-14 2004-09-14 Battery separator manufacturing method Expired - Fee Related JP4562074B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004266244A JP4562074B2 (en) 2004-09-14 2004-09-14 Battery separator manufacturing method
CNB2005101096163A CN100481580C (en) 2004-09-14 2005-09-14 Method for producing porous film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004266244A JP4562074B2 (en) 2004-09-14 2004-09-14 Battery separator manufacturing method

Publications (2)

Publication Number Publication Date
JP2006083194A JP2006083194A (en) 2006-03-30
JP4562074B2 true JP4562074B2 (en) 2010-10-13

Family

ID=36161971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004266244A Expired - Fee Related JP4562074B2 (en) 2004-09-14 2004-09-14 Battery separator manufacturing method

Country Status (2)

Country Link
JP (1) JP4562074B2 (en)
CN (1) CN100481580C (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080029428A (en) * 2006-09-29 2008-04-03 도레이새한 주식회사 Method of manufacturing polyolefin microporous films
CN104823307B (en) * 2013-01-07 2018-05-04 尤尼吉可株式会社 Electrode of lithium secondary cell and its manufacture method
JP6128682B2 (en) * 2013-05-21 2017-05-17 Jnc株式会社 Method for producing polymer nano-porous film
FR3101274B1 (en) * 2019-10-01 2021-10-15 Carolina Marchante Production facility for the production of a microporous film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6281431A (en) * 1985-10-03 1987-04-14 Keinosuke Isono Resin molding and its production
WO1999048959A1 (en) * 1998-03-24 1999-09-30 Asahi Kasei Kogyo Kabushiki Kaisha Microporous polyolefin film
JP2000344930A (en) * 1999-06-09 2000-12-12 Mitsui Chemicals Inc Microporous film of polyolefin having high molecular weight and its production
JP2002256295A (en) * 2001-02-28 2002-09-11 Nippon Zeon Co Ltd Cleaning method
JP2003003006A (en) * 2001-06-19 2003-01-08 Tonen Chem Corp Manufacturing method of thermoplastic resin-based microporous film
JP2003003008A (en) * 2001-06-19 2003-01-08 Tonen Chem Corp Manufacturing method of thermoplastic resin-based microporous film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6281431A (en) * 1985-10-03 1987-04-14 Keinosuke Isono Resin molding and its production
WO1999048959A1 (en) * 1998-03-24 1999-09-30 Asahi Kasei Kogyo Kabushiki Kaisha Microporous polyolefin film
JP2000344930A (en) * 1999-06-09 2000-12-12 Mitsui Chemicals Inc Microporous film of polyolefin having high molecular weight and its production
JP2002256295A (en) * 2001-02-28 2002-09-11 Nippon Zeon Co Ltd Cleaning method
JP2003003006A (en) * 2001-06-19 2003-01-08 Tonen Chem Corp Manufacturing method of thermoplastic resin-based microporous film
JP2003003008A (en) * 2001-06-19 2003-01-08 Tonen Chem Corp Manufacturing method of thermoplastic resin-based microporous film

Also Published As

Publication number Publication date
CN100481580C (en) 2009-04-22
CN1750292A (en) 2006-03-22
JP2006083194A (en) 2006-03-30

Similar Documents

Publication Publication Date Title
JP4734520B2 (en) Method for producing thermoplastic microporous membrane
JP5630827B2 (en) POLYOLEFIN POROUS MEMBRANE, ITS MANUFACTURING METHOD, AND ITS MANUFACTURING DEVICE
JP4794098B2 (en) Method for producing polyolefin microporous membrane
WO2013105526A1 (en) Process for producing microporous polyolefin film
KR101132287B1 (en) Method for producing micro-porous film of thermoplastic resin
JP2000017100A (en) Preparation of polyethylene micro-porous membrane
JP4794099B2 (en) Method for producing polyolefin microporous membrane
JP2011042805A (en) Method for producing polyolefin microporous film
JP4746771B2 (en) Method for producing polyolefin microporous membrane
JP4344550B2 (en) Method for producing polyolefin microporous membrane and polyolefin microporous membrane
JPH10298325A (en) Microporous polyolefin film and its production
JP4634192B2 (en) Method for producing porous membrane
JP4817565B2 (en) Method for producing polyolefin microporous membrane
JP4562074B2 (en) Battery separator manufacturing method
JP4746797B2 (en) Method for producing polyolefin microporous membrane
JP2001200082A (en) Polyethylene microporous membrane and its manufacturing method
JP4794100B2 (en) Method for producing polyolefin microporous membrane
JP4646199B2 (en) Method for producing porous membrane
JP3953840B2 (en) Manufacturing method of polyolefin microporous membrane and polyolefin microporous membrane by the manufacturing method
JP4746773B2 (en) Method for producing polyolefin microporous membrane
JP4746772B2 (en) Method for producing polyolefin microporous membrane
JP4746830B2 (en) Method for producing thermoplastic microporous membrane
JP2005209452A (en) Method for producing microporous membrane and use of microporous membrane to be obtained by that producing method
JPH09259858A (en) Polyethylene micro-porous film for separator, and manufacture thereof
JP4798730B2 (en) Method for producing thermoplastic microporous membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090526

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4562074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160806

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees