JP4127989B2 - Non-aqueous secondary battery separator and non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery separator and non-aqueous secondary battery Download PDF

Info

Publication number
JP4127989B2
JP4127989B2 JP2001276316A JP2001276316A JP4127989B2 JP 4127989 B2 JP4127989 B2 JP 4127989B2 JP 2001276316 A JP2001276316 A JP 2001276316A JP 2001276316 A JP2001276316 A JP 2001276316A JP 4127989 B2 JP4127989 B2 JP 4127989B2
Authority
JP
Japan
Prior art keywords
separator
secondary battery
aqueous secondary
porous layer
pvdf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001276316A
Other languages
Japanese (ja)
Other versions
JP2003086162A (en
Inventor
聡 西川
博行 本元
弘樹 佐野
高弘 大道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2001276316A priority Critical patent/JP4127989B2/en
Publication of JP2003086162A publication Critical patent/JP2003086162A/en
Application granted granted Critical
Publication of JP4127989B2 publication Critical patent/JP4127989B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明はリチウムのドープ・脱ドープにより起電力を得る非水系二次電池に関する。特に、非水系二次電池に用いるセパレータに関するものである。
【0002】
【従来の技術】
リチウム含有遷移金属酸化物を正極に用い、リチウムのドープ・脱ドープ可能な炭素系材料を負極に用い、電解液に非水系電解液を用いる非水系二次電池(リチウムイオン二次電池)は他の二次電池に比べ高エネルギー密度を有するという特徴を持つ。このリチウムイオン二次電池は軽量化・薄膜化といった携帯電子機器の要求に合っており、携帯電話・ノートパソコン等の携帯電子機器の電源として用いられている。しかし、携帯電子機器の軽量化及び薄膜化の要求はますます厳しくなってきている。そこで、これに用いるリチウムイオン二次電池もこの流れの中で更なる高エネルギー化を求めて激しい技術開発がなされているのが現状である。
【0003】
主に携帯電話に用いる扁平型のリチウムイオン二次電池においては薄膜化・軽量化の要求の中で、外装を従来の金属缶からアルミラミネートフィルムに変更するという技術革新が近年なされている。このアルミラミネートフィルム外装(フィルム外装)は金属缶外装と異なりフレキシブルな外装であるため外圧が弱く、電極とセパレータ界面のコンタクトを取るのが容易ではない。また、液漏れも危惧され、安全性の観点からも問題があった。このため従来の正極/セパレータ/負極という電池構成ではフィルム外装電池の実現はできなかった。
【0004】
それにも拘わらずこの技術革新を可能にしたのは、電極との接着性及び電解液保持性が優れるセパレータという技術である。このセパレータを用いることで電極とセパレータの良好な界面コンタクトを可能にし、また液漏れを防止することが可能になった。このセパレータには電解液に膨潤しこれを保持する有機高分子を用いる。このような有機高分子を単独でセパレータとして用いることも考えられたが、物性上の問題から連続生産に向かず、概ね支持体により補強する形態で実用化している。
【0005】
すなわち、支持体の両面に、電解液に膨潤しこれを保持する有機高分子からなる接着層を塗工したセパレータが提案されている。支持体には不織布や従来のリチウムイオン二次電池でセパレータとして用いられているポリオレフィン微多孔膜が提案されているが、現在は主にポリオレフィン微多孔膜がシャットダウン特性による安全性の観点から実用化されている。また、接着層にはポリフッ化ビニリデン(PVdF)を主体とした有機高分子が耐久性の観点から主に用いられている。
【0006】
また、上記のような電極とセパレータの間に接着層を配置する電池構成はフィルム外装を可能にするという観点だけでなく、従来の金属缶外装においても電池の高エネルギー密度化という観点から注目されている。高エネルギー密度化するということは、所定の大きさの缶に多くの電池エレメントを厳しく詰め込むことになる。この場合、良好な電極セパレータ界面を形成させるのが困難で、サイクル特性等が課題となっているが、上記のようなフレキシブルな接着層を配置することでこの課題を解決できる可能性がある。
【0007】
上記のような背景で、表裏に接着層を有するポリオレフィン微多孔膜セパレータが注目されている。この中でも、現状の非水系二次電池製造プロセスを利用するという観点から、電解液を含まない接着層(ドライ接着層)を有するセパレータが重要な技術要素となってきている。このようなセパレータは、特開平9−293518号公報、特開平10−189054号公報、特開平11−26025号公報及び特開2001−118558号公報等で提案されている。
【0008】
【発明が解決しようとする課題】
上記の特開平10−189054号公報はPVdFをN−メチルピロリドン(NMP)に溶解したドープをポリオレフィン微多孔膜上に塗工し乾燥することで接着層を有するセパレータを得る。このような系は接着層が緻密化し良好なイオン伝導度は得られず電池特性は低下するといった問題がある。また、特開2001−118558号公報は、このような問題を解決するため、ポリオレフィン微多孔膜上へ部分的に(表面被覆率50%以下)接着層を塗工したセパレータの提案である。この系は部分塗工であるため電極・セパレータ界面にセパレータに保持されないフリーな電解液が多く存在するため、サイクル特性の低下等の問題が生じる。また、液漏れの信頼性という観点からフィルム外装には適さない。
【0009】
特開平9−293518号公報は湿式製膜法によりPVdFからなる接着層を作製し、これをポリオレフィン微多孔膜と貼り合わせることで接着層を有するセパレータを得る提案で、セパレータ表面に実質的な貫通孔を有さないことを特徴としている。接着層であるPVdF膜は物性が低いため、ポリオレフィン微多孔膜と貼り合わせるという方法は生産性の観点から問題がある。また、記載によると貼り合わせるというのは単に重ねるだけで本質的に一体化されているわけではなく、ポリオレフィン微多孔膜と接着層の剥離の問題も考えられる。さらに、表面に実質的な貫通孔が有さないという点が特徴となっているが、貫通孔がないために電極・セパレータ界面のイオン伝導も問題となり、レート特性等の低下が予想される。
【0010】
特開平11−26025号公報はポリオレフィン微多孔膜上へPVdFをNMPに溶解したドープを塗工し、これを水中で凝固させるという一般的な湿式製膜プロセスによりセパレータを得る。この系は凝固浴が水であるため凝固が早く表面に緻密なPVdF層が形成され実質的な貫通孔を有さないため上記同様の問題がある。
【0011】
このように、表裏に接着層を有するポリオレフィン微多孔膜セパレータにおいて、イオン伝導性、液保持性、接着性及び生産性といった要求特性を十分満足する構成は見出されていないのが現状である。このような現状を鑑み本発明は、ポリオレフィン微多孔膜の表裏に接着層が一体化されたセパレータにおいて、イオン伝導性良好でありかつ電極との接着性も良好なセパレータの開発を目的とする。
【0012】
【課題を解決するための手段】
上記のような課題を解決するために本発明は、
リチウムのドープ・脱ドープにより起電力を得る非水系二次電池に用いるセパレータにおいて、該セパレータが、ポリオレフィン微多孔膜の表裏全面に、電解液に膨潤しこれを保持する有機高分子からなる多孔質層が配置されて該ポリオレフィン微多孔膜と一体化され、
▲1▼該多孔質層の空隙率が50〜90%である
▲2▼該多孔質層表面に孔径0.05〜10μmの孔が点在している
▲3▼表裏の該多孔質層の総厚みが20μm以下であり、該多孔質層の厚みが片面それぞれでは1μm以上である
ことを特徴とする非水系二次電池用セパレータ
を提供する。
【0013】
ここで該多孔質層が電極との接着層として機能する。さらに上記の発明に加えて本発明は以下の内容も含む。
(ア)表面開孔率が1〜80%であることを特徴とする上記発明記載の非水系二次電池用セパレータ。
(イ)該有機高分子がポリフッ化ビニリデン(PVdF)、PVdF共重合体、またはこれらを主体とするPVdF系ポリマーであることを特徴とする上記発明および(ア)いずれかに記載の非水系二次電池用セパレータ。
(ウ)リチウムを可逆的にドープ・脱ドープ可能な正極及び負極とセパレータを備え、非水系電解液を用いた非水系二次電池において、該セパレータとして上記発明及び(ア)〜(イ)いずれかに記載のセパレータを用いることを特徴とする非水系二次電池。
【0014】
【発明の実施の形態】
以下、本発明の内容について説明する。
[非水系二次電池用セパレータ]
本発明の非水系二次電池用セパレータは、ポリオレフィン微多孔膜の表裏全面に、電解液に膨潤しこれを保持する有機高分子からなる多孔質層が配置されて該ポリオレフィン微多孔膜と一体化され、
▲1▼該多孔質層の空隙率が50〜90%である
▲2▼該多孔質層表面に孔径0.05〜10μmの孔が点在している
▲3▼表裏の該多孔質層の総厚みが20μm以下であり、該多孔質層の厚みが片面それぞれでは1μm以上である
ことを特徴とする。
【0015】
該ポリオレフィン微多孔膜としては、非水系二次電池用セパレータ用の多孔質支持体として提案されている膜厚5〜30μmの公知のものを好適に用いることができる。
電解液に膨潤しこれを保持する有機高分子は、ポリフッ化ビニリデン(PVdF)、ポリエチレンオキサイド(PEO)、ポリアクリロニトリル(PAN)、ポリメチルメタクリレート(PMMA)及びその共重合体を挙げることができる。本発明にはこれらを単独で用いても2種類以上混合して用いても構わない。
【0016】
この中でも耐久性や製膜性を考慮するとPVdF、PVdF共重合体、またはこれらを主体とするPVdF系ポリマーが好適に用いられる。さらに好ましくはPVdF、PVdF共重合体をあげることができる。これらの中でも、特にフッ化ビニリデン(VdF)、ヘキサフロロプロピレン(HFP)、クロロトリフロロエチレン(CTFE)の3元共重合体が電解液に対する膨潤性・保持性、耐熱性及び電極との接着性が優れ好適であり、この3元共重合体の好適な共重合組成としては、
VdF/HFP(a)/CTFE(b)
(a)=2〜8重量%
(b)=1〜6重量%
が挙げられる。また、該有機高分子の分子量は重量平均分子量(Mw)で100,000〜800,000が好適で、特に200,000〜600,000が好適である。これらのPVdF系ポリマーは公知の方法で合成できる。一般的にはラジカル重合法により合成することができ、具体的には溶液重合・懸濁重合・乳化重合・バルク重合等の方法で作製される。
【0017】
本発明の非水系二次電池用セパレータは、該ポリオレフィン微多孔膜の表裏に該多孔質層が配置され一体化された構造となっているが、該多孔質層の空隙率は50〜90%が好適であり、特に60〜80%が好適である。該多孔質層はポリオレフィン微多孔膜に電極との接着性及び電解液保持性を付与する目的で塗工されているが、空隙率が低いとイオン伝導度的に不利になり電池の特性を低下させる要因になる。このため空隙率は50%以上が好適で、さらに60%以上が好適である。また空隙率が高いことは伝導度的には有利になるが、接着性や電解液保持性という観点では不利となる。このため空隙率は90%以下が好適であり、さらに80%以下が好適である。
【0018】
ここで、空隙率(ε)は該多孔質層の体積(V)、その体積中に存在する該有機高分子の重量(W)及び該有機高分子の密度(D)から計算することができる。すなわち、ε={1−(W/DV)}×100である。ここで、多孔質層の体積は該セパレータ体積から該ポリオレフィン微多孔膜の体積を引くことで求められる。また、該有機高分子の重量は該セパレータ重量から該ポリオレフィン微多孔膜の重量を引くことで求められる。
【0019】
本発明のセパレータの表裏面のほぼ全面は該多孔質層で覆われているが、この多孔質層の表面(外側)に0.05〜10μmの孔が点在していることも本発明非水系二次電池用セパレータの特徴である。特開平9−293518号公報に記載されているように表面に実質的に貫通孔を有さないものが電解液保持性の観点では有利である。しかし、電極セパレータ界面がすべてポリマーで覆われているので、この部分が大きな抵抗となり高レート放電等において不利となる。また、あまり大きな孔が存在すると電解液保持性が十分でなくなる。このような観点から、表面に0.05〜10μmの孔が点在していることが好適で、特に0.1〜3μmの孔が点在していることが好ましい。
【0020】
また、本発明のセパレータの表面開孔率は概ね1〜80%の範囲が好適である。このような孔の存在は粗面化効果により電極との接着性においても有利に働く。この表面に点在する孔は走査型電子顕微鏡(SEM)により観察可能であり、孔径及び表面開孔率はSEM観察の結果を画像処理する方法等で求めることが可能である。
【0021】
本発明の非水系二次電池用セパレータは、表裏の該多孔質層の総厚みが20μm以下であり、該多孔質層の厚みが片面それぞれは1μm以上であることも特徴である。該多孔質層はポリオレフィン微多孔膜に比べ特に低温でイオン伝導度的に不利となり、厚みは極力薄い方がよい。しかし、接着性の確保のためには厚い方が好ましい。このような観点から表裏両面の和で20μm以下が好適であり、特に15μm以下が好適である。また片面それぞれの該多孔質層の厚みは1μm以上が好ましい。該多孔質層の表裏両面の和が20μm以上となると該多孔質層部分の抵抗が顕著に電池特性に反映され、低温特性及び高レート放電特性において不利となる。また、該多孔質層の片面それぞれの厚みが1μm以下となると電極との接着性が不十分となり好ましくない。
【0022】
本発明の非水系二次電池用セパレータのような多孔質層/ポリオレフィン微多孔膜/多孔質層といった3層構造の場合、多孔質層を形成する材料やモロホロジーが表裏で異なると収縮応力の関係からカールの要因となりハンドリング上好ましくない。カールは中央のポリオレフィン微多孔膜の物性にもよるが、非水系二次電池用セパレータといった薄膜化が要求される用途においては、カールは容易に起こりがちである。このような理由から、該多孔質層を形成する材料は表裏で本質的に同等であることが好ましい。また、表裏のモロホロジーもほぼ同等である方が好適である。SEMにより表裏の該多孔質層のモロホロジーは概ね観察することができる。また、該多孔質層を形成する材料が本質的に同等であったとき、該セパレータがカールしなければ該多孔質層のモロホロジーは表裏で同等であると言える。
【0023】
該多孔質層を形成する材料が表裏で本質的に同じ場合は、表裏の該多孔質層のモロホロジーは該多孔質層表裏それぞれの膜厚及び目付から推定可能である。カールを防止するためには、{(表裏の該多孔質層の膜厚差)/(表裏の該多孔質層の膜厚和)}×100<20%であり、{(表裏の該多孔質層の目付差)/(表裏の該多孔質層の目付和)}×100<20%であることが好ましい。
本発明の非水系二次電池用セパレータの膜厚としてはエネルギー密度と安全性の観点から10〜50μmの範囲が好適である。
【0024】
本発明の非水系二次電池用セパレータは、該有機高分子と、それを溶解しかつ水に相溶する有機溶媒と、相分離剤(ゲル化剤もしくは開孔剤)とを混合溶解したドープをポリオレフィン微多孔に塗布し、ついでその膜を水系の凝固浴に浸漬し該有機高分子を凝固後、水洗・乾燥を行ない多孔膜とする湿式製膜法によって得ることができる。この製膜法はドープ組成及び凝固浴組成で空隙率や孔径を容易に制御できるため、本発明セパレータのモロホロジー制御において特に好適である。本発明のセパレータを得るための好適な条件について具体的に以下に述べる。
【0025】
該ドープの有機溶剤は該有機高分子を溶解可能なでありかつ水と相溶化するものであれば好適に用いることができる。該有機高分子がポリフッ化ビニリデン(PVdF)、PVdF共重合体、及びPVdFを主体とするPVdF系ポリマーの場合、極性の高いものが好ましく、N−メチルピロリドン(NMP)、N,N−ジメチルアセトアミド(DMAc)、N,N−ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、アセトニトリル等が好適に選ばれ、これらを混合して用いてもよい。該ドープ中の該有機高分子濃度は5〜25重量%が好適に選ばれる。
【0026】
相分離剤は該有機高分子に対して貧溶媒であり水と相溶化するものであれば用いることが可能である。該有機高分子がPVdF、PVdF共重合体、及びこれらを主体するPVdF系ポリマーであるとき、例えば水やアルコール類が好適に選ばれ、特に重合体を含むプロピレングリコールの類、エチレングリコール、トリプロピレングリコール(TPG)、1,3−ブタンジオール、1,4−ブタンジオール、ポリエチレングリコールモノエチルエーテル、メタノール、エタノール、グリセリン等の多価アルコール等が好適に選ばれる。該ドープ中の相分離剤の濃度は該有機溶剤と相分離剤の混合溶媒中0〜60重量%の範囲で好適に選ばれる。
【0027】
凝固浴は水と該ドープの有機溶剤溶剤及び相分離剤の混合液が好適に用いられる。水の割合は30〜90重量%の範囲が好適であり、有機溶剤と相分離剤の量比はドープにおけるこれらの量比と合わせた方が生産上好ましい。
本発明のセパレータは、該有機高分子と、それを溶解する揮発性溶媒と可塑剤とを混合溶解し、この溶液状態のドープをポリオレフィン微多孔膜に塗布し、次いで乾燥し揮発性溶媒を除去後、可塑剤を溶解して該有機高分子を溶解しない揮発性溶剤で可塑剤を抽出後、乾燥を行い多孔膜とする乾式製膜法により得ることもできる。
【0028】
本発明のセパレータの製法としては、これらのなかでも上記の湿式製膜法が、多孔質層の多孔化制御を容易にし、かつポリオレフィン微多孔膜との一体化も同時に行うことができるのでより好適である。
[非水系二次電池]
本発明の非水系二次電池は、リチウムを可逆的にドープ・脱ドープ可能な正極及び負極とセパレータを備え、非水系電解液を用いた非水系二次電池であり、本発明の非水系二次電池用セパレータを用いることを特徴とし、他の構成は公知のものである。以下、詳細に説明する。
【0029】
(正極)
本発明の非水系二次電池の正極は、代表的にはリチウムイオンを吸蔵放出する活物質とバインダーポリマー及び集電体とから構成される。
前記活物質としては、種々のリチウム含有酸化物やカルコゲン化合物を挙げることができる。リチウム含有酸化物としては、LiCoO2などのリチウム含有コバルト酸化物、LiNiO2などのリチウム含有ニッケル酸化物、LiMn24などのリチウム含有マンガン複合酸化物、リチウム含有ニッケルコバルト酸化物、リチウム含有非晶質五酸化バナジウムなどを挙げることができる。また、カルコゲン化合物としては、二硫化チタン、二硫化モリブデンなどを挙げることができる。
【0030】
バインダーポリマーとしては、ポリビニリデンフルオライド(PVdF);弗化ビニリデン(VdF)とヘキサフロロプロピレン(HFP)、パーフロロメチルビニルーテル(PFMV)、テトラフロロエチレン(TFE)との二元共重合体;VdF/HFP/TFE、VdF/HFP/CTFEなどのPVdFを主成分とする三元共重合体樹脂;ポリテトラフロロエチレン、フッ素系ゴムなどのフッ素系樹脂や、スチレンーブタジエン共重合体、スチレンーアクリロニトリル共重合体、エチレンープロピレンーターポリマーなどの炭化水素系ポリマーやカルボキシメチルセルロース、ポリイミド樹脂などを用いることができるがこれに限定されるものではない。また、これらは単独で用いても、2種以上を混合して用いても構わない。
【0031】
バインダーポリマーの添加量は、活物質100重量部に対して3〜30重量部の範囲が好ましい。バインダーが3重量部未満の場合、活物質をつなぎ止める十分な結着力が得られず好ましくない。また、それが30重量部より多くなると、正極における活物質密度が低下し、結果的に電池のエネルギー密度低下を引起こし好ましくなくなる。
【0032】
集電体としては、酸化安定性の優れた材料が好適に用いられる。具体的には、アルミニウム、ステンレススチール、ニッケル、炭素などを挙げることができる。特に好適には、ホイル状のアルミニウムが用いられる。また、形状については、箔状、メッシュ状のものを用いることができる。
【0033】
また、本発明の正極は、人造黒鉛、カーボンブラック(アセチレンブラック)、ニッケル粉末などを導電助材として含有しても構わない。導電助剤としてはカーボンブラックが特に好ましい。その添加量としては0〜10重量部の範囲が好ましい。
【0034】
本発明の正極の製造法は特に限定されるものではなく公知の方法を用いることができる。例えば、下記の方法などを採用することができる。
▲1▼活物質、バインダーポリマー、バインダーを溶解する揮発性溶媒を所定量混合溶解し、活物質のペーストを作製する。得られたペーストを集電体上に塗工後、揮発性溶媒を乾燥除去し製膜する方法。
▲2▼活物質、バインダーポリマー、バインダーを溶解する水溶性の溶媒を所定量混合溶解し、活物質のペーストを作製する。得られたペーストを集電体上に塗工後、得られた塗膜を水系の凝固浴へ浸漬し、バインダーポリマーの凝固を行ない、ついで膜を水洗・乾燥し製膜する方法。
【0035】
(負極)
次に、本発明の負極について説明する。本発明の負極は、リチウムを主成分とする金属またはリチウムイオンを吸蔵放出する炭素質活物質とバインダーポリマー及び集電体とから構成される。
前記炭素質活物質としては、ポリアクリロニトリル、フェノール樹脂、フェノールノボラック樹脂、セルロースなどの有機高分子化合物を焼結したもの、コークスやピッチを焼結したもの、人造黒鉛や天然黒鉛に代表される炭素質材料を挙げることができる。
【0036】
バインダーポリマーとしては、前述した正極と同様のものを用いることができる。バインダーポリマーの添加量は、活物質100重量部に対して3〜30重量部の範囲が好ましい。バインダーが3重量部未満の場合、活物質をつなぎ止める十分な結着力が得られず好ましくない。また、それが30重量部より多くなると、負極における活物質密度が低下し、結果的に電池のエネルギー密度低下を引き起し好ましくなくなる。
【0037】
集電体としては、還元安定性の優れた材料が好適に用いられる。具体的には、金属銅、ステンレススチール、ニッケル、炭素などを挙げることができる。特に好適には、箔状およびメッシュ状の銅が用いられる。
また、本発明の負極は、人造黒鉛、カーボンブラック(アセチレンブラック)、ニッケル粉末などを導電助材として含有しても構わない。
【0038】
本発明非水系二次電池の負極は正極同様に公知の方法で製造される。
(非水系電解液)
本発明の非水系二次電池では非水溶媒にリチウム塩を溶解した非水系電解液を用いることができる。
【0039】
具体的なリチウム塩としては、ホウ四弗化リチウム(LiBF4)、過塩素酸リチウム(LiClO4)、六弗化リン酸リチウム(LiPF6)、六弗化砒素リチウム(LIAsF6)、トリフロロスルフォン酸リチウム(CF3SO3Li)、リチウムパーフロロメチルスルフォニルイミド[LiN(CF3SO22]およびリチウムパーフロロエチルスルフォニルイミド[LiN(C25SO22]等を用いることができる。また、そのリチウム塩の濃度としては、0.2から2M(モル/l)の範囲が好適に用いられる。
【0040】
また、これらリチウム塩を溶解する非水溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ビニレンカーボネート(VC)、メチルエチルカーボネート(MEC)、1,2-ジメトキシエタン(DME)、1,2-ジエトキシエタン(DEE)、γーブチロラクトン(γ−BL)、スルフォラン、アセトニトリル等の単独溶媒や、これら2種類以上を混合した混合溶媒も採用できる。特に、PC、EC、γ−BL、DMC、DEC、MECおよびDMEから選ばれる少なくとも1種以上の溶媒が好適に用いられる。
【0041】
(外装)
本発明の非水系二次電池の外装には、一般的に用いられているステンレス、アルミ等の缶の他、アルミラミネートフィルムが好適に用いられる。また、アルミラミネートフィルムには種々のタイプのものがあるが、非水系二次電池用に用いられているものであれば特に限定されるものではない。
【0042】
(製造法)
本発明の非水系二次電池は公知の非水系二次電池の製造法により好適に製造できる。すなわち、正極、セパレータ、負極を順次重ね合わせ、正極/セパレータ/負極という電池エレメントを作製する。これを外装に封入することで製造できる。電解液は外装封入前に注入しても封入後に注入しても構わない。本発明のセパレータの場合、電極との接着性に優れるのでアルミラミネートフィルム外装においても上記のような製造法で非水系二次電池を製造しても特に問題はないが、電極とセパレータの接着性をより強固なものとする場合は、電池エレメントを加圧処理や熱処理してもよい。この処理は電解液注入前でも注入後でもよい。また、外装封入後電解液を注入した後、加熱エージング処理することによっても接着性は強固なものとなる。この加熱エージングは充電前でも適当な充電深度まで充電した後でもよい。
【0043】
【実施例】
以下、実施例により本発明を詳細に説明する。ただし、本発明は以下の実施例に限定されるものではない。
【0044】
[実施例1]
該有機高分子として、共重合組成がVdF/HFP/CTFE=92.0/4.5/3.5(重量比)、Mw=41万であるフッ素系ポリマーを用いた。該フッ素系ポリマーをDMAc(有機溶剤):TPG(相分離剤)=6:4(重量比)である混合溶媒に12重量%となるように溶解しドープを調整した。
【0045】
該多孔質支持体にはポリプロピレン微多孔膜(セルガード社製 セルガード#2400)を用いた。このポリプロピレン微多孔膜の膜厚は25.6μm、目付14.8g/m2であった。
【0046】
ポリプロピレン微多孔膜の表裏両面に該ドープを塗工した。このドープを塗工したポリプロピレン微多孔膜を凝固浴へ浸漬し凝固した。ここで凝固浴組成は水:DMAc:TPG=5:3:2とした。次いで、水洗・乾燥し本発明の非水系二次電池用セパレータを製膜した。
【0047】
作製したポリプロピレン微多孔膜の表裏両面のほぼ全面に多孔質層が積層され、微多孔膜と多孔質層が一体化された本発明の非水系二次電池用セパレータの特性は以下の通りであった。多孔質層の空隙率67.2%、セパレータの膜厚39.5μm、多孔質層総厚み14.0μmであり、片面それぞれの多孔質層厚みは7.1μm、6.9μmで、片面それぞれの目付は4.1g/m2、4.0g/m2。SEM観察結果、表面には孔径0.1〜0.5μmの孔が点在している様子が観察され、表面開孔率は概ね10%程度であった。さらに、作製したセパレータは有意にカールすることはなかった。
【0048】
[実施例2]
該有機高分子として、共重合組成がVdF/HFP/CTFE=92.0/4.5/3.5(重量比)、Mw=41万であるフッ素系ポリマーを用いた。該フッ素系ポリマーをDMAc(有機溶剤):TPG(相分離剤)=55:45(重量比)である混合溶媒に8重量%となるように溶解しドープを調整した。
【0049】
該多孔質支持体にはポリプロピレン微多孔膜(セルガード社製 セルガード#2400)を用いた。このポリプロピレン微多孔膜の膜厚は25.6μm、目付14.8g/m2であった。
【0050】
ポリプロピレン微多孔膜の表裏両面に該ドープを塗工した。この該ドープを塗工したポリプロピレン微多孔膜を凝固浴へ浸漬し凝固した。ここで凝固浴組成は水:DMAc:TPG=5:3:2とした。次いで、水洗・乾燥し本発明の非水系二次電池用セパレータを製膜した。
【0051】
作製したポリプロピレン微多孔膜の表裏両面のほぼ全面に多孔質層が積層され、微多孔膜と多孔質層が一体化された本発明の非水系二次電池用セパレータの特性は以下の通りであった。多孔質層の空隙率72.9%、セパレータの膜厚34.2μm、多孔質層総厚み8.6μmであり、片面それぞれの多孔質層厚みは4.3μm、4.3μmで、片面それぞれの目付は2.1g/m2、2.0g/m2。SEM観察の結果、表面には孔径0.1〜0.5μmの孔が点在している様子が観察され、表面開孔率は概ね20%程度であった。さらに、作製したセパレータは有意にカールすることはなかった。
【0052】
[比較例1]
実施例1で用いたフッ素系ポリマーをDMAcに12重量%となるように溶解した溶液をドープとし、凝固浴を水とした以外は実施例1と同様の方法で非水系二次電池用セパレータを作製した。作製されたセパレータの表面をSEMで観察したが孔は観察されなかった。
【0053】
[比較例2]
実施例1で用いたフッ素系ポリマーをDMAcに12重量%となるように溶解した溶液をドープとし、これをポリプロピレン微多孔膜(セルガード社製 セルガード#2400)に実施例1と同様に表裏に塗工した。塗工後乾燥させポリプロピレン微多孔膜表裏に該フッ素系ポリマーからなる緻密膜を製膜することで非水系二次電池用セパレータを作製した。
【0054】
[実施例3]
「正極」
コバルト酸リチウム(LiCoO2、日本化学工業(株)製)粉末89.5重量部とアセチレンブラック4.5重量部及びPVdFの乾燥重量が6重量部となるように、6重量%のPVdFのNMP溶液を用い、正極剤ペーストを作製した。得られたペーストを厚さ20μmのアルミ箔上に塗布乾燥後プレスして、厚さ97μmの正極を得た。
【0055】
「負極」
負極活物質としてメソフェーズカーボンマイクロビーズ(MCMB、大阪瓦斯化学(株)製)粉末87重量部とアセチレンブラック3重量部及び、PVdFの乾燥重量が10重量部となるように、6重量%のPVdFのNMP溶液を用い、負極剤ペーストを作製した。得られたペーストを厚さ18μmの銅箔上に塗布乾燥後プレスして、厚さ90μmの負極を作製した。
【0056】
「ボタン電池の作製」
実施例1及び2で作製したセパレータと上記の正極及び負極を用いてボタン電池(CR2032)を作製した。電解液には1M LiPF6 EC/DEC/MEC(1/2/1重量比)を用いた。このボタン電池の4.2V定電流・定電圧充電、2.75V定電流放電における0.2C放電に対する2C放電の放電容量比を測定した。結果を表1に示す。
【0057】
[比較例3]
比較例1、2で作製したセパレータ及びポリプロピレン微多孔膜(セルガード社製 セルガード#2400)を用いて実施例3と同様にボタン電池を作製し、同様の測定を行った。結果を表1に示す。
【0058】
【表1】

Figure 0004127989
【0059】
表1より本発明のセパレータにおいては、ポリオレフィン微多孔膜上へ塗工した多孔質層によるイオン伝導性の低下がほとんどないことが分かる。
【0060】
[実施例4]
実施例3の正極及び負極と実施例1及び2で作製したセパレータを用い、これらを重ね合わせ正極/セパレータ/負極からなる電池エレメントを成型した。この電池エレメントをアルミラミネートフィルムパックに入れ、減圧下で電解液を注入し、アルミラミネートフィルムパックを封止した。ここで、電解液には、1M LiPF6 EC/DEC/MEC(1/2/1重量比)を用いた。このフィルム外装電池は良好に作動し、充放電測定後電池を解体したところセパレータと電極は十分に接着されていた。
【0061】
【発明の効果】
以上詳述してきたように本発明によれば、イオン透過性に優れかつ接着性良好な多孔質層をポリオレフィン微多孔膜の表裏に塗工することで、電極との接着性が良好でかつポリオレフィン微多孔膜に比べイオン伝導性の低下がなく、一体化によるハンドリング性に優れたセパレータを提供することが可能となる。本発明は、特にフィルム外装電池のセパレータとして好適である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous secondary battery that obtains an electromotive force by doping or dedoping lithium. In particular, the present invention relates to a separator used for a non-aqueous secondary battery.
[0002]
[Prior art]
Other non-aqueous secondary batteries (lithium ion secondary batteries) that use lithium-containing transition metal oxides for the positive electrode, lithium-doped / dedoped carbon-based materials for the negative electrode, and non-aqueous electrolyte solutions Compared to the secondary battery, it has a feature of having a high energy density. This lithium ion secondary battery meets the demands of portable electronic devices such as weight reduction and thinning, and is used as a power source for portable electronic devices such as mobile phones and laptop computers. However, demands for reducing the weight and thickness of portable electronic devices are becoming more and more severe. In view of this, the lithium-ion secondary battery used for this is currently undergoing intense technological development in order to further increase the energy.
[0003]
In the flat lithium ion secondary battery mainly used for mobile phones, technological innovation has been made in recent years to change the exterior from a conventional metal can to an aluminum laminate film in response to demands for thinning and weight reduction. Since this aluminum laminate film exterior (film exterior) is a flexible exterior unlike a metal can exterior, the external pressure is weak, and it is not easy to make contact between the electrode and the separator interface. In addition, liquid leakage was a concern and there was a problem from the viewpoint of safety. For this reason, the film structure battery cannot be realized with the conventional battery configuration of positive electrode / separator / negative electrode.
[0004]
Nevertheless, this technological innovation has been made possible by the technology of a separator with excellent adhesion to electrodes and electrolyte retention. By using this separator, it was possible to achieve good interface contact between the electrode and the separator and to prevent liquid leakage. For this separator, an organic polymer that swells and holds in the electrolyte is used. Although it was considered that such an organic polymer was used alone as a separator, it was put to practical use in a form that is generally reinforced by a support, not suitable for continuous production due to problems in physical properties.
[0005]
That is, a separator has been proposed in which an adhesive layer made of an organic polymer that swells and retains an electrolyte solution is applied to both surfaces of a support. Polyolefin microporous membranes used as separators in nonwoven fabrics and conventional lithium ion secondary batteries have been proposed for the support, but currently polyolefin microporous membranes are mainly put into practical use from the viewpoint of safety due to shutdown characteristics Has been. In addition, an organic polymer mainly composed of polyvinylidene fluoride (PVdF) is mainly used for the adhesive layer from the viewpoint of durability.
[0006]
In addition, the battery configuration in which the adhesive layer is disposed between the electrode and the separator as described above is not only from the viewpoint of enabling the film exterior, but also from the viewpoint of increasing the energy density of the battery in the conventional metal can exterior. ing. High energy density means that many battery elements are tightly packed in a can of a predetermined size. In this case, it is difficult to form a good electrode separator interface, and cycle characteristics and the like are problems. However, there is a possibility that this problem can be solved by disposing a flexible adhesive layer as described above.
[0007]
In the background as described above, a polyolefin microporous membrane separator having adhesive layers on the front and back sides has attracted attention. Among these, from the viewpoint of utilizing the current non-aqueous secondary battery manufacturing process, a separator having an adhesive layer (dry adhesive layer) not containing an electrolytic solution has become an important technical element. Such separators have been proposed in JP-A-9-293518, JP-A-10-189054, JP-A-11-26025, JP-A-2001-118558, and the like.
[0008]
[Problems to be solved by the invention]
JP-A-10-189054 discloses a separator having an adhesive layer by applying a dope obtained by dissolving PVdF in N-methylpyrrolidone (NMP) on a polyolefin microporous film and drying it. Such a system has a problem that the adhesive layer becomes dense and good ionic conductivity cannot be obtained, and the battery characteristics deteriorate. Japanese Patent Application Laid-Open No. 2001-118558 proposes a separator in which an adhesive layer is partially coated on a polyolefin microporous film (surface coverage: 50% or less) in order to solve such problems. Since this system is a partial coating, there are many free electrolytes that are not retained by the separator at the electrode / separator interface, which causes problems such as deterioration in cycle characteristics. Moreover, it is not suitable for film exterior from the viewpoint of reliability of liquid leakage.
[0009]
Japanese Laid-Open Patent Publication No. 9-293518 proposes to obtain a separator having an adhesive layer by preparing an adhesive layer made of PVdF by a wet film forming method and bonding it to a polyolefin microporous film. It is characterized by having no holes. Since the PVdF film as an adhesive layer has low physical properties, the method of bonding with a polyolefin microporous film is problematic from the viewpoint of productivity. In addition, according to the description, the bonding is not simply integrated by simply overlapping, but there may be a problem of peeling of the polyolefin microporous film and the adhesive layer. Furthermore, although it has the feature that there is no substantial through-hole on the surface, since there is no through-hole, ion conduction at the electrode / separator interface also becomes a problem, and a decrease in rate characteristics and the like is expected.
[0010]
In JP-A-11-26025, a separator is obtained by a general wet film forming process in which a dope obtained by dissolving PVdF in NMP is applied onto a polyolefin microporous film, and this is solidified in water. This system has the same problems as described above because the coagulation bath is water and thus solidifies quickly and a dense PVdF layer is formed on the surface and does not have substantial through holes.
[0011]
As described above, in the polyolefin microporous membrane separator having the adhesive layers on the front and back surfaces, a configuration that sufficiently satisfies the required characteristics such as ion conductivity, liquid retention, adhesion, and productivity has not been found at present. In view of such a current situation, an object of the present invention is to develop a separator in which an adhesive layer is integrated on the front and back of a polyolefin microporous membrane, which has good ion conductivity and good adhesion to an electrode.
[0012]
[Means for Solving the Problems]
In order to solve the above problems, the present invention
In a separator used in a non-aqueous secondary battery that obtains an electromotive force by doping or dedoping of lithium, the separator is a porous material composed of an organic polymer that swells and retains the electrolyte on the entire front and back surfaces of the polyolefin microporous membrane. A layer is disposed and integrated with the polyolefin microporous membrane,
(1) The porosity of the porous layer is 50 to 90%
(2) The surface of the porous layer is dotted with pores having a pore diameter of 0.05 to 10 μm.
(3) The total thickness of the porous layers on the front and back sides is 20 μm or less, and the thickness of the porous layer is 1 μm or more on each side.
Non-aqueous secondary battery separator
I will provide a.
[0013]
Here, the porous layer functions as an adhesive layer with the electrode. In addition to the above invention, the present invention also includes the following contents.
(A) The separator for a non-aqueous secondary battery according to the invention described above, wherein the surface porosity is 1 to 80%.
(A) The organic polymer is polyvinylidene fluoride (PVdF), a PVdF copolymer, or a PVdF-based polymer mainly composed of these, and the non-aqueous two-component system according to any one of (a) Secondary battery separator.
(C) A non-aqueous secondary battery comprising a positive electrode and a negative electrode capable of reversibly doping / de-doping lithium and a separator, and using a non-aqueous electrolyte, and any of the inventions (a) to (b) as the separator. A non-aqueous secondary battery using the separator according to claim 1.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The contents of the present invention will be described below.
[Separator for non-aqueous secondary battery]
The separator for a non-aqueous secondary battery of the present invention is integrated with the polyolefin microporous membrane by disposing a porous layer made of an organic polymer that swells and holds the electrolyte solution on the entire front and back surfaces of the polyolefin microporous membrane. And
(1) The porosity of the porous layer is 50 to 90%
(2) The surface of the porous layer is dotted with pores having a pore diameter of 0.05 to 10 μm.
(3) The total thickness of the porous layers on the front and back sides is 20 μm or less, and the thickness of the porous layer is 1 μm or more on each side.
It is characterized by that.
[0015]
As the polyolefin microporous film, a known film having a film thickness of 5 to 30 μm proposed as a porous support for a separator for a non-aqueous secondary battery can be suitably used.
Examples of the organic polymer that swells and retains the electrolyte include polyvinylidene fluoride (PVdF), polyethylene oxide (PEO), polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), and copolymers thereof. In the present invention, these may be used alone or in combination of two or more.
[0016]
Among these, in consideration of durability and film forming property, PVdF, PVdF copolymer, or PVdF polymer mainly composed of these is preferably used. More preferably, PVdF and PVdF copolymer can be mentioned. Among these, in particular, a terpolymer of vinylidene fluoride (VdF), hexafluoropropylene (HFP), and chlorotrifluoroethylene (CTFE) is swellable / retainable with respect to the electrolyte, heat resistance, and adhesion to the electrode. Is preferable, and as a suitable copolymer composition of this ternary copolymer,
VdF / HFP (a) / CTFE (b)
(A) = 2-8% by weight
(B) = 1-6% by weight
Is mentioned. Further, the molecular weight of the organic polymer is preferably 100,000 to 800,000 in terms of weight average molecular weight (Mw), and particularly preferably 200,000 to 600,000. These PVdF polymers can be synthesized by a known method. In general, it can be synthesized by a radical polymerization method, and specifically, prepared by a method such as solution polymerization, suspension polymerization, emulsion polymerization, bulk polymerization or the like.
[0017]
The separator for a non-aqueous secondary battery of the present invention has a structure in which the porous layer is arranged on the front and back of the polyolefin microporous membrane, and the porosity of the porous layer is 50 to 90%. Is preferable, and 60 to 80% is particularly preferable. The porous layer is coated on the microporous polyolefin membrane for the purpose of providing adhesion to the electrode and electrolyte retention, but if the porosity is low, the ionic conductivity is disadvantageous and the battery characteristics are degraded. It becomes a factor to make. For this reason, the porosity is preferably 50% or more, and more preferably 60% or more. A high porosity is advantageous in terms of conductivity, but is disadvantageous in terms of adhesiveness and electrolyte retention. For this reason, the porosity is preferably 90% or less, and more preferably 80% or less.
[0018]
Here, the porosity (ε) can be calculated from the volume (V) of the porous layer, the weight (W) of the organic polymer present in the volume, and the density (D) of the organic polymer. . That is, ε = {1− (W / DV)} × 100. Here, the volume of the porous layer is obtained by subtracting the volume of the polyolefin microporous membrane from the volume of the separator. The weight of the organic polymer can be obtained by subtracting the weight of the polyolefin microporous membrane from the weight of the separator.
[0019]
The entire surface of the front and back surfaces of the separator of the present invention is covered with the porous layer. However, the surface (outside) of the porous layer is also dotted with pores of 0.05 to 10 μm. This is a feature of a separator for an aqueous secondary battery. As described in JP-A-9-293518, those having substantially no through-holes on the surface are advantageous from the viewpoint of electrolyte retention. However, since the electrode separator interface is entirely covered with the polymer, this portion becomes a large resistance, which is disadvantageous in high-rate discharge or the like. Also, if there are too large pores, the electrolyte retention will not be sufficient. From such a viewpoint, it is preferable that 0.05 to 10 μm holes are scattered on the surface, and it is particularly preferable that 0.1 to 3 μm holes are scattered.
[0020]
The surface porosity of the separator of the present invention is preferably in the range of 1 to 80%. The presence of such holes also works advantageously in adhesion to the electrode due to the roughening effect. The holes scattered on the surface can be observed with a scanning electron microscope (SEM), and the hole diameter and the surface opening ratio can be obtained by a method of image processing the results of SEM observation.
[0021]
The separator for a non-aqueous secondary battery of the present invention is also characterized in that the total thickness of the porous layers on the front and back sides is 20 μm or less, and the thickness of the porous layer is 1 μm or more on each side. The porous layer is disadvantageous in terms of ionic conductivity particularly at a low temperature as compared with the polyolefin microporous membrane, and the thickness should be as thin as possible. However, a thicker one is preferable for ensuring adhesion. From such a viewpoint, the sum of the front and back surfaces is preferably 20 μm or less, and particularly preferably 15 μm or less. The thickness of the porous layer on each side is preferably 1 μm or more. When the sum of the front and back surfaces of the porous layer is 20 μm or more, the resistance of the porous layer portion is remarkably reflected in battery characteristics, which is disadvantageous in low temperature characteristics and high rate discharge characteristics. Moreover, when the thickness of each surface of the porous layer is 1 μm or less, the adhesion with the electrode is insufficient, which is not preferable.
[0022]
In the case of a three-layer structure such as a porous layer / polyolefin microporous membrane / porous layer such as a separator for a non-aqueous secondary battery of the present invention, the relationship between shrinkage stresses if the material and morphology used to form the porous layer are different on the front and back sides. This causes curling and is not preferable in handling. Although curling depends on the physical properties of the polyolefin microporous membrane at the center, curling tends to occur easily in applications that require thinning, such as a separator for a non-aqueous secondary battery. For these reasons, it is preferable that the materials forming the porous layer are essentially equivalent on the front and back sides. Further, it is preferable that the front and back morphologies are substantially the same. The morphology of the porous layers on the front and back sides can be generally observed by SEM. In addition, when the materials forming the porous layer are essentially the same, it can be said that the morphology of the porous layer is the same on both sides if the separator is not curled.
[0023]
When the material forming the porous layer is essentially the same on the front and back, the morphology of the porous layer on the front and back can be estimated from the film thickness and basis weight of the front and back of the porous layer. In order to prevent curling, {(thickness difference between the porous layers on the front and back sides) / (sum of the thickness of the porous layers on the front and back sides)} × 100 <20%, {(the porous materials on the front and back sides) Layer weight difference) / (sum of the weight of the porous layers on the front and back sides)} × 100 <20%.
The film thickness of the nonaqueous secondary battery separator of the present invention is preferably in the range of 10 to 50 μm from the viewpoint of energy density and safety.
[0024]
The separator for a non-aqueous secondary battery of the present invention is a dope obtained by mixing and dissolving the organic polymer, an organic solvent that dissolves the organic polymer, and a phase separation agent (gelling agent or pore-opening agent). Can be obtained by a wet film forming method in which the film is immersed in a microporous polyolefin, and then the film is immersed in an aqueous coagulation bath to coagulate the organic polymer, followed by washing and drying to form a porous film. This film forming method is particularly suitable for controlling the morphology of the separator of the present invention because the porosity and pore diameter can be easily controlled by the dope composition and the coagulation bath composition. Specific conditions for obtaining the separator of the present invention are specifically described below.
[0025]
The organic solvent for the dope can be suitably used as long as it can dissolve the organic polymer and is compatible with water. When the organic polymer is a PVdF-based polymer mainly composed of polyvinylidene fluoride (PVdF), a PVdF copolymer, and PVdF, a highly polar one is preferable, and N-methylpyrrolidone (NMP), N, N-dimethylacetamide (DMAc), N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), acetonitrile and the like are suitably selected, and these may be used in combination. The organic polymer concentration in the dope is preferably selected from 5 to 25% by weight.
[0026]
The phase separation agent can be used as long as it is a poor solvent for the organic polymer and is compatible with water. When the organic polymer is PVdF, a PVdF copolymer, and a PVdF polymer mainly composed of these, for example, water and alcohols are preferably selected. In particular, propylene glycols including polymers, ethylene glycol, tripropylene, and the like. Glycolic alcohols such as glycol (TPG), 1,3-butanediol, 1,4-butanediol, polyethylene glycol monoethyl ether, methanol, ethanol, glycerin and the like are preferably selected. The concentration of the phase separation agent in the dope is preferably in the range of 0 to 60% by weight in the mixed solvent of the organic solvent and the phase separation agent. Choice It is.
[0027]
As the coagulation bath, a mixed solution of water, an organic solvent solvent of the dope and a phase separation agent is preferably used. The proportion of water is preferably in the range of 30 to 90% by weight, and the amount ratio of the organic solvent and the phase separation agent is preferably combined with these amount ratios in the dope for production.
In the separator of the present invention, the organic polymer, a volatile solvent for dissolving the organic polymer, and a plasticizer are mixed and dissolved, and the dope in a solution state is applied to the polyolefin microporous film, and then dried to remove the volatile solvent. Thereafter, the plasticizer is extracted with a volatile solvent that does not dissolve the plasticizer and does not dissolve the organic polymer, and is then dried to obtain a porous film.
[0028]
Among these, as the method for producing the separator of the present invention, the above-mentioned wet film-forming method is more preferable because the porous layer can be easily controlled to be porous and can be integrated with the polyolefin microporous film at the same time. It is.
[Non-aqueous secondary battery]
The non-aqueous secondary battery of the present invention is a non-aqueous secondary battery including a positive electrode and a negative electrode capable of reversibly doping and dedoping lithium and a separator, and using a non-aqueous electrolyte. A secondary battery separator is used, and other configurations are known. Details will be described below.
[0029]
(Positive electrode)
The positive electrode of the non-aqueous secondary battery of the present invention is typically composed of an active material that absorbs and releases lithium ions, a binder polymer, and a current collector.
Examples of the active material include various lithium-containing oxides and chalcogen compounds. As the lithium-containing oxide, LiCoO 2 Lithium-containing cobalt oxides such as LiNiO 2 Lithium-containing nickel oxide such as LiMn 2 O Four And lithium-containing manganese composite oxide, lithium-containing nickel cobalt oxide, lithium-containing amorphous vanadium pentoxide, and the like. Examples of the chalcogen compound include titanium disulfide and molybdenum disulfide.
[0030]
As the binder polymer, polyvinylidene fluoride (PVdF); binary copolymer of vinylidene fluoride (VdF) and hexafluoropropylene (HFP), perfluoromethylvinyl-ter (PFMV), tetrafluoroethylene (TFE); Ternary copolymer resins mainly composed of PVdF such as VdF / HFP / TFE and VdF / HFP / CTFE; fluorinated resins such as polytetrafluoroethylene and fluorinated rubber, styrene-butadiene copolymers, styrene Hydrocarbon polymers such as acrylonitrile copolymer and ethylene-propylene terpolymer, carboxymethyl cellulose, polyimide resin, and the like can be used, but are not limited thereto. Moreover, these may be used independently or may be used in mixture of 2 or more types.
[0031]
The amount of the binder polymer added is preferably in the range of 3 to 30 parts by weight with respect to 100 parts by weight of the active material. When the amount of the binder is less than 3 parts by weight, it is not preferable because a sufficient binding force for holding the active material cannot be obtained. Moreover, when it exceeds 30 weight part, the active material density in a positive electrode will fall, as a result, the energy density fall of a battery will be caused and it becomes unpreferable.
[0032]
As the current collector, a material having excellent oxidation stability is preferably used. Specific examples include aluminum, stainless steel, nickel, and carbon. Particularly preferably, foil-like aluminum is used. Moreover, about a shape, a foil shape and a mesh shape can be used.
[0033]
Further, the positive electrode of the present invention may contain artificial graphite, carbon black (acetylene black), nickel powder and the like as a conductive additive. Carbon black is particularly preferable as the conductive assistant. The addition amount is preferably in the range of 0 to 10 parts by weight.
[0034]
The manufacturing method of the positive electrode of this invention is not specifically limited, A well-known method can be used. For example, the following method can be employed.
(1) A predetermined amount of an active material, a binder polymer, and a volatile solvent for dissolving the binder are mixed and dissolved to prepare an active material paste. A method of forming a film by coating the obtained paste on a current collector and then removing the volatile solvent by drying.
(2) A predetermined amount of an active material, a binder polymer, and a water-soluble solvent for dissolving the binder are mixed and dissolved to prepare an active material paste. A method of coating the obtained paste on a current collector, immersing the obtained coating film in an aqueous coagulation bath, coagulating the binder polymer, and then washing and drying the film to form a film.
[0035]
(Negative electrode)
Next, the negative electrode of the present invention will be described. The negative electrode of the present invention is composed of a metal mainly composed of lithium or a carbonaceous active material that absorbs and releases lithium ions, a binder polymer, and a current collector.
Examples of the carbonaceous active material include polyacrylonitrile, phenol resin, phenol novolac resin, those obtained by sintering organic polymer compounds such as cellulose, those obtained by sintering coke and pitch, carbon typified by artificial graphite and natural graphite. A quality material can be mentioned.
[0036]
As a binder polymer, the same thing as the positive electrode mentioned above can be used. The amount of the binder polymer added is preferably in the range of 3 to 30 parts by weight with respect to 100 parts by weight of the active material. When the amount of the binder is less than 3 parts by weight, it is not preferable because a sufficient binding force for holding the active material cannot be obtained. Moreover, when it exceeds 30 weight part, the active material density in a negative electrode will fall, as a result, the energy density fall of a battery will be caused and it becomes unpreferable.
[0037]
As the current collector, a material excellent in reduction stability is preferably used. Specifically, metallic copper, stainless steel, nickel, carbon, etc. can be mentioned. Particularly preferably, copper in the form of foil or mesh is used.
Moreover, the negative electrode of the present invention may contain artificial graphite, carbon black (acetylene black), nickel powder, and the like as a conductive additive.
[0038]
The negative electrode of the nonaqueous secondary battery of the present invention is produced by a known method in the same manner as the positive electrode.
(Non-aqueous electrolyte)
In the non-aqueous secondary battery of the present invention, a non-aqueous electrolyte solution in which a lithium salt is dissolved in a non-aqueous solvent can be used.
[0039]
Specific lithium salts include lithium borotetrafluoride (LiBF). Four ), Lithium perchlorate (LiClO) Four ), Lithium hexafluorophosphate (LiPF) 6 ), Lithium arsenic hexafluoride (LIAsF) 6 ), Lithium trifluorosulfonate (CF) Three SO Three Li), lithium perfluoromethylsulfonylimide [LiN (CF Three SO 2 ) 2 ] And lithium perfluoroethylsulfonylimide [LiN (C 2 F Five SO 2 ) 2 ] Can be used. The lithium salt concentration is preferably in the range of 0.2 to 2M (mol / l).
[0040]
Examples of non-aqueous solvents for dissolving these lithium salts include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), vinylene carbonate (VC), Single solvents such as methyl ethyl carbonate (MEC), 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE), γ-butyrolactone (γ-BL), sulfolane, acetonitrile, and two or more of these A mixed solvent obtained by mixing can also be used. In particular, at least one solvent selected from PC, EC, γ-BL, DMC, DEC, MEC and DME is preferably used.
[0041]
(Exterior)
For the exterior of the non-aqueous secondary battery of the present invention, an aluminum laminate film is preferably used in addition to commonly used cans such as stainless steel and aluminum. There are various types of aluminum laminate films, but there are no particular limitations as long as they are used for non-aqueous secondary batteries.
[0042]
(Production method)
The non-aqueous secondary battery of the present invention can be suitably manufactured by a known non-aqueous secondary battery manufacturing method. That is, a positive electrode, a separator, and a negative electrode are sequentially stacked to produce a battery element of positive electrode / separator / negative electrode. It can be manufactured by enclosing it in an exterior. The electrolytic solution may be injected before the outer enclosure or after the enclosure. In the case of the separator of the present invention, there is no particular problem even if a non-aqueous secondary battery is produced by the above-described production method even in the case of an aluminum laminate film because it has excellent adhesion to the electrode, but the adhesion between the electrode and the separator May be subjected to pressure treatment or heat treatment. This treatment may be performed before or after electrolyte injection. In addition, the adhesiveness can be strengthened by injecting the electrolyte after enclosing and then heat aging. This heating aging may be performed before charging or after charging to an appropriate charging depth.
[0043]
【Example】
Hereinafter, the present invention will be described in detail by way of examples. However, the present invention is not limited to the following examples.
[0044]
[Example 1]
As the organic polymer, a fluoropolymer having a copolymer composition of VdF / HFP / CTFE = 92.0 / 4.5 / 3.5 (weight ratio) and Mw = 410,000 was used. The dope was prepared by dissolving the fluoropolymer in a mixed solvent of DMAc (organic solvent): TPG (phase separation agent) = 6: 4 (weight ratio) to 12 wt%.
[0045]
A polypropylene microporous membrane (Celguard # 2400 manufactured by Celgard) was used as the porous support. This polypropylene microporous membrane has a thickness of 25.6 μm and a basis weight of 14.8 g / m. 2 Met.
[0046]
The dope was applied to both the front and back surfaces of a polypropylene microporous membrane. The polypropylene microporous film coated with this dope was immersed in a coagulation bath and coagulated. The coagulation bath composition was water: DMAc: TPG = 5: 3: 2. Next, it was washed with water and dried to form a non-aqueous secondary battery separator of the present invention.
[0047]
The properties of the separator for a non-aqueous secondary battery according to the present invention in which a porous layer is laminated on almost the entire front and back surfaces of the produced polypropylene microporous membrane and the microporous membrane and the porous layer are integrated are as follows. It was. The porosity of the porous layer is 67.2%, the thickness of the separator is 39.5 μm, the total thickness of the porous layer is 14.0 μm, and the thickness of the porous layer on each side is 7.1 μm and 6.9 μm. The basis weight is 4.1 g / m 2 4.0 g / m 2 . As a result of SEM observation, it was observed that pores having a pore diameter of 0.1 to 0.5 μm were scattered on the surface, and the surface area ratio was about 10%. Furthermore, the produced separator was not significantly curled.
[0048]
[Example 2]
As the organic polymer, a fluoropolymer having a copolymer composition of VdF / HFP / CTFE = 92.0 / 4.5 / 3.5 (weight ratio) and Mw = 410,000 was used. The dope was prepared by dissolving the fluorine-based polymer in a mixed solvent of DMAc (organic solvent): TPG (phase separation agent) = 55: 45 (weight ratio) to 8 wt%.
[0049]
A polypropylene microporous membrane (Celguard # 2400 manufactured by Celgard) was used as the porous support. This polypropylene microporous membrane has a thickness of 25.6 μm and a basis weight of 14.8 g / m. 2 Met.
[0050]
The dope was applied to both the front and back surfaces of a polypropylene microporous membrane. The polypropylene microporous film coated with the dope was immersed in a coagulation bath and coagulated. The coagulation bath composition was water: DMAc: TPG = 5: 3: 2. Next, it was washed with water and dried to form a non-aqueous secondary battery separator of the present invention.
[0051]
The properties of the separator for a non-aqueous secondary battery according to the present invention in which a porous layer is laminated on almost the entire front and back surfaces of the produced polypropylene microporous membrane and the microporous membrane and the porous layer are integrated are as follows. It was. The porosity of the porous layer is 72.9%, the thickness of the separator is 34.2 μm, the total thickness of the porous layer is 8.6 μm, and the thickness of the porous layer on each side is 4.3 μm and 4.3 μm. The basis weight is 2.1 g / m 2 2.0 g / m 2 . As a result of SEM observation, it was observed that pores having a pore diameter of 0.1 to 0.5 μm were scattered on the surface, and the surface area ratio was about 20%. Furthermore, the produced separator was not significantly curled.
[0052]
[Comparative Example 1]
A separator for a non-aqueous secondary battery was prepared in the same manner as in Example 1 except that a solution obtained by dissolving the fluoropolymer used in Example 1 in DMAc to 12 wt% was used as a dope and the coagulation bath was used as water. Produced. The surface of the produced separator was observed with SEM, but no holes were observed.
[0053]
[Comparative Example 2]
A solution obtained by dissolving the fluoropolymer used in Example 1 in DMAc so as to be 12% by weight was used as a dope, and this was applied to a polypropylene microporous membrane (Celguard # 2400 manufactured by Celgard) on both sides as in Example 1. Worked. After coating, the membrane was dried and a dense membrane composed of the fluoropolymer was formed on the front and back surfaces of the polypropylene microporous membrane to produce a separator for a non-aqueous secondary battery.
[0054]
[Example 3]
"Positive electrode"
Lithium cobalt oxide (LiCoO 2 , Manufactured by Nippon Chemical Industry Co., Ltd.) Using a NMP solution of 6% by weight of PVdF so that the dry weight of PVDF was 69.5 parts by weight, powder 89.5 parts by weight, acetylene black 4.5 parts by weight A paste was prepared. The obtained paste was applied onto an aluminum foil having a thickness of 20 μm, dried and pressed to obtain a positive electrode having a thickness of 97 μm.
[0055]
"Negative electrode"
As a negative electrode active material, mesophase carbon microbeads (MCMB, manufactured by Osaka Gas Chemical Co., Ltd.) powder 87 parts by weight, 3 parts by weight of acetylene black, and 6% by weight of PVdF so that the dry weight of PVdF is 10 parts by weight. An NMP solution was used to produce a negative electrode agent paste. The obtained paste was applied onto a copper foil with a thickness of 18 μm, dried and pressed to prepare a negative electrode with a thickness of 90 μm.
[0056]
"Production of button batteries"
A button battery (CR2032) was produced using the separator produced in Examples 1 and 2 and the positive and negative electrodes described above. The electrolyte contains 1M LiPF 6 EC / DEC / MEC (1/2/1 weight ratio) was used. The button battery was measured for a discharge capacity ratio of 2 C discharge to 0.2 C discharge in 4.2 V constant current / constant voltage charge and 2.75 V constant current discharge. The results are shown in Table 1.
[0057]
[Comparative Example 3]
A button battery was produced in the same manner as in Example 3 using the separator and the polypropylene microporous membrane (Celguard # 2400, manufactured by Celgard) produced in Comparative Examples 1 and 2, and the same measurement was performed. The results are shown in Table 1.
[0058]
[Table 1]
Figure 0004127989
[0059]
From Table 1, it can be seen that in the separator of the present invention, there is almost no decrease in ionic conductivity due to the porous layer coated on the polyolefin microporous membrane.
[0060]
[Example 4]
Using the positive electrode and negative electrode of Example 3 and the separator prepared in Examples 1 and 2, these were laminated to form a battery element composed of positive electrode / separator / negative electrode. This battery element was put in an aluminum laminate film pack, and an electrolytic solution was injected under reduced pressure to seal the aluminum laminate film pack. Here, the electrolyte is 1M LiPF 6 EC / DEC / MEC (1/2/1 weight ratio) was used. This film-clad battery operated well. When the battery was disassembled after charge / discharge measurement, the separator and the electrode were sufficiently bonded.
[0061]
【The invention's effect】
As described above in detail, according to the present invention, the porous layer having excellent ion permeability and good adhesion is coated on the front and back of the polyolefin microporous film, thereby providing good adhesion to the electrode and polyolefin. Compared to a microporous membrane, there is no decrease in ionic conductivity, and it is possible to provide a separator excellent in handling properties by integration. The present invention is particularly suitable as a separator for a film-clad battery.

Claims (4)

リチウムのドープ・脱ドープにより起電力を得る非水系二次電池に用いるセパレータにおいて、該セパレータが、ポリオレフィン微多孔膜の表裏全面に、電解液に膨潤しこれを保持する有機高分子からなる多孔質層が配置されて該ポリオレフィン微多孔膜と一体化され、
▲1▼該多孔質層の空隙率が50〜90%である
▲2▼該多孔質層表面に孔径0.05〜10μmの孔が点在している
▲3▼表裏の該多孔質層の総厚みが20μm以下であり、該多孔質層の厚みが片面それぞれでは1μm以上である
ことを特徴とする非水系二次電池用セパレータ。
In a separator used in a non-aqueous secondary battery that obtains an electromotive force by doping or dedoping of lithium, the separator is a porous material composed of an organic polymer that swells and retains the electrolyte on the entire front and back surfaces of the polyolefin microporous membrane. A layer is disposed and integrated with the polyolefin microporous membrane,
(1) The porosity of the porous layer is 50 to 90%. (2) The surface of the porous layer is interspersed with pores having a pore diameter of 0.05 to 10 .mu.m. (3) A separator for a non-aqueous secondary battery, wherein the total thickness is 20 μm or less, and the thickness of the porous layer is 1 μm or more on each side.
表面開孔率が1〜80%であることを特徴とする請求項1記載の非水系二次電池用セパレータ。  The separator for a non-aqueous secondary battery according to claim 1, wherein the surface porosity is 1 to 80%. 該有機高分子が、ポリフッ化ビニリデン(PVdF)、PVdF共重合体、またはこれらを主体とするPVdF系ポリマーであることを特徴とする請求項1または2いずれかに記載の非水系二次電池用セパレータ。  3. The non-aqueous secondary battery according to claim 1, wherein the organic polymer is polyvinylidene fluoride (PVdF), a PVdF copolymer, or a PVdF-based polymer mainly composed of these. Separator. リチウムを可逆的にドープ・脱ドープ可能な正極及び負極とセパレータを備え、非水系電解液を用いた非水系二次電池において、該セパレータとして請求項1〜3いずれかに記載の非水系二次電池用セパレータを用いることを特徴とする非水系二次電池。  The nonaqueous secondary battery according to any one of claims 1 to 3, wherein the separator includes a positive electrode and a negative electrode capable of reversibly doping and dedoping lithium, and a separator, and the separator is a nonaqueous secondary battery using a nonaqueous electrolyte. A non-aqueous secondary battery using a battery separator.
JP2001276316A 2001-09-12 2001-09-12 Non-aqueous secondary battery separator and non-aqueous secondary battery Expired - Lifetime JP4127989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001276316A JP4127989B2 (en) 2001-09-12 2001-09-12 Non-aqueous secondary battery separator and non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001276316A JP4127989B2 (en) 2001-09-12 2001-09-12 Non-aqueous secondary battery separator and non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2003086162A JP2003086162A (en) 2003-03-20
JP4127989B2 true JP4127989B2 (en) 2008-07-30

Family

ID=19101036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001276316A Expired - Lifetime JP4127989B2 (en) 2001-09-12 2001-09-12 Non-aqueous secondary battery separator and non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP4127989B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137375A1 (en) 2011-04-08 2012-10-11 帝人株式会社 Nonaqueous secondary battery separator and nonaqueous secondary battery
WO2012137376A1 (en) 2011-04-08 2012-10-11 帝人株式会社 Nonaqueous secondary battery separator and nonaqueous secondary battery
WO2012137374A1 (en) 2011-04-08 2012-10-11 帝人株式会社 Nonaqueous secondary battery separator and nonaqueous secondary battery
WO2012137377A1 (en) 2011-04-08 2012-10-11 帝人株式会社 Nonaqueous secondary battery separator and nonaqueous secondary battery
WO2013073503A1 (en) * 2011-11-15 2013-05-23 帝人株式会社 Separator for nonaqueous secondary batteries, method for producing same, and nonaqueous secondary battery
WO2014021293A1 (en) * 2012-07-30 2014-02-06 帝人株式会社 Separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery
WO2014021292A1 (en) * 2012-07-30 2014-02-06 帝人株式会社 Separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery
KR20150032296A (en) 2012-07-30 2015-03-25 데이진 가부시키가이샤 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
KR20160093096A (en) 2012-07-30 2016-08-05 데이진 가부시키가이샤 Non-aqueous electrolyte battery separator and non-aqueous electrolyte battery
US9431638B2 (en) 2011-10-21 2016-08-30 Teijin Limited Non-aqueous secondary battery separator and non-aqueous secondary battery
KR20160117109A (en) 2015-03-30 2016-10-10 에스케이이노베이션 주식회사 Strong adhesive and high porous separator for secondary batteries and method of manufacturing the same
KR20160118986A (en) 2015-04-02 2016-10-12 에스케이이노베이션 주식회사 Adhesive and multi-layered lithium ion battery separator and method of manufacturing the same
US9525189B2 (en) 2011-09-26 2016-12-20 Sumitomo Chemical Company, Limited Adhesive resin composition for secondary battery
TWI568061B (en) * 2011-10-21 2017-01-21 帝人股份有限公司 Separator for non-aqueous type secondary battery, and non-aqueous type secondary battery
KR20170027715A (en) 2014-06-30 2017-03-10 데이진 가부시키가이샤 Separator for nonaqueous secondary batteries, and nonaqueous secondary battery
US9843049B2 (en) 2011-09-26 2017-12-12 Sumitomo Chemical Company, Limited Adhesive resin composition for secondary battery
US10115948B2 (en) 2011-10-21 2018-10-30 Teijin Limited Separator for a non-aqueous secondary battery and non-aqueous secondary battery
KR20190049692A (en) 2016-09-21 2019-05-09 데이진 가부시키가이샤 Separator for non-aqueous secondary battery and non-aqueous secondary battery
WO2019107521A1 (en) 2017-11-30 2019-06-06 帝人株式会社 Nonaqueous secondary battery separator and nonaqueous secondary battery
US10326120B2 (en) 2012-07-30 2019-06-18 Teijin Limited Separator for nonaqueous electrolyte battery, nonaqueous electrolyte battery, and method for producing nonaqueous electrolyte battery
WO2020189119A1 (en) 2019-03-19 2020-09-24 帝人株式会社 Separator for non-aqueous secondary cell, and non-aqueous secondary cell
WO2020189112A1 (en) 2019-03-18 2020-09-24 帝人株式会社 Separator for non-aqueous secondary battery, and non-aqueous secondary battery
US10811654B2 (en) 2015-11-11 2020-10-20 Teijin Limited Separator for non-aqueous secondary battery and non-aqueous secondary battery
US10811657B2 (en) 2015-11-11 2020-10-20 Teijin Limited Separator for non-aqueous secondary battery and non-aqueous secondary battery
KR20200132872A (en) 2018-03-16 2020-11-25 데이진 가부시키가이샤 Separator for non-aqueous secondary battery and non-aqueous secondary battery
US11777175B2 (en) 2015-07-02 2023-10-03 Teijin Limited Separator for non-aqueous secondary battery, non-aqueous secondary battery, and method of manufacturing non-aqueous secondary battery

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100573358B1 (en) 2002-09-17 2006-04-24 가부시키가이샤 도모에가와 세이시쇼 Separator for lithium-ion secondary battery and lithium-ion secondary battery comprising the same
EP1612809B1 (en) * 2003-03-31 2015-08-19 Piotrek Co., Ltd. Composite polymer electrolyte composition
JP4686968B2 (en) * 2003-10-17 2011-05-25 株式会社Gsユアサ Non-aqueous electrolyte secondary battery
US20050287425A1 (en) * 2004-06-25 2005-12-29 Celgard Inc. Li/MnO2 battery separators with selective ion transport
JP4986009B2 (en) 2005-04-04 2012-07-25 ソニー株式会社 Secondary battery
JP2007157571A (en) * 2005-12-07 2007-06-21 Nitto Denko Corp Porous film for electrolyte, electrolyte provided therefrom, and manufacturing method of electrode/electrolyte element using it
JP5612854B2 (en) * 2006-04-28 2014-10-22 エルジー・ケム・リミテッド Separation membrane for battery including gel polymer layer
US9269937B2 (en) 2006-04-28 2016-02-23 Lg Chem, Ltd. Method for preparing separator for battery with gel polymer layer
US8455053B2 (en) 2007-07-06 2013-06-04 Sony Corporation Separator, battery using the same, and method for manufacturing separator
JP2009110683A (en) * 2007-10-26 2009-05-21 Nitto Denko Corp Porous film having reactive polymer layer thereon for use in battery separator, and use of it
US8231999B2 (en) * 2008-02-06 2012-07-31 Sony Corporation Separator and battery using the same
JP5195499B2 (en) * 2009-02-17 2013-05-08 ソニー株式会社 Nonaqueous electrolyte secondary battery
US9356273B2 (en) 2009-12-04 2016-05-31 Sony Corporation Nonaqueous electrolyte secondary battery and separator
JP5853400B2 (en) * 2011-04-21 2016-02-09 ソニー株式会社 Separator and non-aqueous electrolyte battery, battery pack, electronic device, electric vehicle, power storage device, and power system
JP2012074403A (en) * 2012-01-19 2012-04-12 Sony Corp Secondary battery
CN104137300A (en) 2012-03-09 2014-11-05 帝人株式会社 Non-aqueous secondary battery separator, method for manufacturing same, and non-aqueous secondary battery
WO2014065258A1 (en) * 2012-10-22 2014-05-01 ダイキン工業株式会社 Separator, and secondary battery
KR20150049974A (en) * 2013-10-31 2015-05-08 주식회사 엘지화학 A separator having low resistance for secondary battery
JP2015179619A (en) * 2014-03-19 2015-10-08 三菱製紙株式会社 Separator for electrochemical element
JP2014160684A (en) * 2014-06-10 2014-09-04 Sony Corp Secondary battery separator and secondary battery
WO2018155287A1 (en) * 2017-02-23 2018-08-30 東レ株式会社 Porous film, separator for rechargeable battery, and rechargeable battery
US10950914B2 (en) * 2017-09-26 2021-03-16 Toray Industries, Inc. Porous film, separator for secondary batteries, and secondary battery
CN111886748A (en) * 2018-03-20 2020-11-03 三洋电机株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
JP7331692B2 (en) * 2018-06-27 2023-08-23 東レ株式会社 Porous film, secondary battery separator and secondary battery
CN113631644A (en) 2019-03-29 2021-11-09 东丽株式会社 Polyolefin microporous membrane, battery separator, secondary battery, and method for producing polyolefin microporous membrane
CN114566758B (en) * 2021-12-29 2024-03-29 武汉中兴创新材料技术有限公司 Film, preparation method thereof and battery comprising film

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137376A1 (en) 2011-04-08 2012-10-11 帝人株式会社 Nonaqueous secondary battery separator and nonaqueous secondary battery
WO2012137374A1 (en) 2011-04-08 2012-10-11 帝人株式会社 Nonaqueous secondary battery separator and nonaqueous secondary battery
WO2012137377A1 (en) 2011-04-08 2012-10-11 帝人株式会社 Nonaqueous secondary battery separator and nonaqueous secondary battery
WO2012137375A1 (en) 2011-04-08 2012-10-11 帝人株式会社 Nonaqueous secondary battery separator and nonaqueous secondary battery
US9843049B2 (en) 2011-09-26 2017-12-12 Sumitomo Chemical Company, Limited Adhesive resin composition for secondary battery
US9525189B2 (en) 2011-09-26 2016-12-20 Sumitomo Chemical Company, Limited Adhesive resin composition for secondary battery
US10115948B2 (en) 2011-10-21 2018-10-30 Teijin Limited Separator for a non-aqueous secondary battery and non-aqueous secondary battery
US10096811B2 (en) 2011-10-21 2018-10-09 Teijin Limited Separator for a non-aqueous secondary battery and non-aqueous secondary battery
TWI568061B (en) * 2011-10-21 2017-01-21 帝人股份有限公司 Separator for non-aqueous type secondary battery, and non-aqueous type secondary battery
US9431638B2 (en) 2011-10-21 2016-08-30 Teijin Limited Non-aqueous secondary battery separator and non-aqueous secondary battery
US9368778B2 (en) 2011-11-15 2016-06-14 Teijin Limited Separator for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery
JP5355823B1 (en) * 2011-11-15 2013-11-27 帝人株式会社 Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery
WO2013073503A1 (en) * 2011-11-15 2013-05-23 帝人株式会社 Separator for nonaqueous secondary batteries, method for producing same, and nonaqueous secondary battery
KR20150040853A (en) 2012-07-30 2015-04-15 데이진 가부시키가이샤 Separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery
US9905825B2 (en) 2012-07-30 2018-02-27 Teijin Limited Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JPWO2014021292A1 (en) * 2012-07-30 2016-07-21 帝人株式会社 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
KR20160093096A (en) 2012-07-30 2016-08-05 데이진 가부시키가이샤 Non-aqueous electrolyte battery separator and non-aqueous electrolyte battery
CN104521030B (en) * 2012-07-30 2016-04-06 帝人株式会社 Separator for non-aqueous electrolyte battery and nonaqueous electrolyte battery
US10622611B2 (en) 2012-07-30 2020-04-14 Teijin Limited Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
US10326120B2 (en) 2012-07-30 2019-06-18 Teijin Limited Separator for nonaqueous electrolyte battery, nonaqueous electrolyte battery, and method for producing nonaqueous electrolyte battery
CN104521030A (en) * 2012-07-30 2015-04-15 帝人株式会社 Separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery
KR20150032296A (en) 2012-07-30 2015-03-25 데이진 가부시키가이샤 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
WO2014021293A1 (en) * 2012-07-30 2014-02-06 帝人株式会社 Separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery
US9692028B2 (en) 2012-07-30 2017-06-27 Teijin Limited Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP5624251B2 (en) * 2012-07-30 2014-11-12 帝人株式会社 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
US9882189B2 (en) 2012-07-30 2018-01-30 Teijin Limited Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JPWO2014021293A1 (en) * 2012-07-30 2016-07-21 帝人株式会社 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
WO2014021292A1 (en) * 2012-07-30 2014-02-06 帝人株式会社 Separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery
KR20170027715A (en) 2014-06-30 2017-03-10 데이진 가부시키가이샤 Separator for nonaqueous secondary batteries, and nonaqueous secondary battery
US10714723B2 (en) 2014-06-30 2020-07-14 Teijin Limited Separator for a non-aqueous secondary battery, and non-aqueous secondary battery
KR20160117109A (en) 2015-03-30 2016-10-10 에스케이이노베이션 주식회사 Strong adhesive and high porous separator for secondary batteries and method of manufacturing the same
KR20160118986A (en) 2015-04-02 2016-10-12 에스케이이노베이션 주식회사 Adhesive and multi-layered lithium ion battery separator and method of manufacturing the same
US10333126B2 (en) 2015-04-02 2019-06-25 Sk Innovation Co., Ltd. Fusion type composite separation membrane for lithium secondary battery, and preparation method therefor
US11777175B2 (en) 2015-07-02 2023-10-03 Teijin Limited Separator for non-aqueous secondary battery, non-aqueous secondary battery, and method of manufacturing non-aqueous secondary battery
US10811654B2 (en) 2015-11-11 2020-10-20 Teijin Limited Separator for non-aqueous secondary battery and non-aqueous secondary battery
US10811657B2 (en) 2015-11-11 2020-10-20 Teijin Limited Separator for non-aqueous secondary battery and non-aqueous secondary battery
KR20190049692A (en) 2016-09-21 2019-05-09 데이진 가부시키가이샤 Separator for non-aqueous secondary battery and non-aqueous secondary battery
WO2019107521A1 (en) 2017-11-30 2019-06-06 帝人株式会社 Nonaqueous secondary battery separator and nonaqueous secondary battery
KR20200132872A (en) 2018-03-16 2020-11-25 데이진 가부시키가이샤 Separator for non-aqueous secondary battery and non-aqueous secondary battery
WO2020189112A1 (en) 2019-03-18 2020-09-24 帝人株式会社 Separator for non-aqueous secondary battery, and non-aqueous secondary battery
WO2020189119A1 (en) 2019-03-19 2020-09-24 帝人株式会社 Separator for non-aqueous secondary cell, and non-aqueous secondary cell

Also Published As

Publication number Publication date
JP2003086162A (en) 2003-03-20

Similar Documents

Publication Publication Date Title
JP4127989B2 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP3702318B2 (en) Non-aqueous electrolyte battery electrode and non-aqueous electrolyte battery using the electrode
KR101923787B1 (en) Protective film, separator using same, and secondary battery
JP4431304B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery provided with the same
US6027836A (en) Nonaqueous polymer cell
JP5394610B2 (en) Nonaqueous electrolyte secondary battery
JP2019501478A (en) Secondary battery and manufacturing method thereof
JP4981220B2 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP2001135359A (en) Nonaqueous electrolyte battery
KR19990088434A (en) Polymeric membranes having electrolytes and secondary cells using the same
JP4414165B2 (en) Electronic component separator and electronic component
JP4606705B2 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP4558110B2 (en) Polymer electrolyte secondary battery and manufacturing method thereof
JP2006073221A (en) Separator for lithium ion secondary battery, and lithium ion secondary battery
JP4086474B2 (en) Electrolyte-supported polymer film, battery separator, secondary battery using them, and method for producing the same
JP2014026946A (en) Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2004253380A (en) Lithium ion secondary battery and separator thereof
JP2020064879A (en) Lithium-ion secondary battery separator and lithium-ion secondary battery
JP2000315523A (en) Electrolytic solution carrying polymer film and secondary battery using it
JP5595322B2 (en) Separator and electrochemical device using the same
JPH09259923A (en) Polymer battery and manufacture thereof
JP4187434B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery
JP2014056834A (en) Separator, and electrochemical device using the same
JP2004087228A (en) Lithium ion secondary battery
JP3514994B2 (en) Sheet electrolyte, lithium secondary battery, and method for producing sheet electrolyte

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4127989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

EXPY Cancellation because of completion of term