JP4853304B2 - High strength hot rolled steel sheet - Google Patents

High strength hot rolled steel sheet Download PDF

Info

Publication number
JP4853304B2
JP4853304B2 JP2007013484A JP2007013484A JP4853304B2 JP 4853304 B2 JP4853304 B2 JP 4853304B2 JP 2007013484 A JP2007013484 A JP 2007013484A JP 2007013484 A JP2007013484 A JP 2007013484A JP 4853304 B2 JP4853304 B2 JP 4853304B2
Authority
JP
Japan
Prior art keywords
less
total
amount
sol
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007013484A
Other languages
Japanese (ja)
Other versions
JP2008179852A (en
Inventor
克美 山田
哲史 城代
珠子 有賀
毅 横田
一洋 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007013484A priority Critical patent/JP4853304B2/en
Publication of JP2008179852A publication Critical patent/JP2008179852A/en
Application granted granted Critical
Publication of JP4853304B2 publication Critical patent/JP4853304B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、高強度熱延鋼板、特に、自動車の足回り部品などに好適な高延性で、引張強度(TS)が1000MPa以上の高強度熱延鋼板に関する。   The present invention relates to a high-strength hot-rolled steel sheet, in particular, a high-strength hot-rolled steel sheet having high ductility suitable for automobile undercarriage parts and the like, and having a tensile strength (TS) of 1000 MPa or more.

近年、自動車用鋼板の高強度化とともに、自動車の足回り部品などには、高延性の、すなわち優れた伸びフランジ性や高い全伸びを有する種々の高強度熱延鋼板が検討されている。例えば、主としてフェライト相(軟質相)とマルテンサイト相(硬質相)を含むDP(複合組織)鋼板は、軟質なフェライト相が存在しているため、高い全伸びを有するが、軟質相中に硬質相が存在しているため伸びフランジ性に劣っている。また、ベイナイト単相の鋼板は、硬質相のみからなるため伸びフランジ性には優れているが、硬質なため全伸びに劣っている。   2. Description of the Related Art In recent years, various high-strength hot-rolled steel sheets having high ductility, that is, excellent stretch flangeability and high total elongation, have been studied for automobile undercarriage parts as the strength of automobile steel sheets increases. For example, DP (composite structure) steel sheets mainly containing a ferrite phase (soft phase) and a martensite phase (hard phase) have a high total elongation due to the presence of a soft ferrite phase, but hard in the soft phase. Since the phase is present, the stretch flangeability is inferior. A bainite single-phase steel plate is excellent in stretch flangeability because it consists of only a hard phase, but is inferior in total elongation because it is hard.

そこで、伸びフランジ性や全伸びに有利なフェライト単相とし、フェライト相中にナノオーダーの微細析出物を均一に生成させて、高延性化と高強度化をともに実現した高強度熱延鋼板が提案されている。例えば、特許文献1には、質量%で、C<0.10%、Ti:0.03〜0.10%、Mo:0.05〜0.6%を含み、フェライト相中に粒径が10nm未満のTiとMoを含む微細炭化物を分散させたTSが590MPa以上の薄鋼板が開示されている。また、特許文献2には、質量%で、C:0.07〜0.15%、Si:0.3%以下、Mn:0.5〜2.0%、P:0.06%以下、S:0.005%以下、Al:0.06%以下、N:0.006%、Ti:0.15〜0.35%、Mo:0.3〜0.7%を含み、フェライト相中に粒径が10nm未満のTiとMoを含む微細炭化物を分散させたTSが950MPa以上の超高張力鋼板が開示されている。
特開2002-322539号公報 特開2003-89848号公報
Therefore, a high-strength hot-rolled steel sheet that achieves both high ductility and high strength by forming a ferrite single phase that is advantageous for stretch flangeability and total elongation, and uniformly generating nano-order fine precipitates in the ferrite phase. Proposed. For example, Patent Document 1 includes, in mass%, C <0.10%, Ti: 0.03 to 0.10%, Mo: 0.05 to 0.6%, and a fine carbide containing Ti and Mo having a particle size of less than 10 nm in the ferrite phase. A thin steel sheet having a TS of 590 MPa or more dispersed therein is disclosed. Patent Document 2 includes mass%, C: 0.07 to 0.15%, Si: 0.3% or less, Mn: 0.5 to 2.0%, P: 0.06% or less, S: 0.005% or less, Al: 0.06% or less, N: 0.006%, Ti: 0.15-0.35%, Mo: 0.3-0.7% A steel sheet is disclosed.
Japanese Patent Laid-Open No. 2002-322539 Japanese Patent Laid-Open No. 2003-89848

しかしながら、特許文献1に記載の薄鋼板では、1000MPa以上のTSが得られない、また、特許文献2の超高張力鋼板では、安定して15%以上の高い全伸びを確保しようとすると、TSが1000MPa以上にならない傾向になる問題がある。   However, with the thin steel sheet described in Patent Document 1, a TS of 1000 MPa or more cannot be obtained, and with the ultra-high-strength steel sheet of Patent Document 2, when trying to stably secure a high total elongation of 15% or more, TS There is a problem that tends to not exceed 1000MPa.

本発明は、安定して15%以上の高い全伸びを確保できるTSが1000MPa以上の高強度熱延鋼板を提供することを目的とする。   An object of the present invention is to provide a high-strength hot-rolled steel sheet having a TS of 1000 MPa or more that can stably ensure a high total elongation of 15% or more.

本発明者等は、特許文献2に記載されているようなフェライト相中にナノオーダーの微細炭化物を均一に生成させた高強度熱延鋼板において、安定して15%以上の高い全伸びと1000MPa以上のTSの得られる条件について検討したところ、以下のことを見出した。   In the high-strength hot-rolled steel sheet in which nano-order fine carbides are uniformly generated in the ferrite phase as described in Patent Document 2, the present inventors have stably achieved a high total elongation of 15% or more and 1000 MPa. When the conditions for obtaining the above TS were examined, the following was found.

A)これ以上高C化、高合金化しても、微細炭化物による析出強化には、熱延鋼板製造プロセスの制約上限界がある。   A) Even with higher C and higher alloys, precipitation strengthening with fine carbides has limitations due to restrictions in the hot-rolled steel sheet manufacturing process.

B)合金元素の量に対してC量が原子濃度で化学当量未満のある範囲に制限すると、粗大な炭化物の形成が抑制され、変態時に析出する微細炭化物による組織微細化の効果を利用でき、1000MPa以上のTSと15%以上の全伸びを安定して確保できる。   B) If the amount of C is limited to a certain range less than the chemical equivalent in terms of atomic concentration relative to the amount of alloy elements, the formation of coarse carbides is suppressed, and the effect of refining the structure by fine carbides precipitated during transformation can be used, The TS of 1000MPa or more and the total elongation of 15% or more can be secured stably.

本発明は、このような知見に基づきなされたもので、質量%で、C:0.10%以上0.12%以下、Si:0.30%以下、Mn:1.8%以下、N:0.003%以下、Ti:0.10%以上0.20%以下、V:0.15%以上0.30%以下、Mo:0.05%以上0.40%以下を含み、残部がFeおよび不可避的不純物からなり、下記の式(1)を満足する成分組成を有し、平均粒径が3μm以下のフェライト粒からなる組織を有し、かつ下記の式(3)で定義されたMsと下記の式(4)で定義されたM0が下記の式(2)を満足することを特徴とする高強度熱延鋼板を提供する。
0.7 < (C/12)/[{(Ti-3.42×N)/48+V/51+Mo/96}] < 0.9 ・・・(1)
4 < Ms/M0 ・・・(2)
Ms = (Ti20/Titotal+V20/Vtotal+Mo20/Mototal)/3 ・・(3)
M0 = (Tisol/Ti+Vsol/V+Mosol/Mo)/3 ・・(4)
ただし、
式(1)で、
各元素記号は、各元素の含有量(質量%)を、
式(3)で、
Ti20、V20、Mo20は、それぞれ鋼板中に析出している直径が20nm未満のTi、V、Moの炭化物中の各元素の含有量(鋼に対する質量%)を、
Titotal、Vtotal、Mototalは、総炭化物中の各元素の含有量(鋼に対する質量%)を、
式(4)で、
Tisol、Vsol、Mosolは、鋼中の各元素の固溶量(質量%)を、
Ti、V、Moは、鋼中の各元素の含有量(質量%)を、
表す。
The present invention has been made based on such knowledge, in mass%, C: 0.10% or more and 0.12% or less, Si: 0.30% or less, Mn: 1.8% or less, N: 0.003% or less, Ti: 0.10% 0.20% or less, V: 0.15% or more and 0.30% or less, Mo: 0.05% or more and 0.40% or less, the balance is composed of Fe and inevitable impurities, and has a composition that satisfies the following formula (1), Ms defined by the following formula (3) and M 0 defined by the following formula (4) satisfy the following formula (2), and has a structure composed of ferrite grains having an average grain size of 3 μm or less. A high-strength hot-rolled steel sheet is provided.
0.7 <(C / 12) / [{(Ti-3.42 × N) / 48 + V / 51 + Mo / 96}] <0.9 (1)
4 <Ms / M 0 ... (2)
Ms = (Ti 20 / Ti total + V 20 / V total + Mo 20 / Mo total ) / 3 (3)
M 0 = (Ti sol / Ti + V sol / V + Mo sol / Mo) / 3 (4)
However,
In equation (1)
Each element symbol indicates the content (% by mass) of each element,
In equation (3)
Ti 20 , V 20 , Mo 20 is the content of each element in the carbide of Ti, V, Mo with a diameter of less than 20 nm precipitated in the steel sheet (mass% relative to steel),
Ti total , V total , and Mo total are the contents of each element in the total carbide (mass% relative to steel),
In equation (4)
Ti sol , V sol , and Mo sol are the solid solution amount (mass%) of each element in steel.
Ti, V, Mo is the content (mass%) of each element in steel,
To express.

本発明により、安定して15%以上の高い全伸びを確保できるTSが1000MPa以上の高強度熱延鋼板を製造できるようになった。本発明の高強度熱延鋼板を自動車の足回り部品などに適用すると、部品の板厚減少が可能となるので、自動車の環境負荷が低減したり、衝撃特性が大きく向上することが期待される。   According to the present invention, it has become possible to produce a high-strength hot-rolled steel sheet having a TS of 1000 MPa or more that can stably secure a high total elongation of 15% or more. When the high-strength hot-rolled steel sheet of the present invention is applied to undercarriage parts of automobiles, the thickness of the parts can be reduced, so that it is expected that the environmental load of automobiles will be reduced and the impact characteristics will be greatly improved. .

以下、本発明を具体的に説明する。なお、成分に関する「%」表示は特に断らない限り「質量%」を意味するものとする。   Hereinafter, the present invention will be specifically described. Unless otherwise specified, “%” in relation to ingredients means “% by mass”.

1)成分組成
C:0.10%以上0.12%以下
Cは、後述するTi、Mo、Vの炭化物による析出強化を実現する上で重要な元素である。1000MPa以上のTSを得るための炭化物の析出量を得るには、C量を0.10%以上とする必要がある。一方、C量が0.12%を超えると、未固溶Ti系析出物の粗大化や、熱間圧延時の歪誘起析出によって、析出強化に有効な20nm未満の微細炭化物の量が急激に低下したり、巻取り中あるいはその後の冷却過程でパーライト、ベイナイト等の変態強化相の生成を促し、延性の低下を招く。
1) Component composition
C: 0.10% to 0.12%
C is an important element for realizing precipitation strengthening by Ti, Mo, and V carbides described later. In order to obtain a carbide precipitation amount for obtaining TS of 1000 MPa or more, the C amount needs to be 0.10% or more. On the other hand, when the amount of C exceeds 0.12%, the amount of fine carbides less than 20 nm effective for precipitation strengthening sharply decreases due to coarsening of insoluble Ti-based precipitates and strain-induced precipitation during hot rolling. In addition, it promotes the formation of transformation strengthening phases such as pearlite and bainite during the winding or subsequent cooling process, leading to a decrease in ductility.

Si:0.30%以下
Siは、固溶強化による高強度化に有効な元素であるが、フェライト安定化元素として鋼の変態点を上昇させる。それゆえ、オーステナイト域で熱間圧延を行う、すなわち仕上圧延終了温度を880℃以上にするために、Si量の上限を0.30%とする。
Si: 0.30% or less
Si is an element effective for increasing the strength by solid solution strengthening, but raises the transformation point of steel as a ferrite stabilizing element. Therefore, in order to perform hot rolling in the austenite region, that is, the finish rolling finish temperature is set to 880 ° C. or more, the upper limit of Si content is set to 0.30%.

Mn:1.8%以下
Mnは、固溶強化による高強度化に有効な元素であるうえ、オーステナイト安定化元素として鋼の変態点制御に欠かせない元素である。特に、本発明においては、熱間圧延後のオーステナイトからフェライトへの相変態のタイミングと析出強化に用いる微細炭化物の析出を巻取り時にマッチングさせることが極めて重要であるが、Mn量が1.8%を超えると変態点が低下し、巻取り時において炭化物が粗大化し、析出強化能が著しく低下する。なお、Mn量が1.2%未満になると、固溶強化能が低下するばかりか、変態点が上昇して熱間圧延後の組織が粗大化するため1000MPa以上のTSが得られない場合もある。したがって、Mn量は1.2%以上1.8%以下とすることが、より望ましい。
Mn: 1.8% or less
Mn is an element effective for increasing the strength by solid solution strengthening, and is an element indispensable for controlling the transformation point of steel as an austenite stabilizing element. In particular, in the present invention, it is extremely important to match the timing of phase transformation from austenite to ferrite after hot rolling and the precipitation of fine carbide used for precipitation strengthening at the time of winding, but the Mn content is 1.8%. If exceeding, the transformation point is lowered, the carbide is coarsened during winding, and the precipitation strengthening ability is remarkably lowered. When the amount of Mn is less than 1.2%, not only the solid solution strengthening ability is lowered, but also the transformation point is raised and the structure after hot rolling becomes coarse, so that a TS of 1000 MPa or more may not be obtained. Therefore, the Mn content is more preferably 1.2% or more and 1.8% or less.

N:0.003%以下
N量が0.003%を超えると、以下に述べるTi等の炭窒化物形成元素と高温域でMN型(ここで、Mは金属元素を示す)析出物を形成し、微細炭化物を形成するためのTi等の量を低減させる。
N: 0.003% or less
When the amount of N exceeds 0.003%, a MN type precipitate (here, M represents a metal element) is formed at a high temperature region with a carbonitride-forming element such as Ti described below to form fine carbides. Reduce the amount of Ti, etc.

Ti:0.10%以上0.20%以下
Tiは、微細炭化物を形成し析出強化ならびに組織微細化による高強度化を達成するために重要な元素である。しかし、その量が0.20%を超えるとスラブ製造過程で粗大炭化物を形成し、熱間圧延後に微細炭化物を形成するために必要なTi量の低下を招く。また、Tiは、鋼中の窒素とTiNを形成することから、通常の熱延鋼板に含まれるN量(0.003%程度)を固定するに必要なTi量、すなわち0.010%以上にしないと、微細炭化物の形成が困難になる。
Ti: 0.10% to 0.20%
Ti is an important element for forming fine carbides and achieving high strength by precipitation strengthening and microstructure refinement. However, if the amount exceeds 0.20%, coarse carbides are formed in the slab manufacturing process, and the amount of Ti necessary for forming fine carbides after hot rolling is reduced. In addition, since Ti forms nitrogen and TiN in steel, the amount of Ti required to fix the amount of N (about 0.003%) contained in normal hot-rolled steel sheets, that is, 0.010% or more, must be fine. Carbide formation becomes difficult.

V:0.15%以上0.30%以下
Vは、微細炭化物を形成し析出強化ならびに組織微細化による高強度化を達成するために重要な元素である。しかし、Tiに較べて炭化物形成能が弱いため、Tiとともに複合添加することで初めてその効果を発揮する。Vを単独添加した場合には、オーステナイト→フェライト変態後に炭化物がフェライト粒内に析出し、変態現象とほぼ同時に進行する相界面での析出による高密度析出が期待できない。その量は、原則として式(1)を満足する範囲となるが、Ti-V系の複合微細析出を達成するためには0.15%以上とする必要がある。また、炭素量に応じてV量を増加させることは可能であるが、高炭素の場合は、高温域でTiCが優先析出し、微細炭化物を形成するために有効なTi量が減少するとともに、Vの複合析出が起こり難くなり、高強度化に大きな寄与をしないばかりか、原料コスト高になる。このため、V量の上限は0.30%とする。
V: 0.15% to 0.30%
V is an important element for forming fine carbides and achieving high strength by precipitation strengthening and microstructure refinement. However, since carbide forming ability is weaker than Ti, the effect is exhibited only when it is added together with Ti. When V is added alone, the carbide precipitates in the ferrite grains after the austenite → ferrite transformation, and high density precipitation due to precipitation at the phase interface that proceeds almost simultaneously with the transformation phenomenon cannot be expected. The amount is in principle a range satisfying the formula (1), but needs to be 0.15% or more to achieve Ti-V composite fine precipitation. In addition, it is possible to increase the amount of V according to the amount of carbon, but in the case of high carbon, TiC preferentially precipitates at a high temperature range, and the amount of Ti effective to form fine carbide decreases, Complex precipitation of V is difficult to occur, and not only does not greatly contribute to the increase in strength, but also increases the raw material cost. For this reason, the upper limit of the V amount is set to 0.30%.

Mo:0.05%以上0.40%以下
Moは、Tiと複合添加することにより微細炭化物を形成し析出強化ならびに組織微細化による高強度化を達成するために重要な元素である。Moの単独添加あるいはVとの複合添加のみでは、低温域での析出となるため十分な析出量が確保できない。また、Moは焼入れ性を高める元素の一つであり、パーライト変態を抑制する効果も有する。このような観点から、Mo量の下限は0.05%とする。Vと同様に、炭素量に応じてMo量を増加させることは可能であるが、偏析を増長し材質のバラツキを招くばかりか、原料コスト高になる。このため、Mo量の上限は0.40%とする。
Mo: 0.05% or more and 0.40% or less
Mo is an important element for forming fine carbides by compounding with Ti and achieving high strength by precipitation strengthening and microstructure refinement. A single addition of Mo or a combined addition with V results in precipitation in a low temperature range, so a sufficient amount of precipitation cannot be secured. Mo is one of elements that enhance hardenability and has an effect of suppressing pearlite transformation. From such a viewpoint, the lower limit of the Mo amount is 0.05%. As with V, it is possible to increase the amount of Mo in accordance with the amount of carbon, but this not only increases segregation and causes material variations, but also increases the raw material cost. For this reason, the upper limit of the Mo amount is set to 0.40%.

残部は、Feおよび不可避的不純物にする必要があるが、以下の理由により、Al:0.5%以下とすることが好ましい。すなわち、Alは、製鋼時の脱酸元素として有用である上に、フェライト中に固溶して高強度化に寄与することから添加することが望ましいが、その量が0.5%を超えると粗大なAlN等を形成し、疲労強度の低下を招く。   The balance needs to be Fe and inevitable impurities, but Al is preferably 0.5% or less for the following reason. In other words, Al is useful because it is useful as a deoxidizing element during steelmaking and contributes to high strength by dissolving in ferrite, but if its amount exceeds 0.5%, it is coarse. Forms AlN and causes fatigue strength to decrease.

2) 0.7 < (C/12)/[{(Ti-3.42×N)/48+V/51+Mo/96}] < 0.9
(C/12)/[{(Ti-3.42×N)/48+V/51+Mo/96}]は、Ti、V、Moの量に応じたCの化学当量(原子濃度)に対する実際のC量との比を表し、この値が1であれば、C量は化学当量分だけ含有されていることになる。この値が0.9以上だと熱間圧延中の高温域で炭化物が析出して粗大化するため、また0.7以下だと析出強化に有効な巻取り時の微細炭化物量が]確保できなくなるため、この値は0.7を超え、0.9未満にする必要がある。
2) 0.7 <(C / 12) / [{(Ti-3.42 × N) / 48 + V / 51 + Mo / 96}] <0.9
(C / 12) / [{(Ti-3.42 × N) / 48 + V / 51 + Mo / 96}] is the actual C chemical equivalent (atomic concentration) depending on the amount of Ti, V and Mo. This represents the ratio to the amount of C. If this value is 1, the amount of C is contained by the chemical equivalent. If this value is 0.9 or more, carbide precipitates and coarsens in the high temperature region during hot rolling, and if it is 0.7 or less, the amount of fine carbide during winding effective for precipitation strengthening cannot be secured. The value must be greater than 0.7 and less than 0.9.

3)組織
母相の組織は、優れた延性確保のため、フェライト粒である必要があり、強度に及ぼす結晶粒微細化効果を発揮させるため、その平均粒径は3μm以下にする必要がある。
3) Structure The structure of the parent phase needs to be ferrite grains in order to ensure excellent ductility, and the average grain size needs to be 3 μm or less in order to exert the effect of crystal grain refinement on the strength.

4)4 < Ms/M0
微細炭化物の分散により高強度化を達成するためには、炭化物の量とサイズとその分散の程度が極めて重要である。鋼中の炭化物は析出温度域によって種々のサイズ分布を持つが、一般に製造工程の高温域で析出する直径が20nm以上のものは、ほとんど強化能がないと考えられる。本発明者等は、種々の強度レベルの熱延鋼板を用い、上記式(3)で定義されたMsの上記式(4)で定義されたM0に対する比、すなわち総炭化物中のTi量(Titotal)に対する直径が20nm未満の炭化物中のTi量(Ti20)の比と総炭化物中のV量(Vtotal)に対する直径が20nm未満の炭化物中のV量(V20)の比と総炭化物中のMo量(Mototal)に対する直径が20nm未満の炭化物中のMo量(Mo20)の比の平均値Msの、鋼中のTi含有量に対する固溶Ti量(Tisol)の比と鋼中のV含有量に対する固溶V量(Vsol)の比と鋼中のMo含有量に対する固溶Mo量(Mosol)の比の平均値M0に対する比(Ms/M0)と引張強度TSとの関係を調べたところ、図1に示すように、Ms/M0が4を超えると、1000MPa以上のTSが確実に得られることを見出した。なお、Ms/M0が4以下の場合は、直径20nm未満の微細炭化物が少ないため、1000MPa以上のTSが得られないと考えられる。
4) 4 <Ms / M 0
In order to achieve high strength by dispersing fine carbide, the amount and size of carbide and the degree of dispersion are extremely important. Carbides in steel have various size distributions depending on the precipitation temperature range, but generally those with a diameter of 20 nm or more that precipitate in the high temperature range of the production process are considered to have little strengthening ability. The present inventors have used hot-rolled steel sheets of various intensity levels, the ratio M 0 defined by the above formula (3) Ms of the formula defined in (4), i.e., the amount of Ti in the total carbide ( Ti total) Ti content in the carbide is less than 20nm diameter to (ratio and V of total carbides of Ti 20) (V total) amount of V carbides of a diameter less than 20nm for (V 20) of the ratio and total The average value Ms of the ratio of the Mo amount (Mo 20 ) in the carbide with a diameter of less than 20 nm to the Mo amount (Mo total ) in the carbide, and the ratio of the solid solution Ti amount (Ti sol ) to the Ti content in the steel amount of solid solution V for V content in the steel the ratio and the solute Mo amount for Mo content in steel (V sol) ratio to the average value M 0 of the ratio of (Mo sol) (Ms / M 0) tensile As a result of investigating the relationship with the strength TS, it was found that when Ms / M 0 exceeds 4, TS of 1000 MPa or more can be obtained reliably as shown in FIG. When Ms / M 0 is 4 or less, it is considered that a TS of 1000 MPa or more cannot be obtained because there are few fine carbides having a diameter of less than 20 nm.

ここで、Titotal、Vtotal、Mototal、Ti20、V20、Mo20、Tisol、Vsol、Mosolは次のようにして求めた。
Titotal、Vtotal、Mototal:従来の抽出残査法である10%A-A(アセチルアセトン電解溶液)を用いた抽出残渣法により求めた。すなわちTitotalは鋼中の析出Ti量(質量%)、Vtotalは鋼中の析出V量(質量%)、Mototalは鋼中の析出Mo量(質量%)として求まる値である。
Ti20、V20、Mo20:TEM(透過型電子顕微鏡)像中に観察された炭化物のうち直径が20nm未満の炭化物を画像解析によって抽出し、その直径からこれらの炭化物の体積率を求めて合計し、鋼中における20nm未満の炭化物の体積率を計算した。また、EDX分析したところ、20nm未満の炭化物はその多くがTi-V-Moの複合炭化物であり、TiとVとMoの組成比はほぼ1:1:1であった。この結果から、20nm未満の析出物は全てTi-V-Moの複合炭化物(TiVMoC3)であるとして、下記i)〜iii)の仮定のもとにTi-V-Moの複合炭化物の格子定数を4.337Åと算出して密度(6.264g/cm3)を求め、上記で求めた体積率およびFeの密度(7.86g/cm3)を用いて鋼中の20nm未満の析出物中に含有されるTi量、V量、Mo量であるTi20、V20、Mo20を求めた。
i)Ti-V-Mo-CはNaCl型の結晶構造
ii)格子定数は、VC(4.16Å)、TiC(4.38Å)、MoC(4.47Å)を基に、TiとVとMoの比で算出(MoCは文献値がないため、NbCの値を代用)
iii)組成比Ti:V:Mo=1:1:1
Tisol、Vsol、Mosol:鋼中の固溶Ti量であるTisolは、鋼中のTi含有量と上記のようにして求めたTitotalとの差(=Ti-Titotal)として求めた。Vsol、Mosolも同様にして求めた。
Here, Ti total, V total, Mo total, Ti 20, V 20, Mo 20, Tisol, V sol, Mo sol was determined as follows.
Ti total , V total , Mo total : determined by an extraction residue method using 10% AA (acetylacetone electrolytic solution) which is a conventional extraction residue method. That is, Ti total is a value determined as the amount of precipitated Ti (mass%) in steel, V total is the amount of precipitated V (mass%) in steel, and Mo total is the amount of precipitated Mo in steel (mass%).
Ti 20 , V 20 , Mo 20 : Among carbides observed in TEM (transmission electron microscope) images, carbides with a diameter of less than 20 nm are extracted by image analysis, and the volume fraction of these carbides is obtained from the diameter. In total, the volume fraction of carbides below 20 nm in the steel was calculated. As a result of EDX analysis, most of the carbides having a diameter of less than 20 nm were Ti—V—Mo composite carbides, and the composition ratio of Ti, V, and Mo was approximately 1: 1: 1. From these results, it is assumed that all precipitates of less than 20 nm are Ti-V-Mo composite carbides (TiVMoC 3 ), and the lattice constants of Ti-V-Mo composite carbides are assumed under the following i) to iii). The density (6.264 g / cm 3 ) was calculated as 4.337 mm, and contained in the precipitates of less than 20 nm in the steel using the volume ratio and Fe density (7.86 g / cm 3 ) determined above. Ti 20 , V 20 , and Mo 20 that are Ti, V, and Mo were determined.
i) Ti-V-Mo-C is NaCl-type crystal structure
ii) Based on VC (4.16mm), TiC (4.38mm), and MoC (4.47mm), the lattice constant is calculated by the ratio of Ti, V, and Mo (Because MoC has no literature value, substitute the value of NbC. )
iii) Composition ratio Ti: V: Mo = 1: 1: 1
Ti sol, V sol, Mo sol : Ti sol is dissolved Ti content in steel is determined as the difference between Ti total obtained as Ti content and the in the steel (= Ti-Ti total) It was. V sol and Mo sol were determined in the same manner.

なお、Ti、V、Moを含む炭化物の直径は、TEMにより観察し、TEMに装備されたエネルギー分散型X線分光装置(EDX)での分析によりTi、V、Moを含む炭化物であることを確認した後、住友金属テクノロジー株式会社製の画像処理ソフト「粒子解析II Ver.2.0」を用いて画像解析し、個々の炭化物について球形近似により直径を求めた。このときのTEM観察の試料の厚みは約50nm、観察倍率は10万倍で、観察視野数は5とした。このようにして求めたTi、V、Moを含む炭化物の直径を平均して炭化物の直径とした。   The diameter of the carbide containing Ti, V, and Mo is observed by TEM, and the carbide containing Ti, V, and Mo is analyzed by the energy dispersive X-ray spectrometer (EDX) equipped in TEM. After confirmation, image analysis was performed using image processing software “Particle Analysis II Ver. 2.0” manufactured by Sumitomo Metal Technology Co., Ltd., and the diameter of each carbide was determined by spherical approximation. At this time, the thickness of the sample for TEM observation was about 50 nm, the observation magnification was 100,000 times, and the number of observation fields was five. The diameter of the carbide containing Ti, V, and Mo thus obtained was averaged to obtain the diameter of the carbide.

5)製造方法
本発明の高強度熱延鋼板は、例えば、上記の成分組成を有する鋼片を、次の理由により、仕上圧延終了温度:880〜940℃、巻取温度:600〜670℃の条件で熱間圧延を行うことにより製造できる。
5) Manufacturing method The high-strength hot-rolled steel sheet of the present invention is, for example, a steel slab having the above-described component composition, for the following reasons, finish rolling end temperature: 880 to 940 ° C, coiling temperature: 600 to 670 ° C. It can manufacture by performing hot rolling on conditions.

仕上圧延終了温度:880〜940℃
仕上圧延終了温度は伸びフランジ性および全伸びの確保と圧延荷重の低減に重要である。仕上圧延終了温度が880℃未満では圧延時の歪蓄積が大きく、熱間圧延中にTi系の歪誘起析出が生じやすく、強化に有効な微細な炭化物量の相対的減少を招く。一方、フェライト変態が促進する(組織が粗大化する)ため、延性は向上するが母相の組織強化が不十分となる。仕上圧延終了温度が880℃以上では、圧延温度の上昇にともない圧延時の荷重は低下し製造性が安定化する上、熱間圧延中の歪誘起析出が起こりにくく、Ti等の十分な固溶量が確保されたまま変態へと推移し、変態と析出の同時進行によって組織が微細化し、母相強度が高まる。ただし、一般的な製造ラインで940℃以上の仕上圧延終了温度を確保することは困難である。したがって、仕上圧延終了温度は880〜940℃とすることが好ましい。
Finishing rolling finish temperature: 880-940 ° C
The finish rolling finish temperature is important for securing stretch flangeability and total elongation and reducing rolling load. When the finish rolling finish temperature is less than 880 ° C., strain accumulation during rolling is large, Ti-based strain-induced precipitation is likely to occur during hot rolling, and a relative reduction in the amount of fine carbides effective for strengthening is caused. On the other hand, since the ferrite transformation is promoted (the structure becomes coarse), the ductility is improved, but the structure strengthening of the matrix is insufficient. When the finish rolling finish temperature is 880 ° C or higher, the rolling load decreases and the manufacturability is stabilized as the rolling temperature rises, and strain-induced precipitation is less likely to occur during hot rolling. While the amount is secured, the transition is made to the transformation, the microstructure is refined by the simultaneous progress of transformation and precipitation, and the matrix strength is increased. However, it is difficult to secure a finish rolling finish temperature of 940 ° C. or higher in a general production line. Therefore, the finish rolling finish temperature is preferably 880 to 940 ° C.

巻取温度:600〜670℃
フェライト組織を得るため、また十分な炭化物の析出を確保するため、さらにはランナウトテーブル上での注水量を抑えて板厚の薄い鋼板を安定して走行させるため、巻取温度は600℃以上と、また、パーライトの生成を抑制するために670℃以下とすることが好ましい。
Winding temperature: 600-670 ° C
In order to obtain a ferrite structure, to ensure sufficient precipitation of carbides, and to reduce the amount of water injected on the run-out table and to run a thin steel plate stably, the coiling temperature is 600 ° C or higher. Moreover, in order to suppress the formation of pearlite, the temperature is preferably 670 ° C or lower.

なお、鋼スラブなどの鋼片は、一旦冷却後、所定の温度に再加熱してから熱間圧延を施してもよいし、また、鋼片が所定の温度より低温となる前に再加熱することなく熱間圧延を行ってもよい。鋼片の再加熱温度は、炭化物を再固溶させるため(あるいは析出成長させないため)、1150℃〜1300℃程度が好適であり、未固溶Ti系炭化物を残存させないためこの温度範囲で30min.以上の保持することが望ましい。   In addition, steel slabs such as steel slabs may be cooled and then reheated to a predetermined temperature before hot rolling, or reheated before the steel slab becomes lower than the predetermined temperature. You may hot-roll without it. The reheating temperature of the steel slab is preferably about 1150 ° C to 1300 ° C in order to re-dissolve the carbide (or not to cause precipitation growth), and in this temperature range for 30 min in order not to leave undissolved Ti-based carbide. It is desirable to hold the above.

熱間圧延後の板厚は1.4〜5.0mm程度が自動車用熱延鋼板として好適である。従来、板厚の薄い高強度熱延鋼板の製造は圧延荷重の増大により製造が困難だったが、本発明の鋼板は、高強度化のために圧延終了後の巻取り過程において炭化物を微細に析出させて製造できるので、板厚2.5mm以下の高強度熱延鋼板も製造可能である。   The thickness after hot rolling is preferably about 1.4 to 5.0 mm as a hot rolled steel sheet for automobiles. Conventionally, it has been difficult to produce a high strength hot rolled steel sheet with a thin plate thickness due to an increase in rolling load, but the steel sheet of the present invention has a fine carbide in the winding process after the end of rolling in order to increase the strength. Since it can be produced by precipitation, a high-strength hot-rolled steel sheet having a thickness of 2.5 mm or less can also be produced.

本発明の高強度熱延鋼板には、表面に表面処理や表面被覆処理を施したものを含む。特に、本発明の鋼板は溶融亜鉛系めっき被膜を形成した表面処理鋼板の下地鋼板として好適である。   The high-strength hot-rolled steel sheet of the present invention includes a surface subjected to surface treatment or surface coating treatment. In particular, the steel sheet of the present invention is suitable as a base steel sheet for a surface-treated steel sheet on which a hot dip galvanized coating film is formed.

表1に示す成分組成の鋼片を、1250℃に加熱し、通常の熱間圧延工程によって仕上圧延終了温度840〜920℃で、板厚3.5mmの熱延鋼板とし、巻取温度580〜685℃で巻取った。得られた鋼板を酸洗後、鋼板の板厚1/4位置から採取して作成した薄膜試料をTEMにより観察し、上述したような微細炭化物や炭化物形成元素の固溶量の定量解析を実施した。   A steel slab having the composition shown in Table 1 is heated to 1250 ° C. and finished at a finish rolling end temperature of 840 to 920 ° C. by a normal hot rolling process, and a hot rolled steel sheet having a thickness of 3.5 mm, and a winding temperature of 580 to 685 It was wound up at ° C. After pickling the obtained steel plate, the thin film sample created by collecting from the 1/4 thickness position of the steel plate is observed with TEM, and quantitative analysis of the solid solution amount of fine carbides and carbide forming elements as described above is performed did.

本発明の高強度熱延鋼板の組織は一般の鋼板に較べて微細であることから、そのフェライト粒径は走査型電子顕微鏡(Scanning Electron Microscope:以下SEM)を用いて評価した。試料は、圧延方向に平行なL断面を鏡面研摩した後、電解研摩によって組織を現出し、板厚1/4位置でSEM観察を実施した。加速電圧は15kV、結晶粒組織認識がしやすい反射電子像によって2000倍の像を3視野撮影した。これらの反射電子像から、一般的に光学顕微鏡組織写真で実施される切断法によって平均結晶粒径を試料ごとに算出した。母相の組織内に、明らかに等軸フェライト相とは異なる針状もしくはラス形態の組織(ベイナイトや、一般的にアシキュラーフェライトと呼ばれる組織)が存在する場合は、平均粒径は算出しなかった。   Since the structure of the high-strength hot-rolled steel sheet of the present invention is finer than that of a general steel sheet, the ferrite grain size was evaluated using a scanning electron microscope (hereinafter referred to as SEM). The sample was mirror-polished on the L cross section parallel to the rolling direction, and then the structure was revealed by electrolytic polishing, and SEM observation was carried out at a thickness of 1/4. Accelerating voltage was 15kV, and 3 fields of view were taken 2000 times by backscattered electron image that easily recognized the grain structure. From these backscattered electron images, the average crystal grain size was calculated for each sample by a cutting method that is generally carried out with an optical micrograph. If there is a needle-like or lath-shaped structure (bainite or a structure generally called acicular ferrite) clearly different from the equiaxed ferrite phase in the matrix structure, the average particle size is not calculated. It was.

また、得られた鋼板の圧延方向よりJIS 5号引張試験片を採取し、TSと全伸び(El)を求めた。   Further, JIS No. 5 tensile test specimens were collected from the rolling direction of the obtained steel sheet, and TS and total elongation (El) were obtained.

結果を表2に示す。本発明例である試料No.4〜7および9、10では、1000MPa以上のTSと15%以上のElが得られることが分かる。一方、成分範囲が本発明範囲内であっても、製造条件が変化し、Ms/M0値が本発明範囲を外れる試料No.8、11、12では、延性は確保されるが、1000MPa以上のTSが得られない。また、式(1)を満足していない試料No.3の場合は、金属元素(本発明ではTi、VおよびMo)に対してC量が不足しているため、例え微細炭化物の析出率が高くても微細析出物の絶対量が少なくなり、1000MPa以上のTSが得られない。 The results are shown in Table 2. It can be seen that Sample Nos. 4 to 7, and 9, 10 as examples of the present invention can obtain TS of 1000 MPa or more and El of 15% or more. On the other hand, component range is within the scope the present invention, manufacturing conditions change, the sample No.8,11,12 Ms / M 0 value outside the range of the present invention, although the ductility is ensured, over 1000MPa TS is not obtained. In the case of sample No. 3 that does not satisfy the formula (1), the amount of C is insufficient with respect to the metal elements (Ti, V and Mo in the present invention). Even if it is high, the absolute amount of fine precipitates decreases, and TS of 1000 MPa or more cannot be obtained.

Figure 0004853304
Figure 0004853304

Figure 0004853304
Figure 0004853304

Ms/M0とTSの関係を示す図である。It is a diagram showing the relationship of Ms / M 0 and TS.

Claims (1)

質量%で、C:0.10%以上0.12%以下、Si:0.30%以下、Mn:1.8%以下、N:0.003%以下、Ti:0.10%以上0.20%以下、V:0.15%以上0.30%以下、Mo:0.05%以上0.40%以下を含み、残部がFeおよび不可避的不純物からなり、下記の式(1)を満足する成分組成を有し、平均粒径が3μm以下のフェライト粒からなる組織を有し、かつ下記の式(3)で定義されたMsと下記の式(4)で定義されたM0が下記の式(2)を満足することを特徴とする高強度熱延鋼板;
0.7 < (C/12)/[{(Ti-3.42×N)/48+V/51+Mo/96}] < 0.9 ・・・(1)
4 < Ms/M0 ・・・(2)
Ms = (Ti20/Titotal+V20/Vtotal+Mo20/Mototal)/3 ・・(3)
M0 = (Tisol/Ti+Vsol/V+Mosol/Mo)/3 ・・(4)
ただし、
式(1)で、
各元素記号は、各元素の含有量(質量%)を、
式(3)で、
Ti20、V20、Mo20は、それぞれ鋼板中に析出している直径が20nm未満のTi、V、Moの炭化物中の各元素の含有量(鋼に対する質量%)を、
Titotal、Vtotal、Mototalは、総炭化物中の各元素の含有量(鋼に対する質量%)を、
式(4)で、
Tisol、Vsol、Mosolは、鋼中の各元素の固溶量(質量%)を、
Ti、V、Moは、鋼中の各元素の含有量(質量%)を、
表す。
In mass%, C: 0.10% or more and 0.12% or less, Si: 0.30% or less, Mn: 1.8% or less, N: 0.003% or less, Ti: 0.10% or more and 0.20% or less, V: 0.15% or more and 0.30% or less, Mo : 0.05% or more and 0.40% or less, the balance is composed of Fe and inevitable impurities, has a component composition satisfying the following formula (1), and has a structure composed of ferrite grains having an average grain size of 3 μm or less And Ms defined by the following formula (3) and M 0 defined by the following formula (4) satisfy the following formula (2):
0.7 <(C / 12) / [{(Ti-3.42 × N) / 48 + V / 51 + Mo / 96}] <0.9 (1)
4 <Ms / M 0 ... (2)
Ms = (Ti 20 / Ti total + V 20 / V total + Mo 20 / Mo total ) / 3 (3)
M 0 = (Ti sol / Ti + V sol / V + Mo sol / Mo) / 3 (4)
However,
In equation (1)
Each element symbol indicates the content (% by mass) of each element,
In equation (3)
Ti 20 , V 20 , Mo 20 is the content of each element in the carbide of Ti, V, Mo with a diameter of less than 20 nm precipitated in the steel sheet (mass% relative to steel),
Ti total , V total , and Mo total are the contents of each element in the total carbide (mass% relative to steel),
In equation (4)
Ti sol , V sol , and Mo sol are the solid solution amount (mass%) of each element in steel.
Ti, V, Mo is the content (mass%) of each element in steel,
To express.
JP2007013484A 2007-01-24 2007-01-24 High strength hot rolled steel sheet Expired - Fee Related JP4853304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007013484A JP4853304B2 (en) 2007-01-24 2007-01-24 High strength hot rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007013484A JP4853304B2 (en) 2007-01-24 2007-01-24 High strength hot rolled steel sheet

Publications (2)

Publication Number Publication Date
JP2008179852A JP2008179852A (en) 2008-08-07
JP4853304B2 true JP4853304B2 (en) 2012-01-11

Family

ID=39723970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007013484A Expired - Fee Related JP4853304B2 (en) 2007-01-24 2007-01-24 High strength hot rolled steel sheet

Country Status (1)

Country Link
JP (1) JP4853304B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104011234B (en) * 2011-12-27 2015-12-23 杰富意钢铁株式会社 Hot-rolled steel sheet and manufacture method thereof
EP2811046B1 (en) 2012-01-31 2020-01-15 JFE Steel Corporation Hot-rolled steel sheet for generator rim and method for manufacturing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3637885B2 (en) * 2001-09-18 2005-04-13 Jfeスチール株式会社 Ultra-high-strength steel sheet excellent in workability, manufacturing method and processing method thereof
JP4007051B2 (en) * 2002-04-30 2007-11-14 Jfeスチール株式会社 High strength thin steel plate with excellent thermal stability
JP4547951B2 (en) * 2004-03-18 2010-09-22 Jfeスチール株式会社 Thick high-strength hot-rolled steel sheet excellent in workability and method for producing the same
JP5076394B2 (en) * 2005-08-05 2012-11-21 Jfeスチール株式会社 High-tensile steel plate and manufacturing method thereof

Also Published As

Publication number Publication date
JP2008179852A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
EP2808413B1 (en) High-strength hot-rolled steel sheet and method for producing same
WO2016157896A1 (en) Hot-rolled steel sheet and method for producing same
CN111511945B (en) High-strength cold-rolled steel sheet and method for producing same
WO2012036309A1 (en) High-strength hot-rolled steel sheet having excellent bending workability and method for producing same
JP6597889B2 (en) High strength cold-rolled steel sheet and method for producing high-strength cold-rolled steel sheet
KR20170107057A (en) High-strength cold-rolled steel plate and method for producing same
JP4304473B2 (en) Manufacturing method of ultra fine grain hot rolled steel sheet
JP5239562B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP2015124410A (en) Hot rolled steel sheet
JP4924052B2 (en) High yield ratio high tensile cold-rolled steel sheet and method for producing the same
CN115244200A (en) High-strength steel sheet and method for producing same
KR102093056B1 (en) High-strength cold rolled steel sheet and method of producing same
JP6390572B2 (en) Cold-rolled steel sheet, plated steel sheet, and production method thereof
EP4265771A1 (en) High strength steel sheet having excellent workability and method for manufacturing same
JP6224704B2 (en) Manufacturing method of high strength hot-rolled steel sheet
JP4710558B2 (en) High-tensile steel plate with excellent workability and method for producing the same
JP5453973B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
KR102093057B1 (en) High-strength cold rolled steel sheet and method of producing same
JP6390573B2 (en) Cold rolled steel sheet and method for producing the same
JP6901417B2 (en) High-strength steel sheet and high-strength galvanized steel sheet, and their manufacturing method
JP4853304B2 (en) High strength hot rolled steel sheet
JP6086080B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP4899881B2 (en) High yield strength hot-rolled steel sheet and manufacturing method thereof
JP4923982B2 (en) High-strength hot-rolled steel sheet with excellent stretch flange characteristics and stretch characteristics after processing
JP3858803B2 (en) Hot-rolled steel material and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4853304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees