JP2006275863A - Concentration measuring device - Google Patents

Concentration measuring device Download PDF

Info

Publication number
JP2006275863A
JP2006275863A JP2005097300A JP2005097300A JP2006275863A JP 2006275863 A JP2006275863 A JP 2006275863A JP 2005097300 A JP2005097300 A JP 2005097300A JP 2005097300 A JP2005097300 A JP 2005097300A JP 2006275863 A JP2006275863 A JP 2006275863A
Authority
JP
Japan
Prior art keywords
optical rotation
modulation
sample
concentration
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005097300A
Other languages
Japanese (ja)
Inventor
Masahiro Fukuda
福田  匡広
Takakazu Yano
矢野  敬和
Kenji Matsumoto
松本  健志
Yoshiharu Sugiura
美晴 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP2005097300A priority Critical patent/JP2006275863A/en
Publication of JP2006275863A publication Critical patent/JP2006275863A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/5907Densitometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems wherein, when trying acquisition of optical rotation in a wide range, accuracy is lowered, and on the contrary, when trying improvement of the accuracy, the range of the measurable optical rotation is narrowed, since the accuracy is lowered in proportion to largeness of a modulation width when using a method for modulating the optical rotation, in the case where the optical rotation by a rotatory material in a sample is measured. <P>SOLUTION: In this concentration measuring device for measuring the concentration of the rotatory material in the sample by measuring the optical rotation by the rotatory material in the sample, when calculating the concentration of the rotatory material in the sample from a light intensity signal after passing of the sample in a photodetector when the optical rotation of linearly polarized light entering the sample is modulated by an optical rotation modulation means, a modulation range of the optical rotation of the linearly polarized light by the optical rotation modulation means is changed, based on a detection signal by the photodetector, and a detection signal capable of calculating the concentration is acquired, and thereby highly-accurate concentration measurement becomes possible regardless of the intensity of the concentration in the sample. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は旋光度を用いた濃度測定装置に関し、特に試料内に含まれる旋光性物質の濃度の濃淡にかかわらず高精度に濃度を測定する技術に関するものである。   The present invention relates to a concentration measuring apparatus using optical rotation, and more particularly to a technique for measuring the concentration with high accuracy regardless of the concentration of the optical rotatory substance contained in a sample.

試料内の旋光性物質の濃度を測定する手段として、試料に光線を入射してその旋光度などの測定より濃度を求める光学的な方式は、直接試料に触れることなく測定することが可能であるため、有用であるとされている。旋光度より試料内の旋光性物質の濃度を求める方法の原理は式1に基づく。
θ(λ)=α(λ)・c・L(式1)
ここで、θ(λ)は光線の波長をλとしたときの旋光度、α(λ)は光線の波長をλとしたときの旋光性物質の比旋光度、cは試料内における旋光性物質の濃度、Lは試料の光路長である。式1において、比旋光度α(λ)は旋光性物質固有の係数であり、試料の光路長Lも同様に濃度測定前に既知の値であるため、試料に光線を入射したときの旋光度θ(λ)を測定することにより、旋光性物質の濃度cを求めることが出来る。
As a means of measuring the concentration of the optically rotatory substance in the sample, an optical method in which light is incident on the sample and the concentration is determined by measuring the optical rotation, etc. can be measured without touching the sample directly. Therefore, it is considered useful. The principle of the method for obtaining the concentration of the optically rotatory substance in the sample from the optical rotation is based on Equation 1.
θ (λ) = α (λ) · c · L (Formula 1)
Here, θ (λ) is the optical rotation when the wavelength of the light beam is λ, α (λ) is the specific rotation of the optical rotatory material when the wavelength of the light beam is λ, and c is the optical rotation material in the sample. , L is the optical path length of the sample. In Equation 1, the specific optical rotation α (λ) is a coefficient specific to the optical rotatory substance, and the optical path length L of the sample is also a known value before the concentration measurement. By measuring θ (λ), the concentration c of the optical rotatory substance can be obtained.

従来の旋光度測定装置の構成を図5に示す。光源501より出射した光線をコリメータなどのレンズ502に入射し平行光線とし、その後偏光子503に入射する。偏光子503の透過光は偏光子503の透過軸方向に光軸を持つ直線偏光となる。ここでは偏光子503の透過軸方向は垂直方向とする。次に直線偏光を旋光度変調素子に入射する。ここで、旋光度変調素子としては電気光学的なもので、液晶素子、ファラデー素子、ポッケルセルなどが挙げられ、本構成においては液晶素子504を用いるものとする。液晶素子504を通過する際に直線偏光の偏光方向は液晶素子に外部より印加する電圧に依存して変化する。ここで、液晶素子504に印加する電圧をある周波数fで変調させる事により、液晶素子504を通過する直線偏光の偏光方向は垂直軸に対してある角度±βの範囲内で変調する。次に偏光方向が変調した直線偏光を試料505に入射する。ここで、直線偏光は試料505を通過する際、試料505中に含まれる旋光性物質によって未知量+γだけ旋光されるものとする。ここで、試料505を通過してきた光線の偏光方向は図6に示すように垂直軸に対して(−β+γ)から(β+γ)の角度範囲で変調している。ここで、βはγより大きいものとする。   The configuration of a conventional optical rotation measuring device is shown in FIG. A light beam emitted from the light source 501 enters a lens 502 such as a collimator to be a parallel light beam, and then enters a polarizer 503. The light transmitted through the polarizer 503 is linearly polarized light having an optical axis in the transmission axis direction of the polarizer 503. Here, the transmission axis direction of the polarizer 503 is a vertical direction. Next, linearly polarized light enters the optical rotation modulation element. Here, the optical rotation modulation element is an electro-optical element, and examples thereof include a liquid crystal element, a Faraday element, a Pockel cell, and the like. In this configuration, the liquid crystal element 504 is used. When passing through the liquid crystal element 504, the polarization direction of the linearly polarized light changes depending on the voltage applied to the liquid crystal element from the outside. Here, by modulating the voltage applied to the liquid crystal element 504 with a certain frequency f, the polarization direction of the linearly polarized light passing through the liquid crystal element 504 is modulated within a range of an angle ± β with respect to the vertical axis. Next, linearly polarized light whose polarization direction is modulated is incident on the sample 505. Here, it is assumed that the linearly polarized light is rotated by an unknown amount + γ by the optical rotatory substance contained in the sample 505 when passing through the sample 505. Here, as shown in FIG. 6, the polarization direction of the light beam that has passed through the sample 505 is modulated in an angular range from (−β + γ) to (β + γ) with respect to the vertical axis. Here, β is larger than γ.

次に試料505を通過した光線を検光子506に入射することで、検光子506の透過軸方向の光成分のみが透過し、光検出器507の受光部に到達する。光検出器507は受光した光線の強度変化を電圧変化として出力するものである。ここで、検光子506の透過軸方向を垂直軸に対して90度とすると、光検出器507で検出される信号は時間1/f間に極大と極小をそれぞれ2つ持つ、図2に示すような信号となる。   Next, the light beam that has passed through the sample 505 is incident on the analyzer 506, so that only the light component in the direction of the transmission axis of the analyzer 506 is transmitted and reaches the light receiving unit of the photodetector 507. The photodetector 507 outputs the intensity change of the received light as a voltage change. Here, if the transmission axis direction of the analyzer 506 is 90 degrees with respect to the vertical axis, the signal detected by the photodetector 507 has two local maxima and minima each in time 1 / f, as shown in FIG. It becomes such a signal.

ここで、光検出器507における例えば図2に示すような検出信号と、液晶素子504に印加する電圧値を基に演算を行う事により、試料505による旋光度+γを求めることが出来る。例えば、特許文献1によれば、光検出器507における検出信号において、特に極大値と極小値の値を基に旋光度を求める方式が提案されている。   Here, the optical rotation + γ by the sample 505 can be obtained by performing calculation based on the detection signal as shown in FIG. 2 in the photodetector 507 and the voltage value applied to the liquid crystal element 504, for example. For example, Patent Document 1 proposes a method for obtaining the optical rotation based on the maximum value and the minimum value in the detection signal in the photodetector 507.

また、旋光度を求める方式として一般的な方法としては、検光子をモータなどで機械的に回転させ、光検出器における検出信号が最大もしくは最小となる角度を探すことにより旋光度を求める方法が挙げられる。   As a general method for obtaining the optical rotation, there is a method for obtaining the optical rotation by mechanically rotating the analyzer with a motor or the like and searching for an angle at which the detection signal in the photodetector becomes maximum or minimum. Can be mentioned.

また、試料内の旋光性物質の濃度を測定する手段としては他に、酵素を用いた酵素法が
挙げられる。酵素法は特定の物質に対して反応する酵素を用いて、反応によって生じる成分を測定する事により濃度を測定するものである。例えばグルコース濃度を測定する方法としては、GOD(グルコース酸化酵素)法などが知られている
In addition, as a means for measuring the concentration of the optically rotatory substance in the sample, an enzyme method using an enzyme can be given. In the enzyme method, an enzyme that reacts with a specific substance is used to measure the concentration by measuring components produced by the reaction. For example, GOD (glucose oxidase) method is known as a method for measuring glucose concentration.

特開平9−236542号公報(図5)JP-A-9-236542 (FIG. 5)

しかし、上記の方法は以下に示す問題を有している。上記の従来の旋光度を用いた濃度測定装置においては、光検出器における検出信号より旋光度を測定する場合、旋光度変調素子による変調領域内に試料の旋光度が収まっていなければならない。すなわち、例えば、旋光度変調素子による変調幅を±3°とした場合には、測定可能な旋光度は±3°以内であり、それ以上の旋光度は測定できない。そこで、±3°以上の旋光度を測定する際には変調幅を広げる必要がある。   However, the above method has the following problems. In the above concentration measuring apparatus using the conventional optical rotation, when the optical rotation is measured from the detection signal in the photodetector, the optical rotation of the sample must be within the modulation region by the optical rotation modulation element. That is, for example, when the modulation width by the optical rotation modulation element is ± 3 °, the measurable optical rotation is within ± 3 °, and no more optical rotation can be measured. Therefore, it is necessary to widen the modulation width when measuring the optical rotation of ± 3 ° or more.

しかしながら、ここで、検出信号より旋光度を測定する際の分解能は旋光度変調素子による変調幅に依存するため、変調幅を広げる事により精度が低下してしまうことになる。すなわち、変調幅が小さいほど精度は向上するが、変調幅が大きくなるとそれだけ精度は低下してしまうため、広い範囲で旋光度を求めようとすると精度が落ちてしまい、逆に精度を向上させようとすると測定可能な旋光度の範囲が狭くなってしまうという課題がある。   However, since the resolution at the time of measuring the optical rotation from the detection signal depends on the modulation width by the optical rotation modulation element, the accuracy is lowered by increasing the modulation width. In other words, the smaller the modulation width, the higher the accuracy, but the larger the modulation width, the lower the accuracy, so if you try to find the optical rotation over a wide range, the accuracy will drop, and conversely, try to improve the accuracy. Then, there exists a subject that the range of the optical rotation which can be measured will become narrow.

また、検光子をモータなどで機械的に回転させる事により旋光度を求める方法においては素子を回転させるなどの機械的動作が必要となるため、装置全体の大型化、高消費電力化を招いてしまう。更に高精度に旋光度を求めるには高性能のモータが不可欠となり、装置の複雑化につながってしまう。   In addition, in the method of obtaining the optical rotation by mechanically rotating the analyzer with a motor or the like, a mechanical operation such as rotating the element is required, leading to an increase in the size of the entire apparatus and high power consumption. End up. In addition, a high-performance motor is indispensable for obtaining the optical rotation with high accuracy, leading to complication of the apparatus.

また、酵素法に関しては、低濃度の場合はそのまま測定可能であるが、ある値以上の濃度になると反応が飽和してしまうことが知られている。そのため、高濃度の試料を測定する際は元の試料を希釈するなどの測定前処理が必要となり、測定工程が増えてしまうという問題が発生する。また、酵素であるため、使用期間や使用回数が限られてしまうといった課題も生じる。   As for the enzyme method, it is known that the measurement can be performed as it is at a low concentration, but the reaction is saturated when the concentration exceeds a certain value. Therefore, when measuring a high-concentration sample, a pre-measurement process such as diluting the original sample is required, which causes a problem that the number of measurement steps increases. Moreover, since it is an enzyme, the subject that a use period and the frequency | count of use will be limited also arises.

そこで、本発明では上述した従来技術による問題点を解消するため、試料内の旋光性物質の濃度を機械的動作や、酵素などを用いることなく、また、その濃度の濃淡にかかわらず常に高精度に測定することが可能な濃度測定装置を提供することを目的とする。   Therefore, in the present invention, in order to eliminate the above-mentioned problems caused by the prior art, the concentration of the optically rotatory substance in the sample can be set with high accuracy without using mechanical operation or an enzyme, and regardless of the density of the concentration. It is an object of the present invention to provide a concentration measuring apparatus capable of measuring in a short time.

これらの課題を解決するために本発明による濃度測定装置は、下記に記載の手段を採用する。すなわち本発明の濃度測定装置は、直線偏光を出力する直線偏光出力手段と、直線偏光の旋光度を変調する旋光度変調手段と、旋光度変調手段によって旋光度が変調された直線光線を試料へ照射し試料を透過してくる透過光を検出する検出手段と、検出手段における検出信号より試料内の旋光性物質の濃度を算出する算出手段を備えた濃度測定装置であって、検出信号を旋光度変調手段にフィードバックすることで、旋光度変調手段による直線偏光の旋光度の変調範囲を変化させることを特徴とする。   In order to solve these problems, the concentration measuring apparatus according to the present invention employs the following means. That is, the concentration measuring apparatus of the present invention includes a linearly polarized light output unit that outputs linearly polarized light, an optical rotation modulation unit that modulates the optical rotation of the linearly polarized light, and a linear light beam whose optical rotation is modulated by the optical rotation modulation unit. A concentration measuring device comprising: a detecting means for detecting transmitted light that is irradiated and transmitted through a sample; and a calculating means for calculating the concentration of an optical rotatory substance in the sample from a detection signal in the detecting means, wherein the detection signal is optically rotated. The modulation range of the optical rotation of the linearly polarized light by the optical rotation modulation means is changed by feeding back to the degree modulation means.

また、本発明の濃度測定装置は、直線偏光出力手段と、旋光度変調手段と、検出手段と、算出手段は、測定に際して機械的動作を必要としないことが好ましい。   In the concentration measurement apparatus of the present invention, it is preferable that the linearly polarized light output means, the optical rotation modulation means, the detection means, and the calculation means do not require mechanical operation for measurement.

また、本発明における算出手段は検出信号における極大値と極小値に基づいて濃度を算出することが好ましい。   Moreover, it is preferable that the calculation means in this invention calculates a density | concentration based on the maximum value and minimum value in a detection signal.

また、本発明における旋光度の変調範囲は変調幅と変調の中心軸がいずれも可変であることが好ましい。   In the present invention, it is preferable that both the modulation width and the central axis of the modulation be variable in the optical rotation modulation range.

また、本発明における旋光度の変調範囲は変調幅が一定で、変調の中心軸が可変であることが好ましい。   In the present invention, it is preferable that the optical rotation modulation range has a constant modulation width and a variable central axis.

また、本発明における旋光度変調手段は液晶素子、液晶素子と波長板、ファラデーセル、光弾性変調子またはポッケルセルであることが好ましい。   The optical rotation modulation means in the present invention is preferably a liquid crystal element, a liquid crystal element and a wave plate, a Faraday cell, a photoelastic modulator, or a Pockel cell.

また、本発明における試料は尿であり、試料中の旋光性物質は尿中グルコースである場合により有用である。   Moreover, the sample in the present invention is urine, and the optical rotatory substance in the sample is more useful when it is urine glucose.

(作用)
試料内の旋光性物質による旋光度を測定することにより試料内の旋光性物質の濃度を測定する濃度測定装置において、旋光度変調手段によって試料へ入射する直線偏光の旋光度を変調させた時の光検出器における試料通過後の検出信号より試料内の旋光性物質の濃度を算出する際に、光検出器における検出信号を旋光度変調手段にフィードバックし、旋光度変調手段による直線偏光の旋光度の変調範囲を変化させることにより、試料中の濃度の濃淡にかかわらず、高精度で濃度測定が可能となる。
(Function)
In a concentration measuring device that measures the optical rotation of the optical rotatory substance in the sample to measure the concentration of the optical rotatory substance in the sample, the optical rotation of the linearly polarized light incident on the sample is modulated by the optical rotatory modulation means. When calculating the concentration of the optical rotatory substance in the sample from the detection signal after passing through the sample in the photodetector, the detection signal in the photodetector is fed back to the optical rotation modulation means, and the optical polarization of the linearly polarized light by the optical rotation modulation means By changing the modulation range, the concentration can be measured with high accuracy regardless of the density of the sample.

以上の説明のように、本発明の濃度測定装置においては、下記に記載する効果を有する。   As described above, the concentration measuring device of the present invention has the effects described below.

試料内の旋光性物質による旋光度を測定することにより試料内の旋光性物質の濃度を測定する濃度測定装置において、旋光度変調手段によって試料へ入射する直線偏光の旋光度を変調させた時の光検出器における試料通過後の検出信号より試料内の旋光性物質の濃度を算出する際に、光検出器における検出信号を基に旋光度変調手段による直線偏光の旋光度の変調範囲、すなわち変調幅と変調の中心軸の両方もしくはどちらか一方を変化させ、濃度算出が可能な検出信号を得ることにより、試料中の濃度が濃い場合でも濃度が薄い場合と同じ高いレベルの精度で濃度測定が可能となる。   In a concentration measuring device that measures the optical rotation of the optical rotatory substance in the sample to measure the concentration of the optical rotatory substance in the sample, the optical rotation of the linearly polarized light incident on the sample is modulated by the optical rotatory modulation means. When calculating the concentration of the optical rotatory substance in the sample from the detection signal after passing through the sample in the photodetector, the modulation range of the optical polarization of linearly polarized light by the optical rotation modulation means based on the detection signal in the photodetector, ie, modulation By changing the width and / or the center axis of the modulation and obtaining a detection signal that can calculate the concentration, even if the concentration in the sample is high, the concentration can be measured with the same high level of accuracy as when the concentration is low. It becomes possible.

また、本発明においては検光子をモータなどで機械的に回転させるなどの機械的動作が不要であるため、装置の小型化、装置構成の簡易化が可能である。また、旋光度変調素子として特に液晶素子を用いた場合は、低消費電力化が可能である。   Further, in the present invention, since a mechanical operation such as mechanically rotating the analyzer with a motor or the like is unnecessary, the apparatus can be reduced in size and the apparatus configuration can be simplified. Further, when a liquid crystal element is used as the optical rotation modulation element, it is possible to reduce power consumption.

更に、本発明においては濃度測定に際して酵素などを用いないため、試料を薄めるなどの測定前処理が不要であり、また、期間や回数に限りがなく使用可能である。   Furthermore, in the present invention, since no enzyme or the like is used for concentration measurement, pretreatment for measurement such as thinning of the sample is unnecessary, and the method can be used without limitation in terms of period and number of times.

以下、図面を用いて本発明を利用した濃度測定装置の最適な実施形態を説明する。   Hereinafter, an optimum embodiment of a concentration measuring apparatus using the present invention will be described with reference to the drawings.

(第一の実施形態)
図1は本発明の第一の実施形態を示す図である。図1において駆動回路108によって駆動されるレーザダイオードなどの光源101より出射された光線をコリメートレンズ102に入射する。ここで、光源101はある一定の波長の光線を出射するものであって、レーザダイオードに限るものではない。コリメータレンズ102は入射してきた光線を平
行光にするものであって、光源からの光線の広がり角等によって位置を変化させる。次に、コリメータレンズ102によって平行光となった光線を偏光子103に入射する。偏光子103によって光線は偏光子103の透過軸方向に光軸を持つ直線偏光となる。ここでは偏光子103の透過軸方向は垂直方向とする。次に偏光子103を透過してきた直線偏光を旋光度変調素子に入射する。旋光度変調素子は電気光学的なもので、図1に示す本実施形態においては液晶素子104を用いている。ここで、液晶素子104は液晶駆動回路109によって駆動し、液晶素子104に印加する電圧をある周波数fで変調させる事により、液晶素子104を通過する直線偏光の偏光方向はある角度の範囲内で変調する。
(First embodiment)
FIG. 1 is a diagram showing a first embodiment of the present invention. In FIG. 1, a light beam emitted from a light source 101 such as a laser diode driven by a drive circuit 108 enters a collimator lens 102. Here, the light source 101 emits a light beam having a certain wavelength, and is not limited to a laser diode. The collimator lens 102 converts incident light into parallel light, and changes the position according to the spread angle of the light from the light source. Next, the light beam that has been collimated by the collimator lens 102 is incident on the polarizer 103. The light beam becomes linearly polarized light having an optical axis in the transmission axis direction of the polarizer 103 by the polarizer 103. Here, the transmission axis direction of the polarizer 103 is a vertical direction. Next, the linearly polarized light transmitted through the polarizer 103 is incident on the optical rotation modulation element. The optical rotation modulation element is an electro-optical element, and the liquid crystal element 104 is used in this embodiment shown in FIG. Here, the liquid crystal element 104 is driven by the liquid crystal drive circuit 109, and the voltage applied to the liquid crystal element 104 is modulated at a certain frequency f, whereby the polarization direction of the linearly polarized light passing through the liquid crystal element 104 is within a certain angle range. Modulate.

次に偏光方向が変調した直線偏光を試料105に入射する。ここで、直線偏光は試料105を通過する際、試料105中に含まれる旋光性物質によって未知量だけ旋光される。次に試料105を通過した光線を検光子106に入射することで、検光子106の透過軸方向の光成分のみが透過し、光検出器107の受光部に到達する。ここでは、検光子106の透過軸方向を垂直軸に対して90度とする。光検出器107は受光した光線の強度変化を電圧変化として出力するものである。光検出器107の検出信号は増幅器等により増幅し、PCなどの演算器110に入力する。演算器110は演算のみでなくコントローラとして液晶駆動回路109のコントロールも行う。この時、光検出器107における検出信号と、液晶素子104に印加する電圧値を基に演算を行う事により、試料105による旋光度を求める方法を以下に示す。   Next, linearly polarized light whose polarization direction is modulated is incident on the sample 105. Here, when the linearly polarized light passes through the sample 105, it is rotated by an unknown amount by the optical rotatory substance contained in the sample 105. Next, the light beam that has passed through the sample 105 enters the analyzer 106, so that only the light component in the direction of the transmission axis of the analyzer 106 is transmitted and reaches the light receiving unit of the photodetector 107. Here, the transmission axis direction of the analyzer 106 is 90 degrees with respect to the vertical axis. The photodetector 107 outputs the intensity change of the received light as a voltage change. The detection signal of the photodetector 107 is amplified by an amplifier or the like and input to a computing unit 110 such as a PC. The arithmetic unit 110 not only performs calculations but also controls the liquid crystal drive circuit 109 as a controller. At this time, a method for obtaining the optical rotation by the sample 105 by performing calculation based on the detection signal in the photodetector 107 and the voltage value applied to the liquid crystal element 104 will be described below.

まず、例えば測定初期においては、液晶素子104による旋光度の変調範囲を垂直方向に対して±90°とする。これにより、試料105による旋光量がいかなる値でも、光検出器107で検出される信号は時間1/f間に極大と極小をそれぞれ2つ持つ、図2に示すような信号となる。もしくは、試料105による旋光量がある程度見当がついている場合は変調量を±90°より小さくする事も可能である。   First, for example, at the beginning of measurement, the optical rotation modulation range by the liquid crystal element 104 is set to ± 90 ° with respect to the vertical direction. As a result, regardless of the value of the amount of rotation by the sample 105, the signal detected by the photodetector 107 becomes a signal as shown in FIG. 2 having two maxima and minima each in time 1 / f. Alternatively, the modulation amount can be made smaller than ± 90 ° when the amount of rotation of the light from the sample 105 is well known.

この時の検出信号より例えば極大と極小の値を用いて旋光度を算出する事は可能であるが、上述のように、検出信号より旋光度を測定する際の分解能は旋光度変調素子による変調幅に依存するため、このままでは精度は低いものとなる。そこで、±90°の変調時に得られた検出信号を元に、変調幅と変調の中心軸を再設定し、同様に変調を行う。例えば、±90°の変調時に試料による旋光度がおよそ+30°程度と算出された際には、変調の中心軸を+30°、変調幅を±10°とする事により、より高い精度に旋光度が算出できる。これを更に繰り返し、変調幅を小さくしていく事により、最終的には旋光度測定において十分な精度が得られる程度の変調幅になり、そのとき得られた検出信号を基に旋光度を算出することで、非常に高精度で旋光度を求める事ができる。すなわち試料中の濃度の濃淡にかかわらず、高精度での濃度測定が可能となる。   Although it is possible to calculate the optical rotation using the maximum and minimum values, for example, from the detection signal at this time, as described above, the resolution when measuring the optical rotation from the detection signal is modulated by the optical rotation modulation element. Since it depends on the width, the accuracy is low as it is. Therefore, based on the detection signal obtained during the ± 90 ° modulation, the modulation width and the central axis of the modulation are reset, and the modulation is performed in the same manner. For example, when the optical rotation by the sample is calculated to be about + 30 ° at the time of ± 90 ° modulation, the optical rotation can be performed with higher accuracy by setting the modulation central axis to + 30 ° and the modulation width to ± 10 °. Can be calculated. By repeating this process further and reducing the modulation width, the modulation width finally becomes sufficient to obtain sufficient accuracy in optical rotation measurement, and the optical rotation is calculated based on the detection signal obtained at that time. By doing so, the optical rotation can be obtained with very high accuracy. That is, it is possible to measure the concentration with high accuracy regardless of the density of the sample.

上記の方法を図3を用いて説明する。図3は横軸が液晶素子104に印加する電圧Vで、縦軸が光検出器107における検出信号の強度Iを表す。図3において、測定初期は変調範囲をaの範囲としその時の検出信号を基に、次に変調幅と変調の中心軸を変化させ、変調範囲をbに縮小する。更にその時の検出信号を基に同様に変調幅と変調の中心軸を変化させ、変調範囲をcに縮小する。このとき、変調範囲をaからb、bからcへと縮小させる際にも検出信号は常に図2に示すような、時間1/f間に極大と極小をそれぞれ2つ持つ信号となるようにする。   The above method will be described with reference to FIG. In FIG. 3, the horizontal axis represents the voltage V applied to the liquid crystal element 104, and the vertical axis represents the detection signal intensity I in the photodetector 107. In FIG. 3, at the initial stage of measurement, the modulation range is set to a, and based on the detection signal at that time, the modulation width and the central axis of modulation are changed, and the modulation range is reduced to b. Further, based on the detection signal at that time, similarly, the modulation width and the central axis of the modulation are changed, and the modulation range is reduced to c. At this time, even when the modulation range is reduced from a to b and from b to c, the detection signal is always a signal having two maxima and minima in time 1 / f as shown in FIG. To do.

ここで、上述のように変調範囲を縮小させ、変調範囲が旋光度測定において十分な精度が得られる程度の幅になったとき、その検出信号に着目し、あらかじめ構築しておいた検出信号の時間1/f間における2つの極大値の比と旋光度、旋光度と濃度の関係式に従い濃度を算出する。ここで、検出信号の時間1/f間における2つの極大値の比と旋光度の関係式は特に液晶の種類、変調幅に依存するものである。この方法により試料中の濃度の
濃淡にかかわらず、同様の高い分解能が得られ、高精度の濃度測定が可能となる。
Here, when the modulation range is reduced as described above and the modulation range is wide enough to obtain sufficient accuracy in the optical rotation measurement, pay attention to the detection signal, and the detection signal constructed in advance The concentration is calculated in accordance with the relational expression between the ratio of the two maximum values and the optical rotation, and the optical rotation and the concentration during time 1 / f. Here, the relational expression between the ratio between the two maximum values and the optical rotation during the time 1 / f of the detection signal depends particularly on the type of liquid crystal and the modulation width. By this method, the same high resolution can be obtained regardless of the density of the sample, and highly accurate concentration measurement can be performed.

ここで、上述の実施形態における変調範囲などの値は一例に過ぎず、この値に限るものではない。   Here, the values such as the modulation range in the above-described embodiment are merely examples, and are not limited to these values.

(第二の実施形態)
次に第二の実施形態について説明する。光学素子等に関しては第一の実施形態と同様に図1に示すものとする。第一の実施形態と同様、液晶素子104に印加する電圧をある周波数fで変調させる事により、液晶素子104を通過する直線偏光の偏光方向はある角度の範囲内で変調する。このとき、変調範囲は旋光度測定において十分な精度が得られる程度の変調幅dに固定とする。
(Second embodiment)
Next, a second embodiment will be described. The optical elements and the like are shown in FIG. 1 as in the first embodiment. Similar to the first embodiment, by modulating the voltage applied to the liquid crystal element 104 at a certain frequency f, the polarization direction of the linearly polarized light passing through the liquid crystal element 104 is modulated within a range of an angle. At this time, the modulation range is fixed to a modulation width d that can provide sufficient accuracy in optical rotation measurement.

ここで、仮に旋光度測定において十分な精度が得られる程度の変調幅dを±3°とし、測定初期には変調の中心軸を垂直方向とする。このとき、試料105による旋光度が±3°以内の場合は光検出器107における検出信号より旋光度を高精度に測定することが可能である。その算出方法としては、例えば上述のように検出信号の時間1/f間における2つの極大値の比より、あらかじめ構築しておいた極大値の比と旋光度、旋光度と濃度の関係式に従い濃度を算出する方法などが挙げられる。   Here, it is assumed that the modulation width d that provides sufficient accuracy in the optical rotation measurement is ± 3 °, and the central axis of the modulation is the vertical direction at the beginning of the measurement. At this time, when the optical rotation by the sample 105 is within ± 3 °, the optical rotation can be measured with high accuracy from the detection signal in the photodetector 107. As a calculation method, for example, as described above, the ratio between the maximum value and the optical rotation, and the relational expression between the optical rotation and the concentration, which are constructed in advance, are determined based on the ratio between the two maximum values during the time 1 / f of the detection signal. For example, a method for calculating the concentration.

しかしこの方法では、試料105による旋光度が±3°以内にない場合、検出信号の時間1/f間において極大値が1つしか観察されないため、旋光度を算出することは出来ない。そこで、検出信号を参照して時間1/f間において極大値が1つしかない場合は変調範囲を変化させる。変化の方法としては例えば±3°の次に−2°〜+4°の範囲に変化させ、その変調範囲でも検出信号の時間1/f間において極大値が1つしかない場合は、変調範囲を−4°〜+2°に変化させ、以下同様に変化させていく方法が挙げられる。このようにして、図2に示すような検出信号の時間1/f間において極大値が2つ観察された場合に、上述のような算出方法よって濃度を算出することが可能となる。この場合、すでに変調範囲は旋光度測定において十分な精度が得られる程度の幅としてあるため、精度としては高いものとなる。また、試料105による旋光度に適した範囲に変調範囲を変化させるため、試料105中の旋光性物質の濃度に依存せず常に高精度での測定が可能となる。   However, in this method, when the optical rotation by the sample 105 is not within ± 3 °, only one maximum value is observed during the time 1 / f of the detection signal, and therefore the optical rotation cannot be calculated. Therefore, with reference to the detection signal, the modulation range is changed when there is only one maximum value in time 1 / f. As a method of change, for example, it is changed to a range of −2 ° to + 4 ° next to ± 3 °, and if there is only one maximum value in time 1 / f of the detection signal even in the modulation range, the modulation range is changed. There is a method of changing from −4 ° to + 2 °, and changing in the same manner. In this manner, when two maximum values are observed during the time 1 / f of the detection signal as shown in FIG. 2, it is possible to calculate the concentration by the calculation method as described above. In this case, since the modulation range is already wide enough to obtain sufficient accuracy in optical rotation measurement, the accuracy is high. Further, since the modulation range is changed to a range suitable for the optical rotation by the sample 105, measurement with high accuracy is always possible without depending on the concentration of the optical rotatory substance in the sample 105.

図4に、上記の方法を図示する。図3と同様、図4は横軸が液晶素子104に印加する電圧Vで、縦軸が光検出器107における検出信号の強度Iを表す。図4において、測定初期はAの位置で変調しているがこの位置では検出信号より濃度を算出することは出来ない。そこで、検出信号をフィードバックしながら変調範囲を変化させ、最終的にBの位置まで変調範囲を変化させる。このときの検出信号を用いて、濃度を算出することにより、濃度に依存せず常に高精度での測定が可能となる。   FIG. 4 illustrates the above method. As in FIG. 3, in FIG. 4, the horizontal axis represents the voltage V applied to the liquid crystal element 104, and the vertical axis represents the detection signal intensity I in the photodetector 107. In FIG. 4, modulation is performed at the position A at the initial stage of measurement, but the density cannot be calculated from the detection signal at this position. Therefore, the modulation range is changed while feeding back the detection signal, and finally the modulation range is changed to the position B. By calculating the concentration using the detection signal at this time, measurement with high accuracy is always possible without depending on the concentration.

ここで、第一の実施形態と同様、上述の実施形態における変調範囲などの値は一例に過ぎず、この値に限るものではない。   Here, as in the first embodiment, the values such as the modulation range in the above-described embodiment are merely examples, and are not limited to these values.

また、上述の実施形態における旋光度変調手段としては液晶素子を用いているが、例えばファラデーセル、光弾性変調子またはポッケルセルなどを用いた場合にも本手法は有効である。   In addition, a liquid crystal element is used as the optical rotation modulation means in the above-described embodiment, but this method is also effective when, for example, a Faraday cell, a photoelastic modulator, a Pockel cell, or the like is used.

本発明の第一の実施形態における濃度測定装置の構成を示す図である。It is a figure which shows the structure of the density | concentration measuring apparatus in 1st embodiment of this invention. 本発明の実施形態における光検出器の出力波形を示す図である。It is a figure which shows the output waveform of the photodetector in embodiment of this invention. 本発明の実施形態における液晶素子への印加電圧と光検出器における光強度の関係を示す図である。It is a figure which shows the relationship between the voltage applied to the liquid crystal element in embodiment of this invention, and the light intensity in a photodetector. 本発明の実施形態における液晶素子への印加電圧と光検出器における光強度の関係を示す図である。It is a figure which shows the relationship between the voltage applied to the liquid crystal element in embodiment of this invention, and the light intensity in a photodetector. 従来例における旋光度測定装置の概略図である。It is the schematic of the optical rotation measuring apparatus in a prior art example. 試料による旋光度の変調範囲の変化を示す図である。It is a figure which shows the change of the modulation range of the optical rotation by a sample.

符号の説明Explanation of symbols

101 光源
102 コリメートレンズ
103 偏光子
104 液晶素子
105 試料セル
106 検光子
107 光検出器

DESCRIPTION OF SYMBOLS 101 Light source 102 Collimating lens 103 Polarizer 104 Liquid crystal element 105 Sample cell 106 Analyzer 107 Photo detector

Claims (7)

直線偏光を出力する直線偏光出力手段と、前記直線偏光の旋光度を変調する旋光度変調手段と、該旋光度変調手段によって旋光度が変調された直線光線を試料へ照射し前記試料を透過してくる透過光を検出する検出手段と、該検出手段における検出信号より前記試料内の旋光性物質の濃度を算出する算出手段とを備えた濃度測定装置であって、前記検出信号を前記旋光度変調手段にフィードバックすることで、前記旋光度変調手段による直線偏光の旋光度の変調範囲を変化させる濃度測定装置。 A linearly polarized light output means for outputting linearly polarized light; an optical rotation modulation means for modulating the optical rotation of the linearly polarized light; and a linear light beam whose optical rotation is modulated by the optical rotation modulation means is applied to the sample and transmitted through the sample. A concentration measuring device comprising: a detecting means for detecting transmitted light coming in; and a calculating means for calculating the concentration of the optical rotatory substance in the sample from a detection signal in the detecting means, wherein the detection signal is converted into the optical rotation angle. A concentration measuring apparatus that changes a modulation range of optical rotation of linearly polarized light by the optical rotation modulation means by feeding back to the modulation means. 前記直線偏光出力手段と、前記旋光度変調手段と、前記検出手段および前記算出手段は、測定に際して機械的動作を必要としないことを特徴とする請求項1に記載の濃度測定装置。 The concentration measuring apparatus according to claim 1, wherein the linearly polarized light output unit, the optical rotation modulation unit, the detection unit, and the calculation unit do not require mechanical operation for measurement. 前記算出手段は前記検出信号における極大値と極小値に基づいて濃度を算出することを特徴とする請求項1または請求項2に記載の濃度測定装置。 The concentration measuring apparatus according to claim 1, wherein the calculating unit calculates the concentration based on a maximum value and a minimum value in the detection signal. 前記旋光度の変調範囲は変調幅と変調の中心軸がいずれも可変であることを特徴とする請求項1から請求項3のいずれか一項に記載の濃度測定装置。 4. The concentration measuring apparatus according to claim 1, wherein the modulation range of the optical rotation is variable in both a modulation width and a central axis of modulation. 5. 前記旋光度の変調範囲は変調幅が一定で、変調の中心軸が可変であることを特徴とする請求項1から請求項3のいずれか一項に記載の濃度測定装置。 The concentration measuring apparatus according to any one of claims 1 to 3, wherein the modulation range of the optical rotation has a constant modulation width and a variable central axis. 前記旋光度変調手段は液晶素子、液晶素子と波長板、ファラデーセル、光弾性変調子またはポッケルセルであることを特徴とする請求項1から請求項5のいずれか一項に記載の濃度測定装置。 6. The concentration measuring apparatus according to claim 1, wherein the optical rotation modulation means is a liquid crystal element, a liquid crystal element and a wave plate, a Faraday cell, a photoelastic modulator, or a Pockel cell. 前記試料は尿であり、前記試料中の旋光性物質は尿中グルコースであることを特徴とする請求項1から請求項6のいずれか一項に記載の濃度測定装置。

The concentration measurement apparatus according to any one of claims 1 to 6, wherein the sample is urine, and the optical rotatory substance in the sample is urine glucose.

JP2005097300A 2005-03-30 2005-03-30 Concentration measuring device Pending JP2006275863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005097300A JP2006275863A (en) 2005-03-30 2005-03-30 Concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005097300A JP2006275863A (en) 2005-03-30 2005-03-30 Concentration measuring device

Publications (1)

Publication Number Publication Date
JP2006275863A true JP2006275863A (en) 2006-10-12

Family

ID=37210782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005097300A Pending JP2006275863A (en) 2005-03-30 2005-03-30 Concentration measuring device

Country Status (1)

Country Link
JP (1) JP2006275863A (en)

Similar Documents

Publication Publication Date Title
CN100468044C (en) Tester and method for residual stress of seniconductor material
US20100091278A1 (en) Wavelength-modulation spectroscopy method and apparatus
US20180278009A1 (en) Brillouin sensing system using optical microwave frequency discriminators and scrambler
CN104714110A (en) Device and method for measuring high-frequency microwave field strength based on electromagnetic induction transparent effect
CN106093599B (en) Optical probe and electromagnetic field measuring equipment and measuring method thereof
CN100378445C (en) Intelligent synthesized measuring apparatus for half wave voltage of extinction ratio in crystal, and phase delay of wave plate
CN107219191B (en) Oblique incidence light reflection difference device based on Fourier transform
CN102288549A (en) Birefringence detection device and birefringence detection method based on light source intensity sinusoidal modulation
US10663391B2 (en) Circular dichroism measuring method and circular dichroism measuring device
JP4343743B2 (en) Optical rotation measuring device and concentration measuring device
JP2008134076A (en) Gas analyzer
JP4094975B2 (en) Concentration measuring device
JP2006275863A (en) Concentration measuring device
RU2648014C1 (en) Polarimeter for measuring verdet constant of transparent substances
CN101893548A (en) Liquid crystal device-based novel intelligent polarimeter and test method
JP2015227836A (en) Measurement device of optical rotation and refractive index
JP2004198286A (en) Angle-of-rotation measuring apparatus
EP3394595B1 (en) System for determining the characteristics of a gas and related method for measuring such characteristics
JP2004279380A (en) Angle of rotation measuring instrument
JP4316991B2 (en) Refractive index measuring device and concentration measuring device
JP2005265651A (en) Concentration measuring device
JP2020118498A (en) Electric field sensor
Palma et al. Portable light-emitting diode-based photometer with one-shot optochemical sensors for measurement in the field
JP2020051871A (en) Electric field sensor
JPH07181211A (en) Surface potential measuring apparatus