JP2003227313A - Method of operating exhaust heat recovery power generation system - Google Patents

Method of operating exhaust heat recovery power generation system

Info

Publication number
JP2003227313A
JP2003227313A JP2002026069A JP2002026069A JP2003227313A JP 2003227313 A JP2003227313 A JP 2003227313A JP 2002026069 A JP2002026069 A JP 2002026069A JP 2002026069 A JP2002026069 A JP 2002026069A JP 2003227313 A JP2003227313 A JP 2003227313A
Authority
JP
Japan
Prior art keywords
heat source
fluid
flow rate
working fluid
source fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002026069A
Other languages
Japanese (ja)
Other versions
JP3939996B2 (en
Inventor
Minoru Tsukaoka
稔 束岡
Masato Sakakibara
正人 榊原
Ikuma Sato
郁磨 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Nippon Steel Corp
Original Assignee
Ebara Corp
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Sumitomo Metal Industries Ltd filed Critical Ebara Corp
Priority to JP2002026069A priority Critical patent/JP3939996B2/en
Publication of JP2003227313A publication Critical patent/JP2003227313A/en
Application granted granted Critical
Publication of JP3939996B2 publication Critical patent/JP3939996B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To miniaturize a receiver tank used to recover energy from a heat source which shows a remarkable change in temperature. <P>SOLUTION: In Fig. (a), a required time when the flow rate of heat source fluid is switched from Q2 to Q3 is taken as T23. In Fig. (b), the opening/closing speed is adjusted so that the time t23 in which the flow rate of the working fluid is changed from q2 to q3 matches or almost matches T23. The imbalance of the flow rates of the heat source fluid and the working fluid that is likely to occur when switching the flow rate can be minimized to the degree without real damage. If the imbalance in the flow rates does not occur, a sudden change of the level in the receiver tank does not occur. As a result, the receiver tank can be downsized. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は熱量が変動する排熱
源から有効にエネルギーを回収する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for effectively recovering energy from an exhaust heat source whose amount of heat fluctuates.

【0002】[0002]

【従来の技術】高温の排ガスなどから熱エネルギーを回
収する熱回収技術は広く普及している。しかし、温度が
100℃未満の低温熱源からの熱回収は設備投資に見合
う熱回収が難しいことから熱回収は殆ど行われていなか
った。この様な100℃未満の低温熱源からでも有効に
熱回収が図れる技術が、例えば特開2000−1994
08公報「高温排水を用いた発電方法及び発電設備」で
提案された排熱回収サイクルである。この排熱回収サイ
クルは水・アンモニア混合流体を熱媒体としたものであ
り、従来困難と思われていた98℃程度の排水からの効
果的な熱回収が可能となった。
2. Description of the Related Art Heat recovery technology for recovering heat energy from high-temperature exhaust gas is widely used. However, heat recovery from a low-temperature heat source having a temperature of less than 100 ° C. has hardly been carried out because it is difficult to recover the heat commensurate with equipment investment. A technique capable of effectively recovering heat from such a low temperature heat source of less than 100 ° C. is disclosed in, for example, JP-A-2000-1994.
It is the exhaust heat recovery cycle proposed in 08 publication "Power generation method and power generation equipment using high temperature waste water". This exhaust heat recovery cycle uses a water / ammonia mixed fluid as a heat medium, and it has become possible to effectively recover heat from wastewater at about 98 ° C, which was considered difficult in the past.

【0003】一方、製鋼プロセスにおいて、転炉では銑
鉄に純酸素を吹込み、銑鉄中の炭素(C)を一酸化炭素
(CO)に替えることで鋼を得る。このときの酸化反応
に伴なって大量の熱(酸化熱)が発生する。この大量の
熱を回収する技術は、例えば特開平11−223417
号公報「製鉄プロセスから発生する低温排熱の回収方
法」に示される。
On the other hand, in the steelmaking process, pure oxygen is blown into the pig iron in the converter to change the carbon (C) in the pig iron to carbon monoxide (CO) to obtain steel. A large amount of heat (heat of oxidation) is generated along with the oxidation reaction at this time. A technique for recovering this large amount of heat is disclosed in, for example, JP-A-11-223417.
It is disclosed in Japanese Unexamined Patent Application Publication "Method for recovering low-temperature waste heat generated from steel manufacturing process".

【0004】この特開平11−223417号公報に示
される吸収冷凍機を排熱回収サイクルに置き換えること
による熱回収技術は、十分に検討に値する。
The heat recovery technique by replacing the absorption refrigerator with the exhaust heat recovery cycle disclosed in Japanese Patent Laid-Open No. 11-223417 is well worth studying.

【0005】図9は従来の転炉排ガスダクトに排熱回収
サイクルを組合わせたシステムの原理図である。100
は転炉であり、101は転炉100に被せた転炉排ガス
ダクトであり、この転炉排ガスダクト101は二重壁の
間に冷却水を通す水冷ダクトであり、102は冷却水入
口、103は冷却水出口である。
FIG. 9 is a principle diagram of a system in which a conventional converter exhaust gas duct is combined with an exhaust heat recovery cycle. 100
Is a converter, 101 is a converter exhaust gas duct covering the converter 100, this converter exhaust gas duct 101 is a water cooling duct for passing cooling water between the double walls, 102 is a cooling water inlet, 103 Is the cooling water outlet.

【0006】想像線で囲った110が排熱回収サイクル
であり、この枠110は特開2000−199408公
報の図1の符号11を転記した。但し、符号は振り直し
た。サイクル110は、蒸発器111と気液分離器11
2とタービン113と発電機114と第1・第2熱交換
器115,116とレシーバタンク117と循環ポンプ
118とからなる。
An exhaust heat recovery cycle 110 is surrounded by an imaginary line, and this frame 110 is transcribed by reference numeral 11 in FIG. 1 of Japanese Patent Laid-Open No. 2000-199408. However, the code was reassigned. The cycle 110 includes an evaporator 111 and a gas-liquid separator 11
2, a turbine 113, a generator 114, first and second heat exchangers 115 and 116, a receiver tank 117, and a circulation pump 118.

【0007】そして、冷却水出口103から熱源流体供
給管104を延ばし、これを前記蒸発器111に接続
し、蒸発器111からは戻り管105を延ばし、これを
冷却水入口102に接続する。106は循環ポンプであ
る。転炉排ガスダクト101、熱源流体供給管104及
び戻り管105には沸点(100℃)未満の水を循環さ
せる。
A heat source fluid supply pipe 104 is extended from the cooling water outlet 103, is connected to the evaporator 111, and a return pipe 105 is extended from the evaporator 111, and is connected to the cooling water inlet 102. Reference numeral 106 is a circulation pump. Water having a boiling point (100 ° C.) or less is circulated in the converter exhaust gas duct 101, the heat source fluid supply pipe 104, and the return pipe 105.

【0008】一方、サイクル110では水・アンモニア
混合流体を循環させる。水・アンモニア混合流体は高温
になればアンモニアの蒸発が盛んになり、アンモニア蒸
気が多く、アンモニア水が少なくなる。低温になれば逆
になる。そこで、蒸発器111で受熱した水・アンモニ
ア混合流体は気液分離器112でアンモニア蒸気とアン
モニア水とに分れ、アンモニア蒸気はタービン113を
駆動して低温になり、第2熱交換器116を経由してレ
シーバタンク117へ向う。一方、アンモニア水は熱交
換器115,116を経由するもののタービン113を
経由することなく直接的にレシーバタンク117へ向
う。レシーバタンク117に溜まった水・アンモニア混
合流体は循環ポンプ118の作用で蒸発器111に戻
る。
On the other hand, in cycle 110, a water / ammonia mixed fluid is circulated. When the temperature of the water-ammonia mixed fluid becomes high, the evaporation of ammonia becomes vigorous, the amount of ammonia vapor becomes large, and the amount of ammonia water becomes small. The opposite is true at low temperatures. Therefore, the water / ammonia mixed fluid that has received heat in the evaporator 111 is divided into ammonia vapor and ammonia water by the gas-liquid separator 112, and the ammonia vapor drives the turbine 113 to become a low temperature, and the second heat exchanger 116 is It goes to the receiver tank 117 via. On the other hand, the ammonia water goes directly to the receiver tank 117 without passing through the turbine 113 though passing through the heat exchangers 115 and 116. The water / ammonia mixed fluid accumulated in the receiver tank 117 returns to the evaporator 111 by the action of the circulation pump 118.

【0009】すなわち、蒸発器111で熱源流体の保有
熱を水・アンモニア混合流体へ移動(回収)し、これに
より得たアンモニア蒸気でタービン113を廻し、ター
ビン113に繋がる発電機114により、電気エネルギ
ーの形で熱回収を図ることができる。
That is, the heat held by the heat source fluid is transferred (recovered) to the water / ammonia mixed fluid in the evaporator 111, and the resulting ammonia vapor is used to turn the turbine 113 to generate electrical energy by the generator 114 connected to the turbine 113. The heat can be recovered in the form of.

【0010】[0010]

【発明が解決しようとする課題】ところで、転炉100
では、一般に装入→吹錬→測定→出鋼→排滓からなる普
通吹錬を実施する。このときのタイムは、装入が約3
分、吹錬が約17分、測定が約5分、出鋼が約4分、排
滓が約4分の合計33分となる。33分間のうちの約5
2%(17分間)を占める吹錬では、酸素吹込による酸
化熱で高温になった多量の排ガスが発生する。しかし、
その他の装入、測定、出鋼、排滓では排ガスの量はゼ
ロ、若しくは少量となり、排ガスの保有熱も少なくな
る。
By the way, the converter 100
In general, we carry out ordinary blowing which consists of charging, blowing, measurement, tapping, and slag. At this time, charging is about 3
Minutes, blowing for about 17 minutes, measurement for about 5 minutes, tapping for about 4 minutes, and waste for about 4 minutes for a total of 33 minutes. About 5 out of 33 minutes
In blowing that occupies 2% (17 minutes), a large amount of exhaust gas that is heated to a high temperature is generated due to the heat of oxidation caused by blowing oxygen. But,
In other charging, measurement, tapping, and slag, the amount of exhaust gas is zero or small, and the heat of exhaust gas is also small.

【0011】一方、熱源流体(湯水)の流量は、熱的に
最も厳しくなる吹錬時に冷却水出口103での温度が沸
点を越えぬ量に定め、定めた「流量」は基本的に変更し
ない。この結果、転炉排ガスダクト101、熱源流体供
給管104及び戻り管105を流れる熱源流体(湯水)
の「温度」は大いに変動する。
On the other hand, the flow rate of the heat source fluid (hot water) is set to an amount such that the temperature at the cooling water outlet 103 does not exceed the boiling point at the time of blowing, which is the most thermally severe, and the determined "flow rate" is basically unchanged. . As a result, the heat source fluid (hot water) flowing through the converter exhaust gas duct 101, the heat source fluid supply pipe 104, and the return pipe 105.
The "temperature" of fluctuates greatly.

【0012】熱源流体の温度が下がると、蒸発器111
での水・アンモニア混合流体の吸収熱量が減少し、結果
としてアンモニア蒸気が減少し、アンモニア水が増加す
る。アンモニア蒸気は低密度の気体であり、アンモニア
水は高密度の液体であるから、蒸発器111内の蒸発管
119において、この蒸発管119に貯溜する水・アン
モニア混合流体の重量は大きくなる。
When the temperature of the heat source fluid decreases, the evaporator 111
The amount of heat absorbed by the water / ammonia mixed fluid in the air decreases, and as a result, the amount of ammonia vapor decreases and the amount of ammonia water increases. Since the ammonia vapor is a low-density gas and the ammonia water is a high-density liquid, the weight of the water / ammonia mixed fluid stored in the evaporation pipe 119 in the evaporation pipe 119 becomes large.

【0013】サイクル110を循環する水・アンモニア
混合流体の重量は一定であるから、上述の様に蒸発管1
19に貯溜する水・アンモニア混合流体が増加すると、
その代償としてレシーバタンク117の水・アンモニア
混合流体が減少して、レシーバタンク117における液
レベルが下がる。すなわち、熱源流体の温度が下がる
と、レシーバタンク117における液レベルが下がる。
Since the weight of the water / ammonia mixed fluid circulating in the cycle 110 is constant, as described above, the evaporation pipe 1
When the water / ammonia mixed fluid stored in 19 increases,
In return, the water / ammonia mixed fluid in the receiver tank 117 is reduced, and the liquid level in the receiver tank 117 is lowered. That is, when the temperature of the heat source fluid decreases, the liquid level in the receiver tank 117 decreases.

【0014】同様に、熱源流体の温度が上がると、蒸発
器111での水・アンモニア混合流体の吸収熱量が増加
し、結果としてアンモニア蒸気が増加し、アンモニア水
が減少する。
Similarly, when the temperature of the heat source fluid rises, the amount of heat absorbed by the water / ammonia mixed fluid in the evaporator 111 increases, resulting in an increase in ammonia vapor and a decrease in ammonia water.

【0015】循環する水・アンモニア混合流体の重量は
一定であるから、上述の様に蒸発管119に貯溜する水
・アンモニア混合流体が減少すると、その代償としてレ
シーバタンク117の水・アンモニア混合流体が増加し
て、レシーバタンク117における液レベルが上がる。
すなわち、熱源流体の温度が上がると、レシーバタンク
117における液レベルが上がる。
Since the weight of the circulating water / ammonia mixed fluid is constant, when the amount of the water / ammonia mixed fluid stored in the evaporation pipe 119 decreases as described above, the water / ammonia mixed fluid in the receiver tank 117 is compensated for. Increasing, the liquid level in the receiver tank 117 rises.
That is, when the temperature of the heat source fluid rises, the liquid level in the receiver tank 117 rises.

【0016】このように、従来は、作動流体(水・アン
モニア混合流体)の液レベルの上昇/下降を十分に吸収
し得る大きさのレシーバタンク117が必要となる。す
なわち、転炉排ガスダク101の様に熱源流体の温度が
変化する場合は、大型のレシーバタンク117を設備す
る必要があった。しかも、温度変化が大きいほどタンク
容量を増す必要がある。レシーバタンク117は圧力容
器であるから高価な機器であり、レシーバタンク117
の大型化は設備費の低減並びに設備のコンパクト化を妨
げるものであり、好ましくない。
As described above, conventionally, the receiver tank 117 having a size capable of sufficiently absorbing the rise / fall of the liquid level of the working fluid (water / ammonia mixed fluid) is required. That is, when the temperature of the heat source fluid changes like the converter exhaust gas duct 101, it was necessary to install a large receiver tank 117. Moreover, it is necessary to increase the tank capacity as the temperature change increases. Since the receiver tank 117 is a pressure vessel, it is an expensive device.
Increasing the size is not preferable because it prevents the cost of the equipment from being reduced and the equipment is made compact.

【0017】そこで、本発明の目的はレシーバタンクの
大型化を伴わずに、温度変化の著しい熱源からエネルギ
ーを回収することのできる技術を提供することにある。
Therefore, an object of the present invention is to provide a technique capable of recovering energy from a heat source whose temperature changes remarkably without increasing the size of the receiver tank.

【0018】[0018]

【課題を解決するための手段】上記目的を達成するため
に請求項1は、熱量が変動する排熱源から排熱を回収し
た熱源流体を、一時的に貯蓄槽に溜め、この貯蓄槽の熱
源流体を所定量蒸発器へ供給すると共に、水・アンモニ
ア混合流体などの多成分混合媒体からなる作動流体を蒸
発器に供給することで、熱源流体の保有熱を作動流体へ
移動し、この作動流体で発電タービンを廻して、電気エ
ネルギーの形で排熱を回収する排熱回収発電システムに
おいて、貯蓄槽に溜まった熱源流体のレベルに応じて、
熱源流体並びに作動流体の流量制御を実施することを特
徴とする。
In order to achieve the above object, a first aspect of the present invention is to temporarily store a heat source fluid in which exhaust heat is recovered from an exhaust heat source whose heat quantity fluctuates in a storage tank, and the heat source of the storage tank is stored. By supplying a predetermined amount of fluid to the evaporator and supplying a working fluid composed of a multi-component mixed medium such as a water / ammonia mixed fluid to the evaporator, the heat of the heat source fluid is transferred to the working fluid, and this working fluid In the exhaust heat recovery power generation system that turns the power generation turbine to recover exhaust heat in the form of electric energy, depending on the level of the heat source fluid accumulated in the storage tank,
It is characterized in that the flow rate of the heat source fluid and the working fluid is controlled.

【0019】貯蓄槽における熱源流体のレベルに注目す
ると、このレベルが低ければ貯蓄槽が空になる虞れがあ
り、これを避けるために蒸発器へ供給する熱源流体の流
量を低めに設定する。逆に、貯蓄槽における熱源流体の
レベルが十分に高ければ、蒸発器へ供給する熱源流体の
流量を高めに設定することができる。そして、熱源流体
の流量が増加するときには作動流体の流量を増加させ、
又熱源流体の流量が減少するときには作動流体の流量を
減少させことにより、アンモニア蒸気とアンモニア水と
の配分を一定に保つ。
Focusing on the level of the heat source fluid in the storage tank, if this level is low, the storage tank may become empty. To avoid this, the flow rate of the heat source fluid supplied to the evaporator is set to be low. On the contrary, if the level of the heat source fluid in the storage tank is sufficiently high, the flow rate of the heat source fluid supplied to the evaporator can be set high. Then, when the flow rate of the heat source fluid increases, the flow rate of the working fluid is increased,
When the flow rate of the heat source fluid decreases, the flow rate of the working fluid is decreased to keep the distribution of ammonia vapor and ammonia water constant.

【0020】アンモニア蒸気とアンモニア水との配分が
一定であれば、レシーバタンクで吸収させるべきレベル
変動は殆ど発生せず、結果的にレシーバタンクの容量を
抑えることができ、レシーバタンクの小型化が容易に達
成できる。
If the distribution of ammonia vapor and ammonia water is constant, there is almost no level fluctuation that should be absorbed in the receiver tank, and as a result, the capacity of the receiver tank can be suppressed and the receiver tank can be made smaller. Can be easily achieved.

【0021】請求項2は、貯蓄槽のレベルを複数に区分
し、これらの区分に応じて熱源流体並びに作動流体の流
量を段階的に制御することを特徴とする。
According to a second aspect of the present invention, the levels of the storage tank are divided into a plurality of levels, and the flow rates of the heat source fluid and the working fluid are controlled stepwise in accordance with these divisions.

【0022】貯蓄槽に溜まった熱源流体のレベルに応じ
て、熱源流体並びに作動流体の流量を連続的に制御する
ことは望ましいが、PID制御などが可能な高級で高価
な制御系が必要となる。しかし、請求項2では、例えば
貯蓄槽のレベルをA,B,Cの3つに区分し、レベルA
のときには熱源流体並びに作動流体の流量をa、同様に
レベルBのときには流量をb、同様にレベルCのときに
は流量をcに割り付ける。この結果、制御系は簡単にな
り、制御部の低コスト化が達成できる。
It is desirable to continuously control the flow rates of the heat source fluid and the working fluid according to the level of the heat source fluid accumulated in the storage tank, but a high-grade and expensive control system capable of PID control or the like is required. . However, in claim 2, for example, the level of the storage tank is divided into three levels A, B, and C, and the level A
The flow rate of the heat source fluid and the working fluid is assigned to a in the case of, the flow rate is assigned to b in the case of level B, and the flow rate is assigned to c in the case of level C. As a result, the control system is simplified and the cost of the control unit can be reduced.

【0023】請求項3は、熱源流体並びに作動流体の流
量を段階的に制御するときに、熱源流体並びに作動流体
の変更所要時間を合致させることを特徴とする。
A third aspect of the present invention is characterized in that when the flow rates of the heat source fluid and the working fluid are controlled stepwise, the required change times of the heat source fluid and the working fluid are matched.

【0024】熱源流体の流量変化に作動流体の流量変化
が追従しないと、アンモニア蒸気とアンモニア水との配
分比率が大きく変動し、小容量のレシーバタンクでは変
動を吸収できなくなる。そこで、請求項3では熱源流体
並びに作動流体の変更所要時間を合致させることで、ア
ンモニア蒸気とアンモニア水との配分比率を一定化し
た。
If the change in the flow rate of the working fluid does not follow the change in the flow rate of the heat source fluid, the distribution ratio between the ammonia vapor and the ammonia water changes significantly, and the small capacity receiver tank cannot absorb the change. Therefore, in claim 3, the distribution ratio of the ammonia vapor and the ammonia water is made constant by matching the required change times of the heat source fluid and the working fluid.

【0025】請求項4は、熱量が変動する排熱源から排
熱を回収した熱源流体を、一時的に貯蓄槽に溜め、この
貯蓄槽の熱源流体を所定量蒸発器へ供給すると共に、レ
シーバタンクに貯溜した水・アンモニア混合流体などの
多成分混合媒体からなる作動流体を蒸発器に供給するこ
とで、熱源流体の保有熱を作動流体へ移動し、この作動
流体で発電タービンを廻して、電気エネルギーの形で排
熱を回収する排熱回収発電システムにおいて、熱源流体
並びに作動流体の流量を増加させるときには、先ず熱源
流体の流量を増加させ、この増加完了情報に基づいて作
動流体の流量を増加させるシリーズ制御を行い、熱源流
体並びに作動流体の流量を減少させるときには、先ず作
動流体の流量を減少させ、この減少完了情報に基づいて
熱源流体の流量を減少させるシリーズ制御を行うことを
特徴とする。
According to a fourth aspect of the present invention, the heat source fluid in which the waste heat is recovered from the exhaust heat source whose amount of heat fluctuates is temporarily stored in the storage tank, and the heat source fluid in the storage tank is supplied to the evaporator in a predetermined amount and the receiver tank By supplying a working fluid consisting of a multi-component mixed medium such as water / ammonia mixed fluid stored in the evaporator to the evaporator, the heat of the heat source fluid is transferred to the working fluid, and the working fluid rotates the power generation turbine to generate electricity. In an exhaust heat recovery power generation system that recovers exhaust heat in the form of energy, when increasing the flow rates of the heat source fluid and the working fluid, first increase the flow rate of the heat source fluid and increase the flow rate of the working fluid based on this increase completion information. When performing the series control to reduce the flow rate of the heat source fluid and the working fluid, first reduce the flow rate of the working fluid, and based on this reduction completion information, change the flow rate of the heat source fluid. And performing series control so little of.

【0026】ここでのシリーズ制御は、ある制御を行っ
た後に、続いて別の制御を実施するごとくに、制御を順
次実施すること意味する。作動流体をそのままとし、熱
源流体の流量を増加させると、作動流体の温度が上り、
作動流体中のアンモニア蒸気の割合が増加し、蒸発器内
の蒸発管に貯溜可能な作動流体の重量が減少する。この
結果、レシーバタンクにおける液レベルは上がる。次に
熱源流体の流量の増加完了情報に基づいて作動流体の流
量を増加させる。作動流体が増加したので、作動流体の
温度上昇は頭打ちになる若しくは下降に転し、結果とし
てレシーバタンクにおける液レベルの上昇も頭打ちにな
る若しくは下降に転する。
The series control here means that one control is performed and then another control is sequentially performed, such that the control is sequentially performed. If the working fluid is left as it is and the flow rate of the heat source fluid is increased, the temperature of the working fluid rises,
The proportion of ammonia vapor in the working fluid increases, and the weight of the working fluid that can be stored in the evaporation pipe in the evaporator decreases. As a result, the liquid level in the receiver tank rises. Next, the flow rate of the working fluid is increased based on the increase completion information of the flow rate of the heat source fluid. As the working fluid increases, the rise in temperature of the working fluid peaks or falls, and consequently the rise in the liquid level in the receiver tank also peaks or falls.

【0027】すなわち、熱源流体並びに作動流体の流量
を増加させるときには、先ず熱源流体の流量を増加さ
せ、この増加完了情報に基づいて作動流体の流量を増加
させるシリーズ制御を行えば、レシーバタンクのレベル
は上り、且つこの上り程度を軽度に抑えることができ
る。
That is, when the flow rates of the heat source fluid and the working fluid are increased, first, the flow rate of the heat source fluid is increased, and the series control is performed to increase the flow rate of the working fluid based on the increase completion information. It is possible to go up, and the degree of uphill can be suppressed lightly.

【0028】又、熱源流体並びに作動流体の流量を減少
させるときには、先ず作動流体の流量を減少させ、この
減少完了情報に基づいて熱源流体の流量を減少させるシ
リーズ制御を行う。すなわち、熱源流体をそのままと
し、作動流体の流量を減少させれば、作動流体の温度が
上り、作動流体中のアンモニア蒸気の割合が増加し、蒸
発器内の蒸発管に貯溜可能な作動流体の重量が減少す
る。この結果、レシーバタンクにおける液レベルは上が
る。次に、熱源流体の流量を減少させるれば、作動流体
の温度上昇は頭打ち若しくは下降に転じ、結果としてレ
シーバタンクにおける液レベルの上昇も頭打ちになる若
しくは下降に転する。。
Further, when reducing the flow rates of the heat source fluid and the working fluid, first, the flow rate of the working fluid is reduced, and series control is performed to reduce the flow rate of the heat source fluid based on the reduction completion information. That is, if the heat source fluid is left as it is and the flow rate of the working fluid is reduced, the temperature of the working fluid rises, the proportion of ammonia vapor in the working fluid increases, and the working fluid that can be stored in the evaporation pipe in the evaporator is increased. Weight is reduced. As a result, the liquid level in the receiver tank rises. Next, when the flow rate of the heat source fluid is decreased, the temperature rise of the working fluid reaches a peak or a drop, and as a result, the rise in the liquid level in the receiver tank also peaks or drops. .

【0029】このように、熱源流体並びに作動流体の流
量を減少させるときには、先ず作動流体の流量を減少さ
せ、この減少完了情報に基づいて熱源流体の流量を減少
させるシリーズ制御を行えば、レシーバタンクのレベル
は上り、且つこの上り程度を軽度に抑えることができ
る。
As described above, when the flow rates of the heat source fluid and the working fluid are reduced, first, the flow rate of the working fluid is reduced, and the series control for reducing the flow rate of the heat source fluid is performed based on the reduction completion information. The level can be increased, and this increase can be suppressed to a low level.

【0030】以上に述べた通り、請求項4によれば、液
レベルの下降を考慮しなくて済み液レベルは上昇のみを
考慮すればよいこと並びにこの上昇の程度は軽度である
ことから、レシーバタンクの大幅な小型化が可能とな
る。
As described above, according to the fourth aspect, it is only necessary to consider the rise of the completed liquid level without considering the decrease of the liquid level, and the degree of this increase is slight. The tank can be significantly downsized.

【0031】[0031]

【発明の実施の形態】本発明の実施の形態を添付図に基
づいて以下に説明する。なお、図面は符号の向きに見る
ものとする。図1は本発明に係る排熱回収発電システム
の原理図であり、原理のベースは従来の技術で述べたも
のと同じである。すなわち、10は転炉であり、11は
転炉10に被せた転炉排ガスダクトであり、この転炉排
ガスダクト11は二重壁の間に冷却水を通す水冷ダクト
であり、12は冷却水入口、13は冷却水出口である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings. The drawings should be viewed in the direction of the reference numerals. FIG. 1 is a principle diagram of an exhaust heat recovery power generation system according to the present invention, and the basis of the principle is the same as that described in the related art. That is, 10 is a converter, 11 is a converter exhaust gas duct covering the converter 10, this converter exhaust gas duct 11 is a water cooling duct for passing cooling water between double walls, and 12 is cooling water. An inlet 13 is a cooling water outlet.

【0032】想像線で囲った20が排熱回収サイクルで
あり、サイクル20は、蒸発器21と気液分離器22と
タービン23と発電機24と第1・第2熱交換器25,
26とレシーバタンク27と作動流体の循環路29とこ
の循環路29に介設した循環ポンプ31、流量制御弁3
2及び流量計33とからなる。34は蒸発器21内の蒸
発管、35は制御部である。
20 is an exhaust heat recovery cycle surrounded by an imaginary line. The cycle 20 includes an evaporator 21, a gas-liquid separator 22, a turbine 23, a generator 24, a first and second heat exchanger 25,
26, a receiver tank 27, a working fluid circulation path 29, a circulation pump 31 provided in the circulation path 29, and a flow control valve 3
2 and a flow meter 33. Reference numeral 34 is an evaporation pipe in the evaporator 21, and 35 is a control unit.

【0033】そして、冷却水出口13から熱源流体供給
管41を延ばし、これを蒸発器21に接続するととも
に、この熱源流体供給管41に熱源流体を一時的に蓄え
る貯蓄槽42、この貯蓄槽42から熱源流体を圧送する
循環ポンプ43、熱源流体の流量を制御する流量制御弁
44及び同流量を計測する流量計45を介設する。46
は貯蓄槽42に付設したレベル計であり、レベル計46
で貯蓄槽42に一時的に蓄える熱源流体のレベルを計測
することができる。
A heat source fluid supply pipe 41 is extended from the cooling water outlet 13 and connected to the evaporator 21, and a storage tank 42 for temporarily storing the heat source fluid in the heat source fluid supply pipe 41 and this storage tank 42. A circulation pump 43 for pressure-feeding the heat source fluid, a flow rate control valve 44 for controlling the flow rate of the heat source fluid, and a flow meter 45 for measuring the flow rate are provided. 46
Is a level meter attached to the storage tank 42.
Thus, the level of the heat source fluid temporarily stored in the storage tank 42 can be measured.

【0034】また、蒸発器21からは戻り管47を延ば
し、これを冷却水入口12に接続すとともに、この戻り
管47に補助貯蓄槽48及び補助ポンプ49を介設す
る。また、51はオーバーフロー管であり、貯蓄槽42
が溢れたときにはこのオーバーフロー管51で溢れた熱
源流体を直接的に補助貯蓄槽48へ逃す。以上の構成に
より、転炉排ガスダクト11、熱源流体供給管41及び
戻り管47には沸点(100℃)未満の水を循環させ
る。
A return pipe 47 is extended from the evaporator 21, is connected to the cooling water inlet 12, and an auxiliary storage tank 48 and an auxiliary pump 49 are provided in the return pipe 47. Further, 51 is an overflow pipe, and the storage tank 42
When the water overflows, the heat source fluid overflowing in the overflow pipe 51 is directly released to the auxiliary storage tank 48. With the above configuration, water having a boiling point (100 ° C.) or lower is circulated through the converter exhaust gas duct 11, the heat source fluid supply pipe 41, and the return pipe 47.

【0035】一方、枠内のサイクル20では作動流体と
しての水・アンモニア混合流体を循環させる。水・アン
モニア混合流体は高温になればアンモニアの蒸発が盛ん
になり、アンモニア蒸気が多く、アンモニア水が少なく
なる。低温になれば逆になる。そこで、蒸発器21で受
熱した水・アンモニア混合流体は気液分離器22でアン
モニア蒸気とアンモニア水とに分れ、アンモニア蒸気は
タービン23を駆動して低温になり、第2熱交換器26
を経由してレシーバタンク27へ向う。一方、アンモニ
ア水は熱交換器25,26を経由するもののタービン2
3を経由することなく直接的にレシーバタンク27へ向
う。レシーバタンク27に溜まった水・アンモニア混合
流体は循環ポンプ31の作用で蒸発器21に戻る。
On the other hand, in the cycle 20 in the frame, a water / ammonia mixed fluid as a working fluid is circulated. When the temperature of the water-ammonia mixed fluid becomes high, the evaporation of ammonia becomes vigorous, the amount of ammonia vapor becomes large, and the amount of ammonia water becomes small. The opposite is true at low temperatures. Therefore, the water / ammonia mixed fluid that has received heat in the evaporator 21 is divided into ammonia vapor and ammonia water by the gas-liquid separator 22, and the ammonia vapor drives the turbine 23 to become a low temperature, and the second heat exchanger 26
Head to the receiver tank 27 via. On the other hand, the ammonia water passes through the heat exchangers 25 and 26, but the turbine 2
It goes directly to the receiver tank 27 without going through 3. The water / ammonia mixed fluid accumulated in the receiver tank 27 returns to the evaporator 21 by the action of the circulation pump 31.

【0036】すなわち、蒸発器21で熱源流体の保有熱
を水・アンモニア混合流体へ移動(回収)し、これによ
り得たアンモニア蒸気でタービン23を廻し、タービン
23に繋がる発電機24により、電気エネルギーの形で
熱回収を図ることができる。
That is, the evaporator 21 transfers (recovers) the heat of the heat source fluid to the water / ammonia mixed fluid, and the resulting ammonia vapor rotates the turbine 23, and the electric power generated by the generator 24 connected to the turbine 23 is changed. The heat can be recovered in the form of.

【0037】ただし、転炉10は、一般に装入→吹錬→
測定→出鋼→排滓の工程からなる普通吹錬を実施し、各
工程毎に発生排気ガスの量及び温度が激しく変る。転炉
排ガスダクト11の適切な冷却管理を行う上で、排気ガ
スの量や温度の変化に対応して熱源流体の流量を変化さ
せることは望ましい。加えて、熱源流体の流量の変化に
対応して作動流体の流量を変化させることも望ましいこ
とである。そこで、本発明では次の様な運転方法を実施
する。
However, the converter 10 is generally charged → blown →
Normal blowing, which consists of the steps of measurement, tapping, and slag, is performed, and the amount and temperature of exhaust gas generated changes drastically in each step. In order to perform appropriate cooling management of the converter exhaust gas duct 11, it is desirable to change the flow rate of the heat source fluid in response to changes in the amount and temperature of exhaust gas. In addition, it is also desirable to change the working fluid flow rate in response to changes in the heat source fluid flow rate. Therefore, in the present invention, the following operating method is implemented.

【0038】運転方法の第1の発明を図2〜図5で説明
する。図2は排熱回収発電システムの運転方法(第1の
発明)のフロー図であり、ST××はステップ番号を示
す。 ST01:先ず、図1のレベル計46で貯蓄槽42の液
レベルを検出し、制御部35に読み込む。
The first invention of the driving method will be described with reference to FIGS. FIG. 2 is a flow chart of the method for operating the exhaust heat recovery power generation system (first invention), where STXX indicates a step number. ST01: First, the liquid level in the storage tank 42 is detected by the level meter 46 shown in FIG.

【0039】ST02:制御部35では読み込んだレベ
ルと予め記憶させてあるマップ1,2(図3,4で説明
する。)とから、熱源流体の流量設定値及び作動流体の
流量設定値を決める。
ST02: The control unit 35 determines the flow rate set value of the heat source fluid and the flow rate set value of the working fluid from the read level and the maps 1 and 2 (described in FIGS. 3 and 4) stored in advance. .

【0040】図3は排熱回収発電システムの運転方法
(第1の発明)のためのマップ図であり、横軸が貯蓄槽
のレベル、縦軸は熱源流体の流量設定値及び作動流体の
流量設定値を示す。制御部35で読み込んだ値が横軸目
盛でL1であれば、矢印の如く縦線を延ばし、曲線に
交わったところから矢印の如く横線を延ばし縦軸のQ
1,q1を読取る。これで、レベルL1に対する熱源流
体の流量設定値G1及び作動流体の流量設定値g1を定
めることができる。
FIG. 3 is a map diagram for the operating method (first invention) of the exhaust heat recovery power generation system, where the horizontal axis represents the level of the storage tank, and the vertical axis represents the flow rate set value of the heat source fluid and the flow rate of the working fluid. Indicates the set value. If the value read by the control unit 35 is L1 on the horizontal axis scale, a vertical line is extended as indicated by the arrow, and a horizontal line is extended as indicated by the arrow from the point where the curve intersects with the Q on the vertical axis.
Read 1, q1. With this, the heat source fluid flow rate set value G1 and the working fluid flow rate set value g1 for the level L1 can be determined.

【0041】図2に戻る。 ST03:定めた流量設定値G1になるように、図1の
制御部35、流量計45及び流量制御弁44で熱源流体
の流量を制御する。同様に、定めた流量設定値g1にな
るように、制御部35、流量計33及び流量制御弁32
で作動流体の流量を制御する。
Returning to FIG. ST03: The flow rate of the heat source fluid is controlled by the control unit 35, the flow meter 45 and the flow rate control valve 44 of FIG. 1 so that the flow rate set value G1 is set. Similarly, the control unit 35, the flow meter 33, and the flow control valve 32 are controlled so that the set flow rate setting value g1 is achieved.
Controls the flow rate of the working fluid.

【0042】熱源流体の流量が増加するときには作動流
体の流量を増加させ、又熱源流体の流量が減少するとき
には作動流体の流量を減少させことにより、アンモニア
蒸気とアンモニア水との配分比率を一定に保つことがで
きる。
By increasing the flow rate of the working fluid when the flow rate of the heat source fluid increases and decreasing the flow rate of the working fluid when the flow rate of the heat source fluid decreases, the distribution ratio of ammonia vapor and ammonia water is made constant. Can be kept.

【0043】アンモニア蒸気とアンモニア水との配分が
一定若しくはほぼ一定であれば、レシーバタンクで吸収
させるべきレベル変動は殆ど発生せず、結果的にレシー
バタンクの容量を抑えることができ、レシーバタンクの
小型化が容易に達成できる。
If the distribution of the ammonia vapor and the ammonia water is constant or almost constant, the level fluctuation to be absorbed in the receiver tank hardly occurs, and as a result, the capacity of the receiver tank can be suppressed and the receiver tank capacity can be suppressed. Miniaturization can be easily achieved.

【0044】図4は排熱回収発電システムの運転方法
(第1の発明)のための別のマップ図であり、前記図3
の簡易型マップと言える。すなわち、横軸の貯蓄槽レベ
ルを複数(図ではA,B,C)に区分し、それぞれに熱
源流体の流量設定値及び作動流体の流量設定値a,b,
cをステップ状に割り付ける。制御部で読み込んだレベ
ルが横軸の目盛でL2であれば、矢印,の要領で、
熱源流体の流量設定値G2及び作動流体の流量設定値g
2を定めることができる。同様に、次に制御部で読み込
んだレベルが横軸の目盛でL3であれば、熱源流体の流
量設定値G3及び作動流体の流量設定値g3を定めるこ
とができる。
FIG. 4 is another map diagram for the operating method (first invention) of the exhaust heat recovery power generation system.
It can be said that it is a simple type map. That is, the storage tank level on the horizontal axis is divided into a plurality of (A, B, C in the figure), and the heat source fluid flow rate set value and the working fluid flow rate set value a, b,
Allocate c in steps. If the level read by the control unit is L2 on the horizontal scale, use the arrow and
Heat source fluid flow rate setting value G2 and working fluid flow rate setting value g
2 can be set. Similarly, if the level read next by the control unit is L3 on the scale of the horizontal axis, the flow rate set value G3 of the heat source fluid and the flow rate set value g3 of the working fluid can be determined.

【0045】図3の如く、貯蓄槽に溜まった熱源流体の
レベルに応じて、熱源流体並びに作動流体の流量を連続
的に制御することは望ましいが、PID制御などが可能
な高級で高価な制御系が不可欠となる。この点、図4で
は、例えば貯蓄槽のレベルをA,B,Cの3つに区分
し、レベルAのときには熱源流体並びに作動流体の流量
をa、同様にレベルBのときには流量をb、同様にレベ
ルCのときには流量をcに割り付ける。この結果、制御
系は簡単になり、制御部の低コスト化が達成できる。な
お、区分の数は任意である。
As shown in FIG. 3, it is desirable to continuously control the flow rates of the heat source fluid and the working fluid in accordance with the level of the heat source fluid accumulated in the storage tank, but it is possible to perform high-quality and expensive control such as PID control. The system becomes indispensable. In this regard, in FIG. 4, for example, the level of the storage tank is divided into three levels A, B, and C, the flow rate of the heat source fluid and the working fluid is a at the level A, and the flow rate is b at the level B. When the level is C, the flow rate is assigned to c. As a result, the control system is simplified and the cost of the control unit can be reduced. The number of divisions is arbitrary.

【0046】なお、例えばG2からG3に熱源流量の流
量を切換え、g2からg3へ作動流体の流量を切換える
ときに、相互の切換えタイミングがずれることは好まし
くない。そこで、図4のマップを使用するときには次に
説明する同期制御を行うことが望ましい。
When the flow rate of the heat source flow rate is switched from G2 to G3 and the flow rate of the working fluid is switched from g2 to g3, it is not preferable that the switching timings are deviated from each other. Therefore, when using the map of FIG. 4, it is desirable to perform the synchronization control described below.

【0047】図5は図4に連結させる流量曲線図であ
り、(a)の縦軸は熱源流体の流量、(b)の縦軸は作
動流体の流量を示し、横軸は共に時間を示す。(a)に
おいて、熱源流体の流量をQ2からQ3に切換えるとき
の変更所要時間をT23とすれば、この時間T23は図
1の流量制御弁44の開閉速度と開又は閉角度とから定
まる。
FIG. 5 is a flow rate curve diagram connected to FIG. 4. The vertical axis of (a) shows the flow rate of the heat source fluid, the vertical axis of (b) shows the flow rate of the working fluid, and the horizontal axis shows time. . In (a), when the change required time for switching the flow rate of the heat source fluid from Q2 to Q3 is T23, this time T23 is determined from the opening / closing speed and the opening or closing angle of the flow rate control valve 44 in FIG.

【0048】(b)において、制御部35(図1参照)
の流量制御弁32を開又は閉制御を実施するときに、作
動流体の流量がq2からq3へ変化するまでの時間t2
3を前記時間T23に合致若しくはほぼ合致するように
開閉速度を調節する。この結果、流量の切換え時に発生
しやすい熱源流体と作動流体の流量アンバランスを実害
のない程度に微小化することができる。流量アンバラン
スが無ければレシーバタンク26でのレベルの急変が発
生しない。
In (b), the control unit 35 (see FIG. 1)
When the flow control valve 32 is opened or closed, the time t2 until the flow rate of the working fluid changes from q2 to q3.
The opening / closing speed is adjusted so that 3 is matched or almost matched with the time T23. As a result, it is possible to reduce the flow rate imbalance between the heat source fluid and the working fluid, which is likely to occur at the time of switching the flow rate, to the extent that there is no actual harm. If there is no flow rate imbalance, there will be no sudden change in the level in the receiver tank 26.

【0049】(a),(b)の時間軸の後半では、熱源
流体の流量をQ3からQ4に切換えるときの変更所要時
間T34に、作動流体の流量をq3からq4に切換える
ときの変更所要時間t34を合致若しくはほぼ合致さた
ことを示す。
In the latter half of the time axes of (a) and (b), the required change time T34 when the flow rate of the heat source fluid is changed from Q3 to Q4 and the required change time when the flow rate of the working fluid is changed from q3 to q4. It indicates that t34 was matched or almost matched.

【0050】次に、運転方法の第2の発明を図6〜図8
で説明するが、先ず、図1において、流量Qの熱源流体
が転炉排ガスダクト11、貯蓄槽42、蒸発器21、補
助貯蓄槽48の順に循環し、流量qの作動流体がサイク
ル20を循環していたとする。そのときの転炉10の操
業形態は、過去のデータの蓄積と、転炉10の容量、性
能、そこへ投入する銑鉄の重量、温度などにから、所謂
コンピュータ(図示せぬ)で工程を精度よく予測するこ
とができる。
Next, the second invention of the operating method will be described with reference to FIGS.
First, in FIG. 1, the heat source fluid having the flow rate Q circulates in the order of the converter exhaust gas duct 11, the storage tank 42, the evaporator 21, and the auxiliary storage tank 48, and the working fluid having the flow rate q circulates in the cycle 20 in FIG. I was doing. The operation mode of the converter 10 at that time is based on the accumulation of past data, the capacity and performance of the converter 10, the weight of pig iron to be charged therein, the temperature, etc. Can be well predicted.

【0051】この予測に基づいて、コンピュータは制御
部35へ適宜熱源流体の流量Qの変更指示を発する。例
えば、吹錬が始まれば排ガスの量は急増する。そこで、
吹錬の開始前に熱源流体の流量Qを増加し始める様なプ
ログラムをコンピュータにインストールしておけば、熱
源流体の流量Qの変更指示(変更指示信号)を制御部3
5へ発することができる。
Based on this prediction, the computer issues an instruction for changing the flow rate Q of the heat source fluid to the control section 35 as appropriate. For example, when blowing starts, the amount of exhaust gas increases rapidly. Therefore,
If a program for increasing the flow rate Q of the heat source fluid is installed in the computer before the start of blowing, a control unit 3 issues a change instruction (change instruction signal) for the flow rate Q of the heat source fluid.
You can call 5.

【0052】図6は排熱回収発電システムの運転方法
(第2の発明)のフロー図であり、ST××はステップ
番号を示す。 ST10:熱源流体の流量Qの変更指示の有無を調べ
る。変更指示があった場合にST11に進む。 ST11:変更指示には、現在の流量Qに対する修正値
ΔQが含まれていとする。ここで修正値ΔQに対応する
作動流体の流量qの修正値Δqを定める。この修正値Δ
qは、例えばΔQを横軸、Δqを縦軸としたマップを用
意しておき、このマップによってΔqを定めることがで
きる。
FIG. 6 is a flow chart of the method for operating the exhaust heat recovery power generation system (second invention), where STXX indicates a step number. ST10: Check whether there is an instruction to change the flow rate Q of the heat source fluid. When there is a change instruction, the process proceeds to ST11. ST11: It is assumed that the change instruction includes the correction value ΔQ for the current flow rate Q. Here, the correction value Δq of the flow rate q of the working fluid corresponding to the correction value ΔQ is determined. This correction value Δ
For q, for example, a map having ΔQ on the horizontal axis and Δq on the vertical axis is prepared, and Δq can be determined by this map.

【0053】ST12:修正値ΔQが正であるか否かを
調べる。正は流量を増加する。負は流量を減少すること
を意味する。なお、ST10でYesであればΔQは0
(ゼロ)ではない。 ST13:ST12でYesであれば、熱源流体の流量
をQから(Q+ΔQ)に変更する。この変更は図1の制
御部35、流量計45及び流量制御弁44で実施する。
ST12: Check whether the correction value ΔQ is positive. Positive increases flow rate. Negative means reducing the flow rate. If ST10 is Yes, ΔQ is 0.
Not (zero). ST13: If YES in ST12, the flow rate of the heat source fluid is changed from Q to (Q + ΔQ). This change is implemented by the control unit 35, the flow meter 45 and the flow control valve 44 of FIG.

【0054】ST14:図1の流量計45で熱源流体の
流量の増加が完了したことを確認したら、ST15に進
む。 ST15:作動流体の流量をqから(q+Δq)に変更
する。この変更は図1の制御部35、流量計33及び流
量制御弁32で実施する。
ST14: When it is confirmed by the flow meter 45 of FIG. 1 that the increase in the flow rate of the heat source fluid is completed, the process proceeds to ST15. ST15: Change the flow rate of the working fluid from q to (q + Δq). This change is implemented by the control unit 35, the flow meter 33 and the flow control valve 32 of FIG.

【0055】図7は図6の補足説明図であり、上述のS
T13〜ST15をグラフで補足説明すると、(a)の
熱源流体の流量グラフにおいて、流量変更指示(ここで
は流量増加指示)を受けたポイントP1で熱源流体の流
量をQから(Q+ΔQ)に向って増加させる。この増加
が完了したポイントP2の時点で増加完了情報(増加完
了信号)を発する。(b)の作動流体の流量グラフにお
いて、増加完了信号を受けたポイントP2で作動流体が
qから(q+Δq)に増加させる。
FIG. 7 is a supplementary explanatory diagram of FIG. 6, and the above-mentioned S
To explain T13 to ST15 in a graph, in the flow chart of the heat source fluid in (a), the flow rate of the heat source fluid changes from Q toward (Q + ΔQ) at the point P1 at which the flow rate change instruction (here, the flow rate increase instruction) is received. increase. At the time point P2 when this increase is completed, increase completion information (increase completion signal) is issued. In the flow chart of the working fluid in (b), the working fluid is increased from q to (q + Δq) at the point P2 when the increase completion signal is received.

【0056】(c)はレシーバタンクのレベルを示すグ
ラフであり、ポイントP1から液レベルが上り始める。
これは、熱源流体のみが増量して作動流体の温度が上昇
し、これによりレベルが上がることによる。時間遅れが
あるため上昇は緩慢になる。ポイントP2で作動流体が
増加し始め、熱源流体と作動流体との流量アンバランス
が解消の方向に向う。そのため、液レベルの上昇は停止
し、下降に転ずる。従って、ST13〜ST15の制御
を実施すると、レシーバタンクにおける液レベルが上昇
すること、及びこの上昇量ΔL1は比較的小さいこと
が、分かる。
(C) is a graph showing the level of the receiver tank, and the liquid level starts to rise from the point P1.
This is because only the heat source fluid is increased and the temperature of the working fluid rises, which raises the level. The rise is slow due to the time delay. At point P2, the working fluid begins to increase, and the flow rate imbalance between the heat source fluid and the working fluid tends to be eliminated. Therefore, the rise of the liquid level stops and starts to fall. Therefore, it is understood that when the control of ST13 to ST15 is carried out, the liquid level in the receiver tank rises, and this amount of rise ΔL1 is relatively small.

【0057】図6に戻る。 ST16:ST12でNoであれば、作動流体の流量を
qから(q+Δq)に変更する。この変更は図1の制御
部35、流量計33及び流量制御弁32で実施する。な
お、Δqは負であるから、作動流体の流量は減少する。 ST17:図1の流量計33で作動流体の流量の減少が
完了したことを確認したら、ST15に進む。 ST18:熱源流体の流量をQから(Q+ΔQ)に変更
する。この変更は図1の制御部35、流量計45及び流
量制御弁44で実施する。なお、ΔQは負であるから、
熱源流体の流量は減少する。
Returning to FIG. ST16: If No in ST12, the flow rate of the working fluid is changed from q to (q + Δq). This change is implemented by the control unit 35, the flow meter 33 and the flow control valve 32 of FIG. Since Δq is negative, the flow rate of the working fluid decreases. ST17: After confirming that the flow rate of the working fluid has been reduced by the flow meter 33 of FIG. 1, the process proceeds to ST15. ST18: Change the flow rate of the heat source fluid from Q to (Q + ΔQ). This change is implemented by the control unit 35, the flow meter 45 and the flow control valve 44 of FIG. Since ΔQ is negative,
The heat source fluid flow rate is reduced.

【0058】図8は図6の別の補足説明図であり、上述
のST16〜ST18をグラフで補足説明すると、先
ず、(b)の作動流体の流量グラフにおいて、流量変更
指示(ここでは流量減少信号)を受けたポイントP3で
作動流体をqから(q+Δq)に減少させる。この減少
が完了したポイントP4の時点で減少完了情報(減少完
了信号)を発する。(a)の熱源流体の流量グラフにお
いて、減少完了信号を受けるたポイントP4で熱源流体
は流量がQから(Q+ΔQ)に向って減少させる。
FIG. 8 is another supplementary explanatory view of FIG. 6, and when the above-mentioned ST16 to ST18 are supplementarily explained in the graph, first, in the flow chart of the working fluid in FIG. The working fluid is reduced from q to (q + Δq) at the point P3 when the signal is received. At the point P4 when this reduction is completed, reduction completion information (reduction completion signal) is issued. In the flow chart of the heat source fluid in (a), the flow rate of the heat source fluid is reduced from Q to (Q + ΔQ) at point P4 when the reduction completion signal is received.

【0059】(c)はレシーバタンクのレベルを示すグ
ラフであり、ポイントP3から液レベルが上り始める。
これは、作動流体のみが減少したため作動流体の温度が
上昇し、これによりレベルが上がることによる。時間遅
れがあるため上昇は緩慢になる。ポイントP4で熱源流
体が減少し始め、熱源流体と作動流体との流量アンバラ
ンスが解消の方向に向う。そのため、液レベルの上昇は
停止し、下降に転ずる。従って、ST16〜ST18の
制御を実施すると、レシーバタンクにおける液レベルが
上昇すること、及びこの上昇量ΔL2は比較的小さいこ
とが、分かる。
(C) is a graph showing the level of the receiver tank, and the liquid level starts to rise from point P3.
This is because the temperature of the working fluid increases due to the decrease of the working fluid alone, which causes the level to rise. The rise is slow due to the time delay. At point P4, the heat source fluid begins to decrease, and the flow rate imbalance between the heat source fluid and the working fluid tends to be eliminated. Therefore, the rise of the liquid level stops and starts to fall. Therefore, it is understood that when the control of ST16 to ST18 is carried out, the liquid level in the receiver tank rises, and this rise amount ΔL2 is relatively small.

【0060】以上に述べた図7(c)及び図8(c)か
ら明らかな如く、液レベルの下降を考慮しなくて済み液
レベルは上昇のみを考慮すればよいこと並びにこの上昇
の程度は軽度であることから、図1のレシーバタンク2
6の大幅な小型化が可能となる。
As is apparent from FIGS. 7 (c) and 8 (c) described above, it is not necessary to consider the decrease of the liquid level and it is sufficient to consider only the increase of the liquid level, and the extent of this increase. Since it is mild, the receiver tank 2 of FIG.
It is possible to significantly reduce the size of 6.

【0061】尚、運転方法の第1の発明と第2の発明
は、何れかを独立して実施することの他、第1の発明と
第2の発明とを組合わせて実施することは差支えない。
The first and second inventions of the operating method may be carried out independently of each other, or may be carried out by combining the first invention and the second invention. Absent.

【0062】また、本発明の排熱回収発電システムの運
転方法は、適用対象を転炉として説明したが、熱量が変
動する排熱源であれば適用対象は任意であり、格別に転
炉に限定するものではない。
Further, the operating method of the exhaust heat recovery power generation system of the present invention has been explained by applying the converter as a converter, but the applying object is arbitrary as long as it is an exhaust heat source whose heat quantity fluctuates, and it is particularly limited to the converter. Not something to do.

【0063】[0063]

【発明の効果】本発明は上記構成により次の効果を発揮
する。請求項1は、排熱回収発電システムにおいて、貯
蓄槽に溜まった熱源流体のレベルに応じて、熱源流体並
びに作動流体の流量制御を実施することを特徴とし、熱
源流体の流量が増加するときには作動流体の流量を増加
させ、又熱源流体の流量が減少するときには作動流体の
流量を減少させことにより、作動流体蒸気と作動流体液
との配分を一定に保つことができ、蒸気と液との配分が
一定であれば、レシーバタンクで吸収させるべきレベル
変動は殆ど発生せず、結果的にレシーバタンクの容量を
抑えることができ、レシーバタンクの小型化が容易に達
成できる。
The present invention has the following effects due to the above configuration. According to a first aspect of the present invention, in the exhaust heat recovery power generation system, the flow rate control of the heat source fluid and the working fluid is performed according to the level of the heat source fluid stored in the storage tank, and the operation is performed when the flow rate of the heat source fluid increases. By increasing the flow rate of the fluid and decreasing the flow rate of the working fluid when the flow rate of the heat source fluid decreases, the distribution of the working fluid vapor and the working fluid liquid can be kept constant, and the distribution of the vapor and the liquid can be maintained. Is constant, the level fluctuation that should be absorbed by the receiver tank hardly occurs, and as a result, the capacity of the receiver tank can be suppressed and the miniaturization of the receiver tank can be easily achieved.

【0064】請求項2では、例えば貯蓄槽のレベルを
A,B,Cの3つに区分し、レベルAのときには熱源流
体並びに作動流体の流量をa、同様にレベルBのときに
は流量をb、同様にレベルCのときには流量をcに割り
付ける。この結果、制御系は簡単になり、制御部の低コ
スト化が達成できる。
In the second aspect, for example, the level of the storage tank is divided into three levels A, B, and C, the flow rate of the heat source fluid and the working fluid is a when the level is A, and the flow rate is b when the level is B. Similarly, at the level C, the flow rate is assigned to c. As a result, the control system is simplified and the cost of the control unit can be reduced.

【0065】請求項3は、熱源流体並びに作動流体の流
量を段階的に制御するときに、熱源流体並びに作動流体
の変更所要時間を合致させることを特徴とする。熱源流
体の流量変化に作動流体の流量変化が追従しないと、ア
ンモニア蒸気とアンモニア水との配分が変動し、小容量
のレシーバタンクでは変動を吸収できなくなる。そこ
で、請求項3では熱源流体並びに作動流体の変更所要時
間を合致させることで、アンモニア蒸気とアンモニア水
との配分を一定に保つようにした。
A third aspect of the present invention is characterized in that when the flow rates of the heat source fluid and the working fluid are controlled stepwise, the required change times of the heat source fluid and the working fluid are matched. If the change in the flow rate of the working fluid does not follow the change in the flow rate of the heat source fluid, the distribution of ammonia vapor and ammonia water fluctuates, and the fluctuation cannot be absorbed by the small-capacity receiver tank. Therefore, in claim 3, the heat source fluid and the working fluid are changed in the required time so that the distribution of the ammonia vapor and the ammonia water is kept constant.

【0066】請求項4は、熱源流体並びに作動流体の流
量を増加させるときには、先ず熱源流体の流量を増加さ
せ、この増加完了情報に基づいて作動流体の流量を増加
させるシリーズ制御を行う。この結果、レシーバタンク
のレベルは上り、この上り程度を軽度に抑えることがで
きる。又、請求項4は、熱源流体並びに作動流体の流量
を減少させるときには、先ず作動流体の流量を減少さ
せ、この減少完了情報に基づいて熱源流体の流量を減少
させるシリーズ制御を行う。この結果、レシーバタンク
のレベルは上り、この上り程度を軽度に抑えることがで
きる。
According to the fourth aspect, when the flow rates of the heat source fluid and the working fluid are increased, the flow rate of the heat source fluid is first increased, and the series control is performed to increase the flow rate of the working fluid based on the increase completion information. As a result, the level of the receiver tank rises, and this degree of rise can be suppressed to a low level. According to the fourth aspect, when reducing the flow rates of the heat source fluid and the working fluid, first, the flow rate of the working fluid is reduced, and the series control is performed to reduce the flow rate of the heat source fluid based on the reduction completion information. As a result, the level of the receiver tank rises, and this degree of rise can be suppressed to a low level.

【0067】以上に述べた通り、請求項4によれば、液
レベルの下降を考慮しなくて済み液レベルは上昇のみを
考慮すればよいこと並びにこの上昇の程度は軽度である
ことから、レシーバタンクの大幅な小型化が可能とな
る。
As described above, according to claim 4, since it is only necessary to consider the rise of the completed liquid level without considering the fall of the liquid level, and the degree of this rise is slight, the receiver The tank can be significantly downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る排熱回収発電システムの原理図FIG. 1 is a principle diagram of an exhaust heat recovery power generation system according to the present invention.

【図2】排熱回収発電システムの運転方法(第1の発
明)のフロー図
FIG. 2 is a flow chart of an operating method (first invention) of the exhaust heat recovery power generation system.

【図3】排熱回収発電システムの運転方法(第1の発
明)のためのマップ図
FIG. 3 is a map diagram for a method of operating an exhaust heat recovery power generation system (first invention).

【図4】排熱回収発電システムの運転方法(第1の発
明)のための別のマップ図
FIG. 4 is another map diagram for the operating method (first invention) of the exhaust heat recovery power generation system.

【図5】図4に連結させる流量曲線図FIG. 5 is a flow rate curve diagram connected to FIG.

【図6】排熱回収発電システムの運転方法(第2の発
明)のフロー図
FIG. 6 is a flow chart of a method for operating an exhaust heat recovery power generation system (second invention).

【図7】図6の補足説明図7 is a supplementary explanatory diagram of FIG.

【図8】図6の別の補足説明図FIG. 8 is another supplementary explanatory diagram of FIG.

【図9】従来の転炉排ガスダクトに排熱回収サイクルを
組合わせたシステムの原理図
FIG. 9: Principle diagram of a system that combines a conventional converter exhaust gas duct with an exhaust heat recovery cycle

【符号の説明】[Explanation of symbols]

10…熱量が変動する排熱源としての転炉、21…蒸発
器、23…タービン、24…発電機、32,44…流量
制御弁、33,45…流量計、34…蒸発器内の蒸発
管、35…制御部、42…貯蓄槽、46…レベル計。
DESCRIPTION OF SYMBOLS 10 ... Converter as an exhaust heat source whose heat quantity fluctuates, 21 ... Evaporator, 23 ... Turbine, 24 ... Generator, 32,44 ... Flow control valve, 33, 45 ... Flow meter, 34 ... Evaporation pipe in evaporator , 35 ... control unit, 42 ... storage tank, 46 ... level meter.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 榊原 正人 茨城県鹿嶋市大字光3番地 住友金属工業 株式会社鹿島製鉄所内 (72)発明者 佐藤 郁磨 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 Fターム(参考) 3G081 BA02 BB03 BB05 BC13 BD00 DA04 DA14 5H590 AA02 CA08 CE01 EA16 EA18 FA05 GA10 HA15 HA18 HA25   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masato Sakakibara             Sumitomo Metal Industries, No. 3, Hikari, Oshima, Kashima City, Ibaraki Prefecture             Kashima Steel Works Co., Ltd. (72) Ikuma Sato, Inventor             11-1 Haneda Asahi-cho, Ota-ku, Tokyo Co., Ltd.             Inside the EBARA CORPORATION F-term (reference) 3G081 BA02 BB03 BB05 BC13 BD00                       DA04 DA14                 5H590 AA02 CA08 CE01 EA16 EA18                       FA05 GA10 HA15 HA18 HA25

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 熱量が変動する排熱源から排熱を回収し
た熱源流体を、一時的に貯蓄槽に溜め、この貯蓄槽の熱
源流体を所定量蒸発器へ供給すると共に、水・アンモニ
ア混合流体などの多成分混合媒体からなる作動流体を前
記蒸発器に供給することで、熱源流体の保有熱を作動流
体へ移動し、この作動流体で発電タービンを廻して、電
気エネルギーの形で排熱を回収する排熱回収発電システ
ムにおいて、 前記貯蓄槽に溜まった熱源流体のレベルに応じて、熱源
流体並びに作動流体の流量制御を実施することを特徴と
する排熱回収発電システムの運転方法。
1. A heat source fluid in which exhaust heat is recovered from an exhaust heat source whose amount of heat fluctuates is temporarily stored in a storage tank, and a predetermined amount of the heat source fluid in this storage tank is supplied to an evaporator. By supplying a working fluid composed of a multi-component mixed medium such as, for example, to the evaporator, the heat retained by the heat source fluid is transferred to the working fluid, and the working fluid rotates the power generation turbine to discharge waste heat in the form of electric energy. In the exhaust heat recovery power generation system for recovering, the flow rate control of the heat source fluid and the working fluid is carried out according to the level of the heat source fluid accumulated in the storage tank.
【請求項2】 前記貯蓄槽のレベルを複数に区分し、こ
れらの区分に応じて熱源流体並びに作動流体の流量を段
階的に制御することを特徴とする請求項1記載の排熱回
収発電システムの運転方法。
2. The exhaust heat recovery power generation system according to claim 1, wherein the level of the storage tank is divided into a plurality of levels, and the flow rates of the heat source fluid and the working fluid are controlled stepwise according to these divisions. Driving method.
【請求項3】 熱源流体並びに作動流体の流量を段階的
に制御するときに、熱源流体並びに作動流体の変更所要
時間を合致させることを特徴とする請求項2記載の排熱
回収発電システムの運転方法。
3. The operation of the exhaust heat recovery power generation system according to claim 2, wherein when the flow rates of the heat source fluid and the working fluid are controlled stepwise, the required change times of the heat source fluid and the working fluid are matched. Method.
【請求項4】 熱量が変動する排熱源から排熱を回収し
た熱源流体を、一時的に貯蓄槽に溜め、この貯蓄槽の熱
源流体を所定量蒸発器へ供給すると共に、レシーバタン
クに貯溜した水・アンモニア混合流体などの多成分混合
媒体からなる作動流体を前記蒸発器に供給することで、
熱源流体の保有熱を作動流体へ移動し、この作動流体で
発電タービンを廻して、電気エネルギーの形で排熱を回
収する排熱回収発電システムにおいて、 熱源流体並びに作動流体の流量を増加させるときには、
先ず熱源流体の流量を増加させ、この増加完了情報に基
づいて作動流体の流量を増加させるシリーズ制御を行
い、 熱源流体並びに作動流体の流量を減少させるときには、
先ず作動流体の流量を減少させ、この減少完了情報に基
づいて熱源流体の流量を減少させるシリーズ制御を行う
ことを特徴とする排熱回収発電システムの運転方法。
4. A heat source fluid in which exhaust heat is recovered from an exhaust heat source whose amount of heat fluctuates is temporarily stored in a storage tank, and a predetermined amount of this heat source fluid is supplied to an evaporator and stored in a receiver tank. By supplying a working fluid composed of a multi-component mixed medium such as a water / ammonia mixed fluid to the evaporator,
In the exhaust heat recovery power generation system that transfers the retained heat of the heat source fluid to the working fluid, rotates the power generation turbine with this working fluid, and recovers the exhaust heat in the form of electric energy, when increasing the flow rate of the heat source fluid and the working fluid. ,
First, increase the flow rate of the heat source fluid, perform series control to increase the flow rate of the working fluid based on this increase completion information, and when decreasing the flow rates of the heat source fluid and the working fluid,
First, a method of operating an exhaust heat recovery power generation system, characterized in that a series control is performed in which a flow rate of a working fluid is reduced and a flow rate of a heat source fluid is reduced based on the reduction completion information.
JP2002026069A 2002-02-01 2002-02-01 Operation method of exhaust heat recovery power generation system Expired - Lifetime JP3939996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002026069A JP3939996B2 (en) 2002-02-01 2002-02-01 Operation method of exhaust heat recovery power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002026069A JP3939996B2 (en) 2002-02-01 2002-02-01 Operation method of exhaust heat recovery power generation system

Publications (2)

Publication Number Publication Date
JP2003227313A true JP2003227313A (en) 2003-08-15
JP3939996B2 JP3939996B2 (en) 2007-07-04

Family

ID=27748023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002026069A Expired - Lifetime JP3939996B2 (en) 2002-02-01 2002-02-01 Operation method of exhaust heat recovery power generation system

Country Status (1)

Country Link
JP (1) JP3939996B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316767A (en) * 2005-05-16 2006-11-24 Ebara Corp Exhaust heat power generating device
CN101922864A (en) * 2010-09-26 2010-12-22 中冶赛迪工程技术股份有限公司 Waste heat recycling system of distributed pure low temperature coal gas from iron and steel enterprises
JP2012013062A (en) * 2010-06-29 2012-01-19 Nobuyoshi Okada Binary power generation system
JP2014199025A (en) * 2013-03-29 2014-10-23 メタウォーター株式会社 Binary power generation system and binary power generation system operating method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316767A (en) * 2005-05-16 2006-11-24 Ebara Corp Exhaust heat power generating device
JP4557793B2 (en) * 2005-05-16 2010-10-06 株式会社荏原製作所 Waste heat power generator
JP2012013062A (en) * 2010-06-29 2012-01-19 Nobuyoshi Okada Binary power generation system
CN101922864A (en) * 2010-09-26 2010-12-22 中冶赛迪工程技术股份有限公司 Waste heat recycling system of distributed pure low temperature coal gas from iron and steel enterprises
JP2014199025A (en) * 2013-03-29 2014-10-23 メタウォーター株式会社 Binary power generation system and binary power generation system operating method

Also Published As

Publication number Publication date
JP3939996B2 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
US20120247455A1 (en) Solar collector with expandable fluid mass management system
US20120047891A1 (en) Techniques for indirect cold temperature thermal energy storage
JP2003227313A (en) Method of operating exhaust heat recovery power generation system
CN112524822B (en) Supercritical carbon dioxide circulation control system for photo-thermal power generation
EP1275915B1 (en) Absorption cold or hot water generating machine
JPH11223417A (en) Recovering method of low-temperature waste heat generated by iron making process
JP5032181B2 (en) Heat consumer device for district cooling and heating system and operation method thereof
JPH05222906A (en) Controller for power plant utilizing exhaust heat
US3557568A (en) Power generation apparatus
CN101629735A (en) Hot water supply system
JPH1140180A (en) Fuel cell power plant and its operation control method
JPH10208764A (en) Cooling system for fuel cell generating apparatus
EP3256805B1 (en) Improvement of efficiency in power plants
JP2007205618A (en) Hot water supply device
JP2002025590A (en) Fuel cell power generating device and its control method
JP3938831B2 (en) Solar-powered refrigeration system
JPH0529013A (en) Fuel cell power generation system
JPH06147653A (en) Method for adjusting temperature of working fluid or terrestrial heat fluid supplied to terrestrial heat utilization system
JPS572943A (en) Snow melting, heat accumulating and cooling apparatus according to latent heat exchange system
JPH0821263A (en) Heat accumulation type power and heat feeding system and operation method thereof
JP2003328703A (en) Method for supplying steam to steam intermittent consumption equipment
JPH0835708A (en) Ice cold heat storage type refrigerator unit and operating method therefor
JPS6031071Y2 (en) Cooling equipment for hot air stove hot air valve
JPH05159792A (en) Fuel cell generating system
JPH02168573A (en) Fuel battery power generating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070329

R150 Certificate of patent or registration of utility model

Ref document number: 3939996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350