JP4343743B2 - Optical rotation measuring device and concentration measuring device - Google Patents

Optical rotation measuring device and concentration measuring device Download PDF

Info

Publication number
JP4343743B2
JP4343743B2 JP2004079364A JP2004079364A JP4343743B2 JP 4343743 B2 JP4343743 B2 JP 4343743B2 JP 2004079364 A JP2004079364 A JP 2004079364A JP 2004079364 A JP2004079364 A JP 2004079364A JP 4343743 B2 JP4343743 B2 JP 4343743B2
Authority
JP
Japan
Prior art keywords
optical rotation
sample
light
optical
analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004079364A
Other languages
Japanese (ja)
Other versions
JP2005265649A (en
Inventor
福田  匡広
矢野  敬和
松本  健志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2004079364A priority Critical patent/JP4343743B2/en
Publication of JP2005265649A publication Critical patent/JP2005265649A/en
Application granted granted Critical
Publication of JP4343743B2 publication Critical patent/JP4343743B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties

Description

本発明は旋光度測定装置および濃度測定装置に関し、特に試料内に含まれる旋光性物質の濃度を安定かつ高精度に測定する技術に関するものである。   The present invention relates to an optical rotation measuring device and a concentration measuring device, and more particularly to a technique for measuring the concentration of an optical rotatory substance contained in a sample stably and with high accuracy.

試料内の旋光性物質の濃度を測定する手段として、その旋光度の測定より濃度を求める光学的な方式は有用であるとされている。これは、例えばグルコース濃度を測定する方法としては、他にGOD法などの酵素を用いた酵素法が知られているが、この方法では電極を試料に接触させる必要があり、また測定原理上、測定回数に限度があるため一定期間ごとのメンテナンスや、装置の一部の交換、緩衝液の追加などの処置を行う必要が生じる。その点、旋光度測定などの光学的方式においては、直接試料に触れることなく測定することが可能であるため、特にメンテナンス等を必要とせず、長い期間において測定が可能であるためである。   As a means for measuring the concentration of an optical rotatory substance in a sample, an optical method for determining the concentration by measuring the optical rotation is considered useful. For example, as a method for measuring glucose concentration, an enzyme method using an enzyme such as GOD method is known. However, in this method, an electrode needs to be brought into contact with a sample. Since the number of times of measurement is limited, it is necessary to perform maintenance such as maintenance every certain period, replacement of part of the apparatus, addition of buffer solution, and the like. In this respect, in an optical method such as optical rotation measurement, measurement can be performed without touching the sample directly, so that measurement can be performed for a long period without particularly requiring maintenance.

旋光度より試料内の旋光性物質の濃度を求める方法の原理は式1に基づく。
θ(λ)=α(λ)・c・L(式1)
ここで、θ(λ)は光線の波長をλとしたときの旋光度、α(λ)は光線の波長をλとしたときの旋光性物質の比旋光度、cは試料内における旋光性物質の濃度、Lは試料の光路長である。式1において、比旋光度α(λ)は旋光性物質固有の係数であり、試料の光路長Lも同様に濃度測定前に既知の値であるため、試料に光線を入射したときの旋光度θ(λ)を測定することにより、旋光性物質の濃度cを求めることが出来る。
The principle of the method for obtaining the concentration of the optically rotatory substance in the sample from the optical rotation is based on Equation 1.
θ (λ) = α (λ) · c · L (Formula 1)
Here, θ (λ) is the optical rotation when the wavelength of the light beam is λ, α (λ) is the specific rotation of the optical rotatory material when the wavelength of the light beam is λ, and c is the optical rotation material in the sample. , L is the optical path length of the sample. In Equation 1, the specific optical rotation α (λ) is a coefficient specific to the optical rotatory substance, and the optical path length L of the sample is also a known value before the concentration measurement, and therefore the optical rotation when the light beam is incident on the sample. By measuring θ (λ), the concentration c of the optical rotatory substance can be obtained.

従来の旋光度の測定方法としては、例えば図に示す様なものが挙げられる。図において平行光を出射する光源501から出射した光線は偏光子502を透過することにより偏光子502の透過軸方向に光軸を持つ直線偏光となり、試料503に入射する。試料503を通過した光線は検光子504に入射し、検光子504の透過軸方向の光成分のみが透過し、光検出器505の受光部に到達する。ここで、検光子504は検光子ローテーター506によって回転することが出来る。このとき、偏光子502と検光子504の透過軸の相対角度をθ、光検出器505で検出される光の強度をI1とする。仮に、試料に旋光性がない場合、θとIの関係は式2で表される。
=T×I×(cosθ)(式2)
ここで、Tは試料の透過率、Iは試料への入射光強度である。なお、各光学素子での反射等の影響は無いものと仮定している。
As a measuring method of the conventional optical rotation, it is those for example as shown in FIG. In FIG. 5 , the light beam emitted from the light source 501 that emits parallel light passes through the polarizer 502 to become linearly polarized light having an optical axis in the transmission axis direction of the polarizer 502 and enters the sample 503. The light beam that has passed through the sample 503 enters the analyzer 504, and only the light component in the direction of the transmission axis of the analyzer 504 is transmitted and reaches the light receiving unit of the photodetector 505. Here, the analyzer 504 can be rotated by an analyzer rotator 506. At this time, the relative angle between the transmission axes of the polarizer 502 and the analyzer 504 is θ, and the intensity of the light detected by the photodetector 505 is I 1 . If the sample has no optical rotation, the relationship between θ and I is expressed by Equation 2.
I 1 = T × I 0 × (cos 2 θ) (Formula 2)
Here, T is the transmittance of the sample, and I 0 is the intensity of light incident on the sample. It is assumed that there is no influence of reflection or the like on each optical element.

次に、試料に旋光性がある場合を想定し、試料による旋光度をβとすると光検出器505で検出される光強度I2は式3で表される。
2=T×I0×(cos2(θ−β))(式3)
式2と式3を比較すると、試料に旋光性がある場合、光検出器505で検出される強度が0となる点、すなわち消光点がβだけずれることになる。よって、消光点のずれを検出することにより試料による旋光度を測定することが出来る。
Next, assuming that the sample has optical rotation, assuming that the optical rotation by the sample is β, the light intensity I 2 detected by the photodetector 505 is expressed by Equation 3.
I 2 = T × I 0 × (cos 2 (θ−β)) (Formula 3)
Comparing Expression 2 and Expression 3, when the sample has optical rotation, the point where the intensity detected by the photodetector 505 becomes 0, that is, the extinction point is shifted by β. Therefore, the optical rotation by the sample can be measured by detecting the deviation of the extinction point.

しかし、この方式だと変調成分が存在しないため、良いS/Nが得られず、消光点の位置を正確には把握しにくい。そこで、精度を向上させるためにファラデー素子を用いて光線の偏光方向を変調させる方式が使用されている。偏光方向を変調することによって、この変調周波数成分のみの信号をその他のノイズ成分と分離することができるため、S/Nの高い信号を取り出すことができ、高精度に旋光度を測定することが出来る。例えば特許文献1においてはファラデーセルを用いて周波数fで変調された直線偏光を試料に照射し
、変調信号が極大と極小の時の検出信号に基づいて演算を行い、旋光度を算出している。また、特許文献2においては被検試料にソレノイドコイルで磁界を印加し、ファラデー効果によってその結果生じる偏光方向の変化に基づき、試料の旋光度を測定する方式としている。
However, in this method, since there is no modulation component, good S / N cannot be obtained, and it is difficult to accurately grasp the position of the extinction point. In order to improve the accuracy, a method of modulating the polarization direction of the light beam using a Faraday element is used. By modulating the polarization direction, a signal having only the modulation frequency component can be separated from other noise components, so that a signal with a high S / N can be taken out and the optical rotation can be measured with high accuracy. I can do it. For example, in Patent Document 1, a sample is irradiated with linearly polarized light modulated at a frequency f using a Faraday cell, and calculation is performed based on a detection signal when the modulation signal is maximum and minimum, thereby calculating the optical rotation. . In Patent Document 2, a magnetic field is applied to a test sample by a solenoid coil, and the optical rotation of the sample is measured based on the resulting change in polarization direction due to the Faraday effect.

特開平9−236542号公報(図1)JP-A-9-236542 (FIG. 1) 特開平9−145605号公報(図1)JP-A-9-145605 (FIG. 1)

しかし、上述した方法には以下のような課題が生じる。従来の旋光度測定器では光変調にファラデーセルを用いているが、例えば、変調量が大きくなるとファラデーセルに供給する電流も大きくなり、これによって駆動器の容量を大きくする必要がある。また、電流増加によりファラデーセルの発熱量も増えるため、冷却装置等が必要となるため、装置全体が大型化、複雑化してしまう。また、周波数変調を行う際に、周波数特性を良好にするためには変調周波数を高くする必要があるが、この場合コイルの振動が大きくなるため、振動対策、騒音対策が必要となる。これには、例えばコイル層間に挟む絶縁シートの厚みを厚くしたり、コイルが振動しない様に固定するための樹脂を流し込む等の対策が考えられるが、係る対策はコイルの密閉構造を促してしまい、コイルの発熱により旋光度測定器自体の温度が上昇してしまうため、同様に冷却装置等を必要とする。このため、旋光計の構成が複雑化し、装置の規模も大きくならざるを得ない。   However, the method described above has the following problems. In a conventional optical rotation measuring instrument, a Faraday cell is used for optical modulation. For example, when the modulation amount increases, the current supplied to the Faraday cell also increases, and it is necessary to increase the capacity of the driver. Further, since the amount of heat generated by the Faraday cell increases due to an increase in current, a cooling device or the like is required, and the entire device becomes large and complicated. Further, when performing frequency modulation, in order to improve the frequency characteristics, it is necessary to increase the modulation frequency. In this case, however, the vibration of the coil is increased, so that countermeasures against vibration and noise are required. For example, measures such as increasing the thickness of the insulating sheet sandwiched between the coil layers or pouring a resin for fixing the coil so as not to vibrate can be considered, but such measures promote the sealing structure of the coil. Since the temperature of the optical rotation measuring instrument itself rises due to the heat generated by the coil, a cooling device or the like is required as well. For this reason, the configuration of the polarimeter becomes complicated, and the scale of the apparatus must be increased.

そこで、本発明では上述した従来技術による問題点を解消するため、試料の旋光度測定を安定かつ高精度に行い、かつ、小型で構造が簡易な旋光度測定装置および濃度測定装置を提供することを目的とする。   Accordingly, in order to eliminate the above-mentioned problems caused by the prior art, the present invention provides a rotation angle measurement device and a concentration measurement device that perform stable and high-precision measurement of the optical rotation of a sample, and are small in size and simple in structure. With the goal.

これらの課題を解決するために本発明による旋光度測定装置および濃度測定装置は、下記に記載の手段を採用する。すなわち本発明の旋光度測定装置は、直線偏光を出力する直線偏光出力手段と、直線偏光の旋光度を変調する旋光度変調手段と、旋光度変調手段によって旋光度が変調された直線偏光が試料へ出射されることによって、試料内の旋光性物質によって旋光されて試料を透過してくる透過光の一方向成分のみを透過させる検光子と、検光子を透過してくる透過光を検出する光検出手段を備えた旋光度測定装置であって、旋光度変調手段は液晶素子によって構成され、検光子における透過光が光検出手段によって検出される信号情報をもとに検光子を回転させたときの検光子の角度より試料の旋光度を測定することを特徴とする。   In order to solve these problems, the optical rotation measuring device and the concentration measuring device according to the present invention employ the following means. That is, the optical rotation measuring device of the present invention includes linearly polarized light output means for outputting linearly polarized light, optical rotation modulation means for modulating the optical rotation of linearly polarized light, and linearly polarized light whose optical rotation is modulated by the optical rotation modulation means. And an analyzer that transmits only one direction component of transmitted light that is rotated by the optical rotatory substance in the sample and transmits through the sample, and light that detects the transmitted light transmitted through the analyzer. An optical rotation measuring device provided with a detection means, wherein the optical rotation modulation means is constituted by a liquid crystal element, and when the transmitted light in the analyzer is rotated based on signal information detected by the light detection means The optical rotation of the sample is measured from the angle of the analyzer.

また、本発明における旋光度測定装置は、直線偏光を出力する直線偏光出力手段と、直線偏光の旋光度を変調する旋光度変調手段と、旋光度変調手段によって旋光度が変調された直線偏光が試料へ出射されることによって、試料内の旋光性物質によって旋光されて前記試料を透過してくる透過光の一方向成分のみを透過させる検光子と、検光子を透過してくる透過光を検出する光検出手段を備えた旋光度測定装置であって、旋光度変調手段は液晶素子によって構成され、液晶素子によって旋光度が変調された直線偏光を分割することによって試料を通過しない参照用の光学系を設け、参照用の光学系における透過光の信号情報と試料を通過してくる透過光の信号情報を合致させるように検光子を回転させたときの検光子の角度より旋光度を測定することを特徴とする。   The optical rotation measuring device according to the present invention includes linearly polarized light output means for outputting linearly polarized light, optical rotation modulation means for modulating the optical rotation of the linearly polarized light, and linearly polarized light whose optical rotation is modulated by the optical rotation modulation means. By being emitted to the sample, an analyzer that transmits only one direction component of transmitted light that is rotated by the optical rotatory substance in the sample and passes through the sample, and transmitted light that passes through the analyzer are detected. An optical rotation measuring device provided with a light detection means for performing optical rotation for reference, which comprises a liquid crystal element, and does not pass through a sample by dividing linearly polarized light whose optical rotation is modulated by the liquid crystal element. The optical rotation is measured from the angle of the analyzer when the analyzer is rotated so that the signal information of the transmitted light in the reference optical system matches the signal information of the transmitted light passing through the sample. Characterized in that it.

また本発明における旋光度測定装置は、直線偏光を出力する直線偏光出力手段と、直線
偏光の旋光度を変調する旋光度変調手段と、旋光度変調手段によって旋光度が変調された直線偏光が試料へ出射されることによって、試料内の旋光性物質によって旋光されて前記試料を透過してくる透過光の一方向成分のみを透過させる検光子と、検光子を透過してくる透過光を検出する光検出手段を備えた旋光度測定装置であって、旋光度変調手段は液晶素子によって構成され、液晶素子によって旋光度が変調された直線偏光を分割することによって試料を通過しない参照用の光学系を設け、参照用の光学系における透過光の信号情報と試料を通過してくる透過光の信号情報を近接させるように検光子を回転させたときの検光子の角度と、参照用の光学系における透過光の信号情報と試料を通過してくる透過光の信号情報の差成分を用いて旋光度を算出することを特徴とする。
Further, the optical rotation measuring device according to the present invention comprises a linearly polarized light output means for outputting linearly polarized light, an optical rotation modulation means for modulating the optical rotation of the linearly polarized light, and a linearly polarized light whose optical rotation is modulated by the optical rotation modulation means. And the analyzer that transmits only the unidirectional component of the transmitted light that is rotated by the optical rotatory substance in the sample and passes through the sample, and the transmitted light that passes through the analyzer is detected. An optical rotation measuring device provided with a light detection means, wherein the optical rotation modulation means is constituted by a liquid crystal element, and a reference optical system that does not pass through a sample by dividing linearly polarized light whose optical rotation is modulated by the liquid crystal element The angle of the analyzer when the analyzer is rotated so that the signal information of the transmitted light in the reference optical system and the signal information of the transmitted light passing through the sample are brought close to each other, and the reference optical And calculating the optical rotation with the differential component of the signal information and the signal information of the transmitted light sample coming through the transmitted light in.

また本発明は、液晶素子によって、参照用の光学系における透過光の信号波形が、一定周期で極大を取り、極大値が一定となるように直線偏光を変調することが好ましい。   In the present invention, it is preferable that the linearly polarized light is modulated by the liquid crystal element so that the signal waveform of the transmitted light in the reference optical system has a maximum at a constant period and the maximum value is constant.

また本発明は、参照用の光学系における透過光の信号波形が、一定周期で極大を取り、極大値が一定となるように、参照用の光学系における透過光の信号を液晶素子の駆動電圧にフィードバックさせることが好ましい。   In addition, the present invention provides a signal for transmitting light in the reference optical system as a driving voltage of the liquid crystal element so that the signal waveform of the transmitted light in the reference optical system has a maximum at a constant period and the maximum value is constant. It is preferable to feed back.

また、本発明は試料の旋光度測定の際に、試料と、旋光度が既知の参照試料を測定し、参照試料の測定値で、試料の測定値の補正を行うことが好ましい。   In the present invention, when measuring the optical rotation of the sample, it is preferable to measure the sample and a reference sample having a known optical rotation, and correct the measured value of the sample with the measured value of the reference sample.

また、本発明における直線偏光出力手段における光源が交換可能であり、波長の異なる複数の光源を用いることにより、複数の波長における試料の旋光度の測定を行うことは有用である。   In addition, the light source in the linearly polarized light output means in the present invention can be exchanged, and it is useful to measure the optical rotation of the sample at a plurality of wavelengths by using a plurality of light sources having different wavelengths.

また、本発明における直線偏光出力手段から出力した直線偏光を一波長の光線のみを透過させるフィルターに出射し透過させ、フィルターにおける透過波長において試料の旋光度の測定を行うことは有用である。   It is also useful to measure the optical rotation of the sample at the transmission wavelength in the filter by emitting the linearly polarized light output from the linearly polarized light output means in the present invention to a filter that transmits only light of one wavelength.

また、本発明における試料は尿であり、試料中の旋光性物質は尿糖、尿中アミノ酸、または尿中タンパク質である場合に有用である。   The sample in the present invention is urine, and is useful when the optical rotatory substance in the sample is urine sugar, urine amino acid, or urine protein.

また、本発明の濃度測定装置は旋光度測定装置で測定した旋光度より試料中の物質の濃度を算出することを特徴とする。   Further, the concentration measuring apparatus of the present invention is characterized in that the concentration of a substance in a sample is calculated from the optical rotation measured by the optical rotation measuring apparatus.

(作用)
試料の旋光度を測定する旋光度測定装置および旋光度を測定することにより試料内の旋光性物質の濃度を測定する濃度測定装置において、旋光度変調素子として液晶素子を用いて直線偏光の偏光方向の変調を行い、液晶素子によって旋光度が変調された直線偏光が試料と検光子を透過してくる透過光の信号情報をもとに検光子を回転させたときの検光子の角度を用いて、もしくは、直線偏光を分割することによって試料を通過しない参照用の光学系を設け、参照用の光学系における透過光の信号情報と試料を通過してくる透過光の信号情報を合致させるように検光子を回転させたときの検光子の角度、あるいは検光子の角度と、参照用の光学系における透過光の信号情報と試料を通過してくる透過光の信号情報の差成分を用いて旋光度を算出することにより、試料の旋光度測定を安定かつ高精度に行い、かつ、小型で簡易な構造とすることが可能となる。
(Function)
Polarization direction of linearly polarized light using a liquid crystal element as an optical rotation modulation element in an optical rotation measurement apparatus that measures the optical rotation of a sample and a concentration measurement apparatus that measures the optical rotation of a sample by measuring the optical rotation Using the angle of the analyzer when the analyzer is rotated based on the signal information of the transmitted light that the linearly polarized light whose optical rotation is modulated by the liquid crystal element is transmitted through the sample and the analyzer. Alternatively, a reference optical system that does not pass through the sample is provided by dividing linearly polarized light so that the signal information of the transmitted light in the reference optical system matches the signal information of the transmitted light that passes through the sample. Optical rotation using the difference component between the angle of the analyzer when the analyzer is rotated, or the angle of the analyzer, and the signal information of the transmitted light in the reference optical system and the signal information of the transmitted light passing through the sample Calculate degree The Rukoto, optical rotation measurement of the sample performed stably and highly accurately, and it is possible to a simple structure in small size.

以上の説明のように、本発明の旋光度測定装置および濃度測定装置においては、下記に記載する効果を有する。   As described above, the optical rotation measuring device and the concentration measuring device of the present invention have the effects described below.

試料の旋光度を測定する旋光度測定装置および旋光度を測定することにより試料内の旋光性物質の濃度を測定する濃度測定装置において、ファラデー素子を用いずに小型、低電圧で駆動できる液晶素子を用いて光線の偏光方向の変調を行うことで、特に振動対策や、熱対策の冷却装置等を必要としないため、装置全体の小型化、構造の簡易化が可能で、更に低消費電力での測定が可能である。また液晶素子を用いて変調を行い、更に試料と検光子を透過してくる透過光の信号情報をもとに検光子を回転させたときの検光子の角度を用いて旋光度を測定することによって、旋光角が大きい場合でも容易に測定が可能となる。   A liquid crystal element that can be driven with a small size and a low voltage without using a Faraday element in an optical rotation measuring device that measures the optical rotation of a sample and a concentration measuring device that measures the optical rotation of a sample by measuring the optical rotation. By modulating the polarization direction of the light beam, it is possible to reduce the size of the entire device, simplify the structure, and reduce the power consumption. Can be measured. In addition, modulation is performed using a liquid crystal element, and the optical rotation is measured using the angle of the analyzer when the analyzer is rotated based on the signal information of the transmitted light transmitted through the sample and the analyzer. Therefore, even when the optical rotation angle is large, measurement can be easily performed.

また、直線偏光を分割することによって試料を通過しない参照用の光学系を設け、参照用の光学系における透過光の信号情報と試料を通過してくる透過光の信号情報を合致させるように検光子を回転させたときの検光子の角度を用いて旋光度を用いることによって、変調信号に変化が生じた場合でも安定した測定が可能となる。   In addition, a reference optical system that does not pass through the sample is provided by dividing linearly polarized light so that the signal information of the transmitted light in the reference optical system matches the signal information of the transmitted light that passes through the sample. By using the optical rotation using the angle of the analyzer when the photon is rotated, stable measurement can be performed even when the modulation signal changes.

また、 参照用の光学系における透過光の信号情報と試料を通過してくる透過光の信号情報を合致させるように検光子を回転させたときの検光子の角度に加え、そのときの参照用の光学系における透過光の信号情報と試料を通過してくる透過光の信号情報の差成分を用いて旋光度を算出することで、より高精度の旋光度測定が可能となる。   In addition to the angle of the analyzer when the analyzer is rotated so that the signal information of the transmitted light in the reference optical system matches the signal information of the transmitted light passing through the sample, the reference information at that time By calculating the optical rotation using the difference component between the signal information of the transmitted light and the signal information of the transmitted light passing through the sample in this optical system, it becomes possible to measure the optical rotation with higher accuracy.

また、参照用の光学系における信号を用いて液晶素子の駆動電圧にフィードバックを行うことによって、温度など周囲の環境が変化した場合にも常に安定した偏光方向の変調を行うことができ、試料の旋光度測定を安定かつ高精度に行うことが可能である。   In addition, by feeding back to the driving voltage of the liquid crystal element using the signal in the reference optical system, stable polarization direction modulation can always be performed even when the surrounding environment such as temperature changes. Optical rotation measurement can be performed stably and with high accuracy.

以下、図面を用いて本発明を利用した旋光度測定装置および濃度測定装置の最適な実施形態を説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of an optical rotation measuring device and a concentration measuring device using the present invention will be described with reference to the drawings.

(第一の実施形態)
図1は本発明の第一の実施形態の例である。図1において駆動回路113によって駆動されるレーザダイオードなどの光源101より出射された光線をコリメートレンズ102に入射する。ここで、光源101はある一定の波長の光線を出射するものであって、レーザダイオードに限るものではない。コリメータレンズ102は入射してきた光線を平行光にするものであって、光源からの光線の広がり角等によって位置を変化させる。次に、コリメータレンズ102によって平行光となった光線をスリット103を通過させ、偏光子104に入射する。スリット103は光線の照射範囲を絞る目的でのみ使用するため、場合によっては無くても可能である。偏光子104によって光線は偏光子104の透過軸方向に光軸を持つ直線偏光となる。本実施形態においては偏光子104の透過軸はy軸方向とする。次に偏光子104を透過してきた直線偏光を液晶素子105に入射する。本実施形態においては、液晶素子105はy軸に対して45度方向にホモジニアス配向したもので、液晶素子105を通過した光線はx、y方向に軸を持つ楕円偏光となり、その楕円率は液晶駆動回路114によって液晶へ印加される電圧によって変化する。次に、光線はλ/4波長板106に入射する。ここで、λ/4波長板106はy軸方向に軸を持つものであり、λ/4波長板106を通過した光線は直線偏光となる。この時、その直線偏光の偏光方向は液晶素子105を通過した光線の楕円率に依存するため、液晶素子105に印加した電圧によって変化する。従って、液晶素子105によって直線偏光の偏光方向の変調が可能となる。
(First embodiment)
FIG. 1 is an example of the first embodiment of the present invention. In FIG. 1, a light beam emitted from a light source 101 such as a laser diode driven by a drive circuit 113 enters a collimator lens 102. Here, the light source 101 emits a light beam having a certain wavelength, and is not limited to a laser diode. The collimator lens 102 converts incident light into parallel light, and changes the position according to the spread angle of the light from the light source. Next, the light beam converted into parallel light by the collimator lens 102 passes through the slit 103 and enters the polarizer 104. Since the slit 103 is used only for the purpose of narrowing the irradiation range of the light beam, it may be omitted depending on circumstances. The light beam becomes linearly polarized light having an optical axis in the transmission axis direction of the polarizer 104 by the polarizer 104. In this embodiment, the transmission axis of the polarizer 104 is the y-axis direction. Next, linearly polarized light transmitted through the polarizer 104 is incident on the liquid crystal element 105. In the present embodiment, the liquid crystal element 105 is homogeneously oriented in the direction of 45 degrees with respect to the y-axis, and the light rays that have passed through the liquid crystal element 105 become elliptically polarized light having axes in the x and y directions, and the ellipticity is the liquid crystal The voltage varies depending on the voltage applied to the liquid crystal by the drive circuit 114. Next, the light beam enters the λ / 4 wavelength plate 106. Here, the λ / 4 wavelength plate 106 has an axis in the y-axis direction, and the light beam that has passed through the λ / 4 wavelength plate 106 becomes linearly polarized light. At this time, the polarization direction of the linearly polarized light depends on the ellipticity of the light beam that has passed through the liquid crystal element 105, and thus varies depending on the voltage applied to the liquid crystal element 105. Therefore, the liquid crystal element 105 can modulate the polarization direction of linearly polarized light.

次に、液晶素子105によって変調した光線を試料の入った試料セル108に入射する。ここで、試料セル108を通過する光線は、試料を通過する際、その試料内の旋光性物質によって未知の変位量だけ旋光する。このときの変位量は試料内の旋光性物質の濃度、試料を通過する光線の光路長の長さに比例する。ここで、試料セル108における光線が通過する面は光線をあまり吸収しない様に透過率の高い透明なものである必要があり、これには例えばガラスなどが挙げられる。 Then, the light rays modulated by the liquid crystal element 105 is incident on the sample cell 108 containing the specimen. Here, when the light beam passing through the sample cell 108 passes through the sample, it is rotated by an unknown displacement amount by the optical rotatory substance in the sample. The amount of displacement at this time is proportional to the concentration of the optical rotatory substance in the sample and the length of the optical path length of the light beam passing through the sample. Here, the surface through which the light beam passes in the sample cell 108 needs to be transparent with high transmittance so as not to absorb much light, and examples thereof include glass.

試料セル108を通過した光線は次に検光子109に入射する。検光子109においては、検光子109の透過軸方向の光成分のみが透過し、光検出器110の受光部に到達する。ここで、検光子109はギア115と接続しており、モータ116によって回転することが出来るものであり、透過軸方向が可変となっている。光検出器110は受光した光線の強度を電圧信号として出力するものであり、出力された信号は増幅器等により増幅し、PCなどの演算器117に入力する。演算器117は演算のみでなくコントローラとして液晶駆動回路114やモータ116のコントロールも行い、また、演算器117で算出された結果は表示手段118に転送し、表示する。   The light beam that has passed through the sample cell 108 then enters the analyzer 109. In the analyzer 109, only the light component in the transmission axis direction of the analyzer 109 is transmitted and reaches the light receiving unit of the photodetector 110. Here, the analyzer 109 is connected to a gear 115 and can be rotated by a motor 116, and the transmission axis direction is variable. The light detector 110 outputs the received light intensity as a voltage signal, and the output signal is amplified by an amplifier or the like and input to a computing unit 117 such as a PC. The computing unit 117 not only performs computation but also controls the liquid crystal drive circuit 114 and the motor 116 as a controller, and the result calculated by the computing unit 117 is transferred to the display means 118 and displayed.

この時、演算器117に入力した信号情報とモータ116により角度が変化した検光子109の角度のデータを用いて試料の旋光度を測定する。以下に測定方法の一例を記載する。例えば、液晶素子105を駆動する電圧を任意の周波数fとし、y軸方向に光軸を持った直線偏光の偏光方向が液晶素子105とλ/4波長板106を通過した後にy軸に対して変調角度±δ、周波数fで変調する様にする。このとき、検光子109の透過軸方向がx軸であるとすると、試料内に旋光性物質がない場合は光検出器110で得られる信号は図2(a)に示す様な極大値が一定で周波数2fの波形となる。図2において横軸は時間軸、縦軸は検出された光線の強度を示す。ここで、試料内に旋光性物質が存在する場合、試料内の旋光性物質により旋光される量をγとすると、検光子109に到達する光線はy軸に対して、(−δ+γ)から(δ+γ)の角度範囲で偏光方向が変位している。このとき、光検出器110で得られる信号からは図2(a)に示す様な極大値が一定で、周波数2fの波形は得られない。そこで、光検出器109より得られる信号を観察しながら、モータ116を制御し、図2(a)の様な波形が観察される角度まで、検光子109を回転させる。信号処理の方法としては例えば、周波数2fで現れる極大値を測定し、極大値の差が0となる様に検光子109を回転する方法や、極大値の比が1となる様に検光子109を回転する方法などが挙げられる。このときの検光子109の回転角度が試料108による旋光度となるため、旋光度の測定が可能となる。   At this time, the optical rotation of the sample is measured using the signal information input to the calculator 117 and the angle data of the analyzer 109 whose angle has been changed by the motor 116. An example of the measurement method is described below. For example, the voltage for driving the liquid crystal element 105 is an arbitrary frequency f, and the polarization direction of linearly polarized light having the optical axis in the y-axis direction passes through the liquid crystal element 105 and the λ / 4 wavelength plate 106 and then the y-axis. Modulation is performed at a modulation angle ± δ and a frequency f. At this time, assuming that the transmission axis direction of the analyzer 109 is the x-axis, the signal obtained by the photodetector 110 has a constant maximum value as shown in FIG. 2A when there is no optical rotatory substance in the sample. Thus, the waveform has a frequency of 2f. In FIG. 2, the horizontal axis indicates the time axis, and the vertical axis indicates the intensity of the detected light beam. Here, when an optical rotatory substance is present in the sample, if the amount of light rotated by the optical rotatory substance in the sample is γ, the light beam reaching the analyzer 109 is from (−δ + γ) to (−δ + γ) ( The polarization direction is displaced in the angular range of (δ + γ). At this time, the maximum value as shown in FIG. 2A is constant from the signal obtained by the photodetector 110, and the waveform having the frequency 2f cannot be obtained. Therefore, while observing the signal obtained from the photodetector 109, the motor 116 is controlled to rotate the analyzer 109 to an angle at which a waveform as shown in FIG. As a signal processing method, for example, the maximum value appearing at the frequency 2f is measured, and the analyzer 109 is rotated so that the difference between the maximum values becomes 0, or the analyzer 109 so that the ratio of the maximum values becomes 1. And a method of rotating the. Since the rotation angle of the analyzer 109 at this time becomes the optical rotation by the sample 108, the optical rotation can be measured.

この方式によって、小型、低電圧で駆動できる液晶素子を用いることにより、特に振動対策や、熱対策の冷却装置等を必要としないため、装置全体の小型化、構造の簡易化が可能で、更に低消費電力での測定が可能である。   By using a liquid crystal element that can be driven by a small size and a low voltage by this method, there is no need for a vibration countermeasure or a cooling device for heat countermeasures in particular, so the entire apparatus can be downsized and the structure simplified. Measurement with low power consumption is possible.

また、試料内の旋光性物質が既知のものであり、比旋光度が測定前に既知である場合には、式1により旋光度を求めることで、旋光性物質の濃度を求めることが可能であるため、同様に小型で高精度の濃度測定装置を提供することが出来る。   In addition, when the optical rotatory substance in the sample is known and the specific optical rotation is known before the measurement, the concentration of the optical rotatory substance can be determined by calculating the optical rotation according to Equation 1. Therefore, a small and highly accurate concentration measuring apparatus can be provided in the same manner.

また、実際の測定においては試料セル等の影響を受けて測定値が変動する可能性があるため、試料の旋光度測定の際に、試料と、例えば純水など旋光度が既知の参照試料を測定し、参照試料の測定値で、試料の測定値の補正を行うことによってより正確な測定が可能である。   In actual measurement, the measurement value may fluctuate due to the influence of the sample cell. Therefore, when measuring the optical rotation of the sample, a sample and a reference sample with known optical rotation, such as pure water, are used. More accurate measurement is possible by measuring and correcting the measured value of the sample with the measured value of the reference sample.

また、本実施形態においては、光源としてレーザダイオードなどのある一定の波長の光線を出射するものを用いているが、これに限るものではなく、フィルターなどを用いることによって特定波長の光線を出射させる方法も考えられる。   In this embodiment, a light source that emits light of a certain wavelength, such as a laser diode, is used as the light source. However, the present invention is not limited to this, and light of a specific wavelength is emitted by using a filter or the like. A method is also conceivable.

(第二の実施形態)
図3は本発明の第二の実施形態の例である。図3において、光学素子等に関しては第一の実施形態と同様のものとする。第一の実施形態と同様、駆動回路113によって駆動さ
れるレーザダイオードなどの光源101より出射された光線をコリメートレンズ102に入射する。コリメートレンズ102は入射してきた光線を平行光にするものであって、光源からの光線の広がり角等によって位置を変化させる。次に、コリメートレンズ102によって平行光となった光線をスリット103を通過させ、偏光子104に入射する。偏光子104によって光線は偏光子104の透過軸方向に光軸を持つ直線偏光となる。本実施形態においては偏光子104の透過軸はy軸方向とする。次に偏光子104を透過してきた直線偏光を液晶素子105とλ/4波長板106に入射する。ここで、第一の実施形態と同様に直線偏光の偏光方向が変調される。
(Second embodiment)
FIG. 3 shows an example of the second embodiment of the present invention. In FIG. 3, the optical elements and the like are the same as those in the first embodiment. Similar to the first embodiment, the light beam emitted from the light source 101 such as a laser diode driven by the drive circuit 113 is incident on the collimator lens 102. The collimating lens 102 converts incident light into parallel light, and changes its position according to the spread angle of the light from the light source. Next, the light beam that has been collimated by the collimator lens 102 passes through the slit 103 and enters the polarizer 104. The light beam becomes linearly polarized light having an optical axis in the transmission axis direction of the polarizer 104 by the polarizer 104. In this embodiment, the transmission axis of the polarizer 104 is the y-axis direction. Next, the linearly polarized light transmitted through the polarizer 104 enters the liquid crystal element 105 and the λ / 4 wavelength plate 106. Here, the polarization direction of linearly polarized light is modulated as in the first embodiment.

次に、液晶素子105によって変調した光線を次にビームスプリッタ等の光分岐手段207に入射する。光分岐手段207によって、2本の光線はそれぞれ透過方向と反射方向に分岐される。ここで、透過方向の光線を光線Aとし、反射方向の光線を光線Bとする。光線Aは次に試料の入った試料セル108に入射する。ここで、試料セル108を通過する光線Aは、試料を通過する際、その試料内の旋光性物質によって未知の変位量だけ旋光する。   Next, the light beam modulated by the liquid crystal element 105 enters the light branching means 207 such as a beam splitter. The light beam splitting means 207 splits the two light beams into a transmission direction and a reflection direction, respectively. Here, a light beam in the transmission direction is a light beam A, and a light beam in the reflection direction is a light beam B. The light beam A then enters the sample cell 108 containing the sample. Here, when the light beam A passing through the sample cell 108 passes through the sample, it is rotated by an unknown displacement amount by the optical rotatory substance in the sample.

試料セル108を通過した光線Aは次に第一の検光子309に入射する。第一の検光子309においては、第一の検光子309の透過軸方向の光成分のみが透過し、第一の光検出器310の受光部に到達する。ここで、第一の検光子309はギア115と接続しており、モータ116によって回転することが出来るものであり、透過軸方向が可変となっている。第一の光検出器310は受光した光線の強度を電圧信号として出力するものであり、出力された信号は増幅器等により増幅し、PCなどの演算器117に入力する。第一の実施形態と同様、演算器117は演算のみでなくコントローラとして液晶駆動回路114やモータ116のコントロールも行い、また、演算器117で算出された結果は表示手段118に転送し、表示する。   The light beam A that has passed through the sample cell 108 then enters the first analyzer 309. In the first analyzer 309, only the light component in the transmission axis direction of the first analyzer 309 is transmitted and reaches the light receiving unit of the first photodetector 310. Here, the first analyzer 309 is connected to the gear 115 and can be rotated by the motor 116, and the transmission axis direction is variable. The first photodetector 310 outputs the received light intensity as a voltage signal, and the output signal is amplified by an amplifier or the like and input to a computing unit 117 such as a PC. As in the first embodiment, the computing unit 117 not only performs computation but also controls the liquid crystal drive circuit 114 and the motor 116 as a controller, and the result calculated by the computing unit 117 is transferred to the display means 118 and displayed. .

また、光分岐手段107によって分岐された光線の内、反射方向の光線Bは次に第二の検光子311に入射する。第二の検光子311においては、第二の検光子311の透過軸方向の光成分のみが透過し、第二の光検出器312の受光部に到達する。第二の光検出器312は第一の光検出器310と同様、受光した光線の強度を電圧信号変化として出力するものであり、出力された信号は増幅器等により増幅し、演算器117に入力する。   Of the light beams branched by the light branching means 107, the light beam B in the reflection direction then enters the second analyzer 311. In the second analyzer 311, only the light component in the direction of the transmission axis of the second analyzer 311 is transmitted and reaches the light receiving unit of the second photodetector 312. Similar to the first photodetector 310, the second photodetector 312 outputs the received light intensity as a voltage signal change, and the output signal is amplified by an amplifier or the like and input to the computing unit 117. To do.

この時、演算器117に入力した信号情報とモータ116により角度が変化した第一の検光子309の角度のデータを用いて試料の旋光度を測定する。以下に測定方法の一例を記載する。例えば、液晶素子105を駆動する電圧を任意の周波数fとし、y軸方向に光軸を持った直線偏光の偏光方向が液晶素子105とλ/4波長板106を通過した後にy軸に対して変調角度±δ、周波数fで変調する様にする。この時、第二の検光子311の透過軸方向をx軸方向とすると、光線Bにより第二の光検出器312においては、図2(a)の様な波形が観察される。すなわち、角度が一周期変調する間に消光点を二度通過するので、周波数2fで極大値が一定の波形が観察される。ここで、偏光子104、第一の検光子309、第二の検光子311はクロスニコルの状態で光を完全に透過させないものとする。   At this time, the optical rotation of the sample is measured using the signal information input to the calculator 117 and the angle data of the first analyzer 309 whose angle has been changed by the motor 116. An example of the measurement method is described below. For example, the voltage for driving the liquid crystal element 105 is an arbitrary frequency f, and the polarization direction of linearly polarized light having the optical axis in the y-axis direction passes through the liquid crystal element 105 and the λ / 4 wavelength plate 106 and then the y-axis. Modulation is performed at a modulation angle ± δ and a frequency f. At this time, assuming that the transmission axis direction of the second analyzer 311 is the x-axis direction, a waveform as shown in FIG. That is, since the extinction point passes twice while the angle is modulated for one period, a waveform having a constant maximum value at the frequency 2f is observed. Here, it is assumed that the polarizer 104, the first analyzer 309, and the second analyzer 311 do not completely transmit light in a crossed Nicol state.

ここで、液晶分子は温度特性を持つものが多く、周囲の温度変化等によって液晶素子105による変調量が変化してしまうことが考えられる。その場合、第二の光検出器312で得られた信号波形は図2(a)に示した様な周波数2fの波形ではなく、例えば、図2(b)に示す様な波高比のずれた波形が観察されることがある。そこで、第二の光検出器312によって得られた信号波形を液晶駆動回路114にフィードバックし、常に図2(a)の様な波形となる様、調整をしながら液晶素子105を駆動するものとする。   Here, many liquid crystal molecules have temperature characteristics, and it is considered that the amount of modulation by the liquid crystal element 105 changes due to a change in ambient temperature or the like. In that case, the signal waveform obtained by the second photodetector 312 is not the waveform of the frequency 2f as shown in FIG. 2 (a), for example, the wave height ratio is shifted as shown in FIG. 2 (b). Waveforms may be observed. Therefore, the signal waveform obtained by the second photodetector 312 is fed back to the liquid crystal driving circuit 114, and the liquid crystal element 105 is driven while adjusting so that the waveform always becomes as shown in FIG. To do.

次に、光線Aに関しては、試料内の旋光性物質により未知量だけ旋光される。仮に未知量をγとすると、第一の検光子309に到達する光線Aはy軸に対して、(−δ+γ)から(δ+γ)の角度範囲で偏光方向が変調している。このとき、第一の検光子309の透過軸方向がx軸であるとすると、第一の光検出器310で得られる信号からは図2(a)に示す様な周波数2fの波形は得られない。そこで、第一の光検出器309より得られる信号を観察しながら、モータ116を制御し、図2(a)の様な波形が観察される角度まで、第一の検光子309を回転させる。信号処理の方法としては例えば、周波数2fで現れる極大値を測定し、極大値の差が0となる様に第一の検光子309を回転する方法や、極大値の比が1となる様に第一の検光子309を回転する方法などが挙げられる。このときの第一の検光子309の回転角度が試料108による旋光度となるため、旋光度の測定が可能となる。   Next, the light A is rotated by an unknown amount by the optical rotatory substance in the sample. If the unknown amount is γ, the polarization direction of the light ray A reaching the first analyzer 309 is modulated in the angular range from (−δ + γ) to (δ + γ) with respect to the y-axis. At this time, assuming that the transmission axis direction of the first analyzer 309 is the x-axis, a waveform having a frequency 2f as shown in FIG. 2A is obtained from the signal obtained by the first photodetector 310. Absent. Therefore, while observing the signal obtained from the first photodetector 309, the motor 116 is controlled to rotate the first analyzer 309 to an angle at which the waveform as shown in FIG. As a signal processing method, for example, the maximum value appearing at the frequency 2f is measured, and the first analyzer 309 is rotated so that the difference between the maximum values becomes 0, or the ratio of the maximum values becomes 1. For example, a method of rotating the first analyzer 309 may be used. Since the rotation angle of the first analyzer 309 at this time becomes the optical rotation by the sample 108, the optical rotation can be measured.

この方式によって、第一の実施形態と同様、小型、低電圧で駆動できる液晶素子を用いることにより、特に振動対策や、熱対策の冷却装置等を必要としないため、装置全体の小型化、構造の簡易化が可能で、更に低消費電力での測定が可能である。   By this method, as in the first embodiment, by using a liquid crystal element that can be driven with a small size and a low voltage, there is no need for a vibration countermeasure, a cooling device for heat countermeasures, etc. Can be simplified, and measurement with lower power consumption is possible.

また、液晶素子の温度特性による、周囲の温度が変化した場合における変調量の変化に対しても、参照用の光路を設け、参照用の光路から得られる信号を用いてフィードバックすることにより、安定した変調をすることができ、高精度の旋光度測定が可能である。   In addition, even if the ambient temperature changes due to the temperature characteristics of the liquid crystal element, a reference optical path is provided and feedback is provided using a signal obtained from the reference optical path. The optical rotation can be measured with high accuracy.

また、第一の実施形態と同様、試料内の旋光性物質が既知のものであり、比旋光度が測定前に既知である場合には、式1により旋光度を求めることで、旋光性物質の濃度を求めることが可能であるため、同様に小型で高精度の濃度測定装置を提供することが出来る。   Further, as in the first embodiment, when the optical rotatory substance in the sample is known and the specific optical rotation is known before the measurement, the optical rotatory substance is obtained by calculating the optical rotation according to Equation 1. Therefore, it is possible to provide a small and highly accurate concentration measuring apparatus.

また、第一の実施形態と同様、実際の測定においては試料セル等の影響を受けて測定値が変動する可能性があるため、試料の旋光度測定の際に、試料と、例えば純水など旋光度が既知の参照試料を測定し、参照試料の測定値で、試料の測定値の補正を行うことによってより正確な測定が可能である。   Further, as in the first embodiment, in actual measurement, there is a possibility that the measured value may fluctuate due to the influence of the sample cell or the like. Therefore, when measuring the optical rotation of the sample, the sample and, for example, pure water, etc. More accurate measurement is possible by measuring a reference sample with a known optical rotation and correcting the measured value of the sample with the measured value of the reference sample.

(第三の実施形態)
次に第三の実施形態について図4を用いて説明する。光学素子等に関しては第一の実施形態と同様のものとする。第一の実施形態と同様、駆動回路113によって駆動されるレーザダイオードなどの光源101より出射された光線をコリメートレンズ102に入射する。次に、コリメートレンズ102によって平行光となった光線をスリット103を通過させ、y軸方向に透過軸を持つ偏光子104に入射する。偏光子104によって光線は偏光子104のy軸方向に光軸を持つ直線偏光となり、次に偏光子104を透過してきた直線偏光を液晶素子105とλ/4波長板106に入射する。ここで、第一の実施形態と同様に直線偏光の偏光方向が変調される。
(Third embodiment)
Next, a third embodiment will be described with reference to FIG. The optical elements and the like are the same as those in the first embodiment. Similar to the first embodiment, the light beam emitted from the light source 101 such as a laser diode driven by the drive circuit 113 is incident on the collimator lens 102. Next, the light beam that has been collimated by the collimator lens 102 passes through the slit 103 and enters the polarizer 104 having the transmission axis in the y-axis direction. The light beam becomes linearly polarized light having an optical axis in the y-axis direction of the polarizer 104 by the polarizer 104, and then the linearly polarized light transmitted through the polarizer 104 enters the liquid crystal element 105 and the λ / 4 wavelength plate 106. Here, the polarization direction of linearly polarized light is modulated as in the first embodiment.

次に、液晶素子105によって変調した光線を次にビームスプリッタ等の光分岐手段107に入射し、透過方向の光線Aと、反射方向の光線Bに分割する。光線Aは次に試料セル108に入射し、試料を通過する際、その試料内の旋光性物質によって未知の変位量だけ旋光する。次に光線Aは第一の検光子309に入射し、第一の検光子309の透過軸方向の光成分のみが透過し、第一の光検出器310の受光部に到達する。ここで、第一の検光子309は第の実施形態と同様、ギア115と接続しており、モータ401によって回転することが出来るものであり、透過軸方向が可変となっている。第一の光検出器310は受光した光線の強度を電圧信号として出力するものであり、出力された信号は増幅器等により増幅し、PCなどの演算器117に入力する。演算器117は演算のみでなくコントローラとして液晶駆動回路114やモータ401のコントロールも行い、また、演算器117で算出された結果は表示手段118に転送し、表示する。 Next, the light beam modulated by the liquid crystal element 105 is incident on the light branching means 107 such as a beam splitter, and is divided into a light beam A in the transmission direction and a light beam B in the reflection direction. The light beam A then enters the sample cell 108 and, when passing through the sample, is rotated by an unknown displacement amount by the optical rotatory material in the sample. Next, the light beam A enters the first analyzer 309, and only the light component in the transmission axis direction of the first analyzer 309 is transmitted and reaches the light receiving unit of the first photodetector 310. Here, like the second embodiment, the first analyzer 309 is connected to the gear 115 and can be rotated by the motor 401, and the transmission axis direction is variable. The first photodetector 310 outputs the received light intensity as a voltage signal, and the output signal is amplified by an amplifier or the like and input to a computing unit 117 such as a PC. The computing unit 117 not only performs computation but also controls the liquid crystal driving circuit 114 and the motor 401 as a controller, and the result calculated by the computing unit 117 is transferred to the display means 118 and displayed.

また、光分岐手段107によって分岐された光線の内、反射方向の光線Bは次に第二の検光子311に入射し、第二の検光子311の透過軸方向の光成分のみが透過し、第二の光検出器312の受光部に到達する。第二の光検出器312は第一の光検出器310と同様、受光した光線の強度を電圧信号変化として出力するものであり、出力された信号は増幅器等により増幅し、演算器117に入力する。   Of the light beams branched by the light branching means 107, the light beam B in the reflection direction then enters the second analyzer 311 and transmits only the light component in the transmission axis direction of the second analyzer 311. It reaches the light receiving part of the second photodetector 312. Similar to the first photodetector 310, the second photodetector 312 outputs the received light intensity as a voltage signal change, and the output signal is amplified by an amplifier or the like and input to the computing unit 117. To do.

この時、演算器117に入力した信号情報とモータ401により角度が変化した第一の検光子309の角度のデータを用いて試料の旋光度を測定する。以下に測定方法の一例を記載する。例えば、液晶素子105を駆動する電圧を任意の周波数fとし、y軸方向に光軸を持った直線偏光の偏光方向が液晶素子105とλ/4波長板106を通過した後にy軸に対して変調角度±δ、周波数fで変調する様にした場合に、第の実施形態と同様、第二の光検出器312から得られる信号波形は図2(a)に示す様な周波数2fの波形となる。このとき、第の実施形態と同様、第二の光検出器312によって得られた信号波形を液晶駆動回路114にフィードバックし、常に周波数2fの波形となる様、調整をしながら液晶素子105を駆動する。 At this time, the optical rotation of the sample is measured using the signal information input to the calculator 117 and the angle data of the first analyzer 309 whose angle has been changed by the motor 401. An example of the measurement method is described below. For example, the voltage for driving the liquid crystal element 105 is an arbitrary frequency f, and the polarization direction of linearly polarized light having the optical axis in the y-axis direction passes through the liquid crystal element 105 and the λ / 4 wavelength plate 106 and then the y-axis. modulation angle ± [delta], if you like modulated at a frequency f, as in the second embodiment, the second signal waveform obtained from the photodetector 312 FIGS. 2 (a) to show such frequency 2f waveform It becomes. At this time, as in the second embodiment, the signal waveform obtained by the second photodetector 312 is fed back to the liquid crystal drive circuit 114, and the liquid crystal element 105 is adjusted while adjusting so that the waveform always has the frequency 2f. To drive.

次に、光線Aに関しては、試料内の旋光性物質により未知量だけ旋光される。このため、第一の検光子309の透過軸方向がx軸であるとすると、第一の光検出器310で得られる信号は図2(a)に示す様な周波数2fの波形は得られない。そこで、第一の光検出器309より得られる信号を観察しながら、モータ401を制御し、図2(a)の様な波形が観察される角度まで、第一の検光子309を回転させる。   Next, the light A is rotated by an unknown amount by the optical rotatory substance in the sample. Therefore, assuming that the transmission axis direction of the first analyzer 309 is the x-axis, the signal obtained by the first photodetector 310 cannot obtain the waveform of the frequency 2f as shown in FIG. . Therefore, the motor 401 is controlled while observing the signal obtained from the first photodetector 309, and the first analyzer 309 is rotated to an angle at which a waveform as shown in FIG.

ここで、本実施形態におけるモータ401は簡易的なものであり、非常に高精度での角度の制御は難しいものとする。しかし、高精度のモータと比較すると構造が簡易であり小型であるものとする。仮に本実施形態においては、モータ401によって、第一の検光子の回転角が0.1度刻みで制御できるものとすると、第の実施形態の様に第一の検光子309の角度のデータのみを用いて測定する旋光度の分解能は0.1度となる。 Here, the motor 401 in this embodiment is simple and it is difficult to control the angle with very high accuracy. However, the structure is simpler and smaller than a high-precision motor. In the present embodiment, assuming that the rotation angle of the first analyzer can be controlled in increments of 0.1 degrees by the motor 401, the angle data of the first analyzer 309 as in the second embodiment. The resolution of the optical rotation measured using only is 0.1 degrees.

そこで、第一の検光子309の角度のデータに加えて、第一の光検出器310における信号情報と第二の光検出器312における信号情報との差成分より算出される旋光度を用いて旋光度を算出することにより、精度の劣る制御系を用いた場合においても高精度の測定を行うことが可能となる。例えば、モータ401によって、第二の光検出器312における信号と第一の光検出器310における信号が出来るだけ近接するように第一の検光子309を回転させた場合においても、モータ401による制御の分解能の限界によって、第一の光検出器310における信号は正確に周波数2fの信号とはならない場合が考えられる。そこで、そのときの第一の検光子309の角度に加え、第一の光検出器310で得られる信号波形の周波数2fで現れる極大値を測定し、極大値の差や、極大値の比を用いて旋光度を算出する方法などが挙げられる。例えば、極大値の比を用いる場合、あらかじめ極大値の比と旋光度の関係式を構築しておき、関係式に従い、極大値の比に対応して旋光度を算出する。すなわち、実際の旋光度と第一の検光子309とのずれ分の旋光度を算出することができるため、よって、第一の光検出器309の角度に算出した旋光度を加えることで、モータ401による制御の分解能の限界で測定できなかった高精度の領域まで測定することが出来る。   Therefore, in addition to the angle data of the first analyzer 309, the optical rotation calculated from the difference component between the signal information in the first photodetector 310 and the signal information in the second photodetector 312 is used. By calculating the optical rotation, it is possible to perform highly accurate measurement even when a control system with inferior accuracy is used. For example, even when the first analyzer 309 is rotated by the motor 401 so that the signal in the second photodetector 312 and the signal in the first photodetector 310 are as close as possible, the control by the motor 401 is performed. It is conceivable that the signal in the first photodetector 310 is not exactly a signal having the frequency 2f due to the limit of the resolution. Therefore, in addition to the angle of the first analyzer 309 at that time, the maximum value appearing at the frequency 2f of the signal waveform obtained by the first photodetector 310 is measured, and the difference between the maximum values and the ratio of the maximum values are determined. And a method for calculating the optical rotation using the method. For example, when using the ratio of the maximum values, a relational expression between the ratio of the maximum values and the optical rotation is constructed in advance, and the optical rotation is calculated corresponding to the ratio of the maximum values according to the relational expression. That is, since the optical rotation of the deviation between the actual optical rotation and the first analyzer 309 can be calculated, the motor rotation can be obtained by adding the calculated optical rotation to the angle of the first photodetector 309. It is possible to measure up to a high-precision area that could not be measured due to the limit of resolution of control by 401.

本実施形態においては、モータによる機械的動作による測定に加えて、更に信号波形を用いて測定を行う方式であるため、例えば、非常に高精度のモータなどの検光子の回転の制御系を必要とせず、簡易的な制御系を用いた場合においても、高精度な測定が可能となる。これにより、装置全体が簡易的な構造とすることができ、小型化が可能となる。   In the present embodiment, in addition to the measurement by the mechanical operation by the motor, the measurement is further performed by using the signal waveform. For example, a control system for the rotation of the analyzer such as a very high-precision motor is required. Even if a simple control system is used, highly accurate measurement is possible. Thereby, the whole apparatus can be made into a simple structure, and size reduction is attained.

また、第一の実施形態と同様、試料内の旋光性物質が既知のものであり、比旋光度が測定前に既知である場合には、式1により旋光度を求めることで、旋光性物質の濃度を求めることが可能であるため、同様に小型で高精度の濃度測定装置を提供することが出来る。   Further, as in the first embodiment, when the optical rotatory substance in the sample is known and the specific optical rotation is known before the measurement, the optical rotatory substance is obtained by calculating the optical rotation according to Equation 1. Therefore, it is possible to provide a small and highly accurate concentration measuring apparatus.

また、第一の実施形態と同様、実際の測定においては試料セル等の影響を受けて測定値が変動する可能性があるため、試料の旋光度測定の際に、試料と、例えば純水など旋光度が既知の参照試料を測定し、参照試料の測定値で、試料の測定値の補正を行うことによってより正確な測定が可能である。   Further, as in the first embodiment, in actual measurement, there is a possibility that the measured value may fluctuate due to the influence of the sample cell or the like. Therefore, when measuring the optical rotation of the sample, the sample and, for example, pure water More accurate measurement is possible by measuring a reference sample with a known optical rotation and correcting the measured value of the sample with the measured value of the reference sample.

本発明の第一の実施形態における旋光度測定装置の構成を示す図である。It is a figure which shows the structure of the optical rotation measuring apparatus in 1st embodiment of this invention. 本発明の実施形態における光検出器の出力波形を示す図である。It is a figure which shows the output waveform of the photodetector in embodiment of this invention. 本発明の第二の実施形態における旋光度測定装置の構成を示す図である。It is a figure which shows the structure of the optical rotation measuring apparatus in 2nd embodiment of this invention. 本発明の第三の実施形態における旋光度測定装置の構成を示す図である。It is a figure which shows the structure of the optical rotation measuring apparatus in 3rd embodiment of this invention. 従来例における旋光度測定装置の概略図である。It is the schematic of the optical rotation measuring apparatus in a prior art example.

符号の説明Explanation of symbols

101 光源
102 コリメートレンズ
104 第一の偏光子
105 液晶素子
106 λ/4波長板
107 光分岐手段
109 検光子
114 液晶駆動回路
116 モータ
309 第一の検光子
310 第一の光検出器
311 第二の検光子
312 第二の光検出器
401 モータ
101 light source 102 collimating lens 104 first polarizer 105 liquid crystal element 106 λ / 4 wavelength plate 107 light branching means 109 analyzer 114 liquid crystal driving circuit 116 motor 309 first analyzer 310 first photodetector 311 second Analyzer 312 Second photodetector 401 Motor

Claims (9)

直線偏光を出力する直線偏光出力手段と、
前記直線偏光の旋光度を変調する旋光度変調手段と、
該旋光度変調手段によって旋光度が変調された直線偏光が試料へ出射されることによって、前記試料内の旋光性物質によって旋光されて前記試料を透過してくる透過光の一方向成分のみを透過させる検光子と、
該検光子を透過してくる透過光を検出する光検出手段を備えた旋光度測定装置であって、
前記旋光度変調手段は液晶素子によって構成され、
該液晶素子によって旋光度が変調された直線偏光を分割することによって前記試料を通過しない参照用の光学系を設け、
該参照用の光学系における透過光の信号情報と前記試料を通過してくる透過光の信号情報を合致させるように前記検光子を回転させたときの前記検光子の角度より旋光度を測定する旋光度測定装置。
Linearly polarized light output means for outputting linearly polarized light;
Optical rotation modulation means for modulating the optical rotation of the linearly polarized light,
The linearly polarized light whose optical rotation is modulated by the optical rotation modulation means is emitted to the sample, so that only one-directional component of transmitted light that is rotated by the optical rotatory substance in the sample and passes through the sample is transmitted. Analyzer to
An optical rotation measuring device provided with a light detecting means for detecting transmitted light transmitted through the analyzer,
The optical rotation modulation means is constituted by a liquid crystal element,
Providing a reference optical system that does not pass through the sample by dividing linearly polarized light whose optical rotation is modulated by the liquid crystal element;
The optical rotation is measured from the angle of the analyzer when the analyzer is rotated so that the signal information of the transmitted light in the reference optical system matches the signal information of the transmitted light passing through the sample. Optical rotation measuring device.
直線偏光を出力する直線偏光出力手段と、
前記直線偏光の旋光度を変調する旋光度変調手段と、
該旋光度変調手段によって旋光度が変調された直線偏光が試料へ出射されることによって、前記試料内の旋光性物質によって旋光されて前記試料を透過してくる透過光の一方向成分のみを透過させる検光子と、
該検光子を透過してくる透過光を検出する光検出手段を備えた旋光度測定装置であって、
前記旋光度変調手段は液晶素子によって構成され、
該液晶素子によって旋光度が変調された直線偏光を分割することによって前記試料を通過しない参照用の光学系を設け、
該参照用の光学系における透過光の信号情報と前記試料を通過してくる透過光の信号情
報を近接させるように前記検光子を回転させたときの前記検光子の角度と、前記参照用の光学系における透過光の信号情報と前記試料を通過してくる透過光の信号情報の差成分を用いて旋光度を算出する旋光度測定装置。
Linearly polarized light output means for outputting linearly polarized light;
Optical rotation modulation means for modulating the optical rotation of the linearly polarized light,
The linearly polarized light whose optical rotation is modulated by the optical rotation modulation means is emitted to the sample, so that only one direction component of the transmitted light that is rotated by the optical rotatory substance in the sample and passes through the sample is transmitted. Analyzer to
An optical rotation measuring device provided with a light detecting means for detecting transmitted light transmitted through the analyzer,
The optical rotation modulation means is constituted by a liquid crystal element,
Providing a reference optical system that does not pass through the sample by dividing linearly polarized light whose optical rotation is modulated by the liquid crystal element;
The angle of the analyzer when the analyzer is rotated so that the signal information of the transmitted light in the reference optical system and the signal information of the transmitted light passing through the sample are brought close to each other, and the reference information An optical rotation measuring device that calculates an optical rotation using a difference component between signal information of transmitted light in an optical system and signal information of transmitted light passing through the sample.
前記液晶素子によって、前記参照用の光学系における透過光の信号波形が、一定周期で極大を取り、極大値が一定となるように直線偏光を変調することを特徴とする請求項または請求項に記載の旋光度測定装置。 By the liquid crystal element, a signal waveform of the transmitted light in the optical system for the reference, takes the maximum at a certain period, according to claim 1 or claim maximum value is equal to or modulating the linearly polarized light to be constant Optical rotation measurement device according to 2. 前記参照用の光学系における透過光の信号波形が、一定周期で極大を取り、極大値が一定となるように、前記参照用の光学系における透過光の信号を前記液晶素子の駆動電圧にフィードバックさせることを特徴する請求項に記載の旋光度測定装置。 The transmitted light signal in the reference optical system is fed back to the driving voltage of the liquid crystal element so that the signal waveform of the transmitted light in the reference optical system takes a maximum at a constant period and the maximum value becomes constant. Optical rotation measurement device according to claim 3, characterized in that to. 前記試料の旋光度測定の際に、前記試料と、旋光度が既知の参照試料を測定し、前記参照試料の測定値で、前記試料の測定値の補正を行うことを特徴とする請求項1から請求項のいずれか一項に記載の旋光度測定装置。 The measurement value of the sample is corrected with the measured value of the reference sample by measuring the sample and a reference sample with a known optical rotation when measuring the optical rotation of the sample. The optical rotation measuring device according to any one of claims 1 to 4 . 前記直線偏光出力手段における光源が交換可能であり、波長の異なる複数の光源を用いることにより、複数の波長における前記試料の旋光度の測定を行うことを特徴とする請求項1から請求項のいずれか一項に記載の旋光度測定装置。 A light source is replaceable in said linearly polarized output unit, by using a plurality of light sources of different wavelengths, from claim 1, characterized in that the measurement of optical rotation of the sample at a plurality of wavelengths of claim 5 The optical rotation measuring apparatus as described in any one of Claims. 前記直線偏光出力手段から出力した直線偏光を一波長の光線のみを透過させるフィルターに出射し透過させ、該フィルターにおける透過波長において前記試料の旋光度の測定を行うことを特徴とする請求項1から請求項のいずれか一項に記載の旋光度測定装置。 The linearly polarized light output from the linearly polarized light output means is emitted and transmitted through a filter that transmits only light of one wavelength, and the optical rotation of the sample is measured at a transmission wavelength in the filter. The optical rotation measuring apparatus as described in any one of Claims 6 . 前記試料は尿であり、前記試料中の旋光性物質は尿糖、尿中アミノ酸または尿中タンパク質であることを特徴とする請求項1から請求項のいずれか一項に記載の旋光度測定装置。 The optical rotation measurement according to any one of claims 1 to 7 , wherein the sample is urine, and the optical rotatory substance in the sample is urine sugar, urine amino acid or urine protein. apparatus. 請求項1から請求項のいずれか一項に記載の旋光度測定装置で測定する旋光度より試料中の旋光性物質の濃度を算出する濃度測定装置。 From optical rotation measured in optical rotation measurement device as claimed in any one of claims 8, concentration measuring device for calculating the concentration of the optical active substance in the sample.
JP2004079364A 2004-03-19 2004-03-19 Optical rotation measuring device and concentration measuring device Expired - Fee Related JP4343743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004079364A JP4343743B2 (en) 2004-03-19 2004-03-19 Optical rotation measuring device and concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004079364A JP4343743B2 (en) 2004-03-19 2004-03-19 Optical rotation measuring device and concentration measuring device

Publications (2)

Publication Number Publication Date
JP2005265649A JP2005265649A (en) 2005-09-29
JP4343743B2 true JP4343743B2 (en) 2009-10-14

Family

ID=35090362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004079364A Expired - Fee Related JP4343743B2 (en) 2004-03-19 2004-03-19 Optical rotation measuring device and concentration measuring device

Country Status (1)

Country Link
JP (1) JP4343743B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7407817B2 (en) 2006-01-19 2008-08-05 The Chinese University Of Hong Kong Surface plasmon resonance sensors and method for detecting samples using the same
US20110201942A1 (en) * 2008-10-27 2011-08-18 Koninklijke Philips Electronics N.V. Device and method for optically examining the interior of a body part
WO2011058987A1 (en) * 2009-11-13 2011-05-19 株式会社堀場製作所 Polarimeter
JP7174528B2 (en) * 2018-03-30 2022-11-17 Tianma Japan株式会社 Polarization analyzer and control method for polarization analyzer
CN110596013B (en) * 2019-09-19 2021-10-12 南京邮电大学 High-optical-rotation-rate material optical rotation rate detection device
CN117491924B (en) * 2023-12-29 2024-03-19 致真精密仪器(青岛)有限公司 Magneto-optical effect-based hysteresis loop detection method, magneto-optical effect-based hysteresis loop detection equipment and magneto-optical effect-based hysteresis loop detection medium

Also Published As

Publication number Publication date
JP2005265649A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
JP4556463B2 (en) Birefringence measuring device
US20100231911A1 (en) Circular Birefringence Refractometer: Method And Apparatus For Measuring Optical Activity
KR960012328B1 (en) Apparatus for measuring birefringence without employing rotating mechanism
US7411675B2 (en) Optical rotation angle measuring apparatus
JP4343743B2 (en) Optical rotation measuring device and concentration measuring device
JP2010145332A (en) Optical characteristic measuring instrument, optical characteristic measurement method, and calibration method of optical characteristic measuring instrument
EP2610665A1 (en) Depolarizer and circular dichroism spectrometer using the same
US10663391B2 (en) Circular dichroism measuring method and circular dichroism measuring device
US20090323064A1 (en) Measurement of Linear and Circular Diattentuation in Optical Elements
US9465006B2 (en) Modulator monitoring during measuring electromobility
RU2648014C1 (en) Polarimeter for measuring verdet constant of transparent substances
JP6989852B2 (en) Electric field sensor
JP4094975B2 (en) Concentration measuring device
JP2005265651A (en) Concentration measuring device
JP2005098710A (en) Concentration measuring device
JP3341928B2 (en) Dichroic dispersion meter
CN114235756A (en) High-precision laser scanning type transmissivity distribution measuring device and method
JP2004198286A (en) Angle-of-rotation measuring apparatus
JP3415034B2 (en) Optical rotation measurement method, concentration determination method, concentration control method, and polarimeter
JP3154531B2 (en) Signal measurement device
JP2009085887A (en) Measuring device and method
JP2006275863A (en) Concentration measuring device
Schulz et al. High accuracy polarimetric calibration of quartz control plates
KR20160079946A (en) Polarizing mutation detecting apparatus using optical waveguide
JPH11258154A (en) Optical rotation measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4343743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140717

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees