JP4547951B2 - Thick high-strength hot-rolled steel sheet excellent in workability and method for producing the same - Google Patents

Thick high-strength hot-rolled steel sheet excellent in workability and method for producing the same Download PDF

Info

Publication number
JP4547951B2
JP4547951B2 JP2004078896A JP2004078896A JP4547951B2 JP 4547951 B2 JP4547951 B2 JP 4547951B2 JP 2004078896 A JP2004078896 A JP 2004078896A JP 2004078896 A JP2004078896 A JP 2004078896A JP 4547951 B2 JP4547951 B2 JP 4547951B2
Authority
JP
Japan
Prior art keywords
seconds
workability
cooling
strength
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004078896A
Other languages
Japanese (ja)
Other versions
JP2005264240A (en
Inventor
聡雄 小林
義正 船川
一洋 瀬戸
徹夫 山本
英司 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004078896A priority Critical patent/JP4547951B2/en
Publication of JP2005264240A publication Critical patent/JP2005264240A/en
Application granted granted Critical
Publication of JP4547951B2 publication Critical patent/JP4547951B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、建築機器の各部材、自動車足回り部材、トラックフレーム部材、各種構造部材等に適した、板厚6mm以上、引張強度が780MPa以上の加工性に優れた厚物高強度熱延鋼板およびその製造方法に関する。   The present invention is suitable for various members of building equipment, automobile undercarriage members, track frame members, various structural members, and the like, and is a thick high strength hot rolled steel sheet excellent in workability with a plate thickness of 6 mm or more and a tensile strength of 780 MPa or more. And a manufacturing method thereof.

環境保護につながる燃費向上の観点から、建築機器の各部材、自動車足回り部材、トラックフレーム部材等に使用される材料の高強度薄肉化が強く求められている。一方では、材料を高強度化すると逆に加工性が劣化してしまうのが一般的である。そこで、いかに高強度化と加工性の両立を図るかがポイントであり、これを試みた材料として、従来から種々の熱延鋼板が提案されている。   From the viewpoint of improving fuel efficiency that leads to environmental protection, there is a strong demand for high-strength and thin materials used for building equipment members, automobile undercarriage members, truck frame members, and the like. On the other hand, when the strength of the material is increased, the processability is generally deteriorated. Thus, the point is how to achieve both high strength and workability, and various hot-rolled steel sheets have been proposed as materials for which this has been attempted.

例えば、特許文献1には、組織の大部分をポリゴナルフェライトとし、TiCを中心として析出強化および固溶強化により高強度化を図った鋼板が提案されている。しかし、この鋼板に用いられている一般的によく知られた析出物で高強度化するには、多量のTi添加を必要とし、寸法の大きい析出物が生成しやすく、特性が不安定になりやすいという欠点がある。   For example, Patent Document 1 proposes a steel sheet in which most of the structure is polygonal ferrite and the strength is increased by precipitation strengthening and solid solution strengthening centering on TiC. However, in order to increase the strength with generally well-known precipitates used in this steel sheet, a large amount of Ti is required, and precipitates with large dimensions are likely to be formed, resulting in unstable properties. There is a drawback that it is easy.

一方、特許文献2および特許文献3には、TiおよびMoの微細炭化物で強化することにより鋼板の特性を安定化させる技術が開示されている。これら文献に記載された技術は、フェライト単相組織とすることで加工性を確保し、かつ、微細炭化物による強化で強度を確保するものであり、高強度化と加工性を両立した優れた鋼板を得ることができる。   On the other hand, Patent Literature 2 and Patent Literature 3 disclose a technique for stabilizing the characteristics of a steel sheet by strengthening with fine carbides of Ti and Mo. The technologies described in these documents ensure the workability by adopting a ferrite single-phase structure, and ensure the strength by strengthening with fine carbides, and are excellent steel sheets that achieve both high strength and workability. Can be obtained.

ところで、上記用途の鋼板としては、板厚6mm以上の比較的厚いものも求められているが、上記特許文献2および特許文献3に記載された技術を適用して板厚6mm以上の鋼板を製造しても、析出物やフェライト粒がこれら引用文献で意図するような微細なものになり難く、所望の強度が安定して得られない。すなわち、板厚6mm以上では、これら特許文献で意図する微細な析出物による強化は未だ実現されていない。
特開平6−200351号公報 特開2002−322539号公報 特開2002−322540号公報
By the way, as a steel plate for the above-mentioned use, a steel plate having a thickness of 6 mm or more is also required. However, by applying the techniques described in Patent Document 2 and Patent Document 3, a steel sheet having a thickness of 6 mm or more is manufactured. Even so, the precipitates and ferrite grains are unlikely to be as fine as intended in these references, and the desired strength cannot be obtained stably. That is, when the plate thickness is 6 mm or more, strengthening by fine precipitates intended in these patent documents has not yet been realized.
Japanese Patent Laid-Open No. 6-200351 JP 2002-322539 A JP 2002-322540 A

本発明はかかる事情に鑑みてなされたものであって、板厚6mm以上において、強化元素の少量添加でフェライト粒および析出物が安定的に微細化され、所望の強度を安定して確保可能な、引張強度が780MPa以上の加工性に優れた厚物高強度熱延鋼板およびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and in a plate thickness of 6 mm or more, ferrite grains and precipitates can be stably refined by adding a small amount of a reinforcing element, and a desired strength can be stably secured. An object of the present invention is to provide a thick high-strength hot-rolled steel sheet excellent in workability having a tensile strength of 780 MPa or more and a method for producing the same.

本発明者らは、上記特許文献2および特許文献3で開示されている技術を適用して板厚6mm以上の厚物鋼板を製造しても、所望の強度が得られない原因を解明すべく調査した。その結果、板厚6mm以上の厚物鋼板の場合、鋼板の一部が仕上熱間圧延機を出てから巻取られるまでに要する時間(ランナウト通過時間)が薄物鋼板の場合に比べて長く、ランナウトでの冷却速度(ランナウト冷速)が遅いため、フェライト粒や析出物が粗大化することが原因であることが判明した。すなわち、ランナウト通過時間は、板厚5mm以下の場合はほぼ20秒以内であるのに対して、板厚6mm以上の場合は20秒を超えてしまい、特に厚い場合には60秒前後にもなることがあり、この結果、厚物の場合は冷却速度が遅くなり、薄物の場合よりも高温で変態や析出が開始され、フェライト粒や析出物が粗大化してしまうのである。   In order to elucidate the reason why a desired strength cannot be obtained even when a thick steel plate having a thickness of 6 mm or more is manufactured by applying the techniques disclosed in Patent Document 2 and Patent Document 3 described above. investigated. As a result, in the case of a thick steel plate having a thickness of 6 mm or more, the time required for a part of the steel plate to be wound after leaving the finish hot rolling mill (runout passage time) is longer than in the case of a thin steel plate, It was found that the reason is that ferrite grains and precipitates are coarsened because the cooling rate in runout (runout cooling rate) is slow. In other words, the run-out passing time is approximately 20 seconds or less when the plate thickness is 5 mm or less, but exceeds 20 seconds when the plate thickness is 6 mm or more, and is approximately 60 seconds when the plate thickness is particularly thick. As a result, in the case of a thick material, the cooling rate is slow, and transformation and precipitation are started at a higher temperature than in the case of a thin material, and ferrite grains and precipitates become coarse.

そこで、このようなフェライト粒や析出物の粗大化を抑制するために、冷却強化装置を用いランナウト冷速を通常より上げて厚物鋼板を製造する実験を行った結果、やはり所望の強度を得られなかった。この原因解明のため、板厚方向の硬さ分布を調査したところ、板厚の表層部分は所望の硬さに到達していたが、板厚中央部分では所望の硬さに到達せず、全体として強度不足であることが判明した。このため、本発明者らは、さらにランナウト冷速を上げて製造する実験を行った。その結果、それでもなお強度が不足していた。同様に板厚方向の硬さ分布を調査したところ、今度は板厚中央部分は所望の硬さに到達していたが、板厚表層部分は所望の強度に到達せず、やはり全体として強度不足であることが判明した。すなわち、単純に冷却装置の使用を強化してランナウト冷速を上げて製造しても、板厚方向に温度分布が生じる結果、フェライト粒径や析出物の大きさ・分布状態にも板厚方向に分布が生じるため、板厚方向の硬さ分布が生じ、鋼板全体として強度が不足してしまうのである。   Therefore, in order to suppress such coarsening of ferrite grains and precipitates, an experiment was carried out to produce a thick steel plate by using a cooling strengthening device and increasing the run-out cooling speed from the usual level. I couldn't. In order to elucidate this cause, the hardness distribution in the plate thickness direction was investigated, and the surface layer portion of the plate thickness reached the desired hardness, but the desired hardness was not reached in the central portion of the plate thickness. It was found that the strength was insufficient. For this reason, the present inventors conducted an experiment in which the runout cooling speed was further increased. As a result, the strength was still insufficient. Similarly, when the hardness distribution in the plate thickness direction was investigated, the center portion of the plate thickness reached the desired hardness this time, but the plate thickness surface layer portion did not reach the desired strength, and the overall strength was insufficient. It turned out to be. In other words, even if the cooling device is simply strengthened to increase the run-out cooling speed, temperature distribution occurs in the plate thickness direction. As a result, the ferrite grain size and the size and distribution of precipitates also affect the plate thickness direction. Therefore, the hardness distribution in the thickness direction is generated, and the strength of the entire steel sheet is insufficient.

本発明者らは、以上の実験結果から、板厚が6mm以上の鋼板において、上記特許文献2、3の効果を発揮させるためには、板厚表層と板厚中央の硬さの差を一定以下にすることが重要であることを見出した。そして、本発明者らは、このような好ましい厚さ方向の硬度が得られる製造条件について検討した結果、空冷を1回以上含む冷却パターンで冷却し、かつこの冷却パターンを仕上熱間圧延終了から一定時間内に完了させることが有効であることを見出した。これにより冷却を強化しつつ冷却途中での復熱による板厚全体の温度の均一化を図ることができるので、板厚方向での硬さ分布を小さくすることができ、その結果、所望の強度が確保できるのである。具体的には、所定条件で熱間圧延した後、仕上熱間圧延終了から10秒間の平均冷却速度を20〜50℃/secとすることによって、仕上熱間圧延終了10秒後の板表面温度が500〜700℃となるまで冷却し、仕上熱間圧延終了10秒後〜20秒後の10秒間の間に計5秒以上の空冷を含む冷却パターンによってランナウト冷却を行い、500〜650℃で巻き取ることにより、板厚6mm以上において、高強度および加工性を両立する鋼板を得られることを見出した。   From the above experimental results, the present inventors have found that the difference in hardness between the plate thickness surface layer and the plate thickness center is constant in order to exert the effects of Patent Documents 2 and 3 on a steel plate having a plate thickness of 6 mm or more. I found it important to: And as a result of examining the manufacturing conditions for obtaining such a preferable hardness in the thickness direction, the present inventors cooled with a cooling pattern including air cooling once or more, and this cooling pattern was finished from the finish hot rolling end. It has been found that it is effective to complete within a certain time. As a result, the temperature of the entire plate thickness can be made uniform by recuperating during cooling while strengthening the cooling, so the hardness distribution in the plate thickness direction can be reduced, and as a result, the desired strength Can be secured. Specifically, after hot rolling under predetermined conditions, the plate surface temperature 10 seconds after finishing hot rolling is finished by setting the average cooling rate for 10 seconds after finishing hot rolling to 20 to 50 ° C./sec. Is cooled to 500 to 700 ° C., and runout cooling is performed by a cooling pattern including air cooling for a total of 5 seconds or more for 10 seconds after finishing hot rolling 10 seconds to 20 seconds, and at 500 to 650 ° C. It has been found that by rolling up, a steel sheet having both high strength and workability can be obtained at a thickness of 6 mm or more.

本発明は、このような知見に基づいてなされたものであり、以下の(1)〜()を提供するものである。 This invention is made | formed based on such knowledge, and provides the following (1)-( 6 ).

)重量%で、C:0.03〜0.11%、Si≦0.3%、Mn:1〜2%、P≦0.06%、S≦0.01%、Al≦0.06%、N≦0.006%、Mo:0.15〜0.45%、Ti:0.06〜0.21%を含有し、残部がFeおよび不可避的不純物である成分組成を有し、金属組織が面積比率で95%以上のフェライト組織であり、フェライト組織中に平均粒径が10nm未満のTiとMoとを含む炭化物が析出してなり、6mm以上の板厚を有し、板厚表層と板厚中央のビッカース硬さ(Hv)の差が60以下であることを特徴とする、引張強度が780MPa以上の加工性に優れた厚物高強度熱延鋼板。 ( 1 ) By weight%, C: 0.03 to 0.11%, Si ≦ 0.3%, Mn: 1 to 2%, P ≦ 0.06%, S ≦ 0.01%, Al ≦ 0. 06%, N ≦ 0.006%, Mo: 0.15 to 0.45%, Ti: 0.06 to 0.21%, with the balance being Fe and inevitable impurities , The metal structure is a ferrite structure having an area ratio of 95% or more, and carbides containing Ti and Mo having an average particle size of less than 10 nm are precipitated in the ferrite structure, and have a plate thickness of 6 mm or more. A thick high-strength hot-rolled steel sheet excellent in workability having a tensile strength of 780 MPa or more , characterized in that the difference between the surface layer and the thickness Vickers hardness (Hv) is 60 or less .

)重量%で、C:0.03〜0.11%、Si≦0.3%、Mn:1〜2%、P≦0.06%、S≦0.01%、Al≦0.06%、N≦0.006%、Mo:0.15〜0.45%、Ti:0.06〜0.21%を含有し、さらにNb≦0.08%、V≦0.15%のうち1種以上を含み、残部がFeおよび不可避的不純物である成分組成を有し、金属組織が面積比率で95%以上のフェライト組織であり、フェライト組織中に平均粒径が10nm未満のTiとMoとを含み、さらにNbとVの1種または2種を含む炭化物が析出してなり、6mm以上の板厚を有し、板厚表層と板厚中央のビッカース硬さ(Hv)の差が60以下であることを特徴とする、引張強度が780MPa以上の加工性に優れた厚物高強度熱延鋼板。 ( 2 ) By weight%, C: 0.03 to 0.11%, Si ≦ 0.3%, Mn: 1 to 2%, P ≦ 0.06%, S ≦ 0.01%, Al ≦ 0. 06%, N ≦ 0.006%, Mo: 0.15 to 0.45%, Ti: 0.06 to 0.21%, Nb ≦ 0.08%, V ≦ 0.15% One or more of them, the balance is Fe and an inevitable impurity component composition, the metal structure is a ferrite structure with an area ratio of 95% or more, and Ti having an average particle size of less than 10 nm in the ferrite structure Carbide containing Mo and further containing one or two of Nb and V is precipitated, has a plate thickness of 6 mm or more, and there is a difference in Vickers hardness (Hv) between the plate thickness surface layer and the plate thickness center. A thick high-strength hot-rolled steel sheet excellent in workability having a tensile strength of 780 MPa or more , characterized by being 60 or less .

)上記(1)または)において、C、Ti、Moを以下の(1)式を満足するように含有することを特徴とする加工性に優れた厚物高強度熱延鋼板。
0.5≦(C/12)/{(Ti/48)+(Mo/96)}≦1.5 …(1)
ただし、上記(1)式中、C、Ti、Moは各成分の質量%を表す。
( 3 ) A thick, high-strength hot-rolled steel sheet excellent in workability characterized by containing C, Ti, and Mo so as to satisfy the following expression (1) in (1) or ( 2 ).
0.5 ≦ (C / 12) / {(Ti / 48) + (Mo / 96)} ≦ 1.5 (1)
However, in said Formula (1), C, Ti, and Mo represent the mass% of each component.

)重量%で、C:0.03〜0.11%、Si≦0.3%、Mn:1〜2%、P≦0.06%、S≦0.01%、Al≦0.06%、N≦0.006%、Mo:0.15〜0.45%、Ti:0.06〜0.21%を含有し、残部がFeおよび不可避的不純物である鋼を溶製し、連続鋳造法または造塊法により鋼スラブとなし、直ちに、または、一旦冷却してから1100℃以上に加熱した後、6mm以上の板厚に熱間圧延し、仕上熱間圧延出側温度を750℃以上とし、仕上熱間圧延終了から10秒間の平均冷却速度を20〜50℃/secとすることによって、仕上熱間圧延終了10秒後の板表面温度が500〜700℃となるまで冷却し、仕上熱間圧延終了10秒後〜20秒後の10秒間の間に計5秒以上の空冷を含む冷却パターンによってランナウト冷却を行い、500〜650℃で巻取ることを特徴とする、引張強度が780MPa以上の加工性に優れた厚物高強度熱延鋼板の製造方法。 ( 4 )% by weight, C: 0.03 to 0.11%, Si ≦ 0.3%, Mn: 1 to 2%, P ≦ 0.06%, S ≦ 0.01%, Al ≦ 0. 06%, N ≦ 0.006%, Mo: 0.15 to 0.45%, Ti: 0.06 to 0.21%, with the balance being Fe and steel with inevitable impurities , A steel slab is formed by a continuous casting method or an ingot forming method, immediately or once cooled and then heated to 1100 ° C. or higher, and then hot-rolled to a thickness of 6 mm or more, and the finish hot rolling outlet temperature is set to 750 The plate surface temperature 10 seconds after the finish hot rolling is finished is cooled to 500 to 700 ° C. by setting the average cooling rate for 10 seconds after the finish hot rolling is finished to 20 to 50 ° C./sec. Cooling pattern including air cooling for a total of 5 seconds or more in 10 seconds after finishing hot rolling is finished 10 seconds to 20 seconds later It performs run-out cooling by emission, wherein the wound at 500 to 650 ° C., a tensile strength method for producing a good, thick high-strength hot-rolled steel sheet of the above workability 780 MPa.

)重量%で、C:0.03〜0.11%、Si≦0.3%、Mn:1〜2%、P≦0.06%、S≦0.01%、Al≦0.06%、N≦0.006%、Mo:0.15〜0.45%、Ti:0.06〜0.21%を含有し、さらにNb≦0.08%、V≦0.15%のうち1種以上を含み、残部がFeおよび不可避的不純物である鋼を溶製し、連続鋳造法または造塊法により鋼スラブとなし、直ちに、または、一旦冷却してから1100℃以上に加熱した後、6mm以上の板厚に熱間圧延し、仕上熱間圧延出側温度を750℃以上とし、仕上熱間圧延終了から10秒間の平均冷却速度を20〜50℃/secとすることによって、仕上熱間圧延終了10秒後の板表面温度が500〜700℃となるまで冷却し、仕上熱間圧延終了10秒後〜20秒後の10秒間の間に計5秒以上の空冷を含む冷却パターンによってランナウト冷却を行い、500〜650℃で巻取ることを特徴とする、引張強度が780MPa以上の加工性に優れた厚物高強度熱延鋼板の製造方法。 ( 5 ) By weight, C: 0.03 to 0.11%, Si ≦ 0.3%, Mn: 1 to 2%, P ≦ 0.06%, S ≦ 0.01%, Al ≦ 0. 06%, N ≦ 0.006%, Mo: 0.15 to 0.45%, Ti: 0.06 to 0.21%, Nb ≦ 0.08%, V ≦ 0.15% Steel containing one or more of them, the balance being Fe and unavoidable impurities, was melted and made into a steel slab by continuous casting or ingot forming method, immediately or once cooled and heated to 1100 ° C or higher After that, by hot rolling to a plate thickness of 6 mm or more, the finish hot rolling outlet temperature is 750 ° C. or more, and the average cooling rate for 10 seconds from the end of finish hot rolling is 20 to 50 ° C./sec, Cooling is performed until the plate surface temperature reaches 500 to 700 ° C. 10 seconds after finishing hot rolling is finished, and finishing hot rolling is finished 10 It is excellent in workability with a tensile strength of 780 MPa or more, characterized in that runout cooling is performed by a cooling pattern including air cooling for a total of 5 seconds or more for 10 seconds after 20 seconds, and winding is performed at 500 to 650 ° C. A method for producing thick, high-strength hot-rolled steel sheets.

)上記()または()において、C、Ti、Moを以下の(1)式を満足するように含有することを特徴とする加工性に優れた厚物高強度熱延鋼板の製造方法。
0.5≦(C/12)/{(Ti/48)+(Mo/96)}≦1.5 …(1)
ただし、上記(1)式中、C、Ti、Moは各成分の質量%を表す。
( 6 ) In the above ( 4 ) or ( 5 ), a thick, high-strength hot-rolled steel sheet excellent in workability characterized by containing C, Ti, and Mo so as to satisfy the following expression (1): Production method.
0.5 ≦ (C / 12) / {(Ti / 48) + (Mo / 96)} ≦ 1.5 (1)
However, in said Formula (1), C, Ti, and Mo represent the mass% of each component.

本発明によれば、板厚6mm以上において、微細な炭化物が析出したフェライト組織が形成され、かつ、板厚方向の硬さ分布が均一化されるので、所望の強度を安定して確保可能な、引張強度が780MPa以上の加工性に優れた厚物高強度熱延鋼板を得ることができる。   According to the present invention, a ferrite structure in which fine carbides are deposited is formed at a plate thickness of 6 mm or more, and the hardness distribution in the plate thickness direction is made uniform, so that a desired strength can be secured stably. A thick high strength hot-rolled steel sheet having excellent workability with a tensile strength of 780 MPa or more can be obtained.

以下、本発明について具体的に説明する。
本発明の鋼板は、引張強度が780MPa以上の厚物鋼板であって、金属組織が面積比率で95%以上のフェライト組織であり、フェライト組織中に平均粒径が10nm未満のTiとMoとを含む炭化物が析出してなり、6mm以上の板厚を有し、板厚表層と板厚中央のビッカース硬さ(Hv)の差が60以下である。析出物はTi、Moに加え、NbおよびVの1種または2種を含んでいてもよい。以下、これらについて説明する。
Hereinafter, the present invention will be specifically described.
The steel sheet of the present invention is a thick steel sheet having a tensile strength of 780 MPa or more, the metal structure is a ferrite structure having an area ratio of 95% or more, and Ti and Mo having an average particle size of less than 10 nm are contained in the ferrite structure. The carbide | carbonized_material which contains contains and has plate thickness of 6 mm or more, and the difference of Vickers hardness (Hv) of plate | board thickness surface layer and plate | board thickness center is 60 or less. The precipitate may contain one or two of Nb and V in addition to Ti and Mo. Hereinafter, these will be described.

[対象とする引張強度レベル]
本発明は、引張強度が780MPa以上の熱延鋼板を対象とする。一般的に、強度グレードが大きく異なるものに対して鋼の強化元素の適正添加量を一つの成分範囲で示すことは難しい。したがって、本発明では強度範囲を780MPa以上と規定し、これを得るための板厚方向の硬度や好ましい成分範囲を規定した。780MPa以上としたのは、本発明が対象とする建築機器の各部材、自動車足回り部材、トラックフレーム部材、各種構造部材等の用途では780MPa以上が要求されるものが多いからである。
[Target tensile strength level]
The present invention is directed to a hot-rolled steel sheet having a tensile strength of 780 MPa or more. Generally, it is difficult to show the appropriate addition amount of the strengthening element of steel in one component range for those having greatly different strength grades. Therefore, in the present invention, the strength range is defined as 780 MPa or more, and the hardness in the thickness direction and the preferable component range for obtaining this are defined. The reason why the pressure is set to 780 MPa or more is that there are many cases where 780 MPa or more is required in applications such as each member of building equipment, automobile undercarriage member, truck frame member, and various structural members targeted by the present invention.

[鋼板の板厚]
本発明は、建築機器の各部材、自動車足回り部材、トラックフレーム部材、各種構造部材等の用途において要求される板厚6mm以上の厚物鋼板を対象とする。板厚6mm以上の厚物鋼板は、従来、微細な析出物によっては、目標とする780MPa未満の強度レベルが達成されていなかった。本発明の鋼板は、熱間圧延後にコイラーに巻取られ、熱延コイルとなるものであるから、コイラーの能力にもよるが、巻取り可能な20mm以下の板厚とすることが好ましい。さらに上記の用途において通常要求される板厚である15mm以下とすることがより好ましい。
[Thickness of steel sheet]
The present invention is directed to a thick steel plate having a thickness of 6 mm or more required in applications such as members of building equipment, automobile undercarriage members, truck frame members, and various structural members. Conventionally, a thick steel plate having a thickness of 6 mm or more has not achieved a target strength level of less than 780 MPa depending on fine precipitates. The steel sheet of the present invention is wound around a coiler after hot rolling to form a hot-rolled coil. Therefore, although it depends on the ability of the coiler, the sheet thickness is preferably 20 mm or less that can be wound. Furthermore, it is more preferable to set it as 15 mm or less which is the board | plate thickness normally requested | required in said use.

[金属組織]
面積比率で95%以上のフェライト組織
マトリックスをフェライト組織としたのは、加工性の向上にはフェライトが最も有効であるからである。ただし、マトリックスは必ずしもフェライト単相組織でなくともよく、断面組織観察による面積比率で95%以上がフェライトであればよい。より好ましくは、98%以上である。
[Metal structure]
-Ferrite structure with an area ratio of 95% or more :
The reason why the matrix has a ferrite structure is that ferrite is most effective in improving workability. However, the matrix is rather good not necessarily ferrite single phase, more than 95% by area ratio due to the cross-sectional surface tissue observation may be a ferrite. More preferably, it is 98% or more.

・平均粒径10nm未満のTiとMoとを含む炭化物の析出物:
TiとMoとを含む炭化物は、微細に析出して加工性を劣化させずに鋼を強化することができる。一般にMoの拡散速度は遅いため、MoをTi等とともに析出させることで、析出物の成長速度を速くする。微細析出物の平均粒径は、10nm以上になると780MPa以上の強度を得難くなる。また、10nm以上の析出物で強化しようとすると、析出物の体積を多くしなければならず、必然的に析出物形成元素の添加量が増大し、添加元素のコスト増を招くことになる。よって、本発明では微細析出物の平均粒径を10nm未満とする。析出物形成元素の添加量を少なく抑えてかつ高強度を確保するには、析出物の平均粒径は好ましくは8nm以下であり、さらに好ましくは5nm以下である。
-Precipitate of carbide containing Ti and Mo having an average particle size of less than 10 nm:
The carbide containing Ti and Mo can reinforce the steel without precipitating finely and degrading workability. Since the diffusion rate of Mo is generally slow, the growth rate of precipitates is increased by precipitating Mo together with Ti or the like. If the average particle size of the fine precipitates is 10 nm or more, it is difficult to obtain a strength of 780 MPa or more. In addition, when strengthening with precipitates of 10 nm or more, the volume of the precipitates must be increased, which inevitably increases the amount of precipitate-forming elements added, resulting in an increase in the cost of the additive elements. Therefore, in this invention, the average particle diameter of a fine precipitate shall be less than 10 nm. In order to keep the addition amount of the precipitate-forming element small and ensure high strength, the average particle size of the precipitate is preferably 8 nm or less, and more preferably 5 nm or less.

・Ti、Moに加え、NbまたはVの1種以上を含む析出物:
析出物が、TiとMoに加え、NbおよびVの1種以上が複合して析出したものであってもよい。すなわち、Tiの炭化物、窒化物、炭窒化物、Nbの炭化物、窒化物、炭窒化物、Vの炭化物、窒化物、炭窒化物、Moの炭化物が、単独でおよび/または複合化して析出していても、発明の本質に影響を及ぼすものではない。なお、微細な析出物が得られやすくするためには、TiとMoとの比Ti/Moが原子数比で0.4≦Ti/Mo≦2.5の範囲が好ましく、0.7≦Ti/Mo≦1.5の範囲がさらに好ましい。この範囲でTiとMoを含む炭化物は極めて微細となり、本発明の効果が最大となる。
-Precipitate containing one or more of Nb or V in addition to Ti and Mo:
In addition to Ti and Mo, the precipitate may be a composite of one or more of Nb and V. In other words, Ti carbide, nitride, carbonitride, Nb carbide, nitride, carbonitride, V carbide, nitride, carbonitride, and Mo carbide precipitate alone and / or in combination. Does not affect the essence of the invention. In order to easily obtain fine precipitates, the Ti / Mo ratio Ti / Mo is preferably in the range of 0.4 ≦ Ti / Mo ≦ 2.5 in terms of atomic ratio, and 0.7 ≦ Ti. The range of /Mo≦1.5 is more preferable. In this range, the carbide containing Ti and Mo becomes extremely fine, and the effect of the present invention is maximized.

[板厚方向の硬さ分布]
本発明の厚物熱延鋼板は、板厚表層と板厚中央のビッカース硬さ(Hv)の差が60以下である。板厚表層と板厚中央の硬さの差を60以下と小さくすることにより、板厚6mm以上の厚物鋼板において、所望の強度を得ることができる。
[Hardness distribution in the thickness direction]
In the thick hot-rolled steel sheet of the present invention, the difference in the Vickers hardness (Hv) between the sheet thickness surface layer and the sheet thickness center is 60 or less. By reducing the difference in hardness between the plate thickness surface layer and the plate thickness center to 60 or less, a desired strength can be obtained in a thick steel plate having a plate thickness of 6 mm or more.

また、このように板厚表層と板厚中央のビッカース硬さ(Hv)の差を60以下とすることで、曲げ加工時の「そり」の問題も格段に起こり難くすることができる。すなわち、板厚6mm以上の厚物をランナウトでの冷却を通常より強化し、空冷しないで製造する場合、厚物ゆえに冷却時に板厚方向に温度分布が生じ、フェライト粒径や析出物の大きさ・分布状態にも板厚方向に分布が生じるため、板厚方向にHvで60を超える硬さの差が生じるが、このような板厚方向の硬さ分布が大きい材料に対して曲げ加工を行うと、曲げの稜線が直線にならずに湾出するいわゆる「(稜線)そり」と呼ばれる不良現象を起こしやすく、これがひどい場合には矯正工程を余分に設けなければならず、コスト高となってしまう。板厚方向に硬さ分布がある材料が「そり」を起こしやすい理由は必ずしも明確ではないが、板を曲げる際の外側と内側の稜線方向の材料の伸び縮みの差で「そり」が生じることを考慮すると、曲げ加工を加えたときの稜線方向の材料の伸び量・縮み量が、材料に板厚方向の硬さ分布がある時の方がより大きくなるためであると考えられる。   In addition, by setting the difference between the surface thickness layer and the Vickers hardness (Hv) at the center of the thickness to be 60 or less, the problem of “warping” during bending can be made much less likely to occur. That is, when a thick product with a plate thickness of 6 mm or more is manufactured without strengthening the cooling in the run-out and without air cooling, temperature distribution occurs in the thickness direction during cooling because of the thick product, and the ferrite grain size and the size of the precipitate・ Because distribution occurs in the plate thickness direction even in the distribution state, a difference in hardness exceeding 60 in Hv in the plate thickness direction occurs. However, bending is applied to such a material having a large hardness distribution in the plate thickness direction. Doing so tends to cause a so-called `` (ridgeline) sled '' that causes the bending ridge line to go out without being straight, and if this is severe, an extra correction process must be provided, which increases costs. End up. The reason why materials with hardness distribution in the plate thickness direction are likely to cause sleigh is not necessarily clear, but sleigh occurs due to the difference in expansion and contraction of the material between the outer and inner edges when the plate is bent. In view of this, it is considered that the amount of elongation / contraction of the material in the ridge line direction when bending is applied is greater when the material has a hardness distribution in the plate thickness direction.

本発明では、板厚6mm以上の厚物について、このように板厚方向の硬さ分布を小さくするために、後述するように、冷却を通常よりも強化しつつも冷却途中での復熱による板厚全体の温度の均一化を図るための冷却パターンで冷却している。   In the present invention, in order to reduce the hardness distribution in the thickness direction of the thick material having a thickness of 6 mm or more in this way, as will be described later, the cooling is strengthened more than usual and the reheating during the cooling is performed. Cooling is performed with a cooling pattern to make the temperature of the entire plate uniform.

なお、硬さ測定については、荷重200gfで板断面のビッカース硬さを測定するものとし、板厚表層の硬さおよび板厚中央の硬さとは、それぞれ板表面から250μm位置および板厚中央位置で測定した値と定義する。   Regarding the hardness measurement, the Vickers hardness of the cross section of the plate is measured with a load of 200 gf. The hardness of the plate thickness surface layer and the hardness of the plate thickness center are respectively 250 μm and the plate thickness center position from the plate surface. Defined as measured value.

[成分組成]
上述のような組織をもつ熱延鋼板を得るためには、鋼の成分組成を、質量%で、C:0.03〜0.11%、Si≦0.3%、Mn:1〜2%、P≦0.06%、S≦0.01%、Al≦0.06%、N≦0.006%、Mo:0.15〜0.45%、Ti:0.06〜0.21%のように調整することが望ましい。
[Ingredient composition]
In order to obtain a hot-rolled steel sheet having the structure as described above, the composition of steel is, in mass%, C: 0.03 to 0.11%, Si ≦ 0.3%, Mn: 1 to 2%. , P ≦ 0.06%, S ≦ 0.01%, Al ≦ 0.06%, N ≦ 0.006%, Mo: 0.15 to 0.45%, Ti: 0.06 to 0.21% It is desirable to adjust as follows.

C:0.03〜0.11%
Cは炭化物を形成し、鋼を強化するのに有効である。しかし、0.03%未満ではその効果が不十分である。一方、0.11%を超えて添加すると、鋼の強化に寄与しない粗大な炭化物であるパーライトが形成され加工性を劣化させるため、0.03〜0.11%の範囲とした。
C: 0.03-0.11%
C forms carbides and is effective for strengthening steel. However, if it is less than 0.03%, the effect is insufficient. On the other hand, if added over 0.11%, pearlite, which is a coarse carbide that does not contribute to the strengthening of steel, is formed and the workability is deteriorated, so the content was made 0.03 to 0.11%.

Si≦0.3%
Siは固溶強化元素として有効である。しかし、0.3%を超えて添加するとフェライトからのC排出が促進されて、粒界に粗大な鉄炭化物が析出しやすくなり、加工性の劣化を招くので、0.3%以下とした。
Si ≦ 0.3%
Si is effective as a solid solution strengthening element. However, if added over 0.3%, C discharge from the ferrite is promoted, and coarse iron carbide tends to be precipitated at the grain boundaries, resulting in deterioration of workability.

Mn:1〜2%
Mnは鋼を強化するため1%以上添加する。しかし、2%を超えて添加すると偏析しかつ硬質相が形成され、加工性が劣化するため、1〜2%の範囲とした。
Mn: 1-2%
Mn is added at 1% or more to strengthen the steel. However, if added over 2%, segregation occurs and a hard phase is formed, and the workability deteriorates.

P≦0.06%
Pは固溶強化に有効である。しかし、0.06%を超えて添加すると偏析して加工性が劣化するため、0.06%以下とした。
P ≦ 0.06%
P is effective for solid solution strengthening. However, if added over 0.06%, segregation and workability deteriorate, so the content was made 0.06% or less.

S≦0.01%
Sは少ないほど好ましい。0.01%を超えると加工性を劣化させるため、0.01%以下とした。
S ≦ 0.01%
The smaller the S, the better. If it exceeds 0.01%, the workability deteriorates, so the content was made 0.01% or less.

Al≦0.06%
Alは脱酸剤として添加される。しかし、0.06%を超えると加工性が劣化するため0.06%以下とした。
Al ≦ 0.06%
Al is added as a deoxidizer. However, if it exceeds 0.06%, the workability deteriorates, so the content was made 0.06% or less.

N≦0.006%
Nは少ないほど好ましい。0.006%を超えると、粗大なTiNが増えて加工性が劣化するのに加えて、TiNが形成されることで、本来Moとともに微細な炭化物を形成して鋼の強化に寄与するはずのTiが有効に働かなくなるため、0.006%以下とした。
N ≦ 0.006%
The smaller N, the better. If it exceeds 0.006%, coarse TiN increases and the workability deteriorates. In addition, TiN is formed, which should contribute to strengthening the steel by forming fine carbide with Mo originally. Since Ti does not work effectively, it was made 0.006% or less.

Mo:0.15〜0.45%
Moは本発明において重要な元素である。0.15%以上添加することでパーライト変態を抑制してフェライト単相組織となり、TiまたはTiとNbとVを含む炭・窒化物を形成して微細に析出するため、高強度化と加工性が両立する。しかし、0.45%を超えて添加すると硬質相が形成されて鋼の加工性が劣化するため、0.15〜0.45%の範囲とした。
Mo: 0.15-0.45%
Mo is an important element in the present invention. Addition of 0.15% or more suppresses the pearlite transformation to form a ferrite single-phase structure, and forms fine carbon and nitride containing Ti or Ti, Nb, and V, resulting in high strength and workability. Are compatible. However, if added over 0.45%, a hard phase is formed and the workability of the steel deteriorates, so the content was made 0.15 to 0.45%.

Ti:0.06〜0.21%
Tiは本発明において重要な元素である。0.06%以上添加することで炭・窒化物析出により鋼が有効に強化される。しかし、0.21%を超えて添加しても鋼の強化に寄与しない粗大な炭化物が増えるだけで添加成分が無駄に消費されてしまうため、0.06〜0.21%とした。
Ti: 0.06-0.21%
Ti is an important element in the present invention. By adding 0.06% or more, steel is effectively strengthened by carbon / nitride precipitation. However, even if added over 0.21%, the amount of coarse carbides that do not contribute to the strengthening of the steel increases and the added components are wasted, so 0.06 to 0.21%.

Nb≦0.08%
Nbは炭・窒化物の析出により鋼の強化に寄与する。しかし、0.08%を超えて添加すると析出物が過多となり加工性が劣化するため、0.08%以下とした。
Nb ≦ 0.08%
Nb contributes to strengthening of steel by precipitation of charcoal and nitride. However, if added over 0.08%, the amount of precipitates becomes excessive and the workability deteriorates, so the content was made 0.08% or less.

V≦0.15%
Vは炭・窒化物の析出により鋼の強化に寄与する。しかし、0.15%を超えて添加すると析出物が過多となり加工性が劣化するため、0.15%以下とした。
V ≦ 0.15%
V contributes to strengthening of steel by precipitation of charcoal and nitride. However, if added over 0.15%, precipitates become excessive and workability deteriorates, so the content was made 0.15% or less.

なお、上記元素の他、不可避的不純物が許容されるのはもちろんであるIncidentally, in addition to the above elements, it is of course inevitable impurities is allowed.

本発明では、さらに(C/12)/{(Ti/48)+(Mo/96)}の値(以下、P値という)が0.5〜1.5を満たすことが好ましい。これは、鋼中のCと(Ti+Mo)の原子数比が0.5〜1.5となるようにC、Ti、Moの含有量を制御すると、TiとMoを含む炭化物が微細に析出しやすくなり、鋼が有効に強化されるからである。このP値は、0.8〜1.3であることがより好ましい。なお、P値を規定するC、Ti、Moは各成分の質量%を表す。   In the present invention, it is further preferable that the value of (C / 12) / {(Ti / 48) + (Mo / 96)} (hereinafter referred to as P value) satisfies 0.5 to 1.5. This is because when the content of C, Ti, and Mo is controlled so that the atomic ratio of C to (Ti + Mo) in the steel is 0.5 to 1.5, carbides containing Ti and Mo precipitate finely. This is because the steel is effectively strengthened. The P value is more preferably 0.8 to 1.3. In addition, C, Ti, and Mo which prescribe | regulate P value represent the mass% of each component.

[製造方法]
本発明の熱延鋼板は、上記成分組成を有する鋼を溶製し、連続鋳造法または造塊法により鋼スラブとなし、直ちにまたは一旦冷却してから1100℃以上に加熱した後、熱間圧延し、仕上熱間圧延出側温度を750℃以上とし、仕上熱間圧延終了から10秒間の平均冷却速度を20〜50℃/secとすることによって、仕上熱間圧延終了10秒後の板表面温度が500〜700℃となるまで冷却し、仕上熱間圧延終了10秒後〜20秒後の10秒間の間に計5秒以上の空冷を含むパターンによってランナウト冷却を行い、500〜650℃で巻取ることによって製造される。以下、このように規定した理由について説明する。
[Production method]
The hot-rolled steel sheet of the present invention is a steel slab produced by melting a steel having the above-mentioned composition and formed into a steel slab by a continuous casting method or an ingot forming method, immediately or once cooled and then heated to 1100 ° C. or higher and then hot rolled. The finish hot rolling outlet temperature is set to 750 ° C. or higher, and the average cooling rate for 10 seconds from the finish hot rolling finish is set to 20 to 50 ° C./sec, whereby the plate surface 10 seconds after finish hot rolling finishes. Cool until the temperature reaches 500 to 700 ° C., perform runout cooling with a pattern including air cooling for a total of 5 seconds or more for 10 seconds after finishing hot rolling 10 seconds to 20 seconds, and at 500 to 650 ° C. Manufactured by winding. Hereinafter, the reason for this definition will be described.

・鋼スラブを直ちに熱間圧延、または一旦冷却してから1100℃以上に加熱後熱間圧延
熱間圧延後にTiとMoとを含む炭化物か、またはTiとMoとを含み、さらにNbとVの1種または2種を含む炭化物を析出させるために、熱間圧延前のスラブ段階では、TI、Nb、VおよびMoを固溶させる必要があるため、鋼スラブを直ちに熱問圧延するか、または一旦冷却してから1100℃以上に加熱後熱間圧延する。つまり、スラブ製造後はTi、Nb、VおよびMoは固溶しているため、直ちに熱間圧延する場合には固溶状態が保たれているので熱間圧延前に加熱する必要はないが、一旦冷却した場合には粗大な析出物が形成されるので1100℃以上に加熱してTi、Nb、VおよびMoを再度固溶させる必要がある。
-The steel slab is immediately hot-rolled or once cooled and then heated to 1100 ° C or higher and then hot-rolled. After hot-rolling, it contains carbides containing Ti and Mo, or Ti and Mo, and Nb and V In order to precipitate a carbide containing one or two kinds, it is necessary to dissolve TI, Nb, V and Mo in the slab stage before hot rolling, so the steel slab is immediately hot-rolled, or Once cooled, it is heated to 1100 ° C or higher and then hot rolled. In other words, since Ti, Nb, V and Mo are in solid solution after slab production, it is not necessary to heat before hot rolling because the solid solution state is maintained when immediately hot rolling, Once cooled, coarse precipitates are formed, so it is necessary to heat the solution to 1100 ° C. or higher to again dissolve Ti, Nb, V, and Mo.

・仕上熱間圧延出側温度:750℃以上
強度と加工性を確保するために、仕上熱間圧延出側温度を750℃以上とする。750℃未満とした場合、板厚表層がフェライト域圧延となり展伸粒となって加工性が損なわれるとともに、強度も確保されにくくなり、板厚方向で強度が不均一となることで加工後の部材形状が安定しないという問題を生ずる。
-Finishing hot rolling outlet temperature: 750 ° C or higher In order to ensure strength and workability, the finishing hot rolling outlet temperature is set to 750 ° C or higher. When the temperature is less than 750 ° C., the thickness of the surface layer becomes ferrite region rolling, and the grain size is expanded and the workability is impaired. Also, the strength is difficult to be secured, and the strength is not uniform in the thickness direction. The problem arises that the member shape is not stable.

・仕上熱間圧延終了から10秒間の平均冷却速度:20〜50℃/sec
・仕上熱間圧延終了10秒後の板表面温度:500〜700℃
・仕上熱間圧延終了10秒後〜20秒後の10秒間に計5秒以上の空冷を含む
これらの条件は、ランナウトテーブル上での冷却パターンを規定するものであり、本発明の重要な製造条件である。
-Average cooling rate for 10 seconds after finishing hot rolling finish: 20-50 ° C / sec
-Plate surface temperature 10 seconds after finishing hot rolling finish: 500-700 ° C
-10 seconds after finishing hot rolling 10 seconds to 20 seconds, including a total of 5 seconds or more of air cooling These conditions define the cooling pattern on the run-out table, and are important production of the present invention It is a condition.

仕上熱間圧延終了から10秒間の平均冷却速度が20℃/sec未満では、特に板厚中央付近ほど変態が高温で開始して析出物が粗大になってしまう。一方、50℃/sec以上では特に板厚表層の温度が下がりすぎて、空冷を行っても変態が開始するまでの復熱が不十分で、温度差が解消されないまま変態開始するため、板厚方向の材質が均一化されない。したがって、仕上熱間圧延終了から10秒間の平均冷却速度を20〜50℃/secとする。   When the average cooling rate for 10 seconds after the finish hot rolling is finished is less than 20 ° C./sec, the transformation starts at a higher temperature especially near the center of the plate thickness and the precipitate becomes coarse. On the other hand, when the temperature is 50 ° C./sec or more, the surface thickness of the sheet thickness is particularly low, and even if air cooling is performed, the reheating until the transformation starts is insufficient and the transformation starts without eliminating the temperature difference. Directional material is not uniform. Therefore, the average cooling rate for 10 seconds from the end of finish hot rolling is set to 20 to 50 ° C./sec.

仕上熱間圧延終了10秒後の板表面温度が500℃未満では、板表層部分がベイニティックな組織となって析出物の析出が不十分となる。一方、700℃を超えると、特に板厚中央付近ほど変態が高温で開始して析出物が粗大になってしまう。したがって、仕上熱間圧延終了10秒後の板表面温度を500〜700℃とする。   If the surface temperature of the plate 10 seconds after finishing hot rolling is less than 500 ° C., the surface portion of the plate becomes a bainitic structure, and precipitation of precipitates becomes insufficient. On the other hand, when it exceeds 700 ° C., the transformation starts at a higher temperature especially near the center of the plate thickness, and the precipitate becomes coarse. Therefore, the plate surface temperature 10 seconds after finishing hot rolling is set to 500 to 700 ° C.

仕上熱間圧延終了10秒後〜20秒後の10秒間に含まれる空冷時間が計5秒未満だと、復熱のための時間が不十分で、板厚表層部分と板厚中央付近の温度差が解消されない。したがって、仕上熱間圧延終了10秒後〜20秒後の10秒間に計5秒以上の空冷を含むものとする。   If the air cooling time included in 10 seconds from 10 seconds to 20 seconds after finishing hot rolling is less than 5 seconds in total, the time for reheating is insufficient, and the temperature near the plate thickness surface layer portion and the plate thickness center The difference is not resolved. Therefore, 10 seconds after the finish hot rolling is completed to 10 seconds after 20 seconds, air cooling for a total of 5 seconds or more is included.

このような冷却パターンを実行することにより、板厚方向の温度分布を均一化して、板厚全体にフェライト粒および析出物を微細に析出させることができ、板厚表層と板厚中央のビッカース硬さ(Hv)の差を60以下にすることができる。   By executing such a cooling pattern, the temperature distribution in the plate thickness direction can be made uniform, and ferrite grains and precipitates can be finely precipitated throughout the plate thickness, and the Vickers hardness of the plate thickness surface layer and the plate thickness center can be obtained. The difference in length (Hv) can be made 60 or less.

・巻取温度:500〜650℃
フェライト組織を得るため、巻取温度を500〜650℃とする。500℃未満では特に板厚表層がベイナイトを含むようになりTi、Nb、VおよびMoの析出物が十分に析出せず析出強化の効果が小さくなって強度が低下し、逆に650℃を超えてもこれらの析出物が粗大に析出し析出強化の効果が小さくなる。さらに好ましくは550〜650℃であり、これにより、強度と加工性のバランスがさらに良好となる。
-Winding temperature: 500-650 ° C
In order to obtain a ferrite structure, the coiling temperature is set to 500 to 650 ° C. If the temperature is less than 500 ° C., the surface layer of the plate particularly contains bainite, and the precipitates of Ti, Nb, V and Mo are not sufficiently precipitated, the effect of precipitation strengthening is reduced, and the strength is lowered. However, these precipitates are coarsely deposited and the effect of precipitation strengthening is reduced. More preferably, it is 550-650 degreeC, and this further improves the balance of strength and workability.

なお、鋳造後直ちにまたは補熱を目的とした加熱を施した後にそのまま熱間圧延を行う直送圧延を行ったものであっても、本発明の効果に影響はない。また、粗圧延後に仕上圧延前もしくは仕上圧延中にシートバーを加熱または保熱しても、粗圧延後にシートバーを接合して行う連続圧延を行っても、また、シートバーの加熱と連続圧延を同時に行っても、本発明の効果は損なわれない。また、本発明の熱延鋼板は、スケールの付いた状態でも酸洗材でもその特性に差異はない。調質圧延についても通常行われる条件であれば問題はない。   Note that the effect of the present invention is not affected even if the direct rolling is performed immediately after casting or after performing heating for the purpose of supplementary heating. Moreover, even if the sheet bar is heated or kept after rough rolling before or during finish rolling, continuous rolling performed by joining the sheet bar after rough rolling, or heating and continuous rolling of the sheet bar are performed. Even if it carries out simultaneously, the effect of this invention is not impaired. In addition, the hot-rolled steel sheet of the present invention has no difference in characteristics between the scaled state and the pickling material. There is no problem with temper rolling as long as it is a condition normally performed.

(実施例1)
表1に示す成分組成の鋼を溶製し、表2に示す条件で熱間圧延を行った。得られた鋼板の金属組織を光学顕微鏡および走査型電子顕微鏡(SEM)で確認し、また、析出物を透過型電子顕微鏡(TEM)により観察して析出物の平均粒径を求めるとともに、TEMに付属のエネルギー分散型X線分光装置(EDX)により析出物に含まれる元素を分析した。さらに、JIS 5号試験片による引張試験を行い引張強度を求めた。これらの結果も表2に合わせて示す。なお、表1において、P値は(C/12)/{(Ti/48)+(Mo/96)}の値を示す。また、表2において、SRTはスラブ加熱温度、FTは仕上熱間圧延出側温度、CRは仕上熱間圧延終了から10秒間の平均冷却速度、CTは巻取温度を示す。
Example 1
Steels having the composition shown in Table 1 were melted and hot rolled under the conditions shown in Table 2. The metallographic structure of the obtained steel sheet was confirmed with an optical microscope and a scanning electron microscope (SEM), and the precipitate was observed with a transmission electron microscope (TEM) to determine the average particle size of the precipitate. The elements contained in the precipitates were analyzed by the attached energy dispersive X-ray spectrometer (EDX). Further, a tensile test using a JIS No. 5 test piece was performed to determine the tensile strength. These results are also shown in Table 2. In Table 1, the P value represents a value of (C / 12) / {(Ti / 48) + (Mo / 96)}. In Table 2, SRT is the slab heating temperature, FT is the finish hot rolling outlet temperature, CR is the average cooling rate for 10 seconds from the end of finish hot rolling, and CT is the coiling temperature.

表2に示すように、No.1〜6の鋼板は、金属組織がTiとMoを含む適正な大きさの炭化物が析出したフェライト単相組織であり、適正な強度が確保されている。板厚は6〜15mmで、いずれも冷却強化装置を使用するとともに、必要な5秒以上の空冷を行っている。冷却強化装置は、板厚5mm以下の熱延鋼板の製造では必要がないので使用しないが、本発明の板厚6mm以上の鋼板の製造では、CRを本発明範囲とするために使用した。また、図1にNo.5の鋼板の電子顕微鏡写真を示す。この写真より、微細な析出物がフェライト単相中に均一に分散していることがわかる。   As shown in Table 2, no. The steel sheets 1 to 6 are ferrite single-phase structures in which carbides of appropriate sizes including Ti and Mo are deposited, and appropriate strength is ensured. The plate thickness is 6 to 15 mm, all of which use a cooling strengthening device and perform necessary air cooling for 5 seconds or more. The cooling strengthening device is not used because it is not necessary for the production of a hot-rolled steel sheet having a thickness of 5 mm or less. However, in the production of a steel sheet having a thickness of 6 mm or more according to the present invention, CR was used in order to make the scope of the present invention. In FIG. The electron micrograph of the steel plate of No. 5 is shown. From this photograph, it can be seen that fine precipitates are uniformly dispersed in the ferrite single phase.

これに対して、No.7〜9の鋼板は、析出物の大きさが13nm以上と本発明範囲を外れて大きくなっており、引張強度が不十分である。このうち、No.7はCRが17℃/secと本発明範囲を外れているためであり、冷却強化装置を使用していない。また、No.8、9は冷却強化装置を使用してCRを20〜50℃/secとしているものの、十分な空冷を行っていないために強度が確保されていない。また、No.10の鋼板は、板表層にベイナイト相が出たために、十分な析出が起こらず強度が不足している。これは、冷却強化装置を使用するとともに必要な空冷を行っているものの、CRが54℃/secと速すぎて板厚方向の温度分布が解消されずに変態開始しているため、板厚方向で組織差ができたものである。なお、冷却強化装置の使用や空冷を行わなくても板厚が5mm以下であれば目的の組織と強度を有する鋼板が製造でき、その例がNo.11である。No.12の鋼板は、巻取温度が低すぎるためにベイナイト組織が混じってしまった例である。   In contrast, no. In the steel sheets of 7 to 9, the size of the precipitate is 13 nm or more, which is out of the range of the present invention, and the tensile strength is insufficient. Of these, No. 7 is because CR is 17 ° C./sec, which is outside the scope of the present invention, and no cooling strengthening device is used. No. Nos. 8 and 9 have a CR of 20 to 50 ° C./sec using a cooling strengthening device, but the strength is not ensured because sufficient air cooling is not performed. No. Since the bainite phase appeared on the surface layer of the steel plate No. 10, sufficient precipitation did not occur and the strength was insufficient. This is because the cooling enhancement device is used and the necessary air cooling is performed, but the CR is too fast as 54 ° C./sec and the temperature distribution in the plate thickness direction is not canceled, so the transformation starts. The difference in organization was made. In addition, even if it does not perform use of a cooling reinforcement | strengthening apparatus or air cooling, if the plate | board thickness is 5 mm or less, the steel plate which has the target structure | tissue and intensity | strength can be manufactured. 11. No. No. 12 steel plate is an example in which the bainite structure is mixed because the coiling temperature is too low.

ここで、No.5および7〜9の鋼板について、断面のビッカース硬さを荷重200gfで測定した結果を図2に示す。No.7は板厚全体にわたり硬さが必要レベルに到達しておらず、これは、冷却強化していないために冷却速度が不十分で高温で変態や析出が起こったためである。No.8とNo.9はいずれも冷却強化装置を使用しているが必要な空冷を行っていないために、板厚方向で硬さが一定でなく板厚表層と板厚中央の硬さの差が60を超えており、板厚全体として必要な硬さにも達していない。これらNo.7〜9に対して、No.5は冷却強化装置を使用するとともに必要な空冷も行っているので、硬さの板厚分布は均一であり板厚表層と板厚中央の硬さの差が60以下であって、必要な硬さレベルが確保されている。   Here, no. FIG. 2 shows the results of measuring the Vickers hardness of the cross section at a load of 200 gf for the steel plates 5 and 7-9. No. In No. 7, the hardness did not reach the required level over the entire thickness, because the cooling rate was insufficient because the cooling was not strengthened, and transformation or precipitation occurred at a high temperature. No. 8 and no. No. 9 uses a cooling strengthening device but does not perform the necessary air cooling, so the hardness is not constant in the plate thickness direction, and the difference in hardness between the plate thickness surface layer and the plate thickness center exceeds 60 Therefore, it does not reach the required hardness as a whole. These No. 7-9, no. No. 5 uses a cooling strengthening device and performs necessary air cooling, so that the thickness distribution of the hardness is uniform and the difference in hardness between the thickness surface layer and the thickness center is 60 or less, and the required hardness is The level is secured.

(実施例2)
表3に示す成分組成の鋼を溶製し、表4に示す条件で熱間圧延を行った。板厚は全て9mmとし、いずれもCRが本発明範囲となるように冷却強化装置を使用するとともに、必要な5秒以上の空冷も行っている。得られた鋼板の金属組織を光学顕微鏡および走査型電子顕微鏡(SEM)で確認し、また、析出物を透過型電子顕微鏡(TEM)により観察して析出物の平均粒径を求めるとともに、TEMに付属のエネルギー分散型X線分光装置(EDX)により析出物に含まれる元素を分析した。さらに、JIS 5号試験片による引張試験を行い引張強度を求めた。これらの結果も表4に合わせて示す。
(Example 2)
Steels having the component compositions shown in Table 3 were melted and hot rolled under the conditions shown in Table 4. All the plate thicknesses are 9 mm, and in each case, a cooling strengthening device is used so that CR is within the range of the present invention, and necessary air cooling is performed for 5 seconds or more. The metallographic structure of the obtained steel sheet was confirmed with an optical microscope and a scanning electron microscope (SEM), and the precipitate was observed with a transmission electron microscope (TEM) to determine the average particle size of the precipitate. The elements contained in the precipitates were analyzed by the attached energy dispersive X-ray spectrometer (EDX). Further, a tensile test using a JIS No. 5 test piece was performed to determine the tensile strength. These results are also shown in Table 4.

表4に示すように、No.13〜16の鋼板は、金属組織がTiとMoを含む適正な大きさの炭化物が析出したフェライト単相組織であり、適正な強度が確保されている。   As shown in Table 4, no. The steel plates 13 to 16 are ferrite single-phase structures in which carbides of appropriate sizes including Ti and Mo are deposited, and appropriate strength is ensured.

これに対して、No.17〜24の鋼板はいずれも本発明外の例である。表3と表4を合わせて見ていくと、No.17とNo.18の鋼板は、C量が本発明の範囲を外れている。No.17はC量が本発明範囲の下限未満で強度不足となっており、No.18は逆にC量が本発明範囲の上限を超えており、組織にパーライトが含まれている。No.19とNo.20の鋼板は、Mo量が本発明の範囲を外れている。No.19はMo量が本発明範囲の下限未満で強度不足となっており、No.20は逆にMo量が本発明範囲の上限を超えており、組織にマルテンサイトが含まれている。No.21とNo.22の鋼板は、Ti量が本発明の範囲を外れている。No.21はTi量が本発明範囲の下限未満で強度不足となっており、逆にNo.22はTi量が多すぎるため粗大なTiCが析出して強度不足となったものである。No.23とNo.24の鋼板は、P値が本発明の範囲を外れている。いずれも、CとMoおよびTiのバランスが悪く、析出物が粗大に析出してしまって強度不足となったものである。   In contrast, no. All the steel plates 17 to 24 are examples outside the present invention. Looking at Table 3 and Table 4 together, 17 and No. As for the 18 steel plate, C amount is outside the range of the present invention. No. No. 17 has a C amount of less than the lower limit of the range of the present invention, resulting in insufficient strength. On the other hand, the amount of C exceeds the upper limit of the range of the present invention, and the structure contains pearlite. No. 19 and No. As for 20 steel plates, Mo amount is outside the range of the present invention. No. In No. 19, the amount of Mo is less than the lower limit of the range of the present invention, and the strength is insufficient. In contrast, in No. 20, the amount of Mo exceeds the upper limit of the range of the present invention, and the structure contains martensite. No. 21 and no. In the steel plate of 22, the Ti amount is out of the scope of the present invention. No. No. 21 is insufficient in strength because the Ti amount is less than the lower limit of the range of the present invention. In No. 22, since the amount of Ti is too large, coarse TiC is precipitated and the strength becomes insufficient. No. 23 and no. The 24 steel plate has a P value outside the range of the present invention. In any case, the balance between C, Mo and Ti is poor, and precipitates are coarsely deposited, resulting in insufficient strength.

本発明によれば、所望の強度を安定して確保可能な、引張強度が780MPa以上の加工性に優れた板厚6mm以上の厚物高強度熱延鋼板を得ることができるので、建築機器の各部材、自動車足回り部材、トラックフレーム部材、各種構造部材として好適であり、工業的価値が高い。   According to the present invention, it is possible to obtain a high-strength hot-rolled steel sheet having a thickness of 6 mm or more and excellent workability with a tensile strength of 780 MPa or more that can stably secure a desired strength. It is suitable as each member, automobile underbody member, truck frame member, and various structural members, and has high industrial value.

本発明に係る鋼板の金属組織を示す透過型電子顕微鏡写真。The transmission electron micrograph which shows the metal structure of the steel plate which concerns on this invention. 本発明に係る鋼板の板厚方向の硬さ分布を示す図。The figure which shows the hardness distribution of the plate | board thickness direction of the steel plate which concerns on this invention.

Claims (6)

重量%で、C:0.03〜0.11%、Si≦0.3%、Mn:1〜2%、P≦0.06%、S≦0.01%、Al≦0.06%、N≦0.006%、Mo:0.15〜0.45%、Ti:0.06〜0.21%を含有し、残部がFeおよび不可避的不純物である成分組成を有し、金属組織が面積比率で95%以上のフェライト組織であり、フェライト組織中に平均粒径が10nm未満のTiとMoとを含む炭化物が析出してなり、6mm以上の板厚を有し、板厚表層と板厚中央のビッカース硬さ(Hv)の差が60以下であることを特徴とする、引張強度が780MPa以上の加工性に優れた厚物高強度熱延鋼板。 % By weight, C: 0.03-0.11%, Si ≦ 0.3%, Mn: 1-2%, P ≦ 0.06%, S ≦ 0.01%, Al ≦ 0.06%, N ≦ 0.006%, Mo: 0.15 to 0.45%, Ti: 0.06 to 0.21%, with the balance being the component composition of Fe and unavoidable impurities , The ferrite structure has an area ratio of 95% or more, and carbides containing Ti and Mo having an average particle size of less than 10 nm are precipitated in the ferrite structure, and has a plate thickness of 6 mm or more. A thick high-strength hot-rolled steel sheet excellent in workability having a tensile strength of 780 MPa or more , characterized in that the difference in Vickers hardness (Hv) at the thickness center is 60 or less . 重量%で、C:0.03〜0.11%、Si≦0.3%、Mn:1〜2%、P≦0.06%、S≦0.01%、Al≦0.06%、N≦0.006%、Mo:0.15〜0.45%、Ti:0.06〜0.21%を含有し、さらにNb≦0.08%、V≦0.15%のうち1種以上を含み、残部がFeおよび不可避的不純物である成分組成を有し、金属組織が面積比率で95%以上のフェライト組織であり、フェライト組織中に平均粒径が10nm未満のTiとMoとを含み、さらにNbとVの1種または2種を含む炭化物が析出してなり、6mm以上の板厚を有し、板厚表層と板厚中央のビッカース硬さ(Hv)の差が60以下であることを特徴とする、引張強度が780MPa以上の加工性に優れた厚物高強度熱延鋼板。 % By weight, C: 0.03-0.11%, Si ≦ 0.3%, Mn: 1-2%, P ≦ 0.06%, S ≦ 0.01%, Al ≦ 0.06%, N ≦ 0.006%, Mo: 0.15 to 0.45%, Ti: 0.06 to 0.21%, further Nb ≦ 0.08%, V ≦ 0.15% Including the above, the balance is the composition of Fe and inevitable impurities , the metal structure is a ferrite structure with an area ratio of 95% or more, and Ti and Mo having an average particle size of less than 10 nm in the ferrite structure In addition, a carbide containing one or two of Nb and V is precipitated, has a plate thickness of 6 mm or more, and the difference in Vickers hardness (Hv) between the plate thickness surface layer and the plate thickness center is 60 or less. Thick high strength hot rolled steel sheet, wherein a tensile strength superior to the above workability 780MPa that there. C、Ti、Moを以下の(1)式を満足するように含有することを特徴とする請求項1または請求項に記載の加工性に優れた厚物高強度熱延鋼板。
0.5≦(C/12)/{(Ti/48)+(Mo/96)}≦1.5 …(1)
ただし、上記(1)式中、C、Ti、Moは各成分の質量%を表す。
The thick, high-strength hot-rolled steel sheet having excellent workability according to claim 1 or 2 , wherein C, Ti, and Mo are contained so as to satisfy the following expression (1).
0.5 ≦ (C / 12) / {(Ti / 48) + (Mo / 96)} ≦ 1.5 (1)
However, in said Formula (1), C, Ti, and Mo represent the mass% of each component.
重量%で、C:0.03〜0.11%、Si≦0.3%、Mn:1〜2%、P≦0.06%、S≦0.01%、Al≦0.06%、N≦0.006%、Mo:0.15〜0.45%、Ti:0.06〜0.21%を含有し、残部がFeおよび不可避的不純物である鋼を溶製し、連続鋳造法または造塊法により鋼スラブとなし、直ちに、または、一旦冷却してから1100℃以上に加熱した後、6mm以上の板厚に熱間圧延し、仕上熱間圧延出側温度を750℃以上とし、仕上熱間圧延終了から10秒間の平均冷却速度を20〜50℃/secとすることによって、仕上熱間圧延終了10秒後の板表面温度が500〜700℃となるまで冷却し、仕上熱間圧延終了10秒後〜20秒後の10秒間の間に計5秒以上の空冷を含む冷却パターンによってランナウト冷却を行い、500〜650℃で巻取ることを特徴とする、引張強度が780MPa以上の加工性に優れた厚物高強度熱延鋼板の製造方法。 % By weight, C: 0.03-0.11%, Si ≦ 0.3%, Mn: 1-2%, P ≦ 0.06%, S ≦ 0.01%, Al ≦ 0.06%, N ≦ 0.006%, Mo: 0.15 to 0.45%, Ti: 0.06 to 0.21%, the balance is Fe and steel with inevitable impurities is melted, continuous casting method Alternatively, a steel slab is formed by the ingot forming method, or immediately after being cooled or heated to 1100 ° C. or higher, and then hot rolled to a thickness of 6 mm or more, and the finish hot rolling outlet temperature is set to 750 ° C. or higher. Then, by setting the average cooling rate for 10 seconds from the end of finish hot rolling to 20 to 50 ° C./sec, the plate surface temperature 10 seconds after finish hot rolling ends is cooled to 500 to 700 ° C., and the finish heat According to the cooling pattern including air cooling for a total of 5 seconds or more in 10 seconds after the end of hot rolling 10 seconds to 20 seconds. Performs run-out cooling Te, and wherein the winding at 500 to 650 ° C., a tensile strength method for producing a good, thick high-strength hot-rolled steel sheet of the above workability 780 MPa. 重量%で、C:0.03〜0.11%、Si≦0.3%、Mn:1〜2%、P≦0.06%、S≦0.01%、Al≦0.06%、N≦0.006%、Mo:0.15〜0.45%、Ti:0.06〜0.21%を含有し、さらにNb≦0.08%、V≦0.15%のうち1種以上を含み、残部がFeおよび不可避的不純物である鋼を溶製し、連続鋳造法または造塊法により鋼スラブとなし、直ちに、または、一旦冷却してから1100℃以上に加熱した後、6mm以上の板厚に熱間圧延し、仕上熱間圧延出側温度を750℃以上とし、仕上熱間圧延終了から10秒間の平均冷却速度を20〜50℃/secとすることによって、仕上熱間圧延終了10秒後の板表面温度が500〜700℃となるまで冷却し、仕上熱間圧延終了10秒後〜20秒後の10秒間の間に計5秒以上の空冷を含む冷却パターンによってランナウト冷却を行い、500〜650℃で巻取ることを特徴とする、引張強度が780MPa以上の加工性に優れた厚物高強度熱延鋼板の製造方法。 % By weight, C: 0.03-0.11%, Si ≦ 0.3%, Mn: 1-2%, P ≦ 0.06%, S ≦ 0.01%, Al ≦ 0.06%, N ≦ 0.006%, Mo: 0.15 to 0.45%, Ti: 0.06 to 0.21%, further Nb ≦ 0.08%, V ≦ 0.15% Including the above, steel with the balance being Fe and unavoidable impurities is melted and formed into a steel slab by a continuous casting method or an ingot forming method. Immediately or after cooling and heating to 1100 ° C. or higher, 6 mm By hot rolling to the above plate thickness, the finish hot rolling outlet temperature is 750 ° C. or higher, and the average cooling rate for 10 seconds from the end of finish hot rolling is 20-50 ° C./sec. The plate surface temperature 10 seconds after the end of rolling is cooled to 500 to 700 ° C., and 10 seconds after the finish hot rolling ends to 2 Thick material excellent in workability with a tensile strength of 780 MPa or more, characterized in that runout cooling is performed by a cooling pattern including air cooling of 5 seconds or more in 10 seconds after the second, and winding is performed at 500 to 650 ° C. Manufacturing method of high-strength hot-rolled steel sheet. C、Ti、Moを以下の(1)式を満足するように含有することを特徴とする請求項または請求項に記載の加工性に優れた厚物高強度熱延鋼板の製造方法。
0.5≦(C/12)/{(Ti/48)+(Mo/96)}≦1.5 …(1)
ただし、上記(1)式中、C、Ti、Moは各成分の質量%を表す。
C, Ti, and Mo are contained so that the following (1) Formula may be satisfied, The manufacturing method of the thick high strength hot-rolled steel plate excellent in workability of Claim 4 or Claim 5 characterized by the above-mentioned.
0.5 ≦ (C / 12) / {(Ti / 48) + (Mo / 96)} ≦ 1.5 (1)
However, in said Formula (1), C, Ti, and Mo represent the mass% of each component.
JP2004078896A 2004-03-18 2004-03-18 Thick high-strength hot-rolled steel sheet excellent in workability and method for producing the same Expired - Fee Related JP4547951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004078896A JP4547951B2 (en) 2004-03-18 2004-03-18 Thick high-strength hot-rolled steel sheet excellent in workability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004078896A JP4547951B2 (en) 2004-03-18 2004-03-18 Thick high-strength hot-rolled steel sheet excellent in workability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005264240A JP2005264240A (en) 2005-09-29
JP4547951B2 true JP4547951B2 (en) 2010-09-22

Family

ID=35089095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004078896A Expired - Fee Related JP4547951B2 (en) 2004-03-18 2004-03-18 Thick high-strength hot-rolled steel sheet excellent in workability and method for producing the same

Country Status (1)

Country Link
JP (1) JP4547951B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4282731B2 (en) 2006-08-11 2009-06-24 新日本製鐵株式会社 Manufacturing method of automobile underbody parts with excellent fatigue characteristics
CN101501233B (en) * 2006-08-11 2011-12-28 新日本制铁株式会社 Steel for automobile undercarriage component excelling in fatigue performance and process for manufacturing automobile undercarriage component using the steel
JP4853304B2 (en) * 2007-01-24 2012-01-11 Jfeスチール株式会社 High strength hot rolled steel sheet
JP5458641B2 (en) * 2009-04-21 2014-04-02 Jfeスチール株式会社 Carbide dispersion steel
CN105154769B (en) * 2015-09-18 2017-06-23 宝山钢铁股份有限公司 A kind of 780MPa grades of hot-rolled high-strength reaming steel high and its manufacture method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089848A (en) * 2001-09-18 2003-03-28 Nkk Corp Ultrahigh tensile strength steel sheet having excellent workability, production method therefor, and working method therefor
JP2003313631A (en) * 2002-04-25 2003-11-06 Jfe Steel Kk High-strength steel superior in formability and uniformity of quality, and manufacturing method therefor
JP2003321747A (en) * 2002-04-26 2003-11-14 Jfe Steel Kk High tensile strength welded steel tube having excellent workability and material uniformity in weld zone, production method thereof and steel strip for welded steel tube stock

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089848A (en) * 2001-09-18 2003-03-28 Nkk Corp Ultrahigh tensile strength steel sheet having excellent workability, production method therefor, and working method therefor
JP2003313631A (en) * 2002-04-25 2003-11-06 Jfe Steel Kk High-strength steel superior in formability and uniformity of quality, and manufacturing method therefor
JP2003321747A (en) * 2002-04-26 2003-11-14 Jfe Steel Kk High tensile strength welded steel tube having excellent workability and material uniformity in weld zone, production method thereof and steel strip for welded steel tube stock

Also Published As

Publication number Publication date
JP2005264240A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
JP5041084B2 (en) High-tensile hot-rolled steel sheet excellent in workability and manufacturing method thereof
JP5163356B2 (en) High tensile hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP5858174B2 (en) Low yield ratio high strength cold-rolled steel sheet and method for producing the same
JP4644076B2 (en) High strength thin steel sheet with excellent elongation and hole expansibility and manufacturing method thereof
JP5825189B2 (en) High-strength hot-rolled steel sheet excellent in elongation, hole expansibility and low-temperature toughness, and method for producing the same
WO2013065346A1 (en) High-strength hot-rolled steel sheet having excellent bending characteristics and low-temperature toughness and method for producing same
JP5825082B2 (en) High yield ratio high strength cold-rolled steel sheet with excellent elongation and stretch flangeability and its manufacturing method
JP4976906B2 (en) Thick steel plate with excellent HAZ toughness, base material toughness, elongation, and strength-elongation balance
JP4924052B2 (en) High yield ratio high tensile cold-rolled steel sheet and method for producing the same
CN113166883B (en) Structural steel having excellent low yield ratio and low temperature toughness and method for preparing the same
JP3417878B2 (en) High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue properties and its manufacturing method
JP7136061B2 (en) High-strength hot-rolled steel sheet and its manufacturing method
JP4710558B2 (en) High-tensile steel plate with excellent workability and method for producing the same
JP4867177B2 (en) High tensile hot rolled steel sheet excellent in bake hardenability and formability and method for producing the same
JP4514150B2 (en) High strength steel plate and manufacturing method thereof
JP4547951B2 (en) Thick high-strength hot-rolled steel sheet excellent in workability and method for producing the same
JP6515386B2 (en) Hot rolled steel sheet and method of manufacturing the same
JP4576859B2 (en) Method for producing thick high-strength hot-rolled steel sheet with excellent workability
JP3539545B2 (en) High-tensile steel sheet excellent in burring property and method for producing the same
CN111511949A (en) Hot-rolled steel sheet having excellent expansibility and method for producing same
JP3885314B2 (en) Method for producing high-strength hot-rolled steel sheet having excellent shape and workability
EP3901312B1 (en) High strength hot-rolled steel sheet having excellent workability, and method for manufacturing the same
JP2006213957A (en) Method for producing high stretch flange formability hot rolled steel sheet having excellent material uniformity
JP7244715B2 (en) Hot-rolled steel sheet with excellent durability and its manufacturing method
WO2018043067A1 (en) Thick steel sheet and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100628

R150 Certificate of patent or registration of utility model

Ref document number: 4547951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees