JP4558110B2 - Polymer electrolyte secondary battery and manufacturing method thereof - Google Patents

Polymer electrolyte secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP4558110B2
JP4558110B2 JP15937298A JP15937298A JP4558110B2 JP 4558110 B2 JP4558110 B2 JP 4558110B2 JP 15937298 A JP15937298 A JP 15937298A JP 15937298 A JP15937298 A JP 15937298A JP 4558110 B2 JP4558110 B2 JP 4558110B2
Authority
JP
Japan
Prior art keywords
polymer electrolyte
polymer
electrolyte membrane
membrane
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15937298A
Other languages
Japanese (ja)
Other versions
JPH11354162A (en
Inventor
高弘 大道
武行 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP15937298A priority Critical patent/JP4558110B2/en
Priority to TW088106662A priority patent/TW431009B/en
Priority to US09/314,139 priority patent/US6291106B1/en
Priority to AU29100/99A priority patent/AU744769B2/en
Priority to KR1019990018214A priority patent/KR100633713B1/en
Priority to CA002272782A priority patent/CA2272782C/en
Priority to DE69935279T priority patent/DE69935279T2/en
Priority to EP99109219A priority patent/EP0959510B1/en
Priority to AT99109219T priority patent/ATE355624T1/en
Publication of JPH11354162A publication Critical patent/JPH11354162A/en
Application granted granted Critical
Publication of JP4558110B2 publication Critical patent/JP4558110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高強度で耐熱性を有する安全性の優れた固体型ポリマー電解質層を備えるポリマー電解質二次電池及びその製造方法に関するものである。
【0002】
【従来の技術】
近年、電子機器の発達にともない、小型・軽量、かつエネルギー密度が高く繰り返しの充電回数が多い二次電池の開発が望まれている。この種の電池として水溶液電解液でなく非水電解液を使用するリチウムおよびリチウムイオン二次電池が注目されている。
【0003】
リチウムおよびリチウム合金を負極として用いる溶液型のリチウム二次電池の場合、充放電繰り返しに伴い負極上に糸状のリチウム結晶体(デンドライト)が生じ短絡等を起こすことから、それを抑制し、しかもセパレータとしての特性を有する固体状のポリマー電解質の開発が望まれている。
【0004】
また、リチウム二次電池のデンドライトの問題を解消し商品化されたリチウムイオン二次電池においては、電極の短絡防止に用いているセパレータ自身の電解液の保持力は十分でなく電解液の液漏れを起こし易いことから、外装として金属缶の使用が不可欠となっている。これにより、電池の製造コストが高くなるだけでなく、電池の軽量化も十分に出来ない状況にある。このような背景から、リチウムイオン二次電池においても電解液の液漏れをなくし、電池の軽量化を目指す観点から、セパレータとしての機能も有する安全性の高いポリマー電解質を利用したポリマー電解質二次電池の開発が望まれている。
【0005】
この様な背景から、高いイオン伝導度と安全性とを兼ね備えたポリマー電解質系の検討が精力的に行われている。そのアプローチの一つは、ポリマーに液体成分(溶媒もしくは可塑剤)を含有させず、ポリマーと電解質のみで固体型の電解質を作製しようとするいわゆる真性ポリマー電解質のアプローチである。このタイプの電解質は、液体成分が含有されていないために、比較的強度のある膜を得ることが出来るが、イオン伝導度の限界が10-5S/cm程度と低く、しかも電極活物質層との接合が十分に取れない等の理由により、古くから検討が行われているにも関わらず未だに実用化に達していないのが現状である。
【0006】
一方、前記の真性ポリマー電解質のイオン伝導度の低さ、界面接合の不十分さ等の欠点を補う系として精力的に検討されているのが、真性ポリマー電解質に液体成分(溶媒もしくは可塑剤)を添加したいわゆるゲル電解質と称されるものである。この系の場合、ゲル電解質膜のイオン伝導度は含有する液体成分の量に依存しており、かなりの量の液体成分を含有させることにより、実用的に十分と考えられる10-3S/cm以上のイオン伝導度を示す系がいくつか報告されるようになっている。しかし、これらの系のほとんどは、液体成分の添加に伴い膜の力学的特性が急激に損なわれ、固体電解質が本来持つべきセパレータとしての安全機能が消失したものとなっていた。
【0007】
このような状況のもと、米国特許第5,296,318号明細書には、ゲル電解質膜の力学強度とイオン伝導度が両立するとされる系が記載されている。これは、弗化ビニリデンとヘキサフロロプロピレン共重合体をポリマーとして用いたゲル電解質膜であり、ゲル電解質としては特質すべき力学特性を示す系として注目されている。しかし、この系ですら、二次電池用のセパレータ機能の一つの指標である突刺し強度が、汎用のセパレータより一桁低いため、このフィルムをロールで取り扱う際に張力をかけると、容易に変形・破損したり、電極と積層した場合にわずかな圧力で押しつぶされ短絡するなど、電池の製造プロセスを考慮した場合、十分な機械的性質を有しているとは言い難かった。また、そのゲル電解質膜の力学的耐熱温度(メルトフロー温度)は、100℃強と通常のポリオレフィン系セパレータより50℃ほど低いものであり、耐熱性の面でも必ずしもリチウムイオン二次電池の安全性を保障できるものとはなっていなかった。この耐熱性を改善する方法として、米国特許第5,429,891号明細書には、架橋性のモノマーを前記の弗化ビニリデン系ポリマー構造中に含有させそのモノマーの重合により架橋構造を導入する方法も提案されているが、残存モノマーによる電気化学反応への悪影響が懸念されるとともに、必ずしも十分なレベルまで耐熱性は改善されていなかった。
【0008】
また、このタイプのポリマー電解質を用いたポリマー電池の製造法として、米国特許第5,470,357号明細書には、可塑剤とともに製膜したポリマーフィルムを正極及び負極層と熱圧着法によりラミネート後、可塑剤を抽出し非水電解液を含浸させる方法が記載されている。この手法の場合、グリッドあるいは網状の有孔集電体の利用により、可塑剤の抽出と電解液の含浸の効率化を計っているが、その抽出、電解液置換工程を短縮することは困難で、ポリマー電池の製造プロセスとしては好ましいものではなかった。
【0009】
一方、ゲル電解質膜で不十分とされている力学的特性を補う目的で、種々の支持体を補強材として併用するゲル電解質が提案されたいる。例えば、特開平9-22724号公報には、ポリオレフィン等の合成繊維不織布を塗工型のポリマーゲル電解質製膜時の支持体として併用する技術が記載されている。ポリオレフィン不織布の併用により、電極との積層の際のつぶれを回避することは可能であるが、ポリオレフィン繊維自身の強度が十分でないため、膜厚を薄くすることが困難であるとともに得られた電解質膜の力学的耐熱性もポリオレフィン不織布に支配されるため高々160℃程度であった。また、この場合の電池エレメントを構成した後での電解液含浸工程が必要であった。
【0010】
また、米国特許5,603,982号明細書には、電解液とモノマーを溶液状態で透気度の高いポリオレフィン等の不織布に含浸させ、その後そのモノマーを重合させ固体電解質とする手法が記載されいる。この手法の場合、電解液含有状態で重合を行なうため、前記のような製膜(電池エレメント作製)後の電解液含浸工程は不要となるが、不織布に含浸させる溶液の粘度が低いため、不織布の液保持力が十分でないために、その膜を上下からガラス等の平板基材で挟み込み、モノマーの重合を実施する必要があった。この手法の場合も、その製造工程が複雑なだけでなく、ポリオレフィン系不織布を採用しているため、薄膜化を実現することは困難であった。
【0011】
【発明が解決しようとする課題】
本発明の目的は、実用的な高いイオン伝導度と、セパレータとしての強い短絡防止強度と、短絡防止に関しての高い耐熱性とを兼ね備えた安全性に優れた固体型ポリマー電解質膜を利用したポリマー電解質二次電池、即ちイオン伝導度と、強度と、耐熱性の三者を兼ね備えた、安全性の高い固体型ポリマー電解質膜を利用したポリマー電解質二次電池とその製造方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明者らは、非水電解液を保持したゲル状のポリマー電解質膜に電池の製造工程に耐える十分な機械的強度と、電池としての安全性を高めるに十分な力学的な耐熱性を付与することを目的とし、ゲル状のポリマー電解質を含浸させうる高強度で耐熱性があり、しかもイオン伝導性を損なわない透気度の高い多孔質薄膜支持体の探索を実施してきた。その結果、多孔質支持体材料として、従来のポリオレフィンではなく、全芳香族ポリアミドを採用することにより、強度と耐熱性を兼ね備えた固体型のポリマー電解質を利用したポリマー電解質二次電池を開発できることを見出し、本発明を完成するに至った。
【0013】
すなわち本発明は、非水電解液を保持した、リチウムイオンを吸蔵放出する正極材料を有してなる正極と、非水電解液を保持した、リチウムイオンを吸蔵放出する炭素質負極材料を有してなる負極とが、非水電解液を保持したポリマー電解質膜を介して接合されたポリマー電解質二次電池において、前記ポリマー電解質膜は、非水電解液とこの電解液を保持可能なポリマー樹脂とを有してなるゲル状のポリマー電解質を、多孔質薄膜に含浸させて一体化した複合型ポリマー電解質膜であり、前記多孔質薄膜は、突き刺し強度が200g以上かつ透気度が10sec/100cc・in以下の全芳香族ポリアミドからなる多孔質薄膜であり、前記ポリマー電解質膜は、イオン伝導度が25℃にて5×10−4S/cm以上であり、突刺し強度が300g以上であり、かつ膜の力学的な耐熱温度が300℃以上であり、前記ポリマー電解質膜の平均膜厚が、前記多孔質薄膜の平均膜厚の1.05〜2.0倍であることを特徴とするポリマー電解質二次電池であり、また、その製造方法である。
【0014】
【発明の実施の形態】
以下、本発明のポリマー電解質二次電池及びその製造方法に関して説明する。
【0015】
(ポリマー電解質膜)
先ず、本発明に用いるポリマー電解質膜について説明する。本発明のポリマー電解質膜は、25℃にて5×10-4S/cm以上の実用上十分な高いイオン伝導度を示し、かつ電池に適用するに十分な300g以上の突刺し強度を示し、かつ300℃以上の力学的な耐熱温度を有する実用的なイオン伝導度と安全性を兼ね備えたポリマー電解質膜である。ここで、イオン伝導度は、固体状のポリマー電解質膜を20mmφのSUS電極で挟み、交流インピーダンス法により測定した10K Hzでのインピーダンスより求めた値を意味している。この値が、5×10-4S/cmよりも低いと、電池として組み上げた際のインピーダンスが高くなり、高レート充放電の際の容量が低下し好ましくなくなる。
【0016】
本発明のポリマー電解質膜の場合、突刺し強度が300g以上と高いことも特徴である。突刺し強度は、現状の溶液型リチウムイオン二次現地のセパレータの短絡防止強度を表す指標としてセパレータの評価に利用されている物性であり、本発明においては、下記の条件にて測定した値を突刺し強度とした。
【0017】
支持体を11.3mmφの固定枠にセットし、先端部半径0.5mmの針を支持体の中央に垂直に突き立て、50mm/分の一定速度で針を押し込み、支持体に穴が開いた時の針にかかっている力を突刺し強度とした。
【0018】
この値が300g未満の場合、このポリマー電解質膜の突刺し強度が十分でなくなり、電池の製造工程で、電極同士の短絡発生確率が高くなり好ましくなくなるとともに、電池として組み上げた際の安全性(短絡防止特性)が十分に確保されず好ましくなくなる。
【0019】
また、本発明のポリマー電解質膜は、300℃以上の高い力学的な耐熱性有している点も特徴である。ここで、力学的な耐熱温度は、以下の条件で測定した値を意味している。
【0020】
膜厚約45μm、幅5mm、長さ25mmの短冊状のポリマー電解質膜に1gの荷重をかけ、10℃/分の速度で温度を昇温させ熱機械的特性分析(TMA)を実施し、膜が破断するか、あるいは膜が10%伸びる温度を力学的な耐熱温度とした。
【0021】
この温度が300℃未満では、電池の異常反応等により、電池の内部温度が急激に上がった際に電極間の短絡を十分に防止できず、安全上好ましくなくなる。
【0022】
本発明の、ポリマー電解質膜は、強度、耐熱性に特徴のある多孔質支持体薄膜に実用的に十分なイオン伝導度を有するゲル状のポリマー電解質を含浸複合化することにより作製される。その際のゲル状のポリマー電解質の含有量は、30〜85重量%の範囲が好ましい。ゲル状のポリマー電解質含有量が30重量%未満では、多孔質支持体と複合化した際に十分なイオン伝導度が得られず好ましくない。また、その含有量が85重量%より多くなると、複合膜の強度が低下したり、あるいは、複合型ポリマー電解質膜の膜厚が増加し電池の体積エネルギー密度低下を引起こし好ましくなくなる。また本発明の複合型ポリマー電解質膜の場合、電解質膜内部に完全に多孔質支持体薄膜が包埋し、電解質膜表面がゲル状のポリマー電解質で覆われていることが重要である。複合電解質表面がゲル状のポリマー電解質で完全に覆われておらず、多孔質薄膜支持体が露出している部分があると、正極及び負極との間で良好な界面接合を遂行することが困難となり好ましくなくなる。具体的には、複合ポリマー電解質膜の平均膜厚は、用いる多孔質薄膜の平均膜厚の1.05〜2.0倍の範囲が好ましい。複合ポリマー電解質膜の膜厚が用いた多孔質薄膜の膜厚の1.05倍よりも薄い場合、部分的に多孔質膜膜が露出した部分が出来るとともに、正極および負極の表面凹凸を複合ポリマー電解質膜の表面を覆ったゲル状のポリマー電解質で吸収できなくなり、結果的に良好な界面接合を遂行することが困難となり好ましくない。また、複合ポリマー電解質膜の膜厚が用いた多孔質薄膜のそれの2.0倍よりも厚い場合は、結果的に複合ポリマー電解質膜の膜厚が厚くなり、電池の体積エネルギー密度を低下させ好ましくなくなる。
【0023】
本発明に用いるポリマー電解質としては、イオン伝導度の観点から、非水電解液を保持したゲル状のポリマー電解質が好適に採用される。ゲル状のポリマー電解質用のポリマー樹脂としては、ポリエチレンオキサイド(PEO)、PEOとポリプロピレンオキサイド(PPO)との共重合体、ポリアクリロニトリル(PAN)、ポリメチルメタクリレート(PMMA)、PANとPMMAの共重合体、アクリロニトリルとスチレンの共重合体(NSR)、ポリ塩化ビニル(PVC)、ポリ弗化ビニリデン(PVdF)の共重合体、プルラン等の多糖ポリマー、ポリグリシジルメチルエーテルの共重合体、およびエチレンオキサイド骨格を有する(メタ)アクリレート系の重合体・共重合体等を挙げることが出来るがこれに限定されるものではない。但し、製膜工程の容易さから、流動(溶液)状態のポリマーからアラミド支持体に直接含浸塗工できるタイプのポリマーがより好適に用いられる。
【0024】
特に、好ましいゲル状のポリマー電解質用のポリマー樹脂として、含浸塗工が可能でしかも耐酸化性の優れたPVdFを主成分とするPVdF共重合体を挙げることが出来る。好適に用いられる共重合成分としては、ヘキサフロロプロピレン(HFP)、パーフロロメチルビニルエーテル(FMVE)、クロロトリフロロエチレン(CTFE)、弗化ビニルおよびテトラフロロエチレン(TFE)が挙げられ、これらの共重合成分とVdFの2原もしくは3原共重合体が本発明のポリマー材料としては好適である。また、これら共重合成分の好適な共重合割合としては3〜10モル%の範囲が挙げられる。
【0025】
これらゲル電解質用のポリマー樹脂に保持させる非水電解液としてはリチウム塩を溶解した非水溶媒(可塑剤)が好適に用いられる。その際、ポリマー樹脂に対する非水電解液の保持量(含浸量)は、ポリマー樹脂100重量部に対して、非水電解液100重量部以上が必要である。非水電解液の量がこれよりも少ないと、多孔質支持体と複合化した際に十分なイオン伝導度を確保できず好ましくない。
【0026】
使用する非水溶媒(可塑剤)としてはリチウムイオン二次電池に一般的に用いられているプロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、1,2-ジメトキシエタン(DME)、1,2-ジエトキシエタン(DEE)、γーブチロラクトン(γーBL)、スルフォラン、アセトニトリル等を挙げることが出来る。前記非水溶媒は、単独で用いても、2種類以上を混合して用いてもよい。特に、PC、EC、γ-BL、DMC,DEC,MECおよびDMEから選ばれる少なくとも1種以上の液体が好適に用いられる。
【0027】
この非水溶媒に溶解する好適なリチウム塩としては、過塩素酸リチウム(LiClO4)、六弗化リン酸リチウム(LiPF6)、ホウ四弗化リチウム(LiBF4)、六弗化砒素リチウム(LiAsF6)、トリフロロスルフォン酸リチウム(CF3SO3Li)、リチウムパーフロロメチルスルフォニルイミド[LiN(CF3SO2)2]およびリチウムパーフロロエチルスルフォニルイミド[LiN(C2F5SO2)2]等が挙げられるがこれに限定されるものではない。溶解するリチウム塩の濃度としては、0.2から2M(モル/L)の範囲が好適に用いられる。
【0028】
次に、本発明に用いる多孔質支持体薄膜について説明する。本発明の多孔質支持体薄膜としては、平均膜厚が50μm以下で、突刺し強度が200g以上で、かつ透気度が10sec/100cc・in2以下の高強度・高透気度薄膜が好適に用いられる。平均膜厚が50μm以上になれば、高強度の支持体を得ることは容易となるが、得られるポリマー電解質複合膜の膜厚が厚くなり、電池として組み上げた際の体積エネルギー密度を低下させ好ましくない。
【0029】
本発明の支持体の突刺し強度としては、200g以上のものが好適に用いられる。この値が、200gより低い支持体を用いた場合は、ポリマー電解質を含浸させ複合化した後でも300g以上の突刺し強度を実現することが困難となり、電池の製造工程での短絡の発生確率が上がったり、電池として組み上げた際の安全性(短絡防止特性)が十分でなくなり好ましくない。
【0030】
本発明の支持体の透気度は、ガーレー法(100ccの空気が1in2の面積を2.3cmHgの圧力で透過するに要する時間)により測定した値を示している。本発明の多孔質支持体薄膜としては、この値が、10sec/100cc・in2以下の高い透気度を示す支持体が好適に用いられる。この値が、10sec/100cc・in2よりも大きい透気度の低い支持体を用いた場合、工業的に最も有利と考えられるポリマー溶液からの塗工法によるポリマー電解質の含浸複合化が困難となるとともに、複合化ポリマー電解質のイオン伝導度も十分に高めることが困難になり好ましくない。
【0031】
本発明の高強度・高透気度の多孔質薄膜支持体用の材料としては、強度と耐熱性の観点から全芳香族のポリアミドが用いられる。その支持体形状としては、全芳香族ポリアミドの重合体であるアラミド繊維からなる不織布、織物、あるいは、そのアラミド繊維の隙間に全芳香族ポリアミドの重合体である合成パルプが分散する通気性のある紙様のシート、あるいは、全芳香族ポリアミドの重合体であるアラミド樹脂からなる孔が多数開いた通気性のあるフィルム等を挙げることが出来る。前記した支持体としての必要特性を満足しておれば、これらの内どの形状のものも本発明に利用することが可能であるが、透気度を考慮した場合、不織布状のシートが最も好適に用いられる。その目付け量としては、12〜30g/m2の範囲が好適に用いられる。目付け量が12g/m2未満の場合、透気度の高い支持体を得るのは容易となるが、突刺し強度として200g以上のものを得ることが困難となり、結果的に短絡防止強度の優れた固体型電解質膜を得ることが出来なくなる。一方、目付け量が30g/m2よりも多くなると、突刺し強度を満足することは容易となるが、平均膜厚50μm以下の支持体を得ることが困難となる。また、無理に密度を上げ薄膜化すると、透気度が低下し結果的にイオン伝導度の高い複合膜を得ることが困難になり好ましくない。
【0032】
全芳香族ポリアミド重合体の分子構造としては、メタ系、パラ系を問わず本発明に利用可能である。メタ系の代表としては、m−フェニレンイソフタルアミドを主たる構成単位とする全芳香族ポリアミド、パラ系の代表としては、p−フェニレンテレフタルアミドを主たる構成単位とする全芳香族ポリアミドなどを挙げることができる。
【0033】
次に、本発明の複合型ポリマー電解質膜の製造方法について説明する。本発明の固体型ポリマー電解質膜は、平均膜厚が50μm以下で、突刺し強度が200g以上で、かつ透気度が10sec/100cc・in2以下の高強度・高透気度の多孔質薄膜支持体に、ポリマー樹脂100重量部に対してリチウム塩を溶解した非水電解液を100重量部以上保持したゲル状の電解質を含浸させれたものである。この際、ゲル状のポリマー電解質を含浸複合化する方法は特に限定するものではないが、工業的な生産が容易な流動(溶液)状態のポリマーを直接多孔質薄膜支持体に含浸塗工する方法がより好まれる。そのような手法としては、例えば下記の方法が挙げられるがこれに限定されるものではない。
【0034】
▲1▼ゲル電解質用のポリマー樹脂と非水電解液とを混合加熱溶解し、その溶液状態のドープを多孔質薄膜支持体に直接塗工・含浸させ、冷却固化することで複合化する方法。
【0035】
▲2▼ゲル電解質用のポリマー樹脂と非水電解液とポリマーを溶解する揮発性の溶媒とを混合溶解し、その溶液状態のドープを多孔質薄膜支持体に直接塗工・含浸させ、ついで揮発性溶媒を乾燥除去することで複合化する方法。
【0036】
▲3▼ゲル電解質用のポリマー樹脂とそのポリマーを溶解し水に相溶する溶媒と相分離剤(ゲル化剤もしくは開孔剤)とを混合溶解し、その溶液状態のドープを多孔質薄膜支持体に直接塗工・含浸させ、ついでその膜を水系の凝固浴に浸漬しポリマーを凝固後、水洗・乾燥を行なった複合膜を電解液に浸漬し、ポリマー樹脂をゲル化させ複合膜とする方法。
【0037】
(正極)
本発明の正極は、代表的にはリチウムイオンを吸蔵放出する活物質と、非水電解液と、この電解液を保持し活物質を結着させるバインダーポリマーと、集電体とから構成される事ができる。
【0038】
前記活物質としては、種々のリチウム含有酸化物やカルコゲン化合物を挙げることができる。リチウム含有酸化物としては、LiCoO2などのリチウム含有コバルト酸化物、LiNiO2などのリチウム含有ニッケル酸化物、LiMn2O4などのリチウム含有マンガン複合酸化物、リチウム含有ニッケルコガルト酸化物、リチウム含有非晶質五酸化バナジウムなどを挙げることができる。また、カルコゲン化合物としては、二硫化チタン、二硫化モリブデンなどを挙げることができる。
【0039】
非水電解液としては、前述したポリマー電解質膜で説明したものと同様のものを用いることができる。
【0040】
非水電解液を保持し、活物質を結着させるバインダーポリマーとしては、ポリ弗化ビニリデン(PVdF)、PVdFとヘキサフロロプロピレン(HFP)やパーフロロメチルビニルーテル(FMVE)との共重合体などのPVdF共重合体樹脂、ポリテトラフロロエチレン、フッ素系ゴムなどのフッ素系樹脂や、スチレンーブタジエン共重合体、スチレンーアクリロニトリル共重合体、エチレンープロピレンーターポリマーなどの炭化水素系ポリマーや、カルボキシメチルセルロース、ポリイミド樹脂などを用いることができる。これらは単独で用いても、2種以上を混合して用いても構わない。
【0041】
バインダーポリマーの添加量は、活物質100重量部に対して3〜30重量部の範囲が好ましい。バインダーが3重量部未満の場合、活物質をつなぎ止める十分な結着力が得られず好ましくない。また、それが30重量部より多くなると、正極における活物質密度が低下し、結果的に電池のエネルギー密度低下を引起こし好ましくなくなる。
【0042】
集電体としては、酸化安定性の優れた材料が好適に用いられる。具体的には、アルミニウム、ステンレススチール、ニッケル、炭素などを挙げることができる。特に好適には、ホイル状のアルミニウムが用いられる。
【0043】
また、本発明の正極は、人造黒鉛、カーボンブラック(アセチレンブラック)、ニッケル粉末などを導電助材として含有しても構わない。
【0044】
本発明の正極の製造法は特に限定されるものではないが、下記の方法などを採用することができる。
【0045】
▲1▼活物質、バインダーポリマー、バインダーを溶解する揮発性溶媒を所定量混合溶解し、活物質のペーストを作製する。得られたペーストを集電体上に塗工後、揮発性溶媒を乾燥除去した膜を非水電解液に浸漬し電解液を保持させる方法。
【0046】
▲2▼活物質、バインダーポリマー、バインダーを溶解する水溶性の溶媒を所定量混合溶解し、活物質のペーストを作製する。得られたペーストを集電体上に塗工後、得られた塗膜を水系の凝固浴へ浸漬し、バインダーポリマーの凝固を行ない、ついで膜の水洗・乾燥を実施した膜を非水電解液に含浸に電解液を保持させる方法。
【0047】
▲3▼活物質、バインダーポリマー、バインダーを溶解する低沸点の揮発性溶媒、非水電解液を所定量混合溶解し、活物質のペーストを作製する。得られたペーストを集電体上に塗工後、低沸点の揮発性溶媒のみを乾燥除去し、電解液が保持された正極を直接製膜する方法。
【0048】
(負極)
次に、本発明の負極について説明する。本発明の負極は、代表的にはリチウムイオンを吸蔵放出する炭素質活物質と、非水電解液と、この電解液を保持し活物質を結着させるバインダーポリマーと、集電体とから構成される事ができる。
【0049】
前記炭素質活物質としては、ポリアクリロニトリル、フェノール樹脂、フェノールノボラック樹脂、セルロースなどの有機高分子化合物を焼結したもの、コークスやピッチを焼結したもの、人造黒鉛や天然黒鉛に代表される炭素質材料を挙げることができる。
【0050】
非水電解液としては、前述したポリマー電解質膜で説明したものと同様のものを用いることができる。
【0051】
非水電解液を保持し、活物質を結着させるバインダーポリマーとしては、前述した正極と同様のものを用いることができる。
【0052】
バインダーポリマーの添加量は、活物質100重量部に対して3〜30重量部の範囲が好ましい。バインダーが3重量部未満の場合、活物質をつなぎ止める十分な結着力が得られず好ましくない。また、それが30重量部より多くなると、負極における活物質密度が低下し、結果的に電池のエネルギー密度低下を引起こし好ましくなくなる。
【0053】
集電体としては、還元安定性の優れた材料が好適に用いられる。具体的には、金属銅、ステンレススチール、ニッケル、炭素などを挙げることができる。特に好適には、ホイル状の金属銅が用いられる。
【0054】
また、本発明の負極は、人造黒鉛、カーボンブラック(アセチレンブラック)、ニッケル粉末などを導電助材として含有しても構わない。
【0055】
本発明の負極の製造法は特に限定されるものではないが、前述の正極で説明した方法と同様のものを採用することができる。
【0056】
(電池の製造)
次に、本発明のポリマー電解質二次電池の製造法について説明する。本発明の製造法の場合、非水電解液を保持させた正極、複合ポリマー電解質膜、負極を積層し熱圧着法にラミネートを行なうことで、後からの非水電解液の含浸プロセスを必要とせずに電池エレメントを構成する点が特徴である。また、非水電解液保持状態の複合型ポリマー電解質膜を用い熱圧着を実施することのより、電解質ポリマーの融点降下により、熱圧着を温度を下げられる点、および耐熱性の高強度支持体と複合化していることにより、熱圧着時にポリマー電解質膜のつぶれが併発しないことも本製造法の特徴である。
【0057】
熱圧着法としては、種々の手法が採用可能で特に限定されるものではないが、例えば、ダブルロールラミネータ等の熱ローラを用いる方法を挙げることができる。その際、採用される温度としては、室温〜150℃範囲が採用される。圧着温度が室温以下の場合、電極と複合型ポリマー電解質膜の接着が十分でなく好ましくない。また、その温度が150℃よりも高くなると、熱による電解質の分解や負極材料と電解液との分解反応が併発し好ましくなくなる。より好適には、30℃〜120℃の範囲が採用される。
【0058】
本発明のポリマー電解質二次電池の場合、正極と複合型ポリマー電解質膜、及び負極と複合型ポリマー電解質膜が各々10gf/cm以上の剥離強度で接着し、良好な界面接合が遂行されていることも特徴である。ここで、剥離強度は、以下の条件により測定した値を意味している。
【0059】
熱圧着法により貼り合せた正極又は負極と複合型ポリマー電解質膜とを幅3cm、長さ6cmの短冊状に切り出し、180°剥離試験法により10cm/分の速度で電極と複合電解質膜とを引き剥がし、その時の単位幅当たりの平均剥離強度(gf/cm)を剥離強度とした。
【0060】
この値が10gf/cm未満の場合、電極とポリマー電解質膜との界面接合が不十分となり、界面インピーダンスの増加を引起こしたり、電池製造のハンドリングの際に界面剥離を併発したりし好ましくなくなる。
【0061】
【実施例】
以下、本発明の内容を実施例を用い詳細に説明する。
【0062】
[実施例1]
「複合型ポリマー電解質膜」
<アラミド支持体>
太さ1.25deの結晶化させたm−アラミド短繊維に太さ3deの非結晶化m−アラミド長繊維をバインダーとして添加し、乾式抄造法により目付け量19g/m2で製膜しカレンダーロールをかけ不織布状のシートを得た。得られた支持体の特性は以下の通りであった。平均膜厚36μm、密度0.53g/cm3、空隙率62%、透気度0.04sec/100cc・in2、突刺し強度330g。
【0063】
<ゲル電解質の複合化>
ゲル電解質用のポリマー樹脂としてPVdFにパフロロメチルビニルエーテル(FMVE)を5.3モル%共重合したPVdF共重合体用いた。このポリマー樹脂100重量部に対して、1MのLiBF4を溶解したPC/EC(1/1重量比)電解液を300重量部添加し、さらに溶媒としてテトラヒドロフラン(THF)を添加し混合溶解し、ポリマー濃度12重量%のドープを調製した。得られたドープを前記のアラミド支持体に含浸・塗工し、50℃にてTHFを乾燥除去することで複合型型ポリマー電解質膜を作製した。得られた電解質膜の特性は下記の通りであった。平均膜厚45μm(複合膜表裏に4-5μm厚さのポリマー電解質層あり)、突刺し強度443g、イオン伝導度1.3×10-3S/cm(25℃)、TMA耐熱温度>400℃。
【0064】
「正極」
コバルト酸リチウム(LiCoO2;関西触媒製)粉末85重量部とカーボンブラック5重量部とポリ弗化ビニリデン(PVdF)の乾燥重量が10重量部になるように、12wt%のPVdFのN-メチルーピロリドン(NMP)溶液を用い、正極材ペーストを作製した。得られたペーストを厚さ20μmのアルミ箔上に塗布乾燥し、厚さ120μmの正極塗膜を作製した。ついで、得られた正極を1MのLiBF4を溶解したPC/EC(1/1重量比)に浸漬し、電解液を保持した正極とした。
【0065】
「負極」
炭素質負極材としてメゾフェーズカーボンマイクロビーズ(MCMB;大阪瓦斯化学)粉末90重量部とPVdFの乾燥重量が10重量部になるように、12wt%のPVdFのNMP溶液を用い、負極材ペーストを作製した。得られたペーストを膜厚18μmの銅箔上に塗布乾燥し、厚さ125μmの負極塗膜を作製した。得られた負極を1MのLiBF4を溶解したPC/EC(1/1重量比)に浸漬し、電解液を保持した負極を作製した。
【0066】
「電池製造」
正極、負極および複合型ポリマー電解質膜をそれぞれ3cm×6cmサイズに切り出し、正極、複合型ポリマー電解質膜、負極の順に重ね合せ、ダブルロールラミネータを用い、80℃で熱圧着を実施した。同様に作製した電池エレメント(正極/複合型ポリマー電解質膜/負極積層体)について、180°剥離試験を実施したところ、正極と複合型ポリマー電解質膜は30gf/cm、負極とのそれは22gf/cmの剥離力で接着しており、良好な界面接合が遂行されていることが分かった。得られた電池エレメントのそれぞれの集電体にステンレスシート端子を取り付け、ポリエチレン/アルミニウム/ポリエチレンテレフタレート積層シート(膜厚50μm)でラミネートしてシート状の電池を作製した。得られた電池について、1mA/cm2の電流密度での充放電を実施した。この際、充電は4.2Vまで実施し、放電は2.7Vでカットした。初回放電の電流効率は80%で、繰り返しの充放電が可能であった。また、その際の負極重量当たりの放電量は200mAh/gであった。
【0067】
[比較例1]
「ポリマー電解質膜」
アラミド支持体を用いずに、実施例1で用いたゲル電解質用のドープをシリコンコートの離型フィルム上に塗工し、ゲル電解質フィルムからなる単独膜を作製した。得られたフィルムの特性は以下の通りであった。膜厚45μm、突刺し強度20g、イオン伝導度2.5×10-3S/cm、TMA耐熱温度100℃。実施例1の膜に比較し、伝導度は良好であるが、突刺し強度と耐熱性が低いものであった。
【0068】
「電池製造」
実施例1で作製した正極および負極と、本比較例のポリマー電解質膜を用い、実施例1と同様に、ダブルロールラミネータを用い電池エレメントの作製を試みた。しかし、ポリマー電解質膜の力学特性が十分でないために、ラミネートの際にポリマー電解質膜のつぶれが併発し、良好な電池エレメントを作製できなかった。
【0069】
[実施例2]
「複合型ポリマー電解質膜」
ゲル電解質用のポリマー樹脂としてVdFにヘキサフロロプロピレン(HFP)を5モル%共重合したポリマー(VdF-HFP)を用いた以外は、実施例1と同様のアラミド支持体と製造法を採用し、複合型ポリマー電解質膜を作製した。得られた電解質膜の特性は以下の通りである。平均膜厚45μm(複合膜表裏に4-5μm厚さのポリマー電解質層あり)、突刺し強度450g、イオン伝導度1.3×10-3S/cm(25℃)、TMA耐熱温度>400℃。
【0070】
「正極」
コバルト酸リチウム(LiCoO2;関西触媒製)粉末85重量部とカーボンブラック5重量部とバインダーとして前記ポリマー電解質にもちいたVdF-HFPの乾燥重量が10重量部、そして非水電解液である1MのLiBF4を溶解したPC/EC(1/1重量比)の量が20重量部になるように、12重量%のVdF−HFPのテトラヒドロフラン(THF)溶液を用い、正極材ペーストを作製した。得られたペーストを厚さ20μmのアルミ箔上に塗布後50℃で乾燥しTHF除去し、厚さ120μmの非水電解液を保持した正極塗膜を作製した。
【0071】
「負極」
炭素質負極材としてメゾフェーズカーボンマイクロビーズ(MCMB;大阪瓦斯化学)粉末90重量部とバインダーとして前記ポリマー電解質にもちいたVdF-HFPの乾燥重量が10重量部、そして非水電解液である1MのLiBF4を溶解したPC/EC(1/1重量比)の量が20重量部になるように、12重量%のVdF−HFPのテトラヒドロフラン(THF)溶液を用い、負極材ペーストを作製した。得られたペーストを膜厚18μmの銅箔上に塗布後50℃で乾燥しTHFを除去し、厚さ125μmの非水電解液を保持した負極塗膜を作製した。
【0072】
「電池製造」
実施例1と同様にして正極/複合型ポリマー電解質膜/負極積層体からなる電池エレメントおよびそれをアルミラミネートフィルム中に封入したシート状電池を作製した。正極及び負極とポリマー電解質膜との剥離強度はそれぞれ35gf/cm、24gf/cmで良好な界面接合が遂行されていることが分かった。シート状電池について、1mA/cm2の電流密度で、実施例1と同様にして充放電を実施したところ、繰り返しの充放電が可能であることが確認された・その際の初回放電の電流効率は79%、負極炭素重量当たりの放電量は196mAh/gであった。
【0073】
[比較例2]
「複合型ポリマー電解質膜」
実施例2と同様のアラミド支持体とポリマー電解質ドープを用い、実施例2と同様にして、アラミド支持体にポリマー電解質が含浸された複合型ポリマー電解質膜を作製した。但し、この際、支持体へのポリマー電解質の含浸量を低下させた。このため、平均膜厚は36μmで支持体単独の値と変化なく、複合膜の表裏には部分的に支持体が露出している部分があった。その他の特性は以下の通りであった。突刺し強度428g、イオン伝導度1.1×10-3S/cm(25℃)、TMA耐熱温度>400℃。
【0074】
「電池製造」
前記の複合型ポリマー電解質膜と実施例2で用いた正極および負極を用い、実施例1と同様にしてダブルロールラミネーターによる熱圧着処理を実施した。この積層エレメントについて剥離試験を実施したところ、平均の剥離強度は正極および負極についてそれぞれ5gf/cm、3gf/cmと低いものであった。また、正・負の両電極とも電解質膜に全く接着(接合)していない部分が目視レベルでも観測され、良好な界面接合が遂行されていないことが分かった。
【0075】
【発明の効果】
以上詳述してきたように本発明によれば、高いイオン伝導度と、強い短絡防止強度と、高い力学的耐熱性とを兼ね備えた安全性の優れた複合型ポリマー電解質膜利用することにより、安全性の高いポリマー電解質二次電池を容易な製造方法で提供することが可能となった。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polymer electrolyte secondary battery comprising a solid polymer electrolyte layer having high strength and heat resistance and excellent safety, and a method for producing the same.
[0002]
[Prior art]
In recent years, with the development of electronic devices, it has been desired to develop a secondary battery that is small and light, has a high energy density, and has a large number of repeated charging operations. Lithium and lithium ion secondary batteries that use non-aqueous electrolytes instead of aqueous electrolytes are attracting attention as this type of battery.
[0003]
In the case of a solution-type lithium secondary battery using lithium and a lithium alloy as a negative electrode, thread-like lithium crystals (dendrites) are formed on the negative electrode due to repeated charge and discharge, causing a short circuit, etc. Development of a solid polymer electrolyte having the following characteristics is desired.
[0004]
In addition, in lithium ion secondary batteries that have been commercialized by eliminating the problem of dendrites in lithium secondary batteries, the separator itself used to prevent short-circuiting of the electrodes does not have sufficient electrolyte retention, and electrolyte leakage Therefore, it is indispensable to use a metal can as an exterior. Thereby, not only the manufacturing cost of the battery becomes high, but also the weight of the battery cannot be sufficiently reduced. From such a background, in a lithium ion secondary battery, a polymer electrolyte secondary battery using a highly safe polymer electrolyte that also functions as a separator from the viewpoint of eliminating electrolyte leakage and reducing the weight of the battery. Development is desired.
[0005]
From such a background, polymer electrolyte systems having both high ionic conductivity and safety have been energetically studied. One of the approaches is a so-called intrinsic polymer electrolyte approach that does not include a liquid component (solvent or plasticizer) in a polymer, and attempts to produce a solid electrolyte by using only a polymer and an electrolyte. Since this type of electrolyte does not contain liquid components, it can obtain a relatively strong membrane, but the ionic conductivity limit is 10%. -Five Although it has been studied for a long time, it has not yet been put into practical use because of its low S / cm level and insufficient bonding with the electrode active material layer.
[0006]
On the other hand, the intrinsic polymer electrolyte has been studied energetically as a system to compensate for the drawbacks such as low ionic conductivity and inadequate interface bonding, and the intrinsic polymer electrolyte has a liquid component (solvent or plasticizer). So-called gel electrolyte to which is added. In the case of this system, the ionic conductivity of the gel electrolyte membrane depends on the amount of the liquid component contained, and it is considered practically sufficient to contain a considerable amount of the liquid component. -3 Several systems showing ionic conductivity above S / cm have been reported. However, in most of these systems, the mechanical properties of the membrane are rapidly impaired with the addition of the liquid component, and the safety function as a separator that the solid electrolyte should originally have disappeared.
[0007]
Under such circumstances, US Pat. No. 5,296,318 describes a system in which the mechanical strength and ionic conductivity of the gel electrolyte membrane are compatible. This is a gel electrolyte membrane using a vinylidene fluoride and hexafluoropropylene copolymer as a polymer, and has attracted attention as a system exhibiting mechanical properties that should be specially characterized as a gel electrolyte. However, even with this system, the puncture strength, which is one index of the separator function for secondary batteries, is an order of magnitude lower than that of general-purpose separators. Therefore, when this film is handled with a roll, it is easily deformed. When considering the battery manufacturing process, such as damage or crushing with a slight pressure when laminated with an electrode, it was difficult to say that it had sufficient mechanical properties. In addition, the heat resistance temperature (melt flow temperature) of the gel electrolyte membrane is just over 100 ° C, which is about 50 ° C lower than that of ordinary polyolefin separators. It was not supposed to be able to guarantee. As a method for improving this heat resistance, US Pat. No. 5,429,891 also proposed a method in which a crosslinkable monomer is contained in the above-mentioned vinylidene fluoride polymer structure and a crosslinked structure is introduced by polymerization of the monomer. However, there is a concern that the residual monomer may adversely affect the electrochemical reaction, and the heat resistance has not necessarily been improved to a sufficient level.
[0008]
In addition, as a method for producing a polymer battery using this type of polymer electrolyte, US Pat. No. 5,470,357 describes that a polymer film formed with a plasticizer is laminated with a positive electrode and a negative electrode layer by a thermocompression bonding method, and then a plasticizer Describes a method of extracting and impregnating with a non-aqueous electrolyte. In this method, the use of a grid or net-like perforated current collector is used to improve the efficiency of plasticizer extraction and electrolyte impregnation, but it is difficult to shorten the extraction and electrolyte replacement process. The polymer battery manufacturing process was not preferable.
[0009]
On the other hand, gel electrolytes that use various supports as reinforcing materials have been proposed for the purpose of supplementing the mechanical properties that are considered insufficient with gel electrolyte membranes. For example, Japanese Patent Application Laid-Open No. 9-22724 describes a technique in which a synthetic fiber nonwoven fabric such as polyolefin is used in combination as a support during film formation of a coating type polymer gel electrolyte. Although it is possible to avoid collapsing during lamination with the electrode by using a polyolefin nonwoven fabric in combination, it is difficult to reduce the film thickness because the strength of the polyolefin fiber itself is insufficient, and the obtained electrolyte membrane The mechanical heat resistance was about 160 ° C. at most because it was dominated by the polyolefin nonwoven fabric. Moreover, the electrolyte solution impregnation process after constructing the battery element in this case was necessary.
[0010]
US Pat. No. 5,603,982 describes a method in which an electrolyte solution and a monomer are impregnated in a solution in a non-woven fabric such as polyolefin having high air permeability, and then the monomer is polymerized to obtain a solid electrolyte. In the case of this method, since the polymerization is performed in an electrolyte solution-containing state, the electrolyte solution impregnation step after film formation (battery element preparation) as described above is unnecessary, but because the viscosity of the solution impregnated into the nonwoven fabric is low, the nonwoven fabric Since the liquid holding power of the film was not sufficient, it was necessary to sandwich the film from above and below with a flat base material such as glass to carry out polymerization of the monomer. Also in this method, not only the manufacturing process is complicated, but also a polyolefin-based non-woven fabric is adopted, so that it is difficult to realize a thin film.
[0011]
[Problems to be solved by the invention]
An object of the present invention is to provide a polymer electrolyte using a solid polymer electrolyte membrane having excellent safety, which has practical high ion conductivity, strong short-circuit prevention strength as a separator, and high heat resistance with respect to short-circuit prevention It is an object of the present invention to provide a secondary battery, that is, a polymer electrolyte secondary battery using a highly safe solid-type polymer electrolyte membrane that combines the three aspects of ionic conductivity, strength, and heat resistance, and a method for producing the same.
[0012]
[Means for Solving the Problems]
The inventors of the present invention provide a gel polymer electrolyte membrane holding a non-aqueous electrolyte with sufficient mechanical strength to withstand the battery manufacturing process and sufficient mechanical heat resistance to enhance battery safety. For this purpose, a search has been made for a porous thin film support having high strength and heat resistance that can be impregnated with a gel polymer electrolyte and having high air permeability that does not impair ion conductivity. As a result, by adopting wholly aromatic polyamide instead of conventional polyolefin as the porous support material, it is possible to develop a polymer electrolyte secondary battery using a solid polymer electrolyte having both strength and heat resistance. The headline and the present invention were completed.
[0013]
That is, the present invention has a positive electrode having a positive electrode material that stores and discharges lithium ions that holds a non-aqueous electrolyte, and a carbonaceous negative electrode material that holds and discharges lithium ions that holds a non-aqueous electrolyte. A polymer electrolyte secondary battery joined through a polymer electrolyte membrane holding a non-aqueous electrolyte, the polymer electrolyte membrane includes a non-aqueous electrolyte and a polymer resin capable of holding the electrolyte Is a composite polymer electrolyte membrane in which a porous thin film is impregnated with a gel-like polymer electrolyte, and the porous thin film has a piercing strength of 200 g or more and an air permeability of 10 sec / 100 cc · in 2 It is a porous thin film made of the following wholly aromatic polyamide, and the polymer electrolyte membrane has an ionic conductivity of 5 × 10 at 25 ° C. -4 S / cm or more, the puncture strength is 300 g or more, and the mechanical heat resistant temperature of the film is 300 ° C. or more. The average thickness of the polymer electrolyte membrane is 1.05 to 2.0 times the average thickness of the porous thin film. A polymer electrolyte secondary battery characterized by the above, and a manufacturing method thereof.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the polymer electrolyte secondary battery of the present invention and the manufacturing method thereof will be described.
[0015]
(Polymer electrolyte membrane)
First, the polymer electrolyte membrane used in the present invention will be described. The polymer electrolyte membrane of the present invention is 5 × 10 5 at 25 ° C. -Four Practical ionic conductivity that exhibits practically high ionic conductivity of S / cm or higher, puncture strength of 300 g or higher enough to be applied to batteries, and mechanical heat resistance temperature of 300 ° C or higher It is a polymer electrolyte membrane that combines safety and safety. Here, the ionic conductivity means a value obtained from an impedance at 10 KHz measured by an AC impedance method with a solid polymer electrolyte membrane sandwiched between 20 mmφ SUS electrodes. This value is 5 x 10 -Four If it is lower than S / cm, the impedance when assembled as a battery becomes high, and the capacity at the time of high rate charge / discharge decreases, which is not preferable.
[0016]
The polymer electrolyte membrane of the present invention is also characterized by a high puncture strength of 300 g or more. The puncture strength is a physical property used for the evaluation of the separator as an index representing the short-circuit prevention strength of the current solution type lithium ion secondary separator, and in the present invention, the value measured under the following conditions is The puncture strength was used.
[0017]
When the support is set on a 11.3 mmφ fixed frame, a needle with a tip radius of 0.5 mm is pushed vertically to the center of the support, the needle is pushed in at a constant speed of 50 mm / min, and a hole is opened in the support The force applied to the needle was defined as the piercing strength.
[0018]
When this value is less than 300 g, the puncture strength of this polymer electrolyte membrane is not sufficient, and in the battery manufacturing process, the probability of occurrence of a short circuit between the electrodes becomes high, which is undesirable, and safety when assembled as a battery (short circuit) Preventive properties) are not sufficiently ensured.
[0019]
The polymer electrolyte membrane of the present invention is also characterized by having high mechanical heat resistance of 300 ° C. or higher. Here, the dynamic heat-resistant temperature means a value measured under the following conditions.
[0020]
A 1 g load was applied to a strip-shaped polymer electrolyte membrane with a thickness of about 45 μm, a width of 5 mm, and a length of 25 mm, and the temperature was raised at a rate of 10 ° C./min to perform thermomechanical property analysis (TMA). The temperature at which the film breaks or the film stretches by 10% was defined as the dynamic heat resistant temperature.
[0021]
If this temperature is less than 300 ° C., a short circuit between the electrodes cannot be sufficiently prevented when the internal temperature of the battery suddenly rises due to an abnormal reaction of the battery or the like, which is not preferable for safety.
[0022]
The polymer electrolyte membrane of the present invention is produced by impregnating and combining a gel polymer electrolyte having practically sufficient ionic conductivity into a porous support thin film characterized by strength and heat resistance. In this case, the gel polymer electrolyte content is preferably in the range of 30 to 85% by weight. A gel polymer electrolyte content of less than 30% by weight is not preferable because sufficient ionic conductivity cannot be obtained when it is combined with a porous support. On the other hand, when the content exceeds 85% by weight, the strength of the composite membrane decreases, or the thickness of the composite polymer electrolyte membrane increases, causing a decrease in volume energy density of the battery, which is not preferable. In the case of the composite polymer electrolyte membrane of the present invention, it is important that the porous support thin film is completely embedded in the electrolyte membrane, and the surface of the electrolyte membrane is covered with a gel polymer electrolyte. If the surface of the composite electrolyte is not completely covered with the gel polymer electrolyte and there is a part where the porous thin film support is exposed, it is difficult to achieve good interfacial bonding between the positive electrode and the negative electrode It becomes unpreferable. Specifically, the average film thickness of the composite polymer electrolyte membrane is preferably in the range of 1.05 to 2.0 times the average film thickness of the porous thin film used. When the thickness of the composite polymer electrolyte membrane is less than 1.05 times the thickness of the porous thin film used, the porous membrane membrane is partially exposed, and the surface irregularities of the positive and negative electrodes are formed on the composite polymer electrolyte membrane. The gel-like polymer electrolyte covering the surface of the film cannot be absorbed, and as a result, it is difficult to perform good interfacial bonding. In addition, when the thickness of the composite polymer electrolyte membrane is thicker than 2.0 times that of the porous thin film used, the composite polymer electrolyte membrane becomes thick as a result, which decreases the volume energy density of the battery, which is not preferable. .
[0023]
As the polymer electrolyte used in the present invention, a gel polymer electrolyte holding a non-aqueous electrolyte is suitably employed from the viewpoint of ionic conductivity. Polymer resins for gel polymer electrolytes include polyethylene oxide (PEO), copolymers of PEO and polypropylene oxide (PPO), polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), and co-polymerization of PAN and PMMA. Polymers, copolymers of acrylonitrile and styrene (NSR), polyvinyl chloride (PVC), copolymers of polyvinylidene fluoride (PVdF), polysaccharide polymers such as pullulan, copolymers of polyglycidyl methyl ether, and ethylene oxide Examples thereof include, but are not limited to, a (meth) acrylate polymer / copolymer having a skeleton. However, a polymer of a type that can be directly impregnated and applied to the aramid support from a polymer in a fluid (solution) state is more preferably used because of the ease of the film forming process.
[0024]
In particular, as a preferred polymer resin for a gel-like polymer electrolyte, a PVdF copolymer mainly composed of PVdF which can be impregnated and has excellent oxidation resistance can be mentioned. Suitable copolymerization components include hexafluoropropylene (HFP), perfluoromethyl vinyl ether (FMVE), chlorotrifluoroethylene (CTFE), vinyl fluoride and tetrafluoroethylene (TFE). A binary or ternary copolymer of a polymerization component and VdF is suitable as the polymer material of the present invention. A suitable copolymerization ratio of these copolymerization components is in the range of 3 to 10 mol%.
[0025]
A nonaqueous solvent (plasticizer) in which a lithium salt is dissolved is preferably used as the nonaqueous electrolytic solution held in the polymer resin for gel electrolyte. At that time, the amount (impregnation amount) of the non-aqueous electrolyte with respect to the polymer resin needs to be 100 parts by weight or more with respect to 100 parts by weight of the polymer resin. If the amount of the non-aqueous electrolyte is less than this, it is not preferable because sufficient ion conductivity cannot be secured when it is combined with the porous support.
[0026]
Nonaqueous solvents (plasticizers) used include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), dimethyl carbonate (DMC), and diethyl carbonate that are commonly used in lithium ion secondary batteries. (DEC), methyl ethyl carbonate (MEC), 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE), γ-butyrolactone (γ-BL), sulfolane, acetonitrile, etc. . The non-aqueous solvent may be used alone or in combination of two or more. In particular, at least one liquid selected from PC, EC, γ-BL, DMC, DEC, MEC and DME is preferably used.
[0027]
Suitable lithium salts that dissolve in this non-aqueous solvent include lithium perchlorate (LiClO Four ), Lithium hexafluorophosphate (LiPF 6 ), Lithium boron tetrafluoride (LiBF) Four ), Lithium arsenic hexafluoride (LiAsF) 6 ), Lithium trifluorosulfonate (CF Three SO Three Li), lithium perfluoromethylsulfonylimide [LiN (CF Three SO 2 ) 2 ] And lithium perfluoroethylsulfonylimide [LiN (C 2 F Five SO 2 ) 2 However, it is not limited to this. The concentration of the lithium salt to be dissolved is preferably in the range of 0.2 to 2M (mol / L).
[0028]
Next, the porous support thin film used in the present invention will be described. The porous support thin film of the present invention has an average film thickness of 50 μm or less, a puncture strength of 200 g or more, and an air permeability of 10 sec / 100 cc · in. 2 The following high-strength and high-permeability thin films are preferably used. If the average film thickness is 50 μm or more, it becomes easy to obtain a high-strength support, but the film thickness of the resulting polymer electrolyte composite film is increased, which preferably reduces the volume energy density when assembled as a battery. Absent.
[0029]
As the puncture strength of the support of the present invention, a stab strength of 200 g or more is preferably used. When a support having a value lower than 200 g is used, it is difficult to achieve a puncture strength of 300 g or more even after impregnation with a polymer electrolyte, and the probability of occurrence of a short circuit in the battery manufacturing process is reduced. It is not preferable because the safety (short-circuit prevention characteristics) when assembled as a battery is insufficient.
[0030]
The air permeability of the support of the present invention is determined by the Gurley method (100 cc air is 1 in. 2 Is a value measured by the time required for permeation at a pressure of 2.3 cmHg). As the porous support thin film of the present invention, this value is 10 sec / 100 cc 2 A support having the following high air permeability is preferably used. This value is 10sec / 100cc ・ in 2 In the case of using a support having a lower air permeability than that of the polymer electrolyte, it is difficult to impregnate the polymer electrolyte by a coating method from a polymer solution considered to be the most industrially advantageous, and the ionic conductivity of the composite polymer electrolyte is difficult. However, it is difficult to sufficiently increase the thickness, which is not preferable.
[0031]
As the material for the high-strength and high-permeability porous thin film support of the present invention, a wholly aromatic polyamide is used from the viewpoint of strength and heat resistance. As the shape of the support, there is a breathability in which a non-woven fabric or a woven fabric made of an aramid fiber which is a polymer of a wholly aromatic polyamide, or a synthetic pulp which is a polymer of a wholly aromatic polyamide is dispersed in the gap between the aramid fibers. Examples thereof include a paper-like sheet or a breathable film having a large number of holes made of an aramid resin which is a polymer of wholly aromatic polyamide. Any of these shapes can be used in the present invention as long as the necessary characteristics as the support are satisfied. However, in consideration of the air permeability, a nonwoven sheet is most preferable. Used for. The basis weight is 12-30g / m 2 The range of is preferably used. The basis weight is 12g / m 2 If it is less than 1, it is easy to obtain a support having high air permeability, but it becomes difficult to obtain a piercing strength of 200 g or more, and as a result, a solid electrolyte membrane having excellent short-circuit prevention strength is obtained. Can not do. On the other hand, the basis weight is 30g / m 2 If it exceeds the maximum, it becomes easy to satisfy the puncture strength, but it becomes difficult to obtain a support having an average film thickness of 50 μm or less. In addition, forcibly increasing the density and reducing the thickness make it difficult to obtain a composite membrane having high ionic conductivity due to a decrease in air permeability.
[0032]
The molecular structure of the wholly aromatic polyamide polymer can be used in the present invention regardless of whether it is meta or para. Examples of meta-type representatives include wholly aromatic polyamides having m-phenylene isophthalamide as the main constituent unit, and examples of para-types include wholly aromatic polyamides having p-phenylene terephthalamide as the main constituent unit. it can.
[0033]
Next, the manufacturing method of the composite polymer electrolyte membrane of this invention is demonstrated. The solid polymer electrolyte membrane of the present invention has an average film thickness of 50 μm or less, a puncture strength of 200 g or more, and an air permeability of 10 sec / 100 cc · in. 2 The following high-strength and high-permeability porous thin film support was impregnated with a gel electrolyte holding 100 parts by weight or more of a non-aqueous electrolyte in which a lithium salt was dissolved in 100 parts by weight of a polymer resin. Is. At this time, the method of impregnating and complexing the gel polymer electrolyte is not particularly limited, but the method of impregnating and coating the porous thin film support directly with a polymer in a fluid (solution) state that is easy for industrial production Is more preferred. Examples of such a method include the following methods, but are not limited thereto.
[0034]
(1) A method in which a polymer resin for gel electrolyte and a nonaqueous electrolytic solution are mixed and dissolved by heating, and the dope in the solution state is directly applied to and impregnated into a porous thin film support and then cooled and solidified to be combined.
[0035]
(2) A polymer resin for gel electrolyte, a non-aqueous electrolyte, and a volatile solvent for dissolving the polymer are mixed and dissolved, and the solution state dope is directly applied to and impregnated into the porous thin film support, and then volatilized. A method of complexing by removing the organic solvent by drying.
[0036]
(3) A polymer resin for gel electrolyte, a solvent in which the polymer is dissolved and compatible with water, and a phase separation agent (gelling agent or pore opening agent) are mixed and dissolved, and the dope in the solution state is supported by the porous thin film. Directly coat and impregnate the body, then immerse the membrane in a water-based coagulation bath to coagulate the polymer, then immerse the composite membrane that has been washed and dried in the electrolyte, and gel the polymer resin to form a composite membrane Method.
[0037]
(Positive electrode)
The positive electrode of the present invention is typically composed of an active material that occludes and releases lithium ions, a nonaqueous electrolytic solution, a binder polymer that holds the electrolytic solution and binds the active material, and a current collector. I can do things.
[0038]
Examples of the active material include various lithium-containing oxides and chalcogen compounds. LiCoO as the lithium-containing oxide 2 Lithium-containing cobalt oxides such as LiNiO 2 Lithium-containing nickel oxide such as LiMn 2 O Four And lithium-containing manganese composite oxides, lithium-containing nickel cogart oxides, lithium-containing amorphous vanadium pentoxide, and the like. Examples of the chalcogen compound include titanium disulfide and molybdenum disulfide.
[0039]
As the non-aqueous electrolyte, the same one as described for the polymer electrolyte membrane can be used.
[0040]
Examples of binder polymers that hold the non-aqueous electrolyte and bind the active material include polyvinylidene fluoride (PVdF), PVdF and hexafluoropropylene (HFP), and a copolymer of perfluoromethyl vinyl ether (FMVE). PVdF copolymer resin, polytetrafluoroethylene, fluorine-based resins such as fluorine rubber, hydrocarbon-based polymers such as styrene-butadiene copolymer, styrene-acrylonitrile copolymer, ethylene-propylene-terpolymer, Carboxymethyl cellulose, polyimide resin, or the like can be used. These may be used alone or in combination of two or more.
[0041]
The addition amount of the binder polymer is preferably in the range of 3 to 30 parts by weight with respect to 100 parts by weight of the active material. When the amount of the binder is less than 3 parts by weight, it is not preferable because a sufficient binding force for holding the active material cannot be obtained. On the other hand, if it exceeds 30 parts by weight, the active material density in the positive electrode decreases, resulting in a decrease in the energy density of the battery.
[0042]
As the current collector, a material having excellent oxidation stability is preferably used. Specific examples include aluminum, stainless steel, nickel, and carbon. Particularly preferably, foil-like aluminum is used.
[0043]
Further, the positive electrode of the present invention may contain artificial graphite, carbon black (acetylene black), nickel powder and the like as a conductive additive.
[0044]
Although the manufacturing method of the positive electrode of this invention is not specifically limited, The following method etc. are employable.
[0045]
(1) A predetermined amount of an active material, a binder polymer, and a volatile solvent for dissolving the binder are mixed and dissolved to prepare an active material paste. A method in which the obtained paste is applied onto a current collector, and then the membrane from which the volatile solvent has been removed by drying is dipped in a nonaqueous electrolytic solution to hold the electrolytic solution.
[0046]
(2) A predetermined amount of an active material, a binder polymer, and a water-soluble solvent for dissolving the binder are mixed and dissolved to prepare an active material paste. After coating the obtained paste on the current collector, the obtained coating film was immersed in an aqueous coagulation bath to coagulate the binder polymer, and then the membrane was washed with water and dried to a non-aqueous electrolyte. In which the electrolyte is retained in the impregnation.
[0047]
(3) A predetermined amount of an active material, a binder polymer, a low-boiling volatile solvent for dissolving the binder, and a non-aqueous electrolyte are mixed and dissolved to prepare an active material paste. A method of coating the obtained paste on a current collector, drying and removing only the low-boiling volatile solvent, and directly forming a positive electrode holding the electrolyte.
[0048]
(Negative electrode)
Next, the negative electrode of the present invention will be described. The negative electrode of the present invention typically comprises a carbonaceous active material that occludes and releases lithium ions, a non-aqueous electrolyte, a binder polymer that holds the electrolyte and binds the active material, and a current collector. Can be done.
[0049]
Examples of the carbonaceous active material include polyacrylonitrile, phenol resin, phenol novolac resin, those obtained by sintering organic polymer compounds such as cellulose, those obtained by sintering coke and pitch, carbon typified by artificial graphite and natural graphite. A quality material can be mentioned.
[0050]
As the non-aqueous electrolyte, the same one as described for the polymer electrolyte membrane can be used.
[0051]
As the binder polymer that holds the non-aqueous electrolyte and binds the active material, the same as the positive electrode described above can be used.
[0052]
The addition amount of the binder polymer is preferably in the range of 3 to 30 parts by weight with respect to 100 parts by weight of the active material. When the amount of the binder is less than 3 parts by weight, it is not preferable because a sufficient binding force for holding the active material cannot be obtained. On the other hand, if it exceeds 30 parts by weight, the active material density in the negative electrode is lowered, and as a result, the energy density of the battery is lowered, which is not preferable.
[0053]
As the current collector, a material excellent in reduction stability is preferably used. Specifically, metallic copper, stainless steel, nickel, carbon, etc. can be mentioned. Particularly preferably, foil-like metallic copper is used.
[0054]
Further, the negative electrode of the present invention may contain artificial graphite, carbon black (acetylene black), nickel powder and the like as a conductive additive.
[0055]
Although the manufacturing method of the negative electrode of this invention is not specifically limited, The thing similar to the method demonstrated by the above-mentioned positive electrode is employable.
[0056]
(Manufacture of batteries)
Next, the manufacturing method of the polymer electrolyte secondary battery of this invention is demonstrated. In the case of the production method of the present invention, a positive electrode holding a non-aqueous electrolyte, a composite polymer electrolyte membrane, and a negative electrode are laminated and laminated by a thermocompression bonding method, thereby requiring a subsequent non-aqueous electrolyte impregnation process. The feature is that the battery element is formed without the need. In addition, by performing thermocompression bonding using a composite polymer electrolyte membrane in a non-aqueous electrolyte holding state, the temperature of thermocompression bonding can be lowered by lowering the melting point of the electrolyte polymer, and a heat-resistant high-strength support and It is also a feature of this production method that the polymer electrolyte membrane does not collapse at the time of thermocompression bonding due to the composite.
[0057]
Various methods can be adopted as the thermocompression bonding method and are not particularly limited. For example, a method using a heat roller such as a double roll laminator can be used. In this case, the temperature used is a room temperature to 150 ° C. range. When the pressure bonding temperature is room temperature or lower, the adhesion between the electrode and the composite polymer electrolyte membrane is not sufficient, which is not preferable. On the other hand, when the temperature is higher than 150 ° C., the decomposition of the electrolyte due to heat and the decomposition reaction between the negative electrode material and the electrolytic solution occur simultaneously, which is not preferable. More preferably, a range of 30 ° C. to 120 ° C. is employed.
[0058]
In the case of the polymer electrolyte secondary battery of the present invention, the positive electrode and the composite polymer electrolyte membrane, and the negative electrode and the composite polymer electrolyte membrane are bonded with a peel strength of 10 gf / cm or more, respectively, and good interface bonding is performed. Is also a feature. Here, the peel strength means a value measured under the following conditions.
[0059]
The positive electrode or negative electrode bonded by the thermocompression bonding method and the composite polymer electrolyte membrane are cut into strips 3 cm wide and 6 cm long, and the electrode and the composite electrolyte membrane are pulled at a rate of 10 cm / min by a 180 ° peel test method. The average peel strength per unit width (gf / cm) at that time was defined as the peel strength.
[0060]
When this value is less than 10 gf / cm, interfacial bonding between the electrode and the polymer electrolyte membrane becomes insufficient, causing an increase in interfacial impedance, and causing interfacial delamination during battery manufacturing, which is not preferable.
[0061]
【Example】
Hereinafter, the contents of the present invention will be described in detail using examples.
[0062]
[Example 1]
"Composite polymer electrolyte membrane"
<Aramid support>
A non-crystallized m-aramid long fiber having a thickness of 3 de is added as a binder to a crystallized m-aramid short fiber having a thickness of 1.25 de, and a basis weight of 19 g / m is obtained by dry papermaking. 2 Then, a film was formed and a calendar roll was applied to obtain a non-woven sheet. The characteristics of the obtained support were as follows. Average film thickness 36μm, density 0.53g / cm Three , Porosity 62%, air permeability 0.04sec / 100cc ・ in 2 , Puncture strength 330g.
[0063]
<Combination of gel electrolyte>
As a polymer resin for the gel electrolyte, a PVdF copolymer obtained by copolymerizing 5.3 mol% of pafluoromethyl vinyl ether (FMVE) with PVdF was used. For 100 parts by weight of this polymer resin, 1M LiBF Four 300 parts by weight of a PC / EC (1/1 weight ratio) electrolytic solution in which was dissolved was added, and tetrahydrofuran (THF) was further added and mixed and dissolved to prepare a dope having a polymer concentration of 12% by weight. The obtained dope was impregnated and coated on the above-mentioned aramid support, and THF was dried and removed at 50 ° C. to produce a composite type polymer electrolyte membrane. The characteristics of the obtained electrolyte membrane were as follows. Average film thickness 45μm (4-5μm thick polymer electrolyte layer on both sides of composite membrane), puncture strength 443g, ionic conductivity 1.3 × 10 -3 S / cm (25 ℃), TMA heat resistance temperature> 400 ℃.
[0064]
"Positive electrode"
12 wt% PVdF N-methyl-pyrrolidone so that the dry weight of lithium cobaltate (LiCoO2; manufactured by Kansai Catalysts) powder 85 parts by weight, carbon black 5 parts by weight and polyvinylidene fluoride (PVdF) 10 parts by weight A (NMP) solution was used to prepare a positive electrode material paste. The obtained paste was applied and dried on an aluminum foil having a thickness of 20 μm to produce a positive electrode coating film having a thickness of 120 μm. Next, the obtained positive electrode was replaced with 1M LiBF. Four Was immersed in PC / EC (1/1 weight ratio) in which the electrolyte solution was dissolved to obtain a positive electrode holding the electrolytic solution.
[0065]
"Negative electrode"
Prepare a negative electrode material paste using 90 wt parts of mesophase carbon micro beads (MCMB; Osaka Gas Chemical) powder and 12 wt% PVdF NMP solution as the dry weight of PVdF as the carbonaceous negative electrode material. did. The obtained paste was applied and dried on a copper foil having a film thickness of 18 μm to prepare a negative electrode coating film having a thickness of 125 μm. The obtained negative electrode was used as 1M LiBF. Four Was immersed in PC / EC (1/1 weight ratio) in which an electrolyte was dissolved to prepare a negative electrode holding an electrolytic solution.
[0066]
"Battery manufacturing"
The positive electrode, the negative electrode, and the composite polymer electrolyte membrane were each cut into a size of 3 cm × 6 cm, overlapped in the order of the positive electrode, the composite polymer electrolyte membrane, and the negative electrode, and thermocompression bonded at 80 ° C. using a double roll laminator. A battery element (positive electrode / composite polymer electrolyte membrane / negative electrode laminate) produced in the same manner was subjected to a 180 ° peel test. The positive electrode and the composite polymer electrolyte membrane were 30 gf / cm, and the negative electrode was 22 gf / cm. It was found that good interfacial bonding was achieved because of adhesion with peeling force. A stainless sheet terminal was attached to each current collector of the obtained battery element, and laminated with a polyethylene / aluminum / polyethylene terephthalate laminate sheet (film thickness 50 μm) to produce a sheet-like battery. About the obtained battery, 1mA / cm 2 Charging / discharging was performed at a current density of. At this time, charging was performed up to 4.2V, and discharging was cut at 2.7V. The current efficiency of the first discharge was 80%, and repeated charge / discharge was possible. The discharge amount per negative electrode weight at that time was 200 mAh / g.
[0067]
[Comparative Example 1]
"Polymer electrolyte membrane"
Without using an aramid support, the gel electrolyte dope used in Example 1 was coated on a silicon-coated release film to produce a single membrane made of a gel electrolyte film. The characteristics of the obtained film were as follows. Film thickness 45μm, puncture strength 20g, ionic conductivity 2.5 × 10 -3 S / cm, TMA heat resistance 100 ° C. Compared with the film of Example 1, the conductivity was good, but the puncture strength and heat resistance were low.
[0068]
"Battery manufacturing"
Using the positive electrode and the negative electrode prepared in Example 1 and the polymer electrolyte membrane of this comparative example, an attempt was made to produce a battery element using a double roll laminator in the same manner as in Example 1. However, since the mechanical properties of the polymer electrolyte membrane are not sufficient, the polymer electrolyte membrane collapses at the time of lamination, and a good battery element cannot be produced.
[0069]
[Example 2]
"Composite polymer electrolyte membrane"
Except for using a polymer (VdF-HFP) obtained by copolymerizing 5 mol% of hexafluoropropylene (HFP) with VdF as a polymer resin for the gel electrolyte, the same aramid support and production method as in Example 1 were adopted, A composite polymer electrolyte membrane was prepared. The characteristics of the obtained electrolyte membrane are as follows. Average film thickness 45μm (4-5μm thick polymer electrolyte layer on the front and back of the composite membrane), puncture strength 450g, ionic conductivity 1.3 × 10 -3 S / cm (25 ℃), TMA heat resistance temperature> 400 ℃.
[0070]
"Positive electrode"
85 parts by weight of lithium cobaltate (LiCoO2; manufactured by Kansai Catalyst) powder, 5 parts by weight of carbon black, 10 parts by weight of VdF-HFP used as a binder for the polymer electrolyte, and 1M LiBF as a non-aqueous electrolyte Four A positive electrode material paste was prepared using a 12 wt% tetrahydrofuran (THF) solution of VdF-HFP so that the amount of PC / EC (1/1 weight ratio) in which the solution was dissolved was 20 parts by weight. The obtained paste was applied onto an aluminum foil having a thickness of 20 μm and then dried at 50 ° C. and removed from THF to prepare a positive electrode coating film holding a non-aqueous electrolyte having a thickness of 120 μm.
[0071]
"Negative electrode"
90 parts by weight of mesophase carbon microbead (MCMB; Osaka Gas Chemical) powder as a carbonaceous negative electrode material, 10 parts by weight of dry weight of VdF-HFP used for the polymer electrolyte as a binder, and 1M of non-aqueous electrolyte LiBF Four A negative electrode material paste was prepared using a 12 wt% solution of VdF-HFP in tetrahydrofuran (THF) so that the amount of PC / EC (1/1 weight ratio) in which the solution was dissolved was 20 parts by weight. The obtained paste was applied onto a copper foil having a thickness of 18 μm and dried at 50 ° C. to remove THF, thereby preparing a negative electrode coating film holding a non-aqueous electrolyte having a thickness of 125 μm.
[0072]
"Battery manufacturing"
In the same manner as in Example 1, a battery element composed of a positive electrode / composite polymer electrolyte membrane / negative electrode laminate and a sheet battery in which the battery element was enclosed in an aluminum laminate film were produced. The peel strength between the positive electrode and the negative electrode and the polymer electrolyte membrane was 35 gf / cm and 24 gf / cm, respectively. 1mA / cm for sheet batteries 2 When charging / discharging was carried out in the same manner as in Example 1, it was confirmed that repetitive charging / discharging was possible. The current efficiency of the first discharge at that time was 79%, per weight of negative electrode carbon The discharge amount was 196 mAh / g.
[0073]
[Comparative Example 2]
"Composite polymer electrolyte membrane"
Using the same aramid support and polymer electrolyte dope as in Example 2, a composite polymer electrolyte membrane in which the aramid support was impregnated with the polymer electrolyte was produced in the same manner as in Example 2. However, at this time, the amount of the polymer electrolyte impregnated into the support was reduced. For this reason, the average film thickness was 36 μm, which was unchanged from the value of the support alone, and there were portions where the support was partially exposed on the front and back of the composite membrane. Other characteristics were as follows. Puncture strength 428g, ionic conductivity 1.1 × 10 -3 S / cm (25 ℃), TMA heat resistance temperature> 400 ℃.
[0074]
"Battery manufacturing"
Using the composite polymer electrolyte membrane and the positive electrode and negative electrode used in Example 2, a thermocompression treatment using a double roll laminator was performed in the same manner as in Example 1. When a peel test was performed on this multilayer element, the average peel strength was as low as 5 gf / cm and 3 gf / cm for the positive electrode and the negative electrode, respectively. In addition, a portion where both the positive and negative electrodes were not adhered (bonded) to the electrolyte membrane was observed at the visual level, and it was found that good interface bonding was not performed.
[0075]
【The invention's effect】
As described above in detail, according to the present invention, by using a composite polymer electrolyte membrane having high safety that combines high ion conductivity, strong short-circuit prevention strength, and high mechanical heat resistance, It has become possible to provide a highly polymer electrolyte secondary battery with an easy manufacturing method.

Claims (8)

非水電解液を保持した、リチウムイオンを吸蔵放出する正極材料を有してなる正極と、非水電解液を保持した、リチウムイオンを吸蔵放出する炭素質負極材料を有してなる負極とが、非水電解液を保持したポリマー電解質膜を介して接合されたポリマー電解質二次電池において、
前記ポリマー電解質膜は、非水電解液とこの電解液を保持可能なポリマー樹脂とを有してなるゲル状のポリマー電解質を、多孔質薄膜に含浸させて一体化した複合型ポリマー電解質膜であり、
前記多孔質薄膜は、突き刺し強度が200g以上かつ透気度が10sec/100cc・in以下の全芳香族ポリアミドからなる多孔質薄膜であり、
前記ポリマー電解質膜は、イオン伝導度が25℃にて5×10−4S/cm以上であり、突刺し強度が300g以上であり、かつ膜の力学的な耐熱温度が300℃以上であり、
前記ポリマー電解質膜の平均膜厚が、前記多孔質薄膜の平均膜厚の1.05〜2.0倍であること
を特徴とするポリマー電解質二次電池。
A positive electrode having a non-aqueous electrolyte and having a positive electrode material that absorbs and releases lithium ions, and a negative electrode having a non-aqueous electrolyte and having a carbonaceous negative electrode material that absorbs and releases lithium ions. In the polymer electrolyte secondary battery joined through the polymer electrolyte membrane holding the non-aqueous electrolyte,
The polymer electrolyte membrane is a composite polymer electrolyte membrane in which a porous thin film is impregnated with a gel polymer electrolyte having a non-aqueous electrolyte and a polymer resin capable of holding the electrolyte. ,
The porous thin film is a porous thin film made of wholly aromatic polyamide having a puncture strength of 200 g or more and an air permeability of 10 sec / 100 cc · in 2 or less,
The polymer electrolyte membrane is in ionic conductivity 5 × 10 -4 S / cm or more at 25 ° C., and the piercing strength is more than 300 g, and mechanical heat resistance temperature of the membrane Ri der 300 ° C. or higher ,
The polymer electrolyte secondary battery , wherein an average film thickness of the polymer electrolyte membrane is 1.05 to 2.0 times an average film thickness of the porous thin film .
該複合型ポリマー電解質膜におけるゲル状のポリマー電解質の含有量が30〜85重量%であることを特徴とする請求項1記載のポリマー電解質二次電池。  2. The polymer electrolyte secondary battery according to claim 1, wherein the content of the gel polymer electrolyte in the composite polymer electrolyte membrane is 30 to 85% by weight. 該ゲル状のポリマー電解質が、ポリマー樹脂100重量部に対してリチウム塩を溶解した非水電解液を100重量部以上含有することを特徴とする請求項1又は2記載のポリマー電解質二次電池。The polymer electrolyte secondary battery according to claim 1 or 2, wherein the gel polymer electrolyte contains 100 parts by weight or more of a nonaqueous electrolytic solution in which a lithium salt is dissolved with respect to 100 parts by weight of a polymer resin. 該ポリマー樹脂が、ポリ弗化ビニリデン(PVdF)を主成分とするPVdF共重合体であることを特徴とする請求項記載のポリマー電解質二次電池。4. The polymer electrolyte secondary battery according to claim 3 , wherein the polymer resin is a PVdF copolymer mainly composed of polyvinylidene fluoride (PVdF). 該多孔質薄膜の平均膜厚が50μm以下であることを特徴とする請求項1〜のいずれかに記載のポリマー電解質二次電池。The polymer electrolyte secondary battery according to any one of claims 1 to 4 , wherein an average film thickness of the porous thin film is 50 µm or less. 該多孔質薄膜が目付け量12〜30g/mの不織布状のシートであることを特徴とする請求項1〜のいずれかに記載のポリマー電解質二次電池。Polymer electrolyte secondary battery according to any one of claims 1 to 5, wherein the porous thin film is a nonwoven sheet basis weight 12 to 30 g / m 2. 正極とポリマー電解質膜との界面および負極とポリマー電解質膜との界面が各々10gf/cm以上の剥離強度で接着していることを特徴とする請求項1〜のいずれかに記載のポリマー電解質二次電池。Positive electrode and the polymer electrolyte secondary according to any one of claims 1 to 6, characterized in that the interface between the interface and the negative electrode and the polymer electrolyte membrane of a polymer electrolyte membrane is each bonded with peel strength of at least 10 gf / cm Next battery. 非水電解液を保持した状態の正極と、非水電解液を保持した状態のポリマー電解質膜と、非水電解液を保持した状態の負極とをこの順に重ね合せ、熱圧着法により貼り合せる工程を含むポリマー電解質二次電池の製造方法であって、
前記ポリマー電解質膜には、非水電解液とこの電解液を保持可能なポリマー樹脂とを有してなるゲル状のポリマー電解質を、多孔質薄膜に含浸させて一体化した複合型ポリマー電解質膜を用い、
前記多孔質薄膜は、突き刺し強度が200g以上かつ透気度が10sec/100cc・in以下の全芳香族ポリアミドからなる多孔質薄膜であり、
前記ポリマー電解質膜は、イオン伝導度が25℃にて5×10−4S/cm以上であり、突刺し強度が300g以上であり、かつ膜の力学的な耐熱温度が300℃以上であり、
前記ポリマー電解質膜の平均膜厚が、前記多孔質薄膜の平均膜厚の1.05〜2.0倍であること
を特徴とするポリマー電解質二次電池の製造方法。
A process in which a positive electrode holding a non-aqueous electrolyte, a polymer electrolyte membrane holding a non-aqueous electrolyte, and a negative electrode holding a non-aqueous electrolyte are stacked in this order and bonded together by a thermocompression bonding method. A method for producing a polymer electrolyte secondary battery comprising:
The polymer electrolyte membrane includes a composite polymer electrolyte membrane in which a porous thin film is impregnated with a gel polymer electrolyte having a non-aqueous electrolyte and a polymer resin capable of holding the electrolyte. Use
The porous thin film is a porous thin film made of wholly aromatic polyamide having a puncture strength of 200 g or more and an air permeability of 10 sec / 100 cc · in 2 or less,
The polymer electrolyte membrane is in ionic conductivity 5 × 10 -4 S / cm or more at 25 ° C., and the piercing strength is more than 300 g, and mechanical heat resistance temperature of the membrane Ri der 300 ° C. or higher ,
The average thickness of the polymer electrolyte membrane is 1.05 to 2.0 times the average thickness of the porous thin film .
JP15937298A 1998-05-22 1998-06-08 Polymer electrolyte secondary battery and manufacturing method thereof Expired - Fee Related JP4558110B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP15937298A JP4558110B2 (en) 1998-06-08 1998-06-08 Polymer electrolyte secondary battery and manufacturing method thereof
TW088106662A TW431009B (en) 1998-05-22 1999-04-26 Electrolytic-solution-supporting polymer film and secondary battery
AU29100/99A AU744769B2 (en) 1998-05-22 1999-05-19 Electrolytic-solution-supporting polymer film and secondary battery
US09/314,139 US6291106B1 (en) 1998-05-22 1999-05-19 Electrolytic-solution-supporting polymer film and secondary battery
KR1019990018214A KR100633713B1 (en) 1998-05-22 1999-05-20 An electrolytic-solution-supporting polymer film, a polymer electrolyte secondary battery using the same and a process for producing the battery
CA002272782A CA2272782C (en) 1998-05-22 1999-05-20 Electrolytic-solution-supporting polymer film and secondary battery
DE69935279T DE69935279T2 (en) 1998-05-22 1999-05-21 Electrolytic solution-bearing polymer film and secondary battery
EP99109219A EP0959510B1 (en) 1998-05-22 1999-05-21 Electrolytic-solution-supporting polymer film and secondary battery
AT99109219T ATE355624T1 (en) 1998-05-22 1999-05-21 ELECTROLYTIC SOLUTION BEARING POLYMER FILM AND SECONDARY BATTERY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15937298A JP4558110B2 (en) 1998-06-08 1998-06-08 Polymer electrolyte secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11354162A JPH11354162A (en) 1999-12-24
JP4558110B2 true JP4558110B2 (en) 2010-10-06

Family

ID=15692397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15937298A Expired - Fee Related JP4558110B2 (en) 1998-05-22 1998-06-08 Polymer electrolyte secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4558110B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4560851B2 (en) * 1999-07-08 2010-10-13 ソニー株式会社 Method for producing solid electrolyte battery
JP5171150B2 (en) * 2000-03-07 2013-03-27 帝人株式会社 Separator for lithium ion secondary battery
JP2001266942A (en) * 2000-03-15 2001-09-28 Teijin Ltd Electrolyte carrying polymer membrane and secondary battery using it
JP4201459B2 (en) * 2000-03-31 2008-12-24 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5156158B2 (en) * 2001-02-22 2013-03-06 東レバッテリーセパレータフィルム株式会社 Composite membrane and manufacturing method thereof
JP4660105B2 (en) * 2004-03-26 2011-03-30 株式会社東芝 Nonaqueous electrolyte secondary battery
WO2006123811A1 (en) * 2005-05-17 2006-11-23 Teijin Limited Separator for lithium ion secondary battery and lithium ion secondary battery
JP2006344506A (en) * 2005-06-09 2006-12-21 Tomoegawa Paper Co Ltd Separator for electronic components
JP5011790B2 (en) * 2006-03-31 2012-08-29 住友ベークライト株式会社 Secondary battery and manufacturing method thereof
JP5646831B2 (en) * 2009-09-04 2014-12-24 日立マクセル株式会社 LITHIUM SECONDARY BATTERY, ITS MANUFACTURING METHOD, AND LITHIUM SECONDARY BATTERY SEPARATOR
JP5749116B2 (en) * 2010-08-18 2015-07-15 旭化成イーマテリアルズ株式会社 Lithium ion secondary battery
JP2013245428A (en) * 2012-05-29 2013-12-09 Shinshu Univ Separator, method for producing separator and apparatus for producing separator
JP5721802B2 (en) * 2013-10-04 2015-05-20 日立マクセル株式会社 Lithium secondary battery separator, lithium secondary battery and method for producing the same
JP2017139086A (en) * 2016-02-02 2017-08-10 日本電気株式会社 Battery separator, manufacturing method thereof, and secondary battery
CN111554973A (en) * 2020-04-09 2020-08-18 天津工业大学 Full-solid polymer electrolyte based on dendritic polyamide-6 nanofiber membrane and preparation method thereof
CN112086611B (en) * 2020-09-29 2022-09-23 中国第一汽车股份有限公司 Composite diaphragm and preparation method and application thereof

Also Published As

Publication number Publication date
JPH11354162A (en) 1999-12-24

Similar Documents

Publication Publication Date Title
KR100633713B1 (en) An electrolytic-solution-supporting polymer film, a polymer electrolyte secondary battery using the same and a process for producing the battery
US9065119B2 (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
US9269938B2 (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP4127989B2 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
US9431641B2 (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
US10193117B2 (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
US10115948B2 (en) Separator for a non-aqueous secondary battery and non-aqueous secondary battery
JP4558110B2 (en) Polymer electrolyte secondary battery and manufacturing method thereof
WO2006064775A1 (en) Lithium ion secondary battery
JP4981220B2 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
US20150179997A1 (en) Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
WO2022141508A1 (en) Electrochemical device and electronic device
JP2001266942A (en) Electrolyte carrying polymer membrane and secondary battery using it
JP4086474B2 (en) Electrolyte-supported polymer film, battery separator, secondary battery using them, and method for producing the same
JP2014026946A (en) Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2001222988A (en) Polymer membrane carrying electrolyte and secondary battery therewith
JP2004253380A (en) Lithium ion secondary battery and separator thereof
JP3676115B2 (en) Electrolyte-supported polymer film and secondary battery using the same
JP4017744B2 (en) Solid-type polymer electrolyte membrane and method for producing the same
JP4187434B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery
JPH10284045A (en) Manufacture of porous polymer electrolyte and nonaqueous electrolyte battery
JP2001118559A (en) Polymer film carrying electrolyte and secondary battery using the same
JP4266279B2 (en) Electrode composition and lithium secondary battery
JP2001093499A (en) Porous film for battery and secondary battery using the same
JP2023515016A (en) Lithium secondary battery and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080819

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080916

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081010

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140730

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees