JP4556463B2 - Birefringence measuring device - Google Patents

Birefringence measuring device Download PDF

Info

Publication number
JP4556463B2
JP4556463B2 JP2004088544A JP2004088544A JP4556463B2 JP 4556463 B2 JP4556463 B2 JP 4556463B2 JP 2004088544 A JP2004088544 A JP 2004088544A JP 2004088544 A JP2004088544 A JP 2004088544A JP 4556463 B2 JP4556463 B2 JP 4556463B2
Authority
JP
Japan
Prior art keywords
signal light
light
birefringence
polarization plane
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004088544A
Other languages
Japanese (ja)
Other versions
JP2005274380A (en
Inventor
博 梶岡
孝 飯塚
鳥取裕作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GLOBAL FIBEROPTICS,LTD.
Kitanihon Electric Cable Co Ltd
Original Assignee
GLOBAL FIBEROPTICS,LTD.
Kitanihon Electric Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GLOBAL FIBEROPTICS,LTD., Kitanihon Electric Cable Co Ltd filed Critical GLOBAL FIBEROPTICS,LTD.
Priority to JP2004088544A priority Critical patent/JP4556463B2/en
Publication of JP2005274380A publication Critical patent/JP2005274380A/en
Application granted granted Critical
Publication of JP4556463B2 publication Critical patent/JP4556463B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は光学材料や生体の複屈折率測定器に関するものである。さらに詳述すれば本発明はピックアップ光学系用レンズや液晶表示用材料の複屈折やグルコース濃度などを簡略に測定できる高精度で低価格な複屈折率測定器に関するものである。   The present invention relates to an optical material and a biological birefringence measuring instrument. More specifically, the present invention relates to a high-accuracy and low-cost birefringence measuring instrument that can simply measure the birefringence, glucose concentration, etc. of a pickup optical system lens or liquid crystal display material.

従来の複屈折率の測定法に被測定媒体の偏光状態をミューラー行列として求める方法がある。これによって複屈折率、偏光度、偏光依存損失などすべての偏光特性が解析できる。この方法では入射側で4種類の偏光状態を作り出す必要がある。
従来のもうひとつの複屈折率の測定法は複屈折分散を測定するもので光源にハロゲンランプなどの白色光を用い平行ニコル間にサンプル置きその透過光が波数に対し余弦状に変化する原理から透過光強度を高速フーリエ変換(FFT)法により複屈折を解析するものである。この方法は液晶などの検査に用いられている。この方法では分光器を必要としFFTという解析装置が必要である。またこの方法ではミリラディアンの微小な複屈折率が測定できない。
As a conventional method for measuring the birefringence, there is a method for obtaining the polarization state of a medium to be measured as a Mueller matrix. As a result, all polarization characteristics such as birefringence, polarization degree, and polarization dependent loss can be analyzed. In this method, it is necessary to create four types of polarization states on the incident side.
Another conventional method for measuring birefringence is to measure birefringence dispersion, using a white light source such as a halogen lamp as a light source, placing a sample between parallel Nicols , and the principle that the transmitted light changes in a cosine with respect to the wave number The birefringence is analyzed by the fast Fourier transform (FFT) method for the transmitted light intensity. This method is used for inspection of liquid crystals and the like. This method requires a spectroscope and an analysis device called FFT. In addition, this method cannot measure a minute birefringence of milliradians.

従来のもうひとつの複屈折率の測定法は入射偏光を変化させて試料を通過した光の幾何学的位相をポアンカレー球上に表示させ複屈折が存在した場合の各入射偏光状態に対応する球状の点が囲む面積から複屈折率を求めるものである。この方法においても入射側で複数の偏光状態を作り出す必要がある。すなわち従来の複屈折測定器はいずれも装置が大掛かりで高価であった。従来の複屈折率の測定方法の比較は非特許文献1に記載されている。また糖尿病の検査にグルコースを透過する光の旋回性を測定する方法に関しては非特許文献2に記載されている。鉛ガラスのベルデ定数を利用し入射偏光状態を変調し検光子を通過する光の変化をロックインアンプで検出するものである。健康な人で0.005度という微小な旋光角の測定が必要であることが記載されている。この測定方法は装置が大掛かりであるということおよび鉛ガラスの温度特性の影響を受けやすいという課題がある。Another conventional method for measuring the birefringence is to change the incident polarization and display the geometric phase of the light passing through the sample on the Poincare sphere, corresponding to each incident polarization state when birefringence exists. The birefringence is obtained from the area surrounded by the spherical point. Even in this method, it is necessary to create a plurality of polarization states on the incident side. That is, all the conventional birefringence measuring instruments are large and expensive. Comparison of conventional methods for measuring birefringence is described in Non-Patent Document 1. Non-patent document 2 describes a method for measuring the swirlability of light that passes through glucose in a test for diabetes. Using the Verde constant of lead glass, the incident polarization state is modulated, and the change in the light passing through the analyzer is detected by a lock-in amplifier. It is described that it is necessary for a healthy person to measure a small optical rotation angle of 0.005 degrees. This measurement method has the problem that the temperature sensitive characteristics of and lead glass that device is large-scaled.

大谷幸利氏「総論:偏光・複屈折計測における最近の話題」O Plus E 2003年11月号PP.1220−1225.Mr. Yukitoshi Otani “General: Recent Topics in Polarization and Birefringence Measurement” O Plus E November 2003 PP. 1220-1225. 横田正幸他、「鉛ガラスファイバ偏光変調器を用いたグルコースセンサー」、第31回光波センシング技術研究会、LST31−8,PP.51−56,2003年8月.Masayuki Yokota et al., “Glucose Sensor Using Lead Glass Fiber Polarization Modulator”, 31st Lightwave Sensing Technology Study Group, LST 31-8, PP. 51-56, August 2003.

本発明が解決しようとする課題は従来の複屈折率測定器を大幅に簡略化し安価でコンパクトな複屈折率測定器を提供することにある。   The problem to be solved by the present invention is to provide an inexpensive and compact birefringence measuring device by greatly simplifying the conventional birefringence measuring device.

上記の目的を達成するために本発明に係わる複屈折率測定方法はリング干渉計のループ光路の途中に非相反光学系を設け直交する偏光モードが被測定試料を両方向に伝播するように設計しリング干渉計として光ファイバジャイロの信号処理技術を応用したことにある。
光ファイバジャイロに関しては非特許文献3に詳しく記載されている。
In order to achieve the above object, the birefringence measurement method according to the present invention is designed so that a non-reciprocal optical system is provided in the middle of the loop optical path of the ring interferometer so that the orthogonal polarization mode propagates the sample to be measured in both directions. This is the application of the signal processing technology of an optical fiber gyro as a ring interferometer.
The optical fiber gyro is described in detail in Non-Patent Document 3.

梶岡、於保、「光ファイバジャイロの開発」、第3回光波センシング技術研究会、LST3−9,PP.55−62,1989年6月.Tsujioka, Oho, "Development of optical fiber gyroscope", 3rd Lightwave Sensing Technology Study Group, LST3-9, PP. 55-62, June 1989.

本発明の原理は光の干渉を利用しているので非常に高精度に複屈折率を測定できる。またリング干渉計として商用されている非常にコンパクトで低価格光ファイバジャイロの基本光学系と信号処理回路を検出器として使うので従来型より大幅に安価で小型の複屈折率測定装置が提供できる。   Since the principle of the present invention utilizes the interference of light, the birefringence can be measured with very high accuracy. In addition, since the basic optical system and signal processing circuit of a very compact and low-cost optical fiber gyro, which is commercially available as a ring interferometer, are used as a detector, it is possible to provide a birefringence measuring device that is much cheaper and smaller than the conventional type.

図1にて一実施例を説明する。図1は本発明の基本構成図を示している。光源1から発せられた光はカップラ21と偏光子31を経てカップラ22で左右両周り光に分岐される。図1において時計方向の光は偏光保持ファイバ5のループを伝播し非相反光学系7を通過し位相変調器4を通過してカップラ22に戻ってくる。一方反時計方向の光ははじめに位相変調器4を通過し、非相反光学系7を通過して光ファイバループ状の偏光保持ファイバ5を伝播しカップラ22に戻る。これら左右両周り光はカップラ22で干渉し干渉強度は偏光子31、カップラ21を介して受光器9で電気信号に変換され光ファイバジャイロの信号処理回路10によって左右両周り光の位相差を電圧として出力する。ここで用いた光ファイバジャイロは非特許文献3に記載されている干渉法に基づくものである。ループ長は200m、位相変調器はPZTで共振周波数は20KHzである。An embodiment will be described with reference to FIG. FIG. 1 shows a basic configuration diagram of the present invention. The light emitted from the light source 1 passes through the coupler 21 and the polarizer 31, and is split into left and right light by the coupler 22. In FIG. 1, clockwise light propagates through the loop of the polarization maintaining fiber 5, passes through the nonreciprocal optical system 7, passes through the phase modulator 4, and returns to the coupler 22. On the other hand, the counterclockwise light first passes through the phase modulator 4, passes through the nonreciprocal optical system 7, propagates through the polarization maintaining fiber 5 in the form of an optical fiber loop, and returns to the coupler 22. These left and right light beams interfere with each other at the coupler 22, and the interference intensity is converted into an electric signal by the light receiver 9 through the polarizer 31 and the coupler 21, and the phase difference between the left and right light beams is converted into a voltage by the signal processing circuit 10 of the optical fiber gyroscope. Output as. The optical fiber gyro used here is based on the interference method described in Non-Patent Document 3. The loop length is 200 m, the phase modulator is PZT, and the resonance frequency is 20 KHz.

光ファイバジャイロはファイバループを含む系が回転するとSagnac効果によって左右両周り光に位相差が発生しその位相差を測定する装置である。図2は図1の非相反光学系の詳細構成図である。45度ファラデー回転光学系61、62はそれぞれレンズ111,112、偏光子32,33、45度ファラデー回転素子121122から構成される。被測定試料8は対抗コリメータの間に置かれる。試料8は回転およびX−Y微動ステージ上にセットされる。An optical fiber gyroscope is a device that measures the phase difference when a system including a fiber loop rotates and a phase difference is generated in both left and right light due to the Sagnac effect. FIG. 2 is a detailed configuration diagram of the nonreciprocal optical system of FIG. 45 degree Faraday rotation optical system 61 Waso respectively lenses 111 and 112, and a polarizer 32,33,45 degree Faraday rotator 121, 122. The sample 8 to be measured is placed between the counter collimators. Sample 8 is set on a rotating and XY fine movement stage.

このような光学系において光源から発せられた光がどのように試料中を伝播するかについて以下説明する。光源1は広帯域な光源が望ましくここでは波長800nmのSLDを用いた。リング干渉計の光ファイバは偏光保持ファイバを用いた。ここではコアが楕円の単一モード光ファイバを用いた。左右両周り光は偏光子31によって楕円の長軸方向に偏波した固有偏光モードとして伝播する。時計方向の直線偏光はレンズ112で平行光に変換され45度ファラデー回転光学系62によって偏光面が45度右に回転する。一方反時計方向の直線偏光はレンズ111で平行光に変換され45度ファラデー回転光学系61によって偏光面が45度左に回転する。すなわち左右両周り光は試料8に対して直交した偏波面で試料に入射される。ここで試料を回転し左右両周り光が試料の固有偏光軸に整合するように調整すると試料を通過した時計方向の光は45度ファラデー回転光学系61で楕円の長軸方向の直線偏光でループの偏光保持ファイバに再入射する。一方反時計方向の光は45度ファラデー回転光学系62で楕円の長軸方向の直線偏光でループの偏光保持ファイバに再入射する。ここで試料に複屈折がなければ左右両周り光は同一の行路を通るので位相差は発生しない。試料に複屈折があると左右両周り光の位相差として光ジャイロの検出系10によって検出される。How the light emitted from the light source propagates in the sample in such an optical system will be described below. The light source 1 is preferably a broadband light source, and an SLD having a wavelength of 800 nm is used here. A polarization maintaining fiber was used as the optical fiber of the ring interferometer. Here, a single mode optical fiber having an elliptical core was used. Left and right light propagates as a natural polarization mode polarized in the major axis direction of the ellipse by the polarizer 31. The linearly polarized light in the clockwise direction is converted into parallel light by the lens 112, and the polarization plane is rotated 45 degrees to the right by the 45 degree Faraday rotation optical system 62. On the other hand, the linearly polarized light in the counterclockwise direction is converted into parallel light by the lens 111, and the plane of polarization is rotated 45 degrees to the left by the 45 degree Faraday rotation optical system 61. That is, the left and right light is incident on the sample with a plane of polarization orthogonal to the sample 8. Here, when the sample is rotated and adjusted so that the light on both the left and right sides is aligned with the intrinsic polarization axis of the sample, the clockwise light that has passed through the sample is looped by the 45-degree Faraday rotation optical system 61 with linearly polarized light in the long axis direction of the ellipse. Re-enters the polarization maintaining fiber. On the other hand, the light in the counterclockwise direction is re-incident on the polarization-maintaining fiber of the loop by the 45-degree Faraday rotation optical system 62 as linearly polarized light in the major axis direction of the ellipse. Here, if there is no birefringence in the sample, the light around both the left and right passes through the same path, so that no phase difference occurs. If the sample has birefringence, it is detected by the optical gyro detection system 10 as a phase difference between the left and right light.

図3は非相反光学系7において左右両周り光が右円偏光および左円偏光となるようにした光学系の構成図である。図2との違いは4分の1波長板131、132を用いたことである。   FIG. 3 is a configuration diagram of an optical system in which the left and right bilateral light in the nonreciprocal optical system 7 is right circularly polarized light and left circularly polarized light. The difference from FIG. 2 is that quarter-wave plates 131 and 132 are used.

このような非相反光学系を用いると左右両周り光が左まわり円偏光、右まわり円偏光として試料を伝播するので血液などの試料に旋光性があれば左右両周り光に位相差が発生し光ジャイロの検出器で検出される。   When such a nonreciprocal optical system is used, the left and right bi-directional light propagates through the sample as left-handed circularly polarized light and right-handed circularly polarized light. It is detected by the optical gyro detector.

図4は本発明複屈折測定装置の生体検査への一適用例を示す。被測定対象8は皮膚あるいは眼球でありミラー141,142を用いて左右両周り光を試料に照射しその散乱光を検出している。この構成で生体に含まれるグルコースの濃度による旋光角を測定できる。FIG. 4 shows an example of application of the birefringence measuring apparatus of the present invention to a biological examination. An object to be measured 8 is skin or an eyeball, and the mirrors 141 and 142 are used to irradiate the sample with light from both left and right sides to detect the scattered light. With this configuration, the optical rotation angle depending on the concentration of glucose contained in the living body can be measured.

本発明複屈折測定法の原理を示す基本構成図Basic configuration diagram showing the principle of the birefringence measurement method of the present invention 本発明非相反光学系の構成図Configuration diagram of non-reciprocal optical system of the present invention 本発明旋光角測定用非相反光学系の構成図Configuration diagram of non-reciprocal optical system for optical rotation angle measurement of the present invention 本発明旋光角測定の一応用例を示す構成図The block diagram which shows one application example of this invention optical rotation angle measurement

符号の説明Explanation of symbols

1:光源(SLD)
21,22:カップラ
31,32,33:偏光子
4:位相変調器
5:偏光保持光ファイバループ
61,62:45度ファラデー回転光学系
7:非相反光学系
8:被測定試料
9:受光器
10:光ジャイロ信号処理回路
111,112:コリメートレンズ
121,122:45度ファラデー回転素子
131,132:4分の1波長板
141,142:ミラー
1: Light source (SLD)
21, 22: Couplers 31, 32, 33: Polarizer 4: Phase modulator 5: Polarization maintaining optical fiber loop 61, 62: 45 degree Faraday rotation optical system 7: Non-reciprocal optical system 8: Sample to be measured 9: Receiver 10: optical gyro signal processing circuit 111, 112: collimating lens 121, 122: 45 degree Faraday rotator 131, 132: quarter wave plate 141, 142: mirror

Claims (3)

左右両回り光の位相差を測定するリング干渉計を用いて被測定媒体の複屈折率を測定することができる複屈折測定装置において、前記複屈折測定装置は、その構成要素として、少なくとも、位相変調手段と、前記リング干渉計のループ光路の途中に配置された被測定媒体を配置する被測定媒体配置部分と、前記リング干渉計のループ光路上において前記ループ光路の途中に前記被測定媒体配置部を挟んで互いに対向するように配置されている一対のコリメータと、前記各コリメータの前記被測定媒体配置部と反対側の前記リング干渉計のループ光路を構成するように配置された偏光保持光ファイバを有しており、前記互いに対向するように配置されているコリメータはそれぞれレンズと偏光子と偏光面回転素子を有する非相反コリメータ光学系を形成しており、前記偏光面回転素子は当該偏光面回転素子の一方の側から信号光としての偏光ビームを入射させたときには当該信号光の偏光面を当該信号光の進行方向に向かって時計回りまたは反時計回りに所定角度だけ回転させ、当該偏光面回転素子の他方の側から信号光として偏光ビームを入射させたときには当該信号光の偏光面を当該信号光の進行方向に向かって前記一方の側から入射させた場合とは逆方向に所定角度だけ回転させるように作用する偏光面回転素子であり、光ファイバ内では同一の偏光状態で進行する右回り信号光と左回り信号光が前記被測定媒体の部分においては互いに直交する直線偏光状態で進行するようにすることができる装置であることを特徴とする複屈折測定装置。In a birefringence measuring apparatus capable of measuring the birefringence of a medium to be measured using a ring interferometer that measures the phase difference of both right and left light beams, the birefringence measuring apparatus has at least a phase as its component. Modulating means, a measured medium arrangement part for arranging a measured medium arranged in the middle of the loop optical path of the ring interferometer, and the measured medium arrangement in the middle of the loop optical path on the loop optical path of the ring interferometer across the part component being arranged to form a pair of collimator data that are opposed to each other, the pre-Symbol loop optical path of the ring interferometer opposite to the measuring medium arrangement unit amount of each collimator and has a polarization-maintaining fiber-optic, the non-reciprocal collimator having an arrangement has been that collimator respectively lens and polarizer polarization plane rotating element so as to face each other Forms a university system, the polarization plane rotating element toward the polarization plane of the signal light when is incident polarized beam as one signal light from the side of the polarization plane rotating element in the traveling direction of the signal light When the polarized light beam is incident as signal light from the other side of the polarization plane rotating element, the polarization plane of the signal light is directed toward the traveling direction of the signal light. A polarization plane rotating element that operates to rotate a predetermined angle in the opposite direction to the direction of incidence from the one side, and the clockwise signal light and the counterclockwise signal light traveling in the same polarization state in the optical fiber Is a device capable of traveling in a linearly polarized state orthogonal to each other in the portion of the medium to be measured . 左右両回り光の位相差を測定するリング干渉計を用いて被測定媒体の複屈折率を測定することができる複屈折測定装置において、前記複屈折測定装置は、その構成要素として、少なくとも、位相変調手段と、前記リング干渉計のループ光路の途中に配置された被測定媒体を配置する被測定媒体配置部分と、前記リング干渉計のループ光路上において前記ループ光路の途中に前記被測定媒体配置部分を挟んで互いに対向するように配置されている一対のコリメータと、前記各コリメータの前記被測定媒体配置部分と反対側の前記リング干渉計のループ光路を構成するように配置された偏光保持光ファイバを有しており、前記互いに対向するように配置されているコリメータはそれぞれレンズと偏光子と偏光面回転素子と偏光変換素子を有する非相反コリメータ光学系を形成しており、前記偏光面回転素子は当該偏光面回転素子の一方の側から信号光としての偏光ビームを入射させたときには当該信号光の偏光面を当該信号光の進行方向に向かって時計回りまたは反時計回りに所定角度だけ回転させ、当該偏光面回転素子の他方の側から信号光としての偏光ビームを入射させたときには当該信号光の偏光面を当該信号光の進行方向に向かって前記一方の側から 入射させた場合とは逆方向に所定角度だけ回転させるように作用する偏光面回転素子であり、前記偏光変換素子は直線偏光を円偏光に変換する素子であり、光ファイバ内では同一の偏光状態で進行する右回り信号光と左回り信号光が前記被測定媒体の部分においては互いに直交する円偏光状態で進行するようにすることができる装置であることを特徴とする複屈折測定装置。 In a birefringence measuring apparatus capable of measuring the birefringence of a medium to be measured using a ring interferometer that measures the phase difference of both right and left light beams, the birefringence measuring apparatus has at least a phase as its component. Modulating means, a measured medium arrangement part for arranging a measured medium arranged in the middle of the loop optical path of the ring interferometer, and the measured medium arrangement in the middle of the loop optical path on the loop optical path of the ring interferometer A pair of collimators arranged so as to face each other across the portion, and polarization maintaining light arranged so as to constitute a loop optical path of the ring interferometer on the opposite side of the measured medium arrangement portion of each collimator Each of the collimators arranged to face each other has a lens, a polarizer, a polarization plane rotating element, and a polarization converting element. An anti-collimator optical system is formed, and when the polarization plane rotating element makes a polarized beam as signal light incident from one side of the polarization plane rotating element, the polarization plane of the signal light is changed in the traveling direction of the signal light. When the polarized light beam as the signal light is incident from the other side of the polarization plane rotating element, the polarization plane of the signal light is made to travel in the traveling direction of the signal light. A polarization plane rotating element that acts to rotate a predetermined angle in the opposite direction to the direction of incidence from the one side toward the direction, the polarization conversion element is an element that converts linearly polarized light into circularly polarized light, In the optical fiber, the clockwise signal light and the counterclockwise signal light traveling in the same polarization state can travel in the circular polarization state orthogonal to each other in the portion of the measured medium. Birefringence measuring apparatus which is a location. 請求項1または2に記載の複屈折測定装置において、前記複屈折測定装置は、前記各非相反コリメータ光学系それぞれからの出射光を前記被測定媒体配置部に配置された被測定媒体に照射し、前記被測定媒体から前記ループ光路に伝搬される光をカプラーを介して検出して前記被測定媒体の複屈折率を測定することができるように構成されていることを特徴とする複屈折測定装置。In the birefringence measurement apparatus according to claim 1 or 2, wherein the birefringence measurement apparatus, irradiating the each non-reciprocal collimating optical system to be measured medium that is disposed on the medium to be measured located portion partial light emitted from each of And the birefringence of the measured medium can be measured by detecting light propagating from the measured medium to the loop optical path through a coupler. measuring device.
JP2004088544A 2004-03-25 2004-03-25 Birefringence measuring device Expired - Fee Related JP4556463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004088544A JP4556463B2 (en) 2004-03-25 2004-03-25 Birefringence measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004088544A JP4556463B2 (en) 2004-03-25 2004-03-25 Birefringence measuring device

Publications (2)

Publication Number Publication Date
JP2005274380A JP2005274380A (en) 2005-10-06
JP4556463B2 true JP4556463B2 (en) 2010-10-06

Family

ID=35174209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004088544A Expired - Fee Related JP4556463B2 (en) 2004-03-25 2004-03-25 Birefringence measuring device

Country Status (1)

Country Link
JP (1) JP4556463B2 (en)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9867530B2 (en) 2006-08-14 2018-01-16 Volcano Corporation Telescopic side port catheter device with imaging system and method for accessing side branch occlusions
US8280470B2 (en) * 2006-11-03 2012-10-02 Volcano Corporation Analyte sensor method and apparatus
JP5374762B2 (en) * 2006-11-08 2013-12-25 株式会社グローバルファイバオプティックス Reflective birefringence measuring device
US9596993B2 (en) 2007-07-12 2017-03-21 Volcano Corporation Automatic calibration systems and methods of use
WO2009009799A1 (en) 2007-07-12 2009-01-15 Volcano Corporation Catheter for in vivo imaging
WO2009009802A1 (en) 2007-07-12 2009-01-15 Volcano Corporation Oct-ivus catheter for concurrent luminal imaging
CN102483376A (en) * 2009-03-04 2012-05-30 株式会社全球纤维光学 Optical rotation measuring device and optical rotation measuring method
JPWO2011145652A1 (en) 2010-05-19 2013-07-22 塩野義製薬株式会社 Defocused optical rotation measurement device, optical rotation measurement method, and defocused optical fiber optical system
WO2012070465A1 (en) * 2010-11-26 2012-05-31 株式会社グローバルファイバオプティックス Optical rotation measurement device, polarization conversion optical system that can be used for optical rotation measurement, and method for measuring optical rotation in optical rotation measurement system using said polarization conversion optical system
TW201239337A (en) * 2010-11-26 2012-10-01 Global Fiberoptics Ltd Optical rotation measurement device, optical rotation measurement method that can be used in optical rotation measurement system, optical rotation measurement optical system, and sample cell for optical rotation measurement
US11141063B2 (en) 2010-12-23 2021-10-12 Philips Image Guided Therapy Corporation Integrated system architectures and methods of use
US11040140B2 (en) 2010-12-31 2021-06-22 Philips Image Guided Therapy Corporation Deep vein thrombosis therapeutic methods
JP5626005B2 (en) * 2011-02-24 2014-11-19 日立金属株式会社 Optical component measuring device
US9360630B2 (en) 2011-08-31 2016-06-07 Volcano Corporation Optical-electrical rotary joint and methods of use
JP5990905B2 (en) * 2011-12-19 2016-09-14 ソニー株式会社 Measuring device, measuring method, program, and recording medium
WO2013179140A2 (en) 2012-05-29 2013-12-05 Global Fiberoptics, Ltd. Optical rotation measuring device, optically rotational ingredient analyzing device, and optically rotational ingredient analyzing method
US11272845B2 (en) 2012-10-05 2022-03-15 Philips Image Guided Therapy Corporation System and method for instant and automatic border detection
US9292918B2 (en) 2012-10-05 2016-03-22 Volcano Corporation Methods and systems for transforming luminal images
US9286673B2 (en) 2012-10-05 2016-03-15 Volcano Corporation Systems for correcting distortions in a medical image and methods of use thereof
US9307926B2 (en) 2012-10-05 2016-04-12 Volcano Corporation Automatic stent detection
US9324141B2 (en) 2012-10-05 2016-04-26 Volcano Corporation Removal of A-scan streaking artifact
JP2015532536A (en) 2012-10-05 2015-11-09 デイビッド ウェルフォード, System and method for amplifying light
US10568586B2 (en) 2012-10-05 2020-02-25 Volcano Corporation Systems for indicating parameters in an imaging data set and methods of use
US9858668B2 (en) 2012-10-05 2018-01-02 Volcano Corporation Guidewire artifact removal in images
US10070827B2 (en) 2012-10-05 2018-09-11 Volcano Corporation Automatic image playback
US9367965B2 (en) 2012-10-05 2016-06-14 Volcano Corporation Systems and methods for generating images of tissue
US9840734B2 (en) 2012-10-22 2017-12-12 Raindance Technologies, Inc. Methods for analyzing DNA
EP2931132B1 (en) 2012-12-13 2023-07-05 Philips Image Guided Therapy Corporation System for targeted cannulation
CA2895770A1 (en) 2012-12-20 2014-07-24 Jeremy Stigall Locating intravascular images
US11406498B2 (en) 2012-12-20 2022-08-09 Philips Image Guided Therapy Corporation Implant delivery system and implants
US10939826B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Aspirating and removing biological material
EP2934310A4 (en) 2012-12-20 2016-10-12 Nathaniel J Kemp Optical coherence tomography system that is reconfigurable between different imaging modes
WO2014099899A1 (en) 2012-12-20 2014-06-26 Jeremy Stigall Smooth transition catheters
US10942022B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Manual calibration of imaging system
US9612105B2 (en) 2012-12-21 2017-04-04 Volcano Corporation Polarization sensitive optical coherence tomography system
WO2014100606A1 (en) 2012-12-21 2014-06-26 Meyer, Douglas Rotational ultrasound imaging catheter with extended catheter body telescope
EP2936426B1 (en) 2012-12-21 2021-10-13 Jason Spencer System and method for graphical processing of medical data
EP2934323A4 (en) 2012-12-21 2016-08-17 Andrew Hancock System and method for multipath processing of image signals
EP2934280B1 (en) 2012-12-21 2022-10-19 Mai, Jerome Ultrasound imaging with variable line density
US10058284B2 (en) 2012-12-21 2018-08-28 Volcano Corporation Simultaneous imaging, monitoring, and therapy
US9486143B2 (en) 2012-12-21 2016-11-08 Volcano Corporation Intravascular forward imaging device
CA2896006A1 (en) 2012-12-21 2014-06-26 David Welford Systems and methods for narrowing a wavelength emission of light
WO2014100162A1 (en) 2012-12-21 2014-06-26 Kemp Nathaniel J Power-efficient optical buffering using optical switch
US10413317B2 (en) 2012-12-21 2019-09-17 Volcano Corporation System and method for catheter steering and operation
US10226597B2 (en) 2013-03-07 2019-03-12 Volcano Corporation Guidewire with centering mechanism
US9770172B2 (en) 2013-03-07 2017-09-26 Volcano Corporation Multimodal segmentation in intravascular images
US11154313B2 (en) 2013-03-12 2021-10-26 The Volcano Corporation Vibrating guidewire torquer and methods of use
EP2967391A4 (en) 2013-03-12 2016-11-02 Donna Collins Systems and methods for diagnosing coronary microvascular disease
US10758207B2 (en) 2013-03-13 2020-09-01 Philips Image Guided Therapy Corporation Systems and methods for producing an image from a rotational intravascular ultrasound device
US11026591B2 (en) 2013-03-13 2021-06-08 Philips Image Guided Therapy Corporation Intravascular pressure sensor calibration
US9301687B2 (en) 2013-03-13 2016-04-05 Volcano Corporation System and method for OCT depth calibration
US20160030151A1 (en) 2013-03-14 2016-02-04 Volcano Corporation Filters with echogenic characteristics
US10219887B2 (en) 2013-03-14 2019-03-05 Volcano Corporation Filters with echogenic characteristics
US10292677B2 (en) 2013-03-14 2019-05-21 Volcano Corporation Endoluminal filter having enhanced echogenic properties

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233583A (en) * 1995-12-11 1996-09-13 Hitachi Ltd Optical fiber coil
JP2001004538A (en) * 1999-06-17 2001-01-12 Matsushita Electric Ind Co Ltd Apparatus and method for measuring medium
JP2001337035A (en) * 2000-05-30 2001-12-07 Japan Science & Technology Corp Measuring instrument
JP2002131225A (en) * 2000-10-24 2002-05-09 Univ Niigata Method and apparatus for anisotropic analysis
JP2002318169A (en) * 2001-01-12 2002-10-31 Hewlett Packard Co <Hp> Measurement method for optical characteristic of retarding element
JP2003524758A (en) * 1998-09-11 2003-08-19 ジョセフ エイ. イザット, Interferometer for optical coherence area reflectometry and optical coherence tomography using reciprocal optics
JP2003254901A (en) * 2002-02-28 2003-09-10 Japan Science & Technology Corp Reflection type blood sugar measuring instrument using low coherent light interferometer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233583A (en) * 1995-12-11 1996-09-13 Hitachi Ltd Optical fiber coil
JP2003524758A (en) * 1998-09-11 2003-08-19 ジョセフ エイ. イザット, Interferometer for optical coherence area reflectometry and optical coherence tomography using reciprocal optics
JP2001004538A (en) * 1999-06-17 2001-01-12 Matsushita Electric Ind Co Ltd Apparatus and method for measuring medium
JP2001337035A (en) * 2000-05-30 2001-12-07 Japan Science & Technology Corp Measuring instrument
JP2002131225A (en) * 2000-10-24 2002-05-09 Univ Niigata Method and apparatus for anisotropic analysis
JP2002318169A (en) * 2001-01-12 2002-10-31 Hewlett Packard Co <Hp> Measurement method for optical characteristic of retarding element
JP2003254901A (en) * 2002-02-28 2003-09-10 Japan Science & Technology Corp Reflection type blood sugar measuring instrument using low coherent light interferometer

Also Published As

Publication number Publication date
JP2005274380A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
JP4556463B2 (en) Birefringence measuring device
JP4842930B2 (en) Optical interrogation device for reducing parasitic reflection and method for removing parasitic reflection
US6473179B1 (en) Birefringence measurement system
US6473181B1 (en) Measurement of waveplate retardation using a photoelastic modulator
US20120071738A1 (en) Methodology and equipment of optical rotation measurements
JP4249608B2 (en) Birefringence measurement at deep ultraviolet wavelength
US5229834A (en) Sensor for detecting and measuring the angle of rotation of a plane of light polarization
US6697157B2 (en) Birefringence measurement
EP2610665B1 (en) Depolarizer and circular dichroism spectrometer using the same
US8730481B2 (en) Sagnac optical ingredient-measuring apparatus with circular polarizers in parallel
JP5374762B2 (en) Reflective birefringence measuring device
US7002685B2 (en) System for measuring of both circular and linear birefringence
US3481671A (en) Apparatus and method for obtaining optical rotatory dispersion measurements
JP2012112907A5 (en)
JP3250272B2 (en) Birefringence measurement method and device
JP4343743B2 (en) Optical rotation measuring device and concentration measuring device
JP2004198286A (en) Angle-of-rotation measuring apparatus
JP2004279380A (en) Angle of rotation measuring instrument
TW200928348A (en) Device for synchronous measurement of optical rotation angle and phase delay and method thereof
WO2004104563A1 (en) Spectrometer
RU2606935C1 (en) Fibre-optic electric current sensor
JP2004184225A (en) Double refraction measuring instrument, method for detecting axial orientation of double refraction sample and method for calibrating the instrument
TWI688754B (en) Common optical path heterodyne micro-polar rotation measuring meter and method
JP2009122152A (en) Method of analyzing polarization
JP2009085887A (en) Measuring device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070326

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070326

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071010

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071010

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A681

Effective date: 20090518

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

AA92 Notification of invalidation

Free format text: JAPANESE INTERMEDIATE CODE: A971092

Effective date: 20090818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100712

R150 Certificate of patent or registration of utility model

Ref document number: 4556463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees