JP4557793B2 - Waste heat power generator - Google Patents

Waste heat power generator Download PDF

Info

Publication number
JP4557793B2
JP4557793B2 JP2005142912A JP2005142912A JP4557793B2 JP 4557793 B2 JP4557793 B2 JP 4557793B2 JP 2005142912 A JP2005142912 A JP 2005142912A JP 2005142912 A JP2005142912 A JP 2005142912A JP 4557793 B2 JP4557793 B2 JP 4557793B2
Authority
JP
Japan
Prior art keywords
working medium
liquid
condenser
gas
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005142912A
Other languages
Japanese (ja)
Other versions
JP2006316767A (en
Inventor
知行 内村
修行 井上
毅一 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2005142912A priority Critical patent/JP4557793B2/en
Publication of JP2006316767A publication Critical patent/JP2006316767A/en
Application granted granted Critical
Publication of JP4557793B2 publication Critical patent/JP4557793B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明は、比較的低温の排熱を熱源として発電を行ない、電力を回収する排熱発電装置に関するものであり、特に容易かつ効果的な作動媒体の循環量制御に関するもので、発電装置の高性能化及び特に蒸気発生器の小型化を図ることのできる排熱発電装置に関するものである。   The present invention relates to an exhaust heat power generation apparatus that generates power using a relatively low temperature exhaust heat as a heat source and collects electric power, and particularly relates to easy and effective control of the circulation amount of a working medium. The present invention relates to an exhaust heat power generation apparatus capable of improving performance and particularly reducing the size of a steam generator.

排熱発電装置として図1に示す構成のものがある。図示するように排熱発電層は蒸気発生器101、タービン102、凝縮器103、バッファタンク104、作動媒体循環ポンプ105を備え、これらの機器を配管106で接続して構成されている。そして蒸気発生器101とタービンの間に気液分離器107が配置されている。なお、108は三方弁、109は逆止弁である。   There exists a thing of the structure shown in FIG. 1 as a waste heat power generator. As shown in the figure, the exhaust heat power generation layer includes a steam generator 101, a turbine 102, a condenser 103, a buffer tank 104, and a working medium circulation pump 105, and these devices are connected by a pipe 106. A gas-liquid separator 107 is disposed between the steam generator 101 and the turbine. In addition, 108 is a three-way valve and 109 is a check valve.

排熱源から排熱媒体(例えば温水)201は蒸気発生器101で熱回収され、作動媒体の高圧作動媒体蒸気203を生成する。該高圧作動媒体蒸気203はタービン102に供給され、タービン102を駆動し、該タービン102により図示しない発電機を駆動する。タービン102を駆動して低圧となった低圧作動媒体蒸気204は凝縮器103で外部冷却媒体(例えば冷却水)202で冷却され作動媒体の凝縮液となる。該凝縮液はバッファタンク104に収容され、作動媒体循環ポンプ105で蒸気発生器101に送られる。   The exhaust heat medium (for example, hot water) 201 is recovered from the exhaust heat source by the steam generator 101 to generate a high-pressure working medium vapor 203 as a working medium. The high-pressure working medium steam 203 is supplied to the turbine 102 to drive the turbine 102, and the turbine 102 drives a generator (not shown). The low-pressure working medium vapor 204 that has become low pressure by driving the turbine 102 is cooled by the external cooling medium (for example, cooling water) 202 in the condenser 103 and becomes a condensate of the working medium. The condensate is stored in the buffer tank 104 and sent to the steam generator 101 by the working medium circulation pump 105.

上記構成の排熱発電装置では、設置スペースやコスト面から、熱交換器の小型化が要求される。しかし、熱交換器、特に蒸気発生器101(若しくはボイラ)を小型化すると、蒸気発生器101内の媒体の流速が上昇し、蒸気発生器101内を循環する媒体の圧力損失が大きくなり、自然循環で循環させることが難しくなる。即ち、気液分離器107を有する排熱発電装置では、分離された分離液(作動媒体液)206を蒸気発生器101に戻す(再循環させる)のに必要な液柱高さが高くなり、これを確保できなくなる。   In the exhaust heat power generation apparatus having the above configuration, the heat exchanger is required to be downsized from the viewpoint of installation space and cost. However, when the heat exchanger, in particular, the steam generator 101 (or boiler) is downsized, the flow rate of the medium in the steam generator 101 increases, and the pressure loss of the medium circulating in the steam generator 101 increases. It becomes difficult to circulate by circulation. That is, in the exhaust heat power generation apparatus having the gas-liquid separator 107, the liquid column height necessary for returning (recirculating) the separated separated liquid (working medium liquid) 206 to the steam generator 101 is increased. This cannot be ensured.

上記のように気液分離器107で分離された分離液206を蒸気発生器101内に戻すのに必要な液柱高さを確保できない場合、図2に示すように、気液分離器107内の作動媒体液を強制的に蒸気発生器101内に戻す媒体再循環ポンプ120を用いることが一般的である。一般に媒体再循環ポンプ120は、気液分離器107で分離された分離液(作動媒体液)206を蒸気発生器101内部(下部)に圧送するものである。しかし、媒体再循環ポンプ120は高温、かつ飽和圧力に近い作動媒体液を吸込み、循環させる必要があるため、耐熱性が必要で、且つ、NPSH(吸込実揚程)が低い特性が必要であるため高価になり、また設けた場合でも、運転時のキャビテーションなどの問題が生じることがある。なお、図2において、図1と同一符号を付した部分は同一又は相当部分を示す、以下他の図面においても同様とする。   When the liquid column height necessary for returning the separation liquid 206 separated by the gas-liquid separator 107 as described above into the steam generator 101 cannot be secured, as shown in FIG. It is common to use a medium recirculation pump 120 that forcibly returns the working medium liquid to the steam generator 101. In general, the medium recirculation pump 120 pumps the separated liquid (working medium liquid) 206 separated by the gas-liquid separator 107 into the steam generator 101 (lower part). However, since the medium recirculation pump 120 needs to suck in and circulate the working medium liquid at a high temperature and close to the saturation pressure, it needs heat resistance and low NPSH (actual suction head) characteristics. Even if it is expensive and provided, problems such as cavitation during operation may occur. 2, the same reference numerals as those in FIG. 1 denote the same or corresponding parts, and the same applies to other drawings.

上記問題に対処するため、図3に示す構成の排熱発電装置が本特許出願の発明者らによって提案されている。この排気発電装置は、図3に示するように気液分離器107において分離された作動媒体液を配管106を介して凝縮器103に導き、且つ、作動媒体戻し配管110に熱回収器111を設け、該熱回収器111に作動媒体循環ポンプ105で蒸気発生器101に送る凝縮液(作動媒体液)205を送り、気液分離器107からの分離液(作動媒体液)206が有する熱で蒸気発生器101に送る作動媒体液を加熱し、熱回収している。このように熱回収器111で気液分離器107からの作動媒体液の熱を回収することで、作動媒体再循環ポンプ等を設けず、効率をあまり低下させず装置を小型化している。つまり、熱回収器111を設けることで効率低下を抑制しながら、小型化を達成している。なお、図3において、112はオリフィス、113は予熱器である。   In order to deal with the above problem, an exhaust heat power generation apparatus having the configuration shown in FIG. 3 has been proposed by the inventors of the present patent application. As shown in FIG. 3, this exhaust power generation apparatus guides the working medium liquid separated in the gas-liquid separator 107 to the condenser 103 via the pipe 106, and the heat recovery device 111 is connected to the working medium return pipe 110. The condensate (working medium liquid) 205 sent to the steam generator 101 by the working medium circulation pump 105 is sent to the heat recovery unit 111, and the heat of the separation liquid (working medium liquid) 206 from the gas-liquid separator 107 is provided. The working medium liquid sent to the steam generator 101 is heated and heat is recovered. Thus, by recovering the heat of the working medium liquid from the gas-liquid separator 107 by the heat recovery unit 111, the working medium recirculation pump or the like is not provided, and the apparatus is miniaturized without significantly reducing the efficiency. That is, by providing the heat recovery device 111, downsizing is achieved while suppressing a decrease in efficiency. In FIG. 3, 112 is an orifice, and 113 is a preheater.

しかしながら、図3に示す構成の排熱発電装置においても、気液分離器107内の液面が無くなり(分離液206が無くなり)、蒸気発生器101で発生した作動媒体蒸気が熱回収器111或いは凝縮器103に抜けてしまう、いわゆる吹き抜けが生じると、排熱発電装置の出力が大きく低下するため、気液分離器107内の分離液206の液面を一定範囲に制御し、吹き抜けることを防止しなければならない。これは、熱回収器111を設けず気液分離器107内の分離液を凝縮器103に送ろうとする場合であっても同様である。   However, even in the exhaust heat power generation apparatus having the configuration shown in FIG. 3, the liquid level in the gas-liquid separator 107 disappears (the separated liquid 206 disappears), and the working medium vapor generated in the steam generator 101 is converted into the heat recovery device 111 or When so-called blow-through occurs in the condenser 103, the output of the exhaust heat power generation device is greatly reduced. Therefore, the liquid level of the separated liquid 206 in the gas-liquid separator 107 is controlled within a certain range to prevent blow-through. Must. This is the same even when the separated liquid in the gas-liquid separator 107 is sent to the condenser 103 without providing the heat recovery device 111.

もう少し詳述すると、気液分離器107内の液面が失われて作動媒体蒸気が熱回収器111に入ると、作動媒体蒸気は熱回収器111内で凝縮する。この熱は、蒸気発生器101に送られる作動媒体液を加熱し、熱回収しているため、熱の損失としては少ないが、タービン102に導入される蒸気量が、吹き抜けた蒸気量だけ低下することと、蒸気発生器101に導入される作動媒体の温度が上昇して蒸気発生器101の伝熱温度差が低下し、出力低下を招く。熱回収器111が無い場合や、凝縮器103まで蒸気が抜けてしまう場合は、効率が低下することは言うまでもない。   More specifically, when the liquid level in the gas-liquid separator 107 is lost and the working medium vapor enters the heat recovery unit 111, the working medium vapor is condensed in the heat recovery unit 111. This heat heats the working medium liquid sent to the steam generator 101 and recovers the heat. Therefore, although the heat loss is small, the amount of steam introduced into the turbine 102 decreases by the amount of steam blown through. That is, the temperature of the working medium introduced into the steam generator 101 rises, the heat transfer temperature difference of the steam generator 101 decreases, and the output decreases. Needless to say, when the heat recovery device 111 is not provided or when the steam escapes to the condenser 103, the efficiency decreases.

また、蒸気発生器101の伝熱効率は、一般に内部の作動媒体流量が多いほどよくなるが、作動媒体量が多すぎれば気化しない作動媒体が増え、かえって蒸気発生量が低下したり、作動媒体を循環させるために補機動力が多くなったりする。即ち、蒸気発生器101内の作動媒体の循環量には最適値があるが、一般には発生蒸気量に対して10〜20%程度多く循環させることが適当である。しかし、作動媒体の循環量を、最適値に制御するのは容易ではない。なぜならば、蒸気発生量はその時々の温度条件、圧力条件により変化する上に、蒸気発生量は計測が難しい。蒸気発生量を回収熱量などで代替する場合も、やや容易であるが同様である。   In general, the heat transfer efficiency of the steam generator 101 increases as the flow rate of the working medium increases. However, if the working medium amount is too large, the working medium that does not vaporize increases, and the steam generation amount decreases or the working medium is circulated. Auxiliary machinery power increases to make it. That is, the circulating amount of the working medium in the steam generator 101 has an optimum value, but generally it is appropriate to circulate by about 10 to 20% more than the generated steam amount. However, it is not easy to control the circulating amount of the working medium to an optimum value. This is because the amount of steam generated varies depending on the temperature and pressure conditions at that time, and the amount of steam generated is difficult to measure. The same can be said for the case where the amount of generated steam is replaced by the amount of recovered heat, although it is somewhat easier.

本発明は上述の点に鑑みてなされたもので、簡単な制御で作動媒体蒸気が気液分離器から熱回収器や凝縮器に吹きぬけることを防止すると共に、蒸気発生器101内の作動媒体循環量を概略適切に制御できる排熱発電装置を提供することを目的とする。   The present invention has been made in view of the above points, and prevents the working medium vapor from being blown from the gas-liquid separator to the heat recovery unit or the condenser with simple control, and the working medium in the steam generator 101. An object of the present invention is to provide an exhaust heat power generation apparatus capable of controlling the amount of circulation roughly appropriately.

上記課題を解決するため請求項1に記載の発明は、排熱を回収して作動媒体の高圧作動媒体蒸気を生成する蒸気発生器と、該高圧作動媒体蒸気を膨張させるタービンと、該タービンからの低圧蒸気を凝縮する凝縮器と、作動媒体を循環させる作動媒体循環ポンプを備え、これら機器を作動媒体循環路で接続し、前記蒸気発生器と前記タービンの間に気液分離器を配置し、前記タービンで発電機を駆動するように構成した排熱発電装置において、前記凝縮器から前記蒸気発生器に作動媒体を循環させる循環量を制御する循環量制御手段を設けると共に、前記気液分離器内の分離液面を検出する液面検出手段を設け、前記気液分離器で分離された分離液を流量制御手段を介して凝縮器に導くと共に、前記液面検出手段で検出する気液分離器内の分離液面が所定のレベルとなるように前記循環量制御手段により作動媒体の循環量を制御することを特徴とする。   In order to solve the above-described problem, an invention described in claim 1 is directed to a steam generator that recovers exhaust heat to generate high-pressure working medium steam of a working medium, a turbine that expands the high-pressure working medium steam, A condenser for condensing the low-pressure steam and a working medium circulation pump for circulating the working medium, these devices are connected by a working medium circulation path, and a gas-liquid separator is disposed between the steam generator and the turbine. In the exhaust heat power generator configured to drive a generator with the turbine, a circulation amount control means for controlling a circulation amount for circulating a working medium from the condenser to the steam generator is provided, and the gas-liquid separation is performed. The liquid level detection means for detecting the separation liquid level in the vessel is provided, the separated liquid separated by the gas-liquid separator is guided to the condenser via the flow rate control means, and the gas-liquid detected by the liquid level detection means Minute in separator Liquid level and controlling the circulation amount of the working medium by the circulation quantity control means to be a predetermined level.

請求項2に記載の発明は、請求項1に記載の排熱発電装置において、前記気液分離器から前記凝縮器に前記分離液を導く経路に、該分離液と該凝縮器から前記蒸気発生器に送られる作動媒体とで熱交換させる熱交換器である熱回収器を設けたことを特徴とする。   According to a second aspect of the present invention, in the exhaust heat power generator according to the first aspect, the steam is generated from the separated liquid and the condenser in a path for guiding the separated liquid from the gas-liquid separator to the condenser. The heat recovery device is provided as a heat exchanger for exchanging heat with the working medium sent to the vessel.

請求項1に記載の発明によれば、気液分離器の分離液を流量制御手段を介して凝縮器に導くと共に、液面検出手段で検出する気液分離器内の分離液面が所定のレベルとなるように循環量制御手段により作動媒体の循環量を制御するので、気液分離器内の液面が常に所定のレベルにあるため作動媒体蒸気が吹きぬけなくなり、作動媒体蒸気が無駄になることがなく、作動媒体の循環量を適切な量に維持することが可能となる。   According to the first aspect of the present invention, the separation liquid in the gas-liquid separator detected by the liquid level detection means is guided to a predetermined level while the separation liquid in the gas-liquid separator is guided to the condenser via the flow rate control means. Since the circulation amount of the working medium is controlled by the circulation amount control means so as to reach a level, the liquid level in the gas-liquid separator is always at a predetermined level, so that the working medium vapor cannot be blown, and the working medium vapor is wasted. Therefore, the circulating amount of the working medium can be maintained at an appropriate amount.

請求項2に記載の発明によれば、気液分離器から凝縮器に前記分離液を導く経路に、該分離液と該凝縮器から前記蒸気発生器に送られる作動媒体とで熱交換させる熱交換器である熱回収器を設けたので、気液分離器の作動媒体分離液を蒸気発生器に戻す高価な再循環ポンプを用いることがなく、装置を小型化できると共に、ギャビテ−ション等のトラブルか発生することない。また熱回収器で蒸気発生器に入る作動媒体液が予熱されるため、伝熱性能の低い、顕熱の加熱量が少なくなり、蒸気発生器が小型化できる。   According to the second aspect of the present invention, heat is exchanged between the separated liquid and the working medium sent from the condenser to the steam generator in a path for guiding the separated liquid from the gas-liquid separator to the condenser. Since the heat recovery unit, which is an exchanger, is provided, it is possible to reduce the size of the apparatus without using an expensive recirculation pump that returns the working medium separation liquid of the gas-liquid separator to the steam generator. No trouble occurs. In addition, since the working medium liquid entering the steam generator is preheated by the heat recovery device, the amount of sensible heat with low heat transfer performance is reduced, and the steam generator can be downsized.

以下、本発明の実施の形態例を図面に基づいて説明する。図4は本発明に係る排熱発電装置の概略システム構成を示す図である。この排熱発電装置は、クローズドシステムの発電装置であり、所謂ランキンサイクルを利用した発電装置である。本発電装置は、外部排熱源からの排熱媒体(例えば、200℃〜400℃程度の排ガス或いは60℃〜100℃の排温水等)201の排熱を回収して作動媒体の高圧作動媒体蒸気203を発生する蒸気発生器11と、該高圧作動媒体蒸気203を膨張させることにより駆動するタービン(膨張機)13と該タービン13に駆動される発電機12を備えたタービン発電機14と、前記タービン13を駆動した後の低圧作動媒体蒸気204を外部冷却媒体(例えば冷却水や外気等)202にて冷却して凝縮液205とする凝縮器15と、該凝縮器15にて凝縮した凝縮液205を加圧して前記蒸気発生器11に送り込む作動媒体循環ポンプ16を備え、これらを蒸気発生器11、タービン13、凝縮器15、及び作動媒体循環ポンプ16を作動媒体循環路17で接続している。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 4 is a diagram showing a schematic system configuration of the exhaust heat power generator according to the present invention. This exhaust heat power generation device is a power generation device of a closed system, and is a power generation device using a so-called Rankine cycle. The power generation apparatus recovers exhaust heat of an exhaust heat medium (for example, exhaust gas at about 200 ° C. to 400 ° C. or exhaust hot water at 60 ° C. to 100 ° C.) 201 from an external exhaust heat source to generate a high pressure working medium vapor as a working medium A steam generator 11 that generates 203, a turbine (expander) 13 that is driven by expanding the high-pressure working medium steam 203, and a turbine generator 14 that includes a generator 12 that is driven by the turbine 13, The condenser 15 that cools the low-pressure working medium vapor 204 after driving the turbine 13 with an external cooling medium (for example, cooling water or outside air) 202 to form a condensate 205, and the condensate condensed in the condenser 15 A working medium circulation pump 16 that pressurizes and feeds 205 to the steam generator 11 is provided, and these are connected to the steam generator 11, the turbine 13, the condenser 15, and the working medium circulation pump 16. It is connected by the circulation path 17.

ここで、作動媒体として、低沸点媒体であるHFC123或いはトリフルオロエタノール(CF3CH2OH)等を用いている。これにより、比較的低温(200℃〜400℃程度)の排ガス或いは比較的低温(60℃〜100℃)の排温水等の比較的低温の熱源を利用して、これらの熱を先ず作動媒体の高圧作動媒体蒸気203に変換し、これによりタービン発電機14の発電機12に直結したタービン13を回転駆動して発電を行なうことができる。ここで、作動媒体は、低沸点媒体としたが、高沸点媒体であってもよい。 Here, HFC123 or trifluoroethanol (CF 3 CH 2 OH), which is a low boiling point medium, is used as the working medium. Accordingly, a relatively low-temperature heat source such as exhaust gas having a relatively low temperature (about 200 ° C. to 400 ° C.) or exhaust water having a relatively low temperature (60 ° C. to 100 ° C.) is used. The high-pressure working medium vapor 203 is converted, whereby the turbine 13 directly connected to the generator 12 of the turbine generator 14 can be rotationally driven to generate electric power. Here, the working medium is a low boiling point medium, but may be a high boiling point medium.

上記排熱発電装置において、作動媒体循環ポンプ16で、凝縮器15の作動媒体の凝縮液205を蒸気発生器11に送り込む。該凝縮液205は蒸気発生器11で排熱媒体201の熱エネルギーを受け、沸騰蒸発して高圧作動媒体蒸気203となる。この高圧作動媒体蒸気203はタービン発電機14の発電機12に直結したタービン13に送り込まれ、ここで高圧作動媒体蒸気の膨張によりタービン13を駆動して発電機12を駆動(回転)させて発電する。タービン13から排出された低圧作動媒体蒸気204は凝縮器15にて、冷却水等の外部冷却媒体202で冷却され、凝縮し、必要に応じて過冷却器(図示せず)で冷却され、凝縮液205となって作動媒体循環ポンプ16に吸引され、クローズとシステムを一巡する。   In the exhaust heat power generator, the working medium circulation pump 16 feeds the condensate 205 of the working medium of the condenser 15 to the steam generator 11. The condensate 205 receives the heat energy of the exhaust heat medium 201 by the steam generator 11 and evaporates to a high pressure working medium vapor 203. The high-pressure working medium steam 203 is sent to the turbine 13 directly connected to the generator 12 of the turbine generator 14 where the turbine 13 is driven by the expansion of the high-pressure working medium steam to drive (rotate) the generator 12 to generate power. To do. The low-pressure working medium vapor 204 discharged from the turbine 13 is cooled in the condenser 15 by an external cooling medium 202 such as cooling water, condensed, and cooled by a subcooler (not shown) as necessary. The liquid 205 is sucked into the working medium circulation pump 16 and goes through the closing and system.

蒸気発生器11とタービン発電機14のタービン13とを接続する作動媒体循環路17には、気液分離器18を設け、該気液分離器18で分離された作動媒体の分離液206を作動媒体戻し配管19を介して熱回収器20の加熱側(被回収側)に導き、更にオリフィス21及び制御弁22を介して凝縮器15へと導いている。熱回収器20被加熱側(回収側)には作動媒体循環ポンプ16により蒸気発生器11に送られる凝縮器15からの凝縮液(作動媒体液)205が流れており、該凝縮液205は気液分離器18からの分離液206で加熱(熱回収)され、蒸気発生器11へと送られる。オリフィス21は、細管、若しくは熱回収器20の圧力損失で代用することもできる。また、熱回収器20は省略してもよい。なお、45は蒸気発生器11の出口の高圧作動媒体蒸気203の圧力を検出する圧力計、46は高圧作動媒体蒸気203の温度を検出する温度計、47はバイパス弁、48は遮断弁である。   A gas-liquid separator 18 is provided in the working medium circulation path 17 that connects the steam generator 11 and the turbine 13 of the turbine generator 14, and the working liquid separated liquid 206 separated by the gas-liquid separator 18 is operated. It is led to the heating side (recovered side) of the heat recovery unit 20 via the medium return pipe 19 and further led to the condenser 15 via the orifice 21 and the control valve 22. Condensate (working medium liquid) 205 from the condenser 15 sent to the steam generator 11 by the working medium circulation pump 16 flows on the heated side (recovery side) of the heat recovery unit 20. Heated (heat recovered) with the separated liquid 206 from the liquid separator 18, and sent to the steam generator 11. Orifice 21 can be substituted by a pressure loss of a narrow tube or heat recovery unit 20. Further, the heat recovery unit 20 may be omitted. 45 is a pressure gauge for detecting the pressure of the high-pressure working medium steam 203 at the outlet of the steam generator 11, 46 is a thermometer for detecting the temperature of the high-pressure working medium steam 203, 47 is a bypass valve, and 48 is a shut-off valve. .

熱回収器20を用いる場合は、オリフィス21は熱回収器20の凝縮器15寄りとすることが、オリフィス21を流れる作動媒体(液)が気化(フラッシュ)しなくなるため好ましい。ここで、気液分離器18からの分離液206が熱回収器20で十分に冷却されていれば、凝縮器15に戻すことに代えて、作動媒体循環ポンプ16の吸込口に戻すと、更に熱の損失を少なくできる。凝縮器15に代えて、作動媒体循環路17を含む作動媒体循環系統の低圧の部分であれば、どこに戻しても良い。   When the heat recovery unit 20 is used, it is preferable that the orifice 21 be closer to the condenser 15 of the heat recovery unit 20 because the working medium (liquid) flowing through the orifice 21 does not vaporize (flush). Here, if the separated liquid 206 from the gas-liquid separator 18 is sufficiently cooled by the heat recovery unit 20, instead of returning to the condenser 15, returning to the suction port of the working medium circulation pump 16, Heat loss can be reduced. Instead of the condenser 15, it may be returned anywhere as long as it is a low pressure part of the working medium circulation system including the working medium circulation path 17.

気液分離器18には液面検出器23を設け、気液分離器18内の分離液206の液面の上昇と下降を検出できるようにしている。また、蒸気発生器11に作動媒体(液)を供給する作動媒体循環ポンプ16はインバータにより回転速度を任意に制御できるようにしている。これにより、蒸気発生器11への作動媒体の送り量を自在に制御できる。作動媒体の送り量を自在に制御する手段としては、このインバータとポンプの組み合せに代えて可変速のポンプを用いてもよいし、またポンプの吐出口に制御弁等を設けてもよい。   The gas-liquid separator 18 is provided with a liquid level detector 23 so that the rise and fall of the liquid level of the separation liquid 206 in the gas-liquid separator 18 can be detected. The working medium circulation pump 16 for supplying the working medium (liquid) to the steam generator 11 can arbitrarily control the rotation speed by an inverter. Thereby, the feed amount of the working medium to the steam generator 11 can be freely controlled. As means for freely controlling the feed amount of the working medium, a variable speed pump may be used instead of the combination of the inverter and the pump, or a control valve or the like may be provided at the discharge port of the pump.

ここでは、気液分離器18に設けた液面検出器23の液面レベルの測定結果により、凝縮器15から蒸気発生器11への作動媒体の供給量を制御するようにしている。即ち、気液分離器18内の分離液206の液面の上昇を検出した場合は、作動媒体循環ポンプ16の回転速度を下げて送り量を減じ、降下を検出した場合は、作動媒体循環ポンプ16の回転速度を上げて送り量を増すように制御している。これにより、まず、気液分離器18内の分離液206の液面は所定のレベルに保たれ、蒸気発生器11で発生した蒸気が、凝縮器15等に吹き抜けることが無くなる。このようにして、気液分離器18内の分離液206の液面が一定に保たれている条件での、蒸気発生量と蒸気発生器11への作動媒体の凝縮液205の供給量の関係を考察する。   Here, the supply amount of the working medium from the condenser 15 to the steam generator 11 is controlled by the measurement result of the liquid level of the liquid level detector 23 provided in the gas-liquid separator 18. That is, when an increase in the liquid level of the separation liquid 206 in the gas-liquid separator 18 is detected, the rotational speed of the working medium circulation pump 16 is decreased to reduce the feed amount. When a decrease is detected, the working medium circulation pump Control is performed to increase the feed amount by increasing the rotational speed of 16. Thereby, first, the liquid level of the separation liquid 206 in the gas-liquid separator 18 is maintained at a predetermined level, and the steam generated in the steam generator 11 does not blow through the condenser 15 and the like. In this way, the relationship between the amount of steam generated and the amount of condensate 205 supplied to the steam generator 11 under the condition that the liquid level of the separation liquid 206 in the gas-liquid separator 18 is kept constant. Is considered.

蒸気発生器11に供給された凝縮液(作動媒体液)205は、一部は気化して作動媒体蒸気(高圧作動媒体蒸気203)となり、気液分離器18で気化した作動媒体は作動媒体蒸気と作動媒体液(分離液206)に分離され、作動媒体蒸気はタービン発電機14のタービン13に送られ、作動媒体液は作動媒体戻し配管から熱回収器20とオリフィス21及び制御弁22を経由して凝縮器15に戻される。ここでタービン13は出入口の蒸気の圧力差で駆動されるが、当然、圧力差が大きければ蒸気流量が増し、小さければ減じる。厳密には発電機12の回転速度やトルク等の関係もあるが、概略、タービン13を通過する作動媒体蒸気の流量は、圧力差に比例すると考えて差し支えない。従って、蒸気発生器11の蒸気発生量はタービン13の出入口の圧力差に比例するとして良い。   A part of the condensate (working medium liquid) 205 supplied to the steam generator 11 is vaporized to become working medium vapor (high pressure working medium vapor 203), and the working medium vaporized by the gas-liquid separator 18 is the working medium vapor. The working medium liquid (separated liquid 206) is separated, the working medium vapor is sent to the turbine 13 of the turbine generator 14, and the working medium liquid passes through the heat recovery unit 20, the orifice 21 and the control valve 22 from the working medium return pipe. And returned to the condenser 15. Here, the turbine 13 is driven by the steam pressure difference at the inlet / outlet, but naturally, the steam flow rate increases if the pressure difference is large, and decreases if the pressure difference is small. Strictly speaking, there is a relationship such as the rotational speed and torque of the generator 12, but it can be considered that the flow rate of the working medium vapor passing through the turbine 13 is proportional to the pressure difference. Therefore, the steam generation amount of the steam generator 11 may be proportional to the pressure difference at the inlet and outlet of the turbine 13.

また、熱回収器20及びオリフィス21を通過して凝縮器15に戻される作動媒体液(分離液206)の流量は、オリフィス21前後の圧力差の平方根に比例するが、オリフィス21の前後の圧力差は実務上、タービン13の出入口の圧力差と同じと考えてよい。従って、蒸気発生器11の出口と凝縮器15との圧力差(タービン出入口圧力差)を横軸にとり、作動媒体蒸気流量と分離液流量(質量流量)とその合計を図示すれば、図5に示すようになる。   Further, the flow rate of the working medium liquid (separated liquid 206) that passes through the heat recovery device 20 and the orifice 21 and is returned to the condenser 15 is proportional to the square root of the pressure difference before and after the orifice 21, but the pressure before and after the orifice 21. In practice, the difference may be considered the same as the pressure difference at the inlet / outlet of the turbine 13. Therefore, if the pressure difference (turbine inlet / outlet pressure difference) between the outlet of the steam generator 11 and the condenser 15 is taken on the horizontal axis, the working medium steam flow rate, the separated liquid flow rate (mass flow rate), and the sum thereof are shown in FIG. As shown.

上記のように、気液分離器18内の分離液206の液面が所定のレベルに維持されているなら、蒸気発生器11に送られる作動媒体の流量は、図5に示すように分離液流量Aと作動媒体蒸気流量Bの合計流量Cと等しい。従って、合計流量Cが、常に発生蒸気量に対して10〜20%多くなるように、オリフィス21の径を設計すれば、蒸気発生器11には、常に発生蒸気量より10〜20%多くの作動媒体が供給されることとなり、作動媒体の供給量が常に適切に保たれることとなる。   As described above, if the liquid level of the separation liquid 206 in the gas-liquid separator 18 is maintained at a predetermined level, the flow rate of the working medium sent to the steam generator 11 is as shown in FIG. It is equal to the total flow rate C of the flow rate A and the working medium vapor flow rate B. Therefore, if the diameter of the orifice 21 is designed so that the total flow rate C is always 10 to 20% larger than the generated steam amount, the steam generator 11 always has 10 to 20% larger than the generated steam amount. The working medium is supplied, and the supply amount of the working medium is always maintained appropriately.

なお、気液分離器18の分離液206の液面により作動媒体の供給量を制御する場合、液面レベルを液面検出器23でアナログ値で検出できるのであれば、所謂PID制御等により作動媒体循環ポンプ16の回転速度を制御してもよいが、一般的なレベルスイッチ等で、液面の低下と上昇を検知する場合であれば、次のように制御すると液面の変動を小さく抑えることができる。   When the supply amount of the working medium is controlled by the liquid level of the separation liquid 206 of the gas-liquid separator 18, if the liquid level can be detected by an analog value by the liquid level detector 23, the operation is performed by so-called PID control or the like. The rotational speed of the medium circulation pump 16 may be controlled. However, if the lowering and raising of the liquid level are detected by a general level switch or the like, the fluctuation of the liquid level is suppressed by controlling as follows. be able to.

(1)分離液206の液面の上昇を検知している間は、作動媒体循環ポンプ16の回転速度を一定量減じる。下降を検知している間は、作動媒体循環ポンプ16の回転速度を一定量増す。   (1) While the rise in the liquid level of the separation liquid 206 is detected, the rotational speed of the working medium circulation pump 16 is reduced by a certain amount. While the lowering is detected, the rotational speed of the working medium circulation pump 16 is increased by a certain amount.

(2)分離液206の液面の上昇を検知した場合、検知している間は、作動媒体循環ポンプ16の回転速度を一定時間毎に一定量ずつ暫減する。下降を検知した場合、検知している間は、作動媒体循環ポンプ16の回転速度を一定時間毎に一定量ずつ暫増する。   (2) When an increase in the liquid level of the separation liquid 206 is detected, the rotation speed of the working medium circulation pump 16 is temporarily reduced by a certain amount every certain time while the separation liquid 206 is detected. When the lowering is detected, the rotational speed of the working medium circulation pump 16 is increased by a certain amount every certain time while it is detected.

(3)分離液206の液面が適正範囲に戻った場合、上記(2)で加えた修正量の半量を戻す。即ち、(2)で回転速度を増加させた場合、増加させた量の半量を減じる。回転速度を減少させた場合、減少させた量の半量を増す。 (3) When the liquid level of the separation liquid 206 returns to the appropriate range, half of the correction amount added in (2) above is returned. That is, when the rotational speed is increased in (2), half of the increased amount is reduced. When the rotational speed is decreased, half of the decreased amount is increased.

上記のように制御すると、液面検出器23に高価なアナログ式の液面検出器を用いなくとも、ある程度安定した液面の維持が可能となる。なお、上記(3)では、減じる場合であっても、増す場合であっても、半量ではなく、上記(2)で加えた修正量に概比例した値であればよく、減じる場合と増す場合で違う比例定数としても良い。また、増減した量に関わらず固定値としても良い。   By controlling as described above, it is possible to maintain a stable liquid level to some extent without using an expensive analog type liquid level detector for the liquid level detector 23. In (3) above, whether it is reduced or increased, it is not a half amount, but may be a value roughly proportional to the correction amount added in (2) above. Different proportional constants may be used. Moreover, it is good also as a fixed value irrespective of the increased / decreased quantity.

なお、本実施形態例では、気液分離器18の分離液206の液面付近に潤滑油が蓄積することがあるので、後に詳述するようにこれを集めて潤滑油系統に戻す、潤滑油戻し配管44を設けている。本排熱発電装置の場合、作動媒体循環路17を含む作動媒体系統に潤滑油が混入すると、潤滑油は蒸気発生器11内で加熱されても気化せずに残留するために、気液分離器18の液面付近に溜まりやすい。従って気液分離器18内の液面を一定に保つように運転している本排熱発電装置では、後に詳述するように気液分離器18の分離液206の液面付近から制御弁49により定期的に潤滑油を回収することで、作動媒体系統に混入した潤滑油を回収することも容易となる。この場合、溜まった潤滑油が、発電装置の停止中などに凝縮器に戻ってしまうことを防止するため、制御弁22を自動弁とし、装置の停止中や、何らかの理由で気液分離器18内の液面が低下した場合には閉止することとすると良い。   In this embodiment, since the lubricating oil may accumulate near the liquid level of the separation liquid 206 of the gas-liquid separator 18, the lubricating oil is collected and returned to the lubricating oil system as will be described in detail later. A return pipe 44 is provided. In the case of the present exhaust heat power generation device, when lubricating oil is mixed into the working medium system including the working medium circulation path 17, the lubricating oil remains without being vaporized even when heated in the steam generator 11. It tends to accumulate near the liquid level of the vessel 18. Therefore, in the present exhaust heat power generator operating to keep the liquid level in the gas-liquid separator 18 constant, the control valve 49 starts from the vicinity of the liquid level of the separation liquid 206 of the gas-liquid separator 18 as will be described in detail later. By periodically collecting the lubricating oil, the lubricating oil mixed in the working medium system can be easily collected. In this case, in order to prevent the accumulated lubricating oil from returning to the condenser while the power generation device is stopped, the control valve 22 is an automatic valve, and the gas-liquid separator 18 is used while the device is stopped or for some reason. When the liquid level inside falls, it is good to close.

なお、本実施形態では、凝縮器15の出口にも液面検出器24を設けている。これは、凝縮器15内の作動媒体が無くなり、作動循環ポンプにキャビテーションが発生することを防止するためのものである。具体的には凝縮器15内の作動媒体がなくなった場合、作動媒体循環ポンプ16の回転速度を落とすか、停止して、凝縮器15内の液面が回復するのを待つ。   In the present embodiment, the liquid level detector 24 is also provided at the outlet of the condenser 15. This is to prevent the working medium in the condenser 15 from being lost and cavitation from occurring in the working circulation pump. Specifically, when the working medium in the condenser 15 runs out, the rotational speed of the working medium circulation pump 16 is reduced or stopped, and the process waits for the liquid level in the condenser 15 to recover.

図4に示す構成の排熱発電装置において、タービン発電機14の主軸は軸受25、26により支持されている。そして各軸受25、26には、潤滑油供給ポンプ27により潤滑油タンク28に貯留された潤滑油207が加圧され各軸受25、26に潤滑油循環経路34及び制御弁50を通って供給される。各軸受25、26を潤滑・冷却した潤滑油は加熱され昇温して潤滑油受皿29、30に貯留され、潤滑油循環経路34を通って潤滑油タンク28に戻るようになっている。なお、潤滑油循環経路34の潤滑油供給ポンプ27の出口側には、ゴミ取り用の潤滑油フィルタ32や流量計33が設けられている。また、潤滑油タンク28内と凝縮器15内は作動媒体蒸気戻し管37により制御弁38を介して連通している。また、潤滑油タンク28内とタービン発電機14内は均圧配管51及び制御弁52を介して連通している。   In the exhaust heat power generator having the configuration shown in FIG. 4, the main shaft of the turbine generator 14 is supported by bearings 25 and 26. The bearings 25 and 26 are pressurized with the lubricating oil 207 stored in the lubricating oil tank 28 by the lubricating oil supply pump 27 and supplied to the bearings 25 and 26 through the lubricating oil circulation path 34 and the control valve 50. The The lubricating oil that has lubricated and cooled the bearings 25 and 26 is heated, heated, stored in the lubricating oil receptacles 29 and 30, and returned to the lubricating oil tank 28 through the lubricating oil circulation path 34. Note that a dust removing lubricating oil filter 32 and a flow meter 33 are provided on the lubricating oil circulation path 34 on the outlet side of the lubricating oil supply pump 27. Further, the inside of the lubricating oil tank 28 and the inside of the condenser 15 are communicated with each other via a control valve 38 by a working medium vapor return pipe 37. Further, the inside of the lubricating oil tank 28 and the inside of the turbine generator 14 communicate with each other via a pressure equalizing pipe 51 and a control valve 52.

潤滑油供給ポンプ27の吐出口側の配管(潤滑油循環経路34)には、温度調節器(装置)31が配置され、該温度調節器31に冷却媒体として作動媒体循環ポンプ16により凝縮器15からの凝縮液205を冷却媒体配管35を通して供給し、加熱媒体として蒸気発生器11からの高圧作動媒体蒸気203を加熱媒体配管39を通して供給することで、軸受25、26に供給する潤滑油の温度を望ましい範囲に維持するようになっている。温度調節器31から軸受25、26の間に、潤滑油207の温度を計測する機器(温度計等)を設け、潤滑油207の温度が一定の値より上昇したら、加熱媒体配管39に設けられた制御弁40を閉じの方向に開度調整し、潤滑油207の温度が一定の値より下降したら、冷却媒体配管35の制御弁41を閉じ方向に開度調整する等、制御弁40、41によって温度を調整できるようになっている。   A temperature regulator (apparatus) 31 is disposed in a pipe (lubricant oil circulation path 34) on the discharge port side of the lubricant supply pump 27, and the condenser 15 is supplied to the temperature regulator 31 by a working medium circulation pump 16 as a cooling medium. Temperature of the lubricating oil supplied to the bearings 25 and 26 by supplying the condensate 205 from the cooling medium pipe 35 and supplying the high-pressure working medium steam 203 from the steam generator 11 as the heating medium through the heating medium pipe 39. Is maintained in a desirable range. A device (such as a thermometer) for measuring the temperature of the lubricating oil 207 is provided between the temperature regulator 31 and the bearings 25 and 26. When the temperature of the lubricating oil 207 rises above a certain value, it is provided in the heating medium pipe 39. The control valve 40 is adjusted in the closing direction, and when the temperature of the lubricating oil 207 falls below a certain value, the control valve 41 of the cooling medium pipe 35 is adjusted in the closing direction. The temperature can be adjusted by.

ここで、潤滑油207の温度を計測する機器(温度計等)を設ける位置は、温度調節器31から軸受25、26の間が望ましいが、軸受25、26と潤滑油タンク28との間であってもよい。温度調節器31に供給された凝縮器15からの凝縮液205は作動媒体戻し配管36を通って凝縮器15に戻される。該作動媒体戻し配管36には流量を制御するオリフィス53が設けられている。   Here, the position where the device (thermometer or the like) for measuring the temperature of the lubricating oil 207 is preferably located between the temperature regulator 31 and the bearings 25 and 26, but between the bearings 25 and 26 and the lubricating oil tank 28. There may be. The condensate 205 from the condenser 15 supplied to the temperature controller 31 is returned to the condenser 15 through the working medium return pipe 36. The working medium return pipe 36 is provided with an orifice 53 for controlling the flow rate.

また、本排熱発電装置においては、タービン発電機14の軸受25、26に潤滑油を供給する潤滑油循環経路34に潤滑油タンク28を設けると共に、該潤滑油タンク28内に一体として形成された油再生器42を設け、上部に一体として形成された油滴分離器43を設けている。タービン発電機14の軸受25、26を冷却・潤滑して昇温した潤滑油207は油再生器42に導かれ、潤滑油タンク28内の気相と接触することで、潤滑油207中に含まれる作動媒体は気化し、分離される。潤滑油207中の作動媒体を気化させるためには、潤滑油207の温度が高い方が望ましく、油再生器42内の圧力が低いほうが望ましい。   Further, in the present exhaust heat power generator, a lubricating oil tank 28 is provided in a lubricating oil circulation path 34 for supplying lubricating oil to the bearings 25 and 26 of the turbine generator 14 and is integrally formed in the lubricating oil tank 28. An oil regenerator 42 is provided, and an oil droplet separator 43 formed integrally with the top is provided. The lubricating oil 207 that has been heated by cooling and lubricating the bearings 25 and 26 of the turbine generator 14 is guided to the oil regenerator 42 and is contained in the lubricating oil 207 by coming into contact with the gas phase in the lubricating oil tank 28. The working medium is vaporized and separated. In order to vaporize the working medium in the lubricating oil 207, it is desirable that the temperature of the lubricating oil 207 is high, and it is desirable that the pressure in the oil regenerator 42 is low.

潤滑油循環系統の中で、潤滑油207の温度が最も高くなるのは、軸受25、26を冷却した直後であるので、油再生器42は軸受25、26からの潤滑油207が戻る部分に設けるのが望ましく、更に、油再生器42は凝縮器15とを連通させることが望ましく、ここで作動媒体蒸気戻し管37で凝縮器15内と潤滑油タンク28内とが連通されている。また、上記温度調節器31で、潤滑油207の温度を望ましい範囲に保つようにしている。気化した作動媒体は、油滴分離器43で油滴が除去され、作動媒体蒸気戻し管37及び制御弁38を通して、凝縮器15に戻される。   In the lubricating oil circulation system, the temperature of the lubricating oil 207 is highest immediately after the bearings 25 and 26 are cooled, so that the oil regenerator 42 returns to the portion where the lubricating oil 207 from the bearings 25 and 26 returns. The oil regenerator 42 preferably communicates with the condenser 15, and the working medium vapor return pipe 37 communicates the inside of the condenser 15 and the lubricating oil tank 28. The temperature controller 31 keeps the temperature of the lubricating oil 207 within a desired range. The vaporized working medium is removed by the oil drop separator 43 and returned to the condenser 15 through the working medium vapor return pipe 37 and the control valve 38.

気液分離器18で分離された分離液206は作動媒体は作動媒体戻し配管19を通して凝縮器15に送られ、該分離液206に混入している潤滑油は、蒸気発生器11で加熱されても気化しないため、気液分離器18で作動媒体蒸気から分離され、作動媒体戻し配管19及び凝縮器15を通して蒸気発生器11の入口に戻される。従って、通常の運転中では、作動媒体中に混入した潤滑油は、蒸気発生器11に集まることになり、その濃度が最も高くなるのは気液分離器18で高圧作動媒体蒸気203と分離された作動媒体液(分離液206)となる。そこで本排熱発電装置では気液分離器18の分離液206の液面周辺に集まる潤滑油を定期的に制御弁49の開閉層さにより潤滑油戻し配管44を通して潤滑油タンク28の油再生器42に戻すことにより潤滑油207を回収している。   The separated liquid 206 separated by the gas-liquid separator 18 is sent to the condenser 15 through the working medium return pipe 19, and the lubricating oil mixed in the separated liquid 206 is heated by the steam generator 11. Therefore, it is separated from the working medium vapor by the gas-liquid separator 18 and returned to the inlet of the steam generator 11 through the working medium return pipe 19 and the condenser 15. Therefore, during normal operation, the lubricating oil mixed in the working medium is collected in the steam generator 11, and the concentration of the lubricating oil is highest separated from the high-pressure working medium vapor 203 by the gas-liquid separator 18. The working medium liquid (separation liquid 206) is obtained. Therefore, in the present exhaust heat power generator, the lubricating oil collected around the liquid level of the separated liquid 206 of the gas-liquid separator 18 is periodically passed through the lubricating oil return pipe 44 by the opening / closing layer of the control valve 49, and the oil regenerator of the lubricating oil tank 28. By returning to 42, the lubricating oil 207 is recovered.

以上本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Is possible.

従来の排熱発電装置の構成例を示す図である。It is a figure which shows the structural example of the conventional waste heat power generator. 従来の排熱発電装置の構成例を示す図である。It is a figure which shows the structural example of the conventional waste heat power generator. 従来の排熱発電装置の構成例を示す図である。It is a figure which shows the structural example of the conventional waste heat power generator. 本発明に係る排熱発電装置の構成例を示す図である。It is a figure which shows the structural example of the waste heat power generator which concerns on this invention. 本発明に係る排熱発電装置のタービン出入口圧力差と作動媒体流量の関係を示す図である。It is a figure which shows the relationship between the turbine inlet / outlet pressure difference and working-medium flow volume of the exhaust heat power generator which concerns on this invention.

符号の説明Explanation of symbols

11 蒸気発生器
12 発電機
13 タービン
14 タービン発電機
15 凝縮器
16 作動媒体循環ポンプ
17 作動媒体循環路
18 気液分離器
19 作動媒体戻し配管
20 熱回収器
21 オリフィス
22 制御弁
23 液面検出器
24 液面検出器
25 軸受
26 軸受
27 潤滑油供給ポンプ
28 潤滑油タンク
29 潤滑油受皿
30 潤滑油受皿
31 温度調節器
32 潤滑油フィルタ
33 流量計
34 潤滑油循環経路
35 冷却媒体配管
36 作動媒体戻し配管
37 作動媒体蒸気戻し管
38 制御弁
39 加熱媒体配管
40 制御弁
41 制御弁
42 油再生器
43 油滴分離器
44 潤滑油戻し配管
45 圧力計
46 温度計
47 バイパス弁
48 遮断弁
49 制御弁
50 制御弁
51 均圧配管
52 制御弁
53 オリフィス
DESCRIPTION OF SYMBOLS 11 Steam generator 12 Generator 13 Turbine 14 Turbine generator 15 Condenser 16 Working medium circulation pump 17 Working medium circulation path 18 Gas-liquid separator 19 Working medium return piping 20 Heat recovery device 21 Orifice 22 Control valve 23 Liquid level detector 24 Liquid level detector 25 Bearing 26 Bearing 27 Lubricating oil supply pump 28 Lubricating oil tank 29 Lubricating oil receiving tray 30 Lubricating oil receiving tray 31 Temperature controller 32 Lubricating oil filter 33 Flowmeter 34 Lubricating oil circulation path 35 Cooling medium piping 36 Working medium return Piping 37 Working medium vapor return pipe 38 Control valve 39 Heating medium piping 40 Control valve 41 Control valve 42 Oil regenerator 43 Oil drop separator 44 Lubricating oil return pipe 45 Pressure gauge 46 Thermometer 47 Bypass valve 48 Shut-off valve 49 Control valve 50 Control valve 51 Pressure equalizing piping 52 Control valve 53 Orifice

Claims (2)

排熱を回収して作動媒体の高圧作動媒体蒸気を生成する蒸気発生器と、該高圧作動媒体蒸気を膨張させるタービンと、該タービンからの低圧蒸気を凝縮する凝縮器と、作動媒体を循環させる作動媒体循環ポンプを備え、これら機器を作動媒体循環路で接続し、前記蒸気発生器と前記タービンの間に気液分離器を配置し、前記タービンで発電機を駆動するように構成した排熱発電装置において、
前記凝縮器から前記蒸気発生器に作動媒体を循環させる循環量を制御する循環量制御手段を設けると共に、前記気液分離器内の分離液面を検出する液面検出手段を設け、
前記気液分離器で分離された分離液を流量制御手段を介して凝縮器に導くと共に、前記液面検出手段で検出する気液分離器内の分離液面が所定のレベルとなるように前記循環量制御手段により作動媒体の循環量を制御することを特徴とする排熱発電装置。
A steam generator that recovers exhaust heat to generate a high-pressure working medium vapor of the working medium, a turbine that expands the high-pressure working medium steam, a condenser that condenses the low-pressure steam from the turbine, and a working medium that circulates Exhaust heat comprising a working medium circulation pump, connecting these devices through a working medium circulation path, arranging a gas-liquid separator between the steam generator and the turbine, and driving a generator by the turbine In the power generator,
A circulation amount control means for controlling a circulation amount for circulating the working medium from the condenser to the steam generator, and a liquid level detection means for detecting a separation liquid level in the gas-liquid separator;
The separation liquid separated by the gas-liquid separator is guided to the condenser through the flow rate control means, and the separation liquid level in the gas-liquid separator detected by the liquid level detection means is set to a predetermined level. An exhaust heat power generator characterized in that the circulation amount of the working medium is controlled by a circulation amount control means.
請求項1に記載の排熱発電装置において、
前記気液分離器から前記凝縮器に前記分離液を導く経路に、該分離液と該凝縮器から前記蒸気発生器に送られる作動媒体とで熱交換させる熱交換器である熱回収器を設けたことを特徴とする排熱発電装置。
The exhaust heat power generator according to claim 1,
A heat recovery unit that is a heat exchanger for exchanging heat between the separation liquid and a working medium sent from the condenser to the steam generator is provided in a path for guiding the separation liquid from the gas-liquid separator to the condenser. An exhaust heat power generator characterized by that.
JP2005142912A 2005-05-16 2005-05-16 Waste heat power generator Expired - Fee Related JP4557793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005142912A JP4557793B2 (en) 2005-05-16 2005-05-16 Waste heat power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005142912A JP4557793B2 (en) 2005-05-16 2005-05-16 Waste heat power generator

Publications (2)

Publication Number Publication Date
JP2006316767A JP2006316767A (en) 2006-11-24
JP4557793B2 true JP4557793B2 (en) 2010-10-06

Family

ID=37537648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005142912A Expired - Fee Related JP4557793B2 (en) 2005-05-16 2005-05-16 Waste heat power generator

Country Status (1)

Country Link
JP (1) JP4557793B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2532844A1 (en) 2011-06-09 2012-12-12 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Power generation apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5639515B2 (en) * 2011-03-24 2014-12-10 株式会社神戸製鋼所 Binary power generator and control method thereof
JP6005568B2 (en) * 2013-03-25 2016-10-12 株式会社神戸製鋼所 Waste heat recovery device
JP6423614B2 (en) 2014-05-13 2018-11-14 株式会社神戸製鋼所 Thermal energy recovery device
JP6237486B2 (en) * 2014-06-16 2017-11-29 トヨタ自動車株式会社 Boiling cooler
CN105806093B (en) * 2016-05-12 2017-12-26 张育仁 A kind of temperature difference power cooling tower based on screw expander
CN105928230A (en) * 2016-05-18 2016-09-07 张育仁 Interior source and exterior source combination type temperature difference hybrid-power refrigeration device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122308A (en) * 1982-01-18 1983-07-21 Mitsui Eng & Shipbuild Co Ltd Method and equipment for heat storage operation of waste heat recovery rankine cycle system
JP2000199408A (en) * 1999-01-05 2000-07-18 Ebara Corp Power generation method utilizing hot discharged water and power generation facility
JP2003227313A (en) * 2002-02-01 2003-08-15 Sumitomo Metal Ind Ltd Method of operating exhaust heat recovery power generation system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122308A (en) * 1982-01-18 1983-07-21 Mitsui Eng & Shipbuild Co Ltd Method and equipment for heat storage operation of waste heat recovery rankine cycle system
JP2000199408A (en) * 1999-01-05 2000-07-18 Ebara Corp Power generation method utilizing hot discharged water and power generation facility
JP2003227313A (en) * 2002-02-01 2003-08-15 Sumitomo Metal Ind Ltd Method of operating exhaust heat recovery power generation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2532844A1 (en) 2011-06-09 2012-12-12 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Power generation apparatus
US8794001B2 (en) 2011-06-09 2014-08-05 Kobe Steel, Ltd. Power generation apparatus

Also Published As

Publication number Publication date
JP2006316767A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
JP4659503B2 (en) Power generation device and lubricating oil recovery method
JP4557793B2 (en) Waste heat power generator
CN108474272B (en) ORC for converting waste heat from a heat source into mechanical energy and cooling system employing the same
KR101600687B1 (en) Heat recovery apparatus and operation control method of heat recovery apparatus
EP1985946B1 (en) Heat pump system and method for operating a heat pump system
US9964001B2 (en) Thermal energy recovery device
JP5885614B2 (en) Steam turbine plant, control method thereof, and control system thereof
US20140075945A1 (en) System combining power generation apparatus and desalination apparatus
CN102859195A (en) Freezing machine
CN102691538B (en) Power generation arrangement and controlling method thereof
JP2008106983A (en) Absorption type heat pump
JP4310132B2 (en) Power generator
KR101482876B1 (en) Power generation apparatus and control method thereof
KR101707744B1 (en) Compressing device
JP2008014533A (en) Oil recovering device of compression type refrigerating machine
JP4685483B2 (en) Power generation device and working medium / lubricant recovery method for power generation device
JP4553775B2 (en) Power generation device and lubricating oil recovery method
JP2006207882A (en) Absorption heat pump
JP4452328B2 (en) Combined power plant
JP6595395B2 (en) Thermal energy recovery device and operation method thereof
JP2012057520A (en) Cooling device for lubricating oil
JP6163145B2 (en) Thermal energy recovery device
JP6677063B2 (en) Heat recovery system
RU2701973C1 (en) Organic rankine cycle for conversion of waste heat of heat source into mechanical energy and cooling system using such cycle
JP2005256752A (en) Power generating device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100720

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees