JP2003254901A - Reflection type blood sugar measuring instrument using low coherent light interferometer - Google Patents

Reflection type blood sugar measuring instrument using low coherent light interferometer

Info

Publication number
JP2003254901A
JP2003254901A JP2002053241A JP2002053241A JP2003254901A JP 2003254901 A JP2003254901 A JP 2003254901A JP 2002053241 A JP2002053241 A JP 2002053241A JP 2002053241 A JP2002053241 A JP 2002053241A JP 2003254901 A JP2003254901 A JP 2003254901A
Authority
JP
Japan
Prior art keywords
light
optical
lens
interferometer
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002053241A
Other languages
Japanese (ja)
Inventor
Manabu Sato
学 佐藤
Naohiro Tanno
直弘 丹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2002053241A priority Critical patent/JP2003254901A/en
Publication of JP2003254901A publication Critical patent/JP2003254901A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reflection type blood sugar measuring device using a low coherent light interferometer, capable of measuring a sugar concentration from optical activity by aqueous humor in an anterior eye chamber while observing the structure of the anterior part of an eye on real time basis, with a patient's eye untouched at all. <P>SOLUTION: A light wave from a low coherent light source 1 is phase- modulated after passing through BS2, PM3, and is put in an condition wherein it is inclined from horizontality by θs by a wave length plate 4. After that, the light wave is irradiated by a lens 5 to the anterior part of an eyeball in a beam state, reflection is caused at the boundary of a crystal lens 10 and the aqueous humor 9 of the anterior eye chamber, a signal light obtained by condensing the reflected light again by the lens is propagated by a polarization fiber 11 plane maintaining, and is guided to an interferometer by a lens 12. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、低コヒーレンス光
源を用いた干渉計を基に、反射式光学系により前眼房水
内を同一光路で往復しない光波の旋光能と前眼房水内の
光学損失を測定して、人体内のブドウ糖濃度を無侵襲的
に測定する低コヒーレンス光干渉計を用いた反射式血糖
測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is based on an interferometer using a low coherence light source, and the optical rotation ability of a light wave which does not reciprocate in the anterior chamber humor by the reflection type optical system in the same optical path and the anterior chamber humor. The present invention relates to a reflection-type blood glucose measuring device using a low coherence optical interferometer that non-invasively measures glucose concentration in a human body by measuring optical loss.

【0002】[0002]

【従来の技術】従来、このような分野の参考文献として
は、以下に示すようなものがあった。
2. Description of the Related Art Heretofore, there have been the following references as references in such a field.

【0003】(1)病態生理Vol.12,No.4
(1993:4),pp293−300「血糖値の非侵
襲的計測法−光学的ブドウ糖センサの開発」 (2)DIABETES CARE,VOL.5 N
O.3,MAY−JUNE,1982,pp.259−
265 「Noninvasive Glucose
Monitoring of the Aqueous
Humor of the Eye: Part II.
Animal Studies andthe Sc
leral Lens」 (3)結晶物理工学 小川 智哉 著 裳華房 応用物
理学選書 pp.205−209 (4)APPLIED OPTICS,Vol.37,
No.16,1998June 1,pp.3553−
3557 「Noninvasive glucose
monitoring in vivo with
an optical heterodyne pol
arimeter」 (5)APPLIED OPTICS Vol.39,
No.34,2000December 1,pp.6
318−6324 「Depth−resolved
two−dimensional Stokes ve
ctorsof backscattered lig
ht and Mueller matrices o
f biological tissue measu
red with optical coherenc
e tomography」 (6)OPTICS LETTERS,Vol.26,
No.13,2001July 1,pp.992−9
94 「Noninvasive monitorin
g of glucose concentratio
n withoptical coherence t
omography」 (7)Optics Communications,
132(1996),pp.410−416 「Enh
anced optical rotation an
d diminished depolarizati
on in diffusive scatterin
g from a chiral liquid」 従来、器具を眼に取り付けて前眼房水の透過光の旋光性
を測定する方法が提案されている。しかし、この方法は
眼球の前眼房水を光波が透過する方法であり、実際に臨
床応用を考えると、測定治具を目に入れる必要があり、
患者の負担が大きい〔参考文献(2)のFig8,9、
参考文献(4)のFig1参照〕。
(1) Pathophysiology Vol. 12, No. Four
(1993: 4), pp 293-300, "Noninvasive measurement method of blood glucose level-development of optical glucose sensor" (2) DIABETE S CARE, VOL. 5 N
O. 3, MAY-JUNE, 1982, pp. 259-
265 "Noninvasive Glucose
Monitoring of the Aqueous
Humor of the Eye: Part II.
Animal Studies and the Sc
(3) Crystal Physics Engineering Tomoya Ogawa, Chokabo, Applied Physics Selection, pp. 205-209 (4) APPLIED OPTICS, Vol. 37,
No. 16, 1998 June 1, pp. 3553-
3557 "Noninvasive Glucose
monitoring in vivo with
an optical heterodyne pol
Aligner ”(5) APPLIED OPTICS Vol. 39,
No. 34, 2000 December 1, pp. 6
318-6324 "Depth-resolved
two-dimensional Stokes ve
ctorsof backscattered lig
ht and Mueller matrices o
f biological tissue measure
red with optical coherence
e tomography "(6) OPTICS LETTERS, Vol. 26,
No. 13, 2001 July 1, pp. 992-9
94 "Noninvasive monitorin
go of glucose concentratio
n withdrawal coherence t
“Omography” (7) Optics Communications,
132 (1996), pp. 410-416 "Enh
anced optical rotation an
d diminished depolarizati
on in diffusive scatterin
g from a chiral liquid ”Heretofore, a method has been proposed in which an instrument is attached to the eye to measure the optical rotatory power of the transmitted light of the anterior aqueous humor. However, this method is a method in which the light wave penetrates the anterior chamber water of the eyeball, and considering actual clinical application, it is necessary to put a measuring jig in the eye,
The burden on the patient is heavy [Figs. 8 and 9 of reference (2),
See FIG. 1 in Reference (4)].

【0004】一般に、旋光性を有する物質を光波が往復
すると旋光が解消されることが知られている。しかし、
散乱媒質の場合、この旋光性の解消が減少することが報
告されている〔参考文献(7)参照〕。
It is generally known that optical rotation is eliminated when a light wave travels back and forth through a substance having optical rotatory power. But,
In the case of a scattering medium, it is reported that the elimination of this optical rotatory power is reduced [see Reference (7)].

【0005】現在、糖尿病患者をはじめ、血糖に関する
病を患う多くの患者から体内血糖の無侵襲測定装置の開
発が求められている。これに対して光波を用いる方法は
無侵襲性であることから有望視されており、すでに吸収
スペクトルを用いる方法などが報告〔参考文献(1)参
照〕されている。
Currently, many patients suffering from blood glucose-related diseases, including diabetic patients, are required to develop a non-invasive measuring apparatus for internal blood glucose. On the other hand, the method using a light wave is promising because it is non-invasive, and a method using an absorption spectrum has already been reported [see Reference (1)].

【0006】また、眼球前部の前眼房水には、糖濃度測
定の妨げとなる物質が比較的少ないこと、前眼房水の糖
濃度は血中濃度の約61%であるが、追従性が比較的良
いことなどから、早くから測定への応用が注目されてい
る。例えば、1979年〜1982年には、in vi
tro系の実験で、近赤外光を用いた旋光分析により前
眼房水でブドウ糖濃度20〜1000mg/100ml
の計測が可能であることが実験的に示されている〔参考
文献(1)、(2)参照〕。
Further, the anterior chamber humor in the anterior part of the eye contains relatively few substances that hinder the measurement of sugar concentration, and the sugar concentration in the anterior chamber humor is about 61% of the blood concentration. Due to its relatively good performance, its application to measurement has been attracting attention early on. For example, in 1979-1982, in
In a tro system experiment, glucose concentration was 20 to 1000 mg / 100 ml in anterior aqueous humor by optical rotation analysis using near infrared light.
It has been experimentally shown that the measurement can be performed [see References (1) and (2)].

【0007】そこで、本願発明者らは、近年眼科臨床で
実用されている光波断層画像測定法(OCT:Opti
cal Coherence Tomography)
の基盤技術である、低コヒーレンス干渉計と旋光分析技
術とを融合させた低コヒーレンス光干渉計を用いた反射
式血糖測定装置を提案した(特願2001−10575
5「低コヒーレンス光干渉計を用いた血糖測定装
置」)。
Therefore, the inventors of the present invention have used the optical wave tomographic image measurement method (OCT: Opti) which has been practically used in ophthalmology in recent years.
cal coherence tomography)
A reflection type blood glucose measuring device using a low coherence optical interferometer, which is a basic technology of Fusing a low coherence interferometer and optical rotation analysis technology, has been proposed (Japanese Patent Application No. 2001-10575).
5 "Blood glucose meter using low coherence optical interferometer").

【0008】ところで、ブドウ糖は、光学活性であり、
それにより旋光性を有する。旋光性とは、ブドウ糖など
の光学活性物質中を左・右円偏光が伝搬したとき、左・
右円偏光それぞれに対する屈折率が違うために出射時の
偏光状態が入射時の偏光状態と異なる現象を言う。これ
により、直線偏光は左・右円偏光の和であるために、直
線偏光入射時に出射光の偏波面が、物質の旋光能・濃度
に応じて変化する〔参考文献(3)の6−3図、式
(6.25)〕。
By the way, glucose is optically active,
Therefore, it has optical rotatory power. Optical activity means that when left / right circularly polarized light propagates through an optically active substance such as glucose,
This is a phenomenon in which the polarization state at the time of emission is different from the polarization state at the time of incidence because the refractive index for right circularly polarized light is different. As a result, since the linearly polarized light is the sum of the left and right circularly polarized light, the polarization plane of the outgoing light changes when the linearly polarized light is incident [6-3 of Reference (3)] depending on the optical activity and concentration of the substance. Figure, formula (6.25)].

【0009】よって、この偏波面の旋光度を測定すれ
ば、物質の旋光能が既知の場合、濃度が決定される。ブ
ドウ糖濃度と旋光度との関係は実験的に測定され、報告
されている〔参考文献(2)参照〕。簡易な旋光分析装
置では0.0013度で20mg/100mlの感度が
得られており、血糖測定に利用できる感度である。さら
に、簡便な光学系でヘテロダイン検出を用いて前眼房水
での旋光度からブドウ糖濃度を求める実験も報告されて
いる〔参考文献(4)参照〕。
Therefore, by measuring the optical rotation of this plane of polarization, the concentration is determined when the optical rotation of the substance is known. The relationship between glucose concentration and optical rotation has been experimentally measured and reported [see Reference (2)]. With a simple optical rotation analyzer, a sensitivity of 20 mg / 100 ml was obtained at 0.0013 degrees, which is a sensitivity that can be used for blood glucose measurement. Further, an experiment for determining the glucose concentration from the optical rotation in the anterior aqueous humor using heterodyne detection with a simple optical system has also been reported [see Reference (4)].

【0010】このように、既に、OCTの分野では、生
体組織の偏光変化に着目した研究がなされており、PS
OCT(偏光測定が可能なOCT:Polarizat
ion Sensitive Optical Coh
erence Tomography)の基本構成や測
定データが報告されている〔参考文献(5)参照〕。
As described above, in the field of OCT, research focusing on the polarization change of living tissue has already been made.
OCT (OCT: Polarizat capable of polarization measurement)
Ion Sensitive Optical Coh
The basic structure of erence tomography) and measurement data have been reported [see Reference (5)].

【0011】以上より、患者に非接触で測定可能であ
り、かつ病院や医療施設、特定地域などでの多くの患者
を対象とした測定システムへの拡大が可能な測定方式の
研究開発が急務である。
From the above, there is an urgent need for research and development of a measurement method that can be measured without contacting the patient and can be expanded to a measurement system for many patients in hospitals, medical facilities, specific areas, etc. is there.

【0012】[0012]

【発明が解決しようとする課題】本発明は、上記状況に
鑑み、患者の眼に全く非接触で、実時間で眼前部の構造
を観察しながら前眼房水による旋光性から糖濃度の測定
を行うことができる低コヒーレンス光干渉計を用いた反
射式血糖測定装置を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above situation, the present invention measures sugar concentration from optical activity by anterior aqueous humor while observing the structure of the anterior segment of the eye in real time without any contact with the eye of the patient. It is an object of the present invention to provide a reflection type blood glucose measuring device using a low coherence optical interferometer capable of performing the above.

【0013】[0013]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 〔1〕低コヒーレンス光干渉計を用いた反射式血糖測定
装置において、低コヒーレンス光源と、この低コヒーレ
ンス光源からの光波を、ビームスプリッター、位相変調
器を通して位相変調するとともに、波長板によって水平
からθs傾いた照射光を得る手段と、この照射光をレン
ズによってビーム状に眼球前部に照射し、水晶体と前眼
房水との境界で反射光を生じさせる手段と、前記反射光
を再度レンズで集光した信号光を、光ファイバにより伝
播し、レンズによって干渉計に導く手段とを具備するこ
とを特徴とする。
In order to achieve the above object, the present invention provides [1] a reflection type blood glucose measuring device using a low coherence optical interferometer, which comprises a low coherence light source and a low coherence light source. The light wave is phase-modulated through a beam splitter and a phase modulator, and means for obtaining irradiation light that is inclined by θs from the horizontal by a wave plate, and the irradiation light is irradiated in a beam shape to the anterior part of the eye by a lens and the anterior eye. It is characterized by comprising means for generating reflected light at the boundary with the aqueous humor and means for propagating the signal light obtained by condensing the reflected light again by the lens through the optical fiber and guiding it to the interferometer by the lens. .

【0014】〔2〕上記〔1〕記載の低コヒーレンス光
干渉計を用いた反射式血糖測定装置において、前記水晶
体前面での反射光を用いるために、光波は同一光路を通
らないようにして、旋光性の解消が生じないようにした
ことを特徴とする。
[2] In the reflection type blood glucose measuring device using the low coherence light interferometer described in [1] above, since light reflected by the front surface of the crystalline lens is used, light waves are prevented from passing through the same optical path. The feature is that the optical rotation is not canceled.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below.

【0016】図1は本発明の実施例を示す低コヒーレン
ス光干渉計を用いた反射式血糖測定システムの模式図、
図2は本発明の実施例を示す低コヒーレンス光干渉計を
用いた反射式血糖測定システムにおける信号光と参照光
の説明図、図3は本発明の実施例を示す低コヒーレンス
光干渉計を用いた反射式血糖測定方法の説明図である。
FIG. 1 is a schematic diagram of a reflection type blood glucose measuring system using a low coherence optical interferometer showing an embodiment of the present invention,
FIG. 2 is an explanatory diagram of a signal light and a reference light in a reflection type blood glucose measurement system using a low coherence optical interferometer showing an embodiment of the present invention, and FIG. 3 shows a low coherence optical interferometer showing an embodiment of the present invention. It is explanatory drawing of the reflex type | mold blood glucose measuring method which was used.

【0017】これらの図に示すように、この装置は、低
コヒーレンス光源(LCLS)1、ビームスプリッター
(BS)2,16、位相変調器(PM)3、波長板4,
15、光ファイバ結合レンズ5,12、眼球表面を観察
する光学系とカメラユニット7を備えている。また、1
つ、2つの光ファイバ結合レンズを固定して眼球前後方
向に走査するステージ8、前眼房水9、偏波面保存ファ
イバ6,11、光路調整用のプリズム13、ミラー1
4、偏光子17,19、光検出器18,20、差動増幅
器21で構成される。
As shown in these figures, this device comprises a low coherence light source (LCLS) 1, beam splitters (BS) 2 and 16, a phase modulator (PM) 3, a wave plate 4,
15, an optical fiber coupling lens 5 and 12, an optical system for observing the surface of the eyeball, and a camera unit 7. Also, 1
A stage 8 for fixing two optical fiber coupling lenses and scanning in the anterior-posterior direction of the eyeball, anterior chamber water 9, polarization plane preserving fibers 6 and 11, optical path adjusting prism 13, and mirror 1.
4, the polarizers 17 and 19, the photodetectors 18 and 20, and the differential amplifier 21.

【0018】次に、基本原理を図1〜3に基づいて説明
する。
Next, the basic principle will be described with reference to FIGS.

【0019】図1において、LCLS1からの光波は、
BS2、PM3を通って位相変調され、波長板4によっ
て水平からθs傾いた状態になる。その後、レンズ5に
よって光波をビーム状に眼球前部に照射させる。水晶体
10と前眼房水9とでは組織の屈折率が異なるために、
その境界で反射が生じ、その反射光は再度カメラユニッ
ト7のレンズで集光されて、偏波面保存ファイバ11に
より伝播されレンズ12によって、干渉計に導かれる。
In FIG. 1, the light wave from LCLS1 is
Phase modulation is performed through BS2 and PM3, and the wave plate 4 is inclined by θs from the horizontal. Thereafter, the lens 5 irradiates a light wave in a beam shape on the front part of the eyeball. Since the crystalline lens 10 and the anterior aqueous humor 9 have different refractive indexes of tissues,
Reflection occurs at the boundary, and the reflected light is collected again by the lens of the camera unit 7, propagated by the polarization-maintaining fiber 11, and guided by the lens 12 to the interferometer.

【0020】図1に示すように、水晶体10前面での反
射光を用いるために光波は同一光路を通らないので、旋
光性の解消は生じずに、図2(b)に示すように、θm
だけ傾いた光波つまり、信号光となる。
As shown in FIG. 1, since the reflected light on the front surface of the crystalline lens 10 is used, the light wave does not pass through the same optical path. Therefore, the optical rotatory power does not disappear, and as shown in FIG.
The light wave is only inclined, that is, the signal light.

【0021】一方、参照光路は、干渉信号を得るために
光路調整用のプリズム13で、信号光路(眼球を含む光
路)と光源のコヒーレンス長以内の精度で一致させられ
る。さらに、波長板15により、図2(a)に示すよう
に、偏光方向が水平からθr傾いた光波となる。参照光
と信号光はBS16に入射され、2つに分離・合波さ
れ、それぞれ偏光面が直交する偏光子17、19に入射
し、P波、S波成分ごとに光検出器18,20で電気信
号に変換される。ここで、参照光のP波、S波は図2
(a)より、それぞれ、以下の式(1)、式(2)で示
される。
On the other hand, the reference optical path is matched with the signal optical path (optical path including the eyeball) and the accuracy within the coherence length of the light source by the optical path adjusting prism 13 for obtaining the interference signal. Further, due to the wave plate 15, as shown in FIG. 2A, the polarization direction becomes a light wave inclined by θr from the horizontal. The reference light and the signal light are incident on the BS 16, are separated and combined into two, and are incident on the polarizers 17 and 19 whose polarization planes are orthogonal to each other, and are detected by the photodetectors 18 and 20 for each P wave and S wave component. It is converted into an electric signal. Here, the P wave and S wave of the reference light are shown in FIG.
From (a), the following equations (1) and (2) are respectively shown.

【0022】 X成分(P波) Er cos θr …(1) Y成分(S波) Er sin θr …(2) また、図2(b)より信号光のP波、S波は、それぞ
れ、式(3)、式(4)で示される。
X component (P wave) Er cos θr (1) Y component (S wave) Er sin θr (2) Further, from FIG. 2B, the P wave and S wave of the signal light are respectively expressed by (3) and equation (4).

【0023】 X成分(P波) Es cos θs cos θm+Es sin θs cos θm =Es cos(θs−θm) …(3) Y成分(S波) −Es cos θs sin θm+Es sin θs cos θm =Es sin(θs−θm) …(4) ここで、Er、Esはそれぞれ参照光の光電界、信号光
の光電界である。
X component (P wave) Es cos θs cos θm + Es sin θs cos θm = Es cos (θs−θm) (3) Y component (S wave) −Es cos θs sin θm + Es sin θs cos θm = Es sin ( θs−θm) (4) Here, Er and Es are the optical electric field of the reference light and the optical electric field of the signal light, respectively.

【0024】さらに、光検出器18,20の出力信号
は、式(5)、式(6)となるので、差動増幅器21の
出力は、式(7)となる。
Further, since the output signals of the photodetectors 18 and 20 are given by the equations (5) and (6), the output of the differential amplifier 21 is given by the equation (7).

【0025】 光検出器18の出力信号:I1 1 (t)=|Er cos θr|2 +|Es cos(θs−θm)|2 +2Er cos θr Es cos(θs−θm) cos φ(t) =|Er|2 cos2 θr+|Es|2 cos2 (θs−θm) +2ErEs cos θr cos(θs−θm) cos φ(t) …(5) 光検出器20の出力信号:I2 2 (t)=|Er sin θr|2 +|Es sin(θs−θm)|2 +2Er sin θr Es sin(θs−θm) cos φ(t) =|Er|2 sin2 θr+|Es|2 sin2 (θs−θm) +2ErEs sin θr sin(θs−θm) cos φ(t) …(6) 差動臓増幅器21の出力信号:I(t) I(t)=I1 (t)−I2 (t) =|Er|2 (cos2 θr−sin2 θr)+|Es|2 {cos 2 (θs−θm)−sin2 (θs−θm)}+2ErEs{co s θr cos(θS −θm)−sinθr sin(θs−θ m)}cosφ(t) =|Er|2 cos2θr+|Es|2 cos2 (θs−θm)+2 EsErcos(θr+θs−θm)cosφ(t)// …(7) ここで、感度についての条件を検討する。Output signal of the photodetector 18: I 1 I 1 (t) = | Er cos θr | 2 + | Es cos (θs−θm) | 2 + 2Er cos θr Es cos (θs−θm) cos φ (t ) = | Er | 2 cos 2 θr + | Es | 2 cos 2 (θs−θm) + 2ErEs cos θr cos (θs−θm) cos φ (t) (5) Output signal of photodetector 20: I 2 I 2 (T) = | Er sin θr | 2 + | Es sin (θs−θm) | 2 + 2Er sin θr Es sin (θs−θm) cos φ (t) = | Er | 2 sin 2 θr + | Es | 2 sin 2 (Θs-θm) + 2ErEs sin θr sin (θs-θm) cos φ (t) (6) Output signal of differential amplifier 21: I (t) I (t) = I 1 (t) -I 2 ( t) = | Er | 2 ( cos 2 θr-sin 2 θr + | Es | 2 {cos 2 (θs-θm) -sin 2 (θs-θm)} + 2ErEs {co s θr cos (θ S -θm) -sinθr sin (θs-θ m)} cosφ (t) = | Er | 2 cos 2 θr + | Es | 2 cos 2 (θs−θm) +2 EsErcos (θr + θs−θm) cos φ (t) / ... (7) Here, the condition for sensitivity will be examined.

【0026】これは信号出力である式(7)をθmにつ
いて偏微分した値が最大となる条件である。偏微分した
式は、式(8)となる。
This is a condition that the value obtained by partially differentiating the signal output from the equation (7) with respect to θm is the maximum. The partially differentiated formula is formula (8).

【0027】 I(t)=|Er|2 cos2θr+|Es|2 cos2 (θs−θm)+2 ErEs cos(θr+θs−θm)・cosφ(t) 〔∂I(t)〕/(∂θm)=2|Es|2 sin2 (θs−θm)+2Er Es sin(θr+θs−θm)cosφ(t) ≒2ErEs sin(θr+θs−θm)cosφ(t) θr+θs−θm=π/2で 〔∂I(t)〕/(∂θm)はmaxになる。I (t) = | Er | 2 cos 2 θr + | Es | 2 cos 2 (θs−θm) +2 ErEs cos (θr + θs−θm) · cos φ (t) [∂I (t)] / (∂θm) = 2 | Es | 2 sin 2 (θs−θm) + 2Er Es sin (θr + θs−θm) cosφ (t) ≈2ErEs sin (θr + θs−θm) cosφ (t) θr + θs−θm = π / 2 [∂I (t) ] / (∂θm) is max.

【0028】θr,θs≫θmよりθr+θsが最適条
件となる。
From θr, θs >> θm, θr + θs is the optimum condition.

【0029】 よってアナライザーの条件はθr=θs=π/4が好ましい。 …(8) これより、θr+θs−θm=π/2が最高感度条件で
あり、θmは微小なので、結局θr+θs=π/2とな
る。
Therefore, the condition of the analyzer is preferably θr = θs = π / 4. (8) From this, θr + θs−θm = π / 2 is the highest sensitivity condition, and θm is minute, so eventually θr + θs = π / 2.

【0030】この条件で、出力信号は、式(9)とな
る。
Under this condition, the output signal is given by equation (9).

【0031】θr=θs=π/4とすると cos2θr=cos2(π/4)=cos(π/2)=0 cos2(θs−θm) =cos(2θs−2θm) =cos2θs・cos2θm+sin2θs・sin2θm =sin2θm cos(θr+θs−θm)=cos(π/2−θm) =cosπ/2 cosθm+sinπ/2・sinθm=sinθm ∴ I(t) =|Es|2 ・sin2θm+2EsEr・sinθm・cosφ(t) (ただし θr=θs=π/4) …(9) さらに、θmは微小なので 近似的にθm=sinθm
が成り立ち、信号光は参照光に比較して微弱なのでEr
≫Esが成り立つ。このとき、出力信号は、式(10)
となる。
When θr = θs = π / 4, cos2 θr = cos2 (π / 4) = cos (π / 2) = 0 cos2 (θs−θm) = cos (2θs−2θm) = cos2θs · cos2θm + sin2θs · sin2θm = sin2θm cos (θr + θs−θm) = cos (π / 2−θm) = cosπ / 2 cosθm + sinπ / 2 · sin θm = sin θm ∴I (t) = | Es | 2 · sin2θm + 2EsEr · sin θm · cos φ (θ) = where θr = = Π / 4) (9) Further, since θm is minute, approximately θm = sin θm
And the signal light is weaker than the reference light, so Er
>> Es holds. At this time, the output signal is given by the equation (10).
Becomes

【0032】一般には、θm≒sinθm,Er≫Es
より ∴I(t)=2EsErθm・cosφ(t) …(10) この式は、参照光の光電界Erが十分大きいので、信号
光の光電界Esが小さくても積Er・Esが十分検出で
きること、つまりヘテロダイン検出による高感度化を示
している。
In general, θm≈sin θm, Er >> Es
Therefore, ∴I (t) = 2EsErθm · cosφ (t) (10) In this equation, since the optical electric field Er of the reference light is sufficiently large, the product Er · Es can be sufficiently detected even when the optical electric field Es of the signal light is small. That is, the sensitivity is increased by heterodyne detection.

【0033】次に、測定方法について図3を用いて述べ
る。
Next, the measuring method will be described with reference to FIG.

【0034】まず、光路調整用のプリズム13(図1参
照)を用いて2つのビームの交差領域にコヒーレンスゲ
ートを合わせる。レンズのステージ8を動かして、交差
領域を角膜の表面に合わせ、レンズのステージ8を眼球
に近づけながら、信号出力を記録すると図3中に示した
信号変化、すなわち、角膜前面からの反射光強度S1
水晶体前面からの反射光強度S2 、水晶体後面からの反
射光強度S3 が測定される。このとき、S1 とS2 の比
から、前眼房水9内の光学ロスが定量的に評価でき、グ
ルコース濃度に対して全く独立な情報が得られる。参考
文献(6)では、光学ロスからグルコース濃度を求める
方法が報告されており、これは旋光性を利用する方法と
は、全く別に求められる(ここで提案する方法は、旋光
性のみならず光学ロスを用いてもグルコース濃度を測定
することができる。個体差・測定状況の違いによる誤差
を軽減する意味からも、複数の方法による同時測定によ
り測定精度を向上させることは重要である)。
First, the coherence gate is aligned with the intersecting region of the two beams using the prism 13 (see FIG. 1) for adjusting the optical path. When the signal output is recorded while moving the lens stage 8 so that the intersecting region is aligned with the surface of the cornea and bringing the lens stage 8 close to the eyeball, the signal change shown in FIG. 3, that is, the reflected light intensity from the front surface of the cornea. S 1 ,
The reflected light intensity S 2 from the front surface of the lens and the reflected light intensity S 3 from the rear surface of the lens are measured. At this time, the optical loss in the anterior aqueous humor 9 can be quantitatively evaluated from the ratio of S 1 and S 2 , and information completely independent of the glucose concentration can be obtained. In Reference (6), a method for obtaining the glucose concentration from the optical loss is reported, which is required completely different from the method utilizing the optical activity (the method proposed here is not only optical activity but also optical activity). It is also possible to measure glucose concentration using loss.It is important to improve the measurement accuracy by simultaneous measurement using multiple methods in order to reduce errors due to individual differences and differences in measurement conditions.)

【0035】この図3の信号変化を考慮してS1 ,S2
が得られる場所にレンズのステージ8をそれぞれ合わせ
て差動増幅器21の信号出力の変化からθmを求める。
θmからグルコース濃度Cを求める方法としては、一般
に、参照文献(4)に示されているような、次の関係C
=θm/(αL)が成り立つ。ここで、C:グルコース
濃度、θm:旋光角、α:グルコースの物質定数、L:
伝播距離である。
Considering the signal change of FIG. 3, S 1 , S 2
Θm is obtained from the change in the signal output of the differential amplifier 21 by adjusting the stage 8 of the lens to the position where the above is obtained.
As a method of obtaining the glucose concentration C from θm, generally, the following relation C as shown in the reference (4) is used.
= Θm / (αL) holds. Here, C: glucose concentration, θm: optical rotation angle, α: glucose substance constant, L:
Propagation distance.

【0036】以上より、Lは、S1 とS2 の間隔から求
められるので、Cが得られる。
From the above, L is obtained from the interval between S 1 and S 2 , so C is obtained.

【0037】実際の用途では、病院などで中央測定室に
主測定器があり、各患者にプローブを光ファイバで分配
して測定できれば、よりシステム的で実用的である。
In an actual application, it is more systematic and practical if a main measuring instrument is provided in a central measuring room in a hospital or the like, and a probe can be distributed to each patient by an optical fiber for measurement.

【0038】以下では、そのようなニーズに応える測定
システムを述べる。
A measurement system that meets such needs will be described below.

【0039】図4は本発明の他の実施例を示す低コヒー
レンス光干渉計を用いた反射式血糖測定システムの模式
図、図5は本発明の他の実施例を示す低コヒーレンス光
干渉計を用いた反射式血糖測定システムにおける各光波
の説明図である。
FIG. 4 is a schematic diagram of a reflection type blood glucose measuring system using a low coherence optical interferometer showing another embodiment of the present invention, and FIG. 5 shows a low coherence optical interferometer showing another embodiment of the present invention. It is explanatory drawing of each light wave in the reflection-type blood glucose measurement system used.

【0040】本装置は、図4(a)に示すように、低コ
ヒーレンス光源(LCLS)25、波長板26、ビーム
スプリッター(BS)27,30、患者用のプローブを
選択する光路チャンネルスイッチ28、偏波面保存ファ
イバ29、位相変調器(PM)31、ミラー32,3
3、偏光ビームスプリッター(PBS)34、光検出器
35,36、差動増幅器37で構成される。
As shown in FIG. 4 (a), this apparatus has a low coherence light source (LCLS) 25, a wave plate 26, beam splitters (BS) 27, 30, an optical path channel switch 28 for selecting a probe for a patient, Polarization maintaining fiber 29, phase modulator (PM) 31, mirrors 32, 3
3, a polarization beam splitter (PBS) 34, photodetectors 35 and 36, and a differential amplifier 37.

【0041】また、患者ごとの光プローブは、図4
(b)に示すように、偏波面保存ファイバ29、偏波面
保存カップラー38、部分的に光波を反射するハーフミ
ラー39、光波の伝播方向を一方向にする光アイソレー
ター(OI)42、結合レンズ43、結合レンズステー
ジ44で構成される。
The optical probe for each patient is shown in FIG.
As shown in (b), a polarization-maintaining fiber 29, a polarization-maintaining coupler 38, a half mirror 39 that partially reflects a light wave, an optical isolator (OI) 42 that makes the propagation direction of the light wave one direction, and a coupling lens 43. , A coupling lens stage 44.

【0042】基本原理を、図4及び図5に基づいて説明
する。
The basic principle will be described with reference to FIGS. 4 and 5.

【0043】図4(a)において、LCLS25からの
光波は、波長板26、BS27、患者用のプローブを選
択する光路チャンネルスイッチ28を通って、光プロー
ブ(偏波面保存ファイバ29)へと導かれる。
In FIG. 4A, the light wave from the LCLS 25 is guided to the optical probe (polarization plane preserving fiber 29) through the wave plate 26, the BS 27, and the optical path channel switch 28 for selecting the patient probe. .

【0044】図4(b)に示す、光プローブ(偏波面保
存ファイバ29)では、偏波面保存カップラー38で2
つのファイバに分岐されるが、光アイソレーター42で
一方向となっているので他方のファイバへの伝播は生じ
ないで、右回りの伝播のみとなる。
In the optical probe (polarization maintaining fiber 29) shown in FIG.
Although it is branched into one fiber, since it is unidirectional by the optical isolator 42, propagation to the other fiber does not occur, but only clockwise propagation.

【0045】ハーフミラー39では反射光(参照光)4
0が発生し、これが参照光になる。透過光41は結合レ
ンズ43−1によって水晶体前面に照射され旋光を伴っ
た反射光は信号光となり、結合レンズ43−2で光ファ
イバに導入され、偏波面保存カップラー38を通して干
渉計へ戻る。このように、光プローブ(偏波面保存ファ
イバ29)では、旋光を伴った信号光と光路の違いから
遅延を伴った参照光が生ずる。
The half mirror 39 reflects the reflected light (reference light) 4
0 is generated, and this becomes the reference light. The transmitted light 41 is applied to the front surface of the crystalline lens by the coupling lens 43-1 and the reflected light accompanied by the optical rotation becomes signal light, which is introduced into the optical fiber by the coupling lens 43-2 and returns to the interferometer through the polarization-preserving coupler 38. As described above, in the optical probe (polarization-maintaining fiber 29), the reference light with a delay is generated due to the difference between the signal light accompanied with the optical rotation and the optical path.

【0046】二つの光波は、患者用のプローブを選択す
る光路チャンネルスイッチ28とBS27を介して、マ
イケルソン干渉計に入射する。両光波は、BS30によ
って二つに分離され、一方はヘテロダイン検出用の位相
変調器31を通り、ミラー32で反射され、PBS34
に入射する。
The two light waves enter the Michelson interferometer via the optical path channel switch 28 and BS 27 which selects the probe for the patient. Both light waves are separated into two by the BS 30, one of which passes through the phase modulator 31 for heterodyne detection, is reflected by the mirror 32, and is reflected by the PBS 34.
Incident on.

【0047】もう一方は、ミラー33で反射され、PB
S34に向かう。ミラー32は、信号光と参照光との遅
延を補償するためにLだけ光路差を与えている。PBS
34では、P波成分は光検出器35で、S波成分は光検
出器36で検出され、差動増幅器37で差信号成分が出
力される。
The other side is reflected by the mirror 33, and PB
Go to S34. The mirror 32 gives an optical path difference of L in order to compensate for the delay between the signal light and the reference light. PBS
In 34, the P wave component is detected by the photodetector 35, the S wave component is detected by the photodetector 36, and the differential signal component is output by the differential amplifier 37.

【0048】遅延の補償について、図5を用いて説明す
る。
The delay compensation will be described with reference to FIG.

【0049】図5(a)は光プローブからの光波〔ハー
フミラーからの反射光(参照光)46と旋光した水晶体
前面での反射光(信号光)47〕を表している。ハーフ
ミラー39によって生じた参照光40は、水晶体表面で
反射し旋光した信号光より伝播光路が短いので、信号光
49よりt0 早く干渉計に戻る。時間的に両光波はずれ
ているのでこのままでは両者の干渉はありえない。マイ
ケルソン干渉計に光路差を与えると、PBS34の直前
での光波は、図5(b)に示すように、参照光48と信
号光49、図5(c)に示すように、また遅延した参照
光50と遅延した信号光51となる。それらの光波はL
=c・t0 が成り立つときに、図5に示すように、信号
光49と参照光50が時間的に一致するので、干渉が生
ずる。これらは、PBS34によりP波、S波ごとに分
離・検出され差動増幅器37の出力信号となる。ここ
で、t0 は光路差Lによる遅延を示している。
FIG. 5A shows a light wave from the optical probe [reflected light (reflected light) 46 from the half mirror and reflected light (signal light) 47 on the front surface of the lens rotated]. The reference light 40 generated by the half mirror 39 has a shorter propagation optical path than the signal light that is reflected and rotatively reflected on the surface of the crystalline lens, and therefore returns to the interferometer earlier than the signal light 49 by t 0 . Since both light waves are deviated in time, it is impossible for both to interfere with each other. When an optical path difference was given to the Michelson interferometer, the light wave immediately before the PBS 34 was delayed again as shown in FIG. 5B, the reference light 48 and the signal light 49, and as shown in FIG. 5C. The signal light 51 is delayed from the reference light 50. Those light waves are L
= C · t 0 holds, the signal light 49 and the reference light 50 coincide with each other in time, as shown in FIG. 5, so that interference occurs. These are separated and detected for each P wave and S wave by the PBS 34 and become the output signal of the differential amplifier 37. Here, t 0 represents the delay due to the optical path difference L.

【0050】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。
The present invention is not limited to the above embodiments, and various modifications can be made within the scope of the present invention, and these modifications are not excluded from the scope of the present invention.

【0051】[0051]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、以下のような効果を奏することができる。
As described in detail above, according to the present invention, the following effects can be achieved.

【0052】(A)患者の眼に全く非接触で、実時間で
眼前部の構造を観察しながら前眼房水における旋光性か
ら糖濃度の測定を行うことができるので、患者の負担が
少なく、測定時間が早い。また、光ネットワークを用い
たシステム化にも対応できるために多くの遠隔地での患
者にもサービスが可能である。
(A) Since the sugar concentration can be measured from the optical activity in the anterior aqueous humor while observing the structure of the anterior segment of the eye in real time without any contact with the patient's eye, the burden on the patient is reduced. , The measurement time is fast. Moreover, since it is possible to support systemization using an optical network, it is possible to provide services to patients in many remote areas.

【0053】(B)本発明によれば、多くの糖尿病患者
に対して負担の少ない血糖測定が可能になるので、医学
分野での貢献や、半導体や他の産業分野への波及効果は
多大である。
(B) According to the present invention, it is possible to measure blood glucose with a small burden on many diabetic patients, and therefore, the contribution to the medical field and the ripple effect to the semiconductor and other industrial fields are great. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す低コヒーレンス光干渉計
を用いた反射式血糖測定システムの模式図である。
FIG. 1 is a schematic view of a reflective blood glucose measurement system using a low coherence optical interferometer showing an embodiment of the present invention.

【図2】本発明の実施例を示す低コヒーレンス光干渉計
を用いた反射式血糖測定システムにおける信号光と参照
光の説明図である。
FIG. 2 is an explanatory diagram of signal light and reference light in a reflective blood glucose measurement system using a low coherence optical interferometer showing an embodiment of the present invention.

【図3】本発明の実施例を示す低コヒーレンス光干渉計
を用いた反射式血糖測定方法の説明図である。
FIG. 3 is an explanatory diagram of a reflective blood glucose measurement method using a low coherence optical interferometer showing an embodiment of the present invention.

【図4】本発明の他の実施例を示す低コヒーレンス光干
渉計を用いた反射式血糖測定システムの模式図である。
FIG. 4 is a schematic diagram of a reflective blood glucose measurement system using a low coherence optical interferometer showing another embodiment of the present invention.

【図5】本発明の他の実施例を示す低コヒーレンス光干
渉計を用いた反射式血糖測定システムにおける各光波の
説明図である。
FIG. 5 is an explanatory diagram of each light wave in a reflection-type blood glucose measurement system using a low coherence optical interferometer showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,25 低コヒーレンス光源(LCLS) 2,16,27,30 ビームスプリッター(BS) 3,31 位相変調器(PM) 4,15,26 波長板 5,12 光ファイバ結合レンズ 6,11,29 偏波面保存ファイバ 7 カメラユニット 8 ステージ 9 前眼房水 13 光路調整用のプリズム 14,32,33 ミラー 17,19 偏光子 18,20,35,36 光検出器 21,37 差動増幅器 28 光路チャンネルスイッチ 34 偏光ビームスプリッター(PBS) 38 偏波面保存カップラー 39 ハーフミラー 40 反射光(参照光) 41 透過光 42 光アイソレーター(OI) 43−1,43−2 結合レンズ 44 結合レンズステージ 46,48,50 参照光 47,49,51 信号光 1,25 Low coherence light source (LCLS) 2,16,27,30 Beam splitter (BS) 3,31 Phase modulator (PM) 4,15,26 Wave plate 5,12 Optical fiber coupling lens 6,11,29 Polarization maintaining fiber 7 camera unit 8 stages 9 Anterior aqueous humor 13 Prism for optical path adjustment 14,32,33 mirror 17,19 Polarizer 18, 20, 35, 36 Photodetector 21,37 Differential amplifier 28 Optical path channel switch 34 Polarizing Beam Splitter (PBS) 38 Polarization preserving coupler 39 Half mirror 40 Reflected light (reference light) 41 transmitted light 42 Optical Isolator (OI) 43-1 and 43-2 coupling lens 44 coupled lens stage 46,48,50 reference light 47,49,51 Signal light

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G059 AA01 BB12 CC16 EE02 EE05 EE09 GG04 GG06 GG10 JJ11 JJ12 JJ17 JJ18 JJ20 KK01 KK03 KK04 4C038 KK10 KL05 KL07 KX04    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2G059 AA01 BB12 CC16 EE02 EE05                       EE09 GG04 GG06 GG10 JJ11                       JJ12 JJ17 JJ18 JJ20 KK01                       KK03 KK04                 4C038 KK10 KL05 KL07 KX04

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】(a)低コヒーレンス光源と、(b)該低
コヒーレンス光源からの光波を、ビームスプリッター、
位相変調器を通して位相変調するとともに、波長板によ
って水平からθs傾いた照射光を得る手段と、(c)該
照射光をレンズによってビーム状に眼球前部に照射し、
水晶体と前眼房水との境界で反射光を生じさせる手段
と、(d)前記反射光を再度レンズで集光した信号光
を、光ファイバにより伝播し、レンズによって干渉計に
導く手段とを具備することを特徴とする低コヒーレンス
光干渉計を用いた反射式血糖測定装置。
1. A low coherence light source (a); and (b) a light beam from the low coherence light source, a beam splitter,
A means for obtaining irradiation light that is inclined by θs from the horizontal by a wave plate while performing phase modulation through a phase modulator, and (c) irradiating the irradiation light in a beam form on the anterior part of the eye by a lens,
A means for generating reflected light at the boundary between the crystalline lens and the anterior aqueous humor, and (d) means for propagating the signal light obtained by condensing the reflected light again by the lens through the optical fiber and guiding it to the interferometer by the lens. A reflection-type blood glucose measuring device using a low-coherence optical interferometer, which is characterized by being provided.
【請求項2】 請求項1記載の低コヒーレンス光干渉計
を用いた反射式血糖測定装置において、前記水晶体前面
での反射光を用いるために、光波は同一光路を通らない
ようにして、旋光性の解消が生じないようにしたことを
特徴とする低コヒーレンス光干渉計を用いた反射式血糖
測定装置。
2. The reflection-type blood glucose measuring apparatus using the low coherence optical interferometer according to claim 1, wherein the reflected light on the front surface of the crystalline lens is used, so that the light waves do not pass through the same optical path, and the optical activity is reduced. A reflection-type blood glucose measuring device using a low-coherence optical interferometer, which is characterized in that the above-mentioned problem is prevented.
JP2002053241A 2002-02-28 2002-02-28 Reflection type blood sugar measuring instrument using low coherent light interferometer Pending JP2003254901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002053241A JP2003254901A (en) 2002-02-28 2002-02-28 Reflection type blood sugar measuring instrument using low coherent light interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002053241A JP2003254901A (en) 2002-02-28 2002-02-28 Reflection type blood sugar measuring instrument using low coherent light interferometer

Publications (1)

Publication Number Publication Date
JP2003254901A true JP2003254901A (en) 2003-09-10

Family

ID=28664716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002053241A Pending JP2003254901A (en) 2002-02-28 2002-02-28 Reflection type blood sugar measuring instrument using low coherent light interferometer

Country Status (1)

Country Link
JP (1) JP2003254901A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274380A (en) * 2004-03-25 2005-10-06 Optoquest Co Ltd Double refraction measuring instrument
JP2006084304A (en) * 2004-09-15 2006-03-30 Topcon Corp Optical image measuring instrument
JP2006105720A (en) * 2004-10-04 2006-04-20 Topcon Corp Optical image measuring apparatus
JP2008070349A (en) * 2006-08-15 2008-03-27 Fujifilm Corp Optical tomographic imaging apparatus
CN100438829C (en) * 2006-12-21 2008-12-03 浙江大学 Non-invasive blood sugar detecting method and equipment based on optical coherent chromatographic ophthalmoscopic imaging
JP2009112430A (en) * 2007-11-02 2009-05-28 Nidek Co Ltd Instrument for measuring eye size
WO2011074217A1 (en) * 2009-12-18 2011-06-23 パナソニック株式会社 Component concentration meter, component concentration measurement method, shipping inspection system, and health management system
WO2015141805A1 (en) * 2014-03-20 2015-09-24 富士ゼロックス株式会社 Optical measurement device for eyeball, optical measurement method for eyeball, and method for receiving light illumination to eyeball
WO2022024669A1 (en) * 2020-07-31 2022-02-03 富士フイルム株式会社 Method for measuring concentration of optically active substance and device for measuring concentration of optically active substance

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274380A (en) * 2004-03-25 2005-10-06 Optoquest Co Ltd Double refraction measuring instrument
JP4556463B2 (en) * 2004-03-25 2010-10-06 有限会社グローバルファイバオプティックス Birefringence measuring device
JP2006084304A (en) * 2004-09-15 2006-03-30 Topcon Corp Optical image measuring instrument
JP4633423B2 (en) * 2004-09-15 2011-02-16 株式会社トプコン Optical image measuring device
JP4563130B2 (en) * 2004-10-04 2010-10-13 株式会社トプコン Optical image measuring device
JP2006105720A (en) * 2004-10-04 2006-04-20 Topcon Corp Optical image measuring apparatus
JP2008070349A (en) * 2006-08-15 2008-03-27 Fujifilm Corp Optical tomographic imaging apparatus
CN100438829C (en) * 2006-12-21 2008-12-03 浙江大学 Non-invasive blood sugar detecting method and equipment based on optical coherent chromatographic ophthalmoscopic imaging
JP2009112430A (en) * 2007-11-02 2009-05-28 Nidek Co Ltd Instrument for measuring eye size
WO2011074217A1 (en) * 2009-12-18 2011-06-23 パナソニック株式会社 Component concentration meter, component concentration measurement method, shipping inspection system, and health management system
US8592769B2 (en) 2009-12-18 2013-11-26 Panasonic Corporation Component concentration meter, component concentration measurement method, shipping inspection system, and health management system
WO2015141805A1 (en) * 2014-03-20 2015-09-24 富士ゼロックス株式会社 Optical measurement device for eyeball, optical measurement method for eyeball, and method for receiving light illumination to eyeball
JP2015192861A (en) * 2014-03-20 2015-11-05 富士ゼロックス株式会社 Optical measurement apparatus for eyeball
US10349831B2 (en) 2014-03-20 2019-07-16 Fuji Xerox Co., Ltd. Eyeball optical measuring instrument, eyeball optical measuring method, and method for irradiating an eyeball and detecting light coming from eyeball
WO2022024669A1 (en) * 2020-07-31 2022-02-03 富士フイルム株式会社 Method for measuring concentration of optically active substance and device for measuring concentration of optically active substance
JP7449387B2 (en) 2020-07-31 2024-03-13 富士フイルム株式会社 Optically active substance concentration measurement method and optically active substance concentration measurement device

Similar Documents

Publication Publication Date Title
US6549801B1 (en) Phase-resolved optical coherence tomography and optical doppler tomography for imaging fluid flow in tissue with fast scanning speed and high velocity sensitivity
US7259851B2 (en) Optical measurements of properties in substances using propagation modes of light
JP5006049B2 (en) Non-invasive birefringence compensated sensing polarimeter
US6152875A (en) Glucose concentration measuring method and apparatus
US8498681B2 (en) Cross-sectional mapping of spectral absorbance features
US7263394B2 (en) Coherence-gated optical glucose monitor
US7970458B2 (en) Integrated disease diagnosis and treatment system
JP4472991B2 (en) Target research method and optical interferometer (variant)
US8718734B2 (en) Non-invasive polarimetric apparatus and method for analyte sensing in birefringent media
US20030225321A1 (en) Method and apparatus for non-invasive glucose sensing through the eye
US9134231B2 (en) Optical measurements of properties in substances using propagation modes of light
EP0626819A1 (en) Non-invasive blood glucose measurement
EP1639331B1 (en) Measurements of optical inhomogeneity and other properties in substances using propagation modes of light
Malik et al. Dual-wavelength polarimetric glucose sensing in the presence of birefringence and motion artifact using anterior chamber of the eye phantoms
JP2006042955A (en) In vivo material optometric device
JP2003254901A (en) Reflection type blood sugar measuring instrument using low coherent light interferometer
WO2001022871A9 (en) Optical glucose sensor apparatus and method
JP3607214B2 (en) Blood glucose measurement device using low coherence optical interferometer
RU179037U1 (en) Endoscopic optical coherence tomography device
Larin et al. Measurement of refractive index variation of physiological analytes using differential-phase OCT
Jiang et al. Formulation of beam propagating through the organized tissues withpolarization-sensitive OCT
Chen Functional Optical Coherence Tomography: Simultaneous in Vivo Imaging of Tissue Structure and Physiology
Hitzenberger et al. Optical contrasting in optical coherence tomography
Hitzenberger et al. Measurement and imaging of birefringent axis by phase resolved polarization sensitive optical coherence tomography
Jiao et al. Quantification of polarization in biological tissue by optical coherence tomography

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050405