JP5458641B2 - Carbide dispersion steel - Google Patents

Carbide dispersion steel Download PDF

Info

Publication number
JP5458641B2
JP5458641B2 JP2009102847A JP2009102847A JP5458641B2 JP 5458641 B2 JP5458641 B2 JP 5458641B2 JP 2009102847 A JP2009102847 A JP 2009102847A JP 2009102847 A JP2009102847 A JP 2009102847A JP 5458641 B2 JP5458641 B2 JP 5458641B2
Authority
JP
Japan
Prior art keywords
steel
precipitation
phase
strength
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009102847A
Other languages
Japanese (ja)
Other versions
JP2010255016A (en
Inventor
克美 山田
裕二 田中
義正 船川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009102847A priority Critical patent/JP5458641B2/en
Publication of JP2010255016A publication Critical patent/JP2010255016A/en
Application granted granted Critical
Publication of JP5458641B2 publication Critical patent/JP5458641B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、高強度を維持しながら、複雑形状部品への加工とその形状凍結性を達成することが不可欠な自動車用足周り部品などに好適な強度と延性を両立することを特徴とする炭化物分散鋼に関する。   The present invention is a carbide characterized in that it has both strength and ductility suitable for automobile underbody parts and the like, which are indispensable to achieve processing of complex shape parts and freezing of the shape while maintaining high strength. Concerning dispersion steel.

近年、強度と加工性を両立する鋼板の開発が望まれ、特に、析出強化量を高精度に制御することによって、種々の強度レベルの熱延鋼板を提供することは工業的に極めて有用であることから、微細析出物の析出強化を用いた析出強化型熱延鋼板の安定製造が要望されている。相反する強度と加工性を両立することは容易ではなく、例えば、DP鋼ではフェライトを含有することで高い伸びを達成できるものの、複相組織であるために足回り部品で必要な特性である伸びフランジ性に乏しい。ここで、DP鋼とはDual Phase鋼を意味し、フェライト組織とマルテンサイト組織などの二相組織である鋼をいう。   In recent years, development of a steel sheet having both strength and workability has been desired, and in particular, it is industrially very useful to provide hot-rolled steel sheets of various strength levels by controlling the precipitation strengthening amount with high accuracy. Therefore, there is a demand for stable production of precipitation-strengthened hot rolled steel sheets using precipitation strengthening of fine precipitates. It is not easy to reconcile conflicting strength and workability.For example, DP steel can achieve high elongation by containing ferrite, but it is an elongation that is a necessary property for undercarriage parts because it has a multiphase structure. Poor flangeability. Here, DP steel means Dual Phase steel, which is a steel having a two-phase structure such as a ferrite structure and a martensite structure.

一方、フェライトを含有しないベイナイト単相鋼は、伸びフランジ性は良好だが延性に乏しい。このため、主相を高延性確保に好適なフェライト単相とし、主たる強化機構として微細析出物の析出強化を用いた析出強化型熱延鋼板が開発されている。例えば、特許文献1や特許文献2には、TiとMoを適量含有する熱延鋼板の製造にあたって、Ar3変態点直上のオーステナイト域で仕上げ圧延を完了し、巻取り処理温度を570℃以上700℃以下とすることにより、ほぼフェライト単相を母相とし、10nm未満の微細な析出物を分散させた引張り強度が800MPaあるいは950MPaを越える強度と延性あるいは伸びフランジ性に優れる熱延鋼板が製造可能であること、および、熱延後の巻取り工程におけるγ→α変態とMC炭化物の析出過程をマッチングさせることにより、いわゆる相界面析出によるナノ炭化物の微細分散実現していることなどが開示されている。ここで、MCとは、金属元素Mと炭素CからなるNaCl型の結晶構造を有する炭化物の総称をいう。例えば、TiC、NbC、VC、TaC、(Ti,Mo)C、(Nb,Mo)C、(Ti,W)C、(Nb,W)C、(Ti,V)Cなどが該当する。   On the other hand, bainite single-phase steel containing no ferrite has good stretch flangeability but poor ductility. For this reason, precipitation-strengthened hot-rolled steel sheets have been developed in which the main phase is a ferrite single phase suitable for ensuring high ductility and precipitation strengthening of fine precipitates is used as the main strengthening mechanism. For example, in Patent Document 1 and Patent Document 2, in the production of a hot-rolled steel sheet containing appropriate amounts of Ti and Mo, finish rolling is completed in the austenite region immediately above the Ar3 transformation point, and the coiling temperature is 570 ° C to 700 ° C. By making the following, it is possible to produce hot-rolled steel sheets with a tensile strength exceeding 800 MPa or 950 MPa and excellent ductility or stretch flangeability with a ferrite single phase as the parent phase and dispersed fine precipitates of less than 10 nm. It is disclosed that nano-carbide fine dispersion is achieved by so-called phase interface precipitation by matching the γ → α transformation and MC carbide precipitation process in the winding process after hot rolling. . Here, MC refers to a generic name of carbides having a NaCl-type crystal structure composed of a metal element M and carbon C. For example, TiC, NbC, VC, TaC, (Ti, Mo) C, (Nb, Mo) C, (Ti, W) C, (Nb, W) C, (Ti, V) C, and the like are applicable.

しかしながら、これらの鋼を実機製造するにあたっては、仕上げ終了温度や巻取り工程条件を厳密に制御することが必要であり、また、更なる高強度化を図るための析出物増加を狙った合添加金元素の増量は、近年の合金元素高騰の影響を強く受けるため、工業的に持続可能な高強度鋼板の新たな製造方法が望まれている。   However, when manufacturing these steels, it is necessary to strictly control the finishing finish temperature and the winding process conditions, and the addition of additions aimed at increasing the precipitates to further increase the strength Since the increase in gold element is strongly affected by the recent rise in alloying elements, a new manufacturing method for industrially sustainable high-strength steel sheets is desired.

また、鋼中に微細な炭化物を分散させる方法として、例えば特許文献3には、析出物と母相との結晶学的な整合性に着眼し、析出物の格子定数と母相の格子定数の制御により、析出強化能を最大限に引き出して高強度を達成する設計方法が開示されている。   Further, as a method for dispersing fine carbides in steel, for example, Patent Document 3 focuses on the crystallographic consistency between the precipitate and the parent phase, and determines the lattice constant of the precipitate and the lattice constant of the parent phase. A design method that achieves high strength by maximizing precipitation strengthening ability by control is disclosed.

しかしながら、この方法では、一般に広く使用されているMCとフェライト母相の格子定数の関係は限られているため、さらに大きな強化能を得ることは困難である。   However, in this method, since the relationship between MC and the lattice constant of the ferrite matrix, which are widely used in general, is limited, it is difficult to obtain even greater strengthening ability.

また、特許文献4には、MC析出物を構成する金属元素Mについて、電気陰性度の観点で整理し、特定の元素の組み合わせによる複合炭化物を用いることによって、特に優れた分散強化鋼を得る設計方法が開示されている。   In Patent Document 4, the metal element M constituting the MC precipitate is arranged from the viewpoint of electronegativity, and a composite carbide obtained by combining specific elements is used to obtain a particularly excellent dispersion strengthened steel. A method is disclosed.

しかしながらこの場合も、各種元素の組み合わせによる限界が存在し、さらに高強度を得ようとする場合には、他の強化方法の組み合わせや第2相の活用が必須となり、強度以外の加工性の劣化が無視できなくなる。   However, in this case as well, there is a limit due to the combination of various elements, and in order to obtain higher strength, it is essential to combine other strengthening methods and use the second phase, which deteriorates workability other than strength. Cannot be ignored.

特開2003−89848号公報JP 2003-89848 A 特開2002−322539号公報JP 2002-322539 A 特開平6−65628号公報JP-A-6-65628 特開2005−120430号公報JP 2005-120430 A

以上述べたように、特にフェライト相内にMC等の析出物を微細分散させて高強度を達成する方法については、既に広く検討されてきており、MCの種類や母相との整合性にのみ着目した方法では、更なる高強度化は難しい。     As described above, in particular, a method for achieving high strength by finely dispersing precipitates such as MC in the ferrite phase has already been widely studied, and only in terms of MC type and consistency with the parent phase. With the focused method, it is difficult to further increase the strength.

本発明では、延性確保に優位なフェライト単相組織を基本とし、相界面析出および母相フェライトへの整合析出において、鋼組成およびMCの初期析出組成に着目することにより、着実に微細炭化物分散を実現することを目的とした。   In the present invention, based on a ferrite single-phase structure superior in ensuring ductility, focusing on the steel composition and the initial precipitation composition of MC in phase interface precipitation and matched precipitation on the parent phase ferrite, steadily fine carbide dispersion is achieved. The purpose was to realize.

本発明者らは、フェライトを母相とする微細炭化物の分散強化を活用した高強度鋼について、特にその析出物の初期サイズについて鋭意検討した。その結果、固溶強化元素としてしばしば用いられるPの添加量を適正に制御することにより、板状形態で析出するMCの初期サイズが著しく微細に維持されることがわかった。   The present inventors have intensively studied the high-strength steel utilizing the dispersion strengthening of fine carbides having ferrite as a matrix, particularly the initial size of the precipitate. As a result, it was found that the initial size of MC precipitated in a plate-like form was maintained extremely fine by appropriately controlling the amount of P often used as a solid solution strengthening element.

さらに、発明者らは、フェライト内に析出MCの熱的な安定性についても検討を行い、MCを構成する金属元素としてTi, VおよびNbに代表される非常に強い炭化物形成能を有する元素群Aと、Cr, MoおよびW等に代表される単独でのMC型析出能が高くない元素群Bを複合的に添加して利用する場合、相界面析出等によって形成される初期組成におけるA元素群とB元素群との原子比が一定範囲になるように設計した場合に、これらの複合炭化物の熱的な安定性が確保され、それ以外では炭化物が容易に成長し、強化因子としての効果が急激に低下することを見出した。   Furthermore, the inventors also examined the thermal stability of the precipitated MC in the ferrite, and an element group having a very strong carbide forming ability represented by Ti, V and Nb as metal elements constituting the MC. A and element A in the initial composition formed by phase interface precipitation, etc., when A and element group B, which is not single MC type precipitation ability, such as Cr, Mo and W, are combined and used When designed so that the atomic ratio between the group and the B element group is within a certain range, the thermal stability of these composite carbides is ensured, otherwise the carbides grow easily and the effect as a strengthening factor Was found to drop sharply.

本発明は以上の知見をもとになされたものであり、その要旨とするところは以下の通りである。
(1)質量%で、C:0.040〜0.060%, N:0.0020〜0.0045%, Mn:0.50〜1.00%, Si+Al:0.50%以下、Pを0.050〜 0.100%含有し、MC形成元素としてTiとMoを、Ti:0.05〜0.10%, Mo:0.09〜0.40%の範囲で含有し、残部が不可避的不純物からなり、MC析出物を構成するTiとMoの組成比(原子比:Ti/Mo)が0.50≦Ti/Mo≦1.20であり、フェライト相内のMC析出物のサイズが8nm未満に制御された炭化物分散鋼。
(2)質量%で、C:0.040〜0.060%, N:0.0020〜0.0045%, Mn:0.50〜1.00%, Si+Al:0.50%以下、Pを0.060〜 0.080%含有し、MC形成元素としてTiとMoを、Ti:0.05〜0.10%, Mo:0.09〜0.40%の範囲で含有し、残部が不可避的不純物からなり、MC析出物を構成するTiとMoの組成比(原子比:Ti/Mo)が0.50≦Ti/Mo≦1.20であり、フェライト相内のMC析出物のサイズが8nm未満に制御された強度・延性バランスに優れた炭化物分散鋼。
This invention is made | formed based on the above knowledge, The place made into the summary is as follows.
(1) By mass%, C: 0.040-0.060%, N: 0.0020-0.0045%, Mn: 0.50-1.00%, Si + Al: 0.50% or less, P is contained in 0.050-0.100%, Ti as MC forming element And Mo are contained in the range of Ti: 0.05-0.10%, Mo: 0.09-0.40%, the balance is inevitable impurities, and the composition ratio of Ti and Mo constituting the MC precipitate (atomic ratio: Ti / Mo ) Is 0.50 ≦ Ti / Mo ≦ 1.20, and carbide dispersed steel in which the size of MC precipitates in the ferrite phase is controlled to be less than 8 nm.
(2) By mass%, C: 0.040-0.060%, N: 0.0020-0.0045%, Mn: 0.50-1.00%, Si + Al: 0.50% or less, P is contained in 0.060-0.080%, and Ti is used as MC forming element. And Mo are contained in the range of Ti: 0.05-0.10%, Mo: 0.09-0.40%, the balance is inevitable impurities, and the composition ratio of Ti and Mo constituting the MC precipitate (atomic ratio: Ti / Mo ) Is 0.50 ≦ Ti / Mo ≦ 1.20, and the carbide-dispersed steel with excellent strength / ductility balance in which the size of MC precipitates in the ferrite phase is controlled to less than 8 nm.

本発明によれば、しばしば固溶強化のために添加されるPを析出物制御に積極的に活用することにより、微細な炭化物の分散強化能を高めることができる。すなわち、本発明によって、MC炭化物を構成する合金元素の添加量が同一である場合には、より高強度の鋼を得ることが可能であり、また従来と等価な強度を得るのに必要な合金添加量を実質的に低減することが可能である。 According to the present invention, it is possible to enhance the dispersion strengthening ability of fine carbides by actively utilizing P, which is often added for solid solution strengthening, for precipitate control. That is, according to the present invention, when the addition amount of the alloy elements constituting the MC carbide is the same, it is possible to obtain a higher strength steel, and an alloy necessary for obtaining a strength equivalent to the conventional steel. The amount added can be substantially reduced.

本発明の詳細について、以下に説明する。
まず、本発明におけるP添加量限定、炭化物構成金属元素の原子比限定理由について説明する。
Details of the present invention will be described below.
First, the reasons for limiting the P addition amount and limiting the atomic ratio of carbide constituent metal elements in the present invention will be described.

発明者らは、MCを構成する金属元素M(Ti,Mo)を一定にした場合、これらの初期析出サイズに及ぼす、固溶強化元素の影響について鋭意検討した。具体的には、一般的に固溶強化元素として鋼に添加されることの多い、Si、Mn、AlおよびPの添加量を表1に示すように系統的に変化させた場合の、MCの初期析出サイズについて調査した。このとき、熱延条件は一定とし、熱延巻取り相当条件として650℃x10min.の保持後、空冷した試料の硬度と、MC析出物のサイズを透過電子顕微鏡によって評価した結果を表1に併せて示した。ここで、析出物のサイズは板状MC析出物の面内最大長さに対応し、一般にBaker-Nuttingの方位関係で析出する場合には、[001]bcc入射での投影長さの√2倍とみなせる。 The inventors diligently studied the influence of the solid solution strengthening element on the initial precipitation size when the metal element M (Ti, Mo) constituting the MC was made constant. Specifically, the amount of Si, Mn, Al, and P, which is generally added to steel as a solid solution strengthening element in general, is changed in a systematic manner as shown in Table 1. The initial precipitation size was investigated. At this time, the hot-rolling conditions were constant, and the hardness of the air-cooled sample and the size of the MC precipitate were evaluated by a transmission electron microscope after holding at 650 ° C. × 10 min. Showed. Here, the size of the precipitate corresponds to the maximum in-plane length of the plate-like MC precipitate. In general, when depositing in a Baker-Nutting orientation relationship, the projected length at [001] bcc incidence is √2 It can be regarded as double.

また、表中に示したMCを構成する金属元素TiとMoの原子比: Ti/Moは、TEM観察時に電子ビームを1nm未満に絞り、得られたEDS(Energy Dispersive x-ray Spectroscopy)スペクトルを定量分析して得た。   In addition, the atomic ratio of the metal elements Ti and Mo constituting the MC shown in the table: Ti / Mo is an electron dispersive x-ray spectroscopy (EDS) spectrum obtained by focusing the electron beam to less than 1 nm during TEM observation. Obtained by quantitative analysis.

鋼の変態点を上昇させるSi, AlはMC析出が促進し、同一巻取り相当条件ではMCのサイズが大きくなった。一方、鋼の変態点を下げる効果のあるMn添加では、MC析出サイズは小さく維持できるものの、MC析出が不十分で十分な硬度が得られていないと考えられる。これらに対してPは、鋼の変態点に影響が小さく、固溶強化能が非常に大きい元素である。   Si and Al, which raise the transformation point of steel, promoted MC precipitation, and the size of MC increased under the same winding conditions. On the other hand, with the addition of Mn, which has the effect of lowering the transformation point of steel, the MC precipitation size can be kept small, but MC precipitation is insufficient and sufficient hardness is not obtained. On the other hand, P is an element having a small effect on the transformation point of steel and a very large solid solution strengthening ability.

但し、過剰に添加した場合には、FeMP析出物を形成し、実質的にMCとして析出すべきMの固溶量低下を招くうえ、Pの粒界偏析による脆化が問題となる。添加量として、0.050 〜0.100 mass%の範囲に限定することにより、フェライト相内の板状MC析出物のサイズが8nm未満に制御できることがわかった。Pの適正添加により、初期板状MCのサイズが微細になる理由は明らかではないが、Pの固溶強化によって母相の弾性定数が変化し、MC/母相間の整合界面における歪環境が変化すること、MC形成のための金属元素拡散が固溶Pの存在によって抑制されることなどが考えられる。   However, if added excessively, FeMP precipitates are formed, causing a decrease in the solid solution amount of M to be substantially precipitated as MC, and embrittlement due to P grain boundary segregation becomes a problem. It was found that the size of the plate-like MC precipitates in the ferrite phase can be controlled to be less than 8 nm by limiting the amount to be added in the range of 0.050 to 0.100 mass%. The reason why the size of the initial plate MC becomes fine by the appropriate addition of P is not clear, but the elastic constant of the matrix phase changes due to the solid solution strengthening of P, and the strain environment at the matching interface between MC and matrix phase changes. It is conceivable that metal element diffusion for MC formation is suppressed by the presence of solid solution P.

ここでMCサイズを8nm未満としたのは、この範囲であれば、引張強度が820MPa以上の高強度が得られることおよび板状MCは母相との格子整合性の観点から最大8nm程度までは整合性を維持して成長することが出来るという知見によるためである。   If the MC size is less than 8 nm, the tensile strength of 820 MPa or higher can be obtained in this range, and the plate-like MC is up to about 8 nm from the viewpoint of lattice matching with the parent phase. This is because it is possible to grow while maintaining consistency.

一方、発明者らは、MCの初期析出組成にも着目して調査を進めた結果、炭化物の組成を精緻に制御することにより、製造工程において安定で、長時間成長抑制が図られる炭化物の組成条件があることを見出した。一般に、γ→α変態に伴う相界面析出現象は極めて短時間に起こる非平衡過程である。変態界面に吐き出された過飽和の炭素は、刻々と移動する界面において炭化物を形成するが、個々の組成は平衡組成に至らない。   On the other hand, as a result of investigations focusing on the initial precipitation composition of MC, the inventors have determined that the composition of the carbide is stable in the manufacturing process and can suppress long-term growth by precisely controlling the composition of the carbide. I found that there was a condition. In general, the phase interface precipitation phenomenon associated with the γ → α transformation is a non-equilibrium process occurring in a very short time. Supersaturated carbon discharged to the transformation interface forms carbides at the constantly moving interface, but the individual composition does not reach an equilibrium composition.

例えば、本来の最安定組成がTiCであるにも関わらず、極めて短時間の析出核成長においては(Ti,M)Cとなり得る(MはTi以外の炭化物形成能を有する金属元素)。変態を完了させる巻取り処理工程において、十分な温度もしくは長時間の保持がなされた場合、非平衡の初期組成は徐々に平衡組成に漸近すると考えられる。この平衡組成への漸近は、析出物のオストワルド成長を伴うため、平衡組成への漸近速度を抑制することができれば、粗大化に伴う強度低下を抑制することが可能となる。   For example, even though the original most stable composition is TiC, it can be (Ti, M) C in the very short precipitation nucleus growth (M is a metal element having a carbide forming ability other than Ti). In the winding treatment step for completing the transformation, if a sufficient temperature or long time is maintained, the non-equilibrium initial composition is considered to gradually approach the equilibrium composition. This asymptotic approach to the equilibrium composition is accompanied by the Ostwald growth of precipitates. Therefore, if the asymptotic speed to the equilibrium composition can be suppressed, it is possible to suppress a decrease in strength due to coarsening.

このことから、相界面析出を活用した微細炭化物分散鋼においては、特に炭化物形成能の高いTiやNb等を単独で添加することは、初期の非平衡組成を得るという観点で望ましくない。具体的には、Ti, NbもしくはVといった金属元素群Aに加え、単独では炭化物形成能の高くないCr、MoもしくはW等の金属元素群Bを活用し、相界面析出の初期組成をできるだけ非平衡組成にすることが重要と考えられる。   For this reason, in the fine carbide-dispersed steel utilizing phase interface precipitation, it is not desirable to add Ti, Nb or the like having a particularly high carbide forming ability from the viewpoint of obtaining an initial non-equilibrium composition. Specifically, in addition to the metal element group A such as Ti, Nb, or V, the metal element group B such as Cr, Mo, or W that does not have high carbide forming ability alone is utilized to minimize the initial composition of phase interface precipitation. It is considered important to have an equilibrium composition.

実際に、A元素としてTiを、B元素としてMoを含有する鋼について調査した。表2に示す組成を有する鋼を溶製し、1250℃x60min.のスラブ加熱後、仕上げ温度950℃、巻取り相当処理650℃x30min.の熱延板を作成した。これらの熱延板の一部を、650℃で10h保持し、熱延直後と後熱処理後のMC組成およびサイズを電子顕微鏡により評価した。その結果、表2に示すように、熱延後のMC析出物の初期組成として、Ti/Moの原子比が1.20以下の場合に、MCのオストワルド成長が抑制されており、後熱処理後の強度が維持されていることがわかった。   Actually, a steel containing Ti as an A element and Mo as a B element was investigated. Steel having the composition shown in Table 2 was melted, and after slab heating at 1250 ° C. × 60 min., A hot rolled sheet having a finishing temperature of 950 ° C. and a winding equivalent treatment of 650 ° C. × 30 min. Was prepared. A part of these hot-rolled sheets was held at 650 ° C. for 10 hours, and the MC composition and size immediately after hot-rolling and after post-heat treatment were evaluated by an electron microscope. As a result, as shown in Table 2, when the atomic composition of Ti / Mo is 1.20 or less as the initial composition of MC precipitates after hot rolling, MC Ostwald growth is suppressed, and the strength after post-heat treatment Was found to be maintained.

なお本発明鋼の製造条件としては、仕上げ温度が二相域にならない条件および極端な高温もしくは低温巻取りにならない条件を満足すれば良い。但し、MCの析出量を確保するにはスラブ加熱温度:1200〜1250℃、仕上げ圧延温度:900〜950℃および巻取り温度:600〜650℃の範囲で実施することが望ましい。   As the production conditions for the steel of the present invention, it is only necessary to satisfy the conditions that the finishing temperature does not become a two-phase region and the conditions that do not cause extremely high or low temperature winding. However, in order to ensure the amount of precipitation of MC, it is desirable that the slab heating temperature is 1200 to 1250 ° C., the finish rolling temperature is 900 to 950 ° C., and the winding temperature is 600 to 650 ° C.

Figure 0005458641
Figure 0005458641

Figure 0005458641
Figure 0005458641

次に、本発明で主要な好適成分限定に関する理由について説明する。なお、以下の説明において、成分元素の含有量%は全て質量%を意味するものである。
「主要成分限定」
C:0.040〜0.060%
CはMC型微細炭化物による析出強化を実現する上で必須の元素である。その添加量はMC炭化物形成のための金属元素量にもよるが、0.040%未満ではMC析出が十分に活用できないため下限を0.040%とした。また、本発明では過剰な金属元素添加を回避し、さらにベイナイトやパーライトなどの硬質変態相の形成を抑制するため添加の上限は0.060%とするが、好適には0.040〜0.050%である。
Next, the reason regarding limitation of the main suitable components in this invention is demonstrated. In the following description, the content% of component elements means mass%.
"Limited to main ingredients"
C: 0.040-0.060%
C is an essential element for realizing precipitation strengthening by MC type fine carbide. The amount added depends on the amount of metal elements for MC carbide formation, but if it is less than 0.040%, MC precipitation cannot be fully utilized, so the lower limit was made 0.040%. In the present invention, the upper limit of addition is set to 0.060% in order to avoid excessive metal element addition and to suppress formation of hard transformation phases such as bainite and pearlite, but preferably 0.040 to 0.050%.

N:0.0020〜0.0045%
Nは高温オーステナイト温度域にてTiNなどMN型析出物を形成する。このため過剰に存在する場合は、有効M量が低下しMC型析出量の確保ができなくなる。一方、Nを0.0020%未満に抑制することは工業的にコストがかかる。本発明では、通常の製鋼工程で実施されるレベルで到達可能な0.0020〜0.0045%の範囲で良い。
N: 0.0020-0.0045%
N forms MN-type precipitates such as TiN in the high temperature austenite temperature range. For this reason, when it exists in excess, the amount of effective M falls and MC type precipitation amount cannot be ensured. On the other hand, it is industrially expensive to suppress N to less than 0.0020%. In the present invention, it may be in a range of 0.0020 to 0.0045% that can be reached at a level that is performed in a normal steelmaking process.

P: 0.050〜0.100%
Pは固溶強化能の高い元素で、一般には鋼の強度レベルの調整に使われる。但し、過剰な添加をすると、FeMP析出物を形成し、MC析出が実質的に低減する他、粒界への偏析による脆化割れの要因となる。本発明では、主たる強化因子である板状MCの初期析出サイズを微細にする効果を得るための必須添加元素として重要であるが、0.050%未満では効果が得られない。一方、0.100%を超える添加を行うとFeMPの形成により急激にMC析出が減少して素材の軟化が起こるため、上限を0.100%とした。
P: 0.050 ~ 0.100%
P is an element with high solid solution strengthening ability, and is generally used to adjust the strength level of steel. However, if excessively added, FeMP precipitates are formed, MC precipitation is substantially reduced, and it causes embrittlement cracking due to segregation at grain boundaries. In the present invention, it is important as an essential additive element for obtaining the effect of reducing the initial precipitation size of the plate-like MC, which is the main strengthening factor, but if it is less than 0.050%, the effect cannot be obtained. On the other hand, if the addition exceeds 0.100%, MC precipitation rapidly decreases due to the formation of FeMP and the material softens, so the upper limit was made 0.100%.

Ti:0.05〜0.10% , Mo:0.09〜0.40%
TiおよびMoは本発明において、安定で微細なMCを形成するのに必須な元素であり、必ず同時に添加する。これらの添加量のバランスはMCの初期組成に大きく影響するために、MCの組成のTiとMoの原子比が0.5以上1.2以下になるように設定する。原子比がこれ以下になるTi枯渇、Mo過剰の範囲では、MC析出が実質的に起こりにくい。原子比が1.2を超えるTi過剰成分では、MCの初期組成がTiリッチの熱平衡組成に近いため、CT処理後期においてオストワルド成長が促進され、MCを微細に維持することができない。このため、それぞれの添加量は、炭素の添加量にも依存するが、Ti: 0.05〜0.10%, Mo:0.09〜0.40%の範囲で制御する。
Ti: 0.05-0.10%, Mo: 0.09-0.40%
Ti and Mo are elements essential for forming a stable and fine MC in the present invention, and are always added simultaneously. Since the balance of these addition amounts greatly affects the initial composition of MC, it is set so that the atomic ratio of Ti and Mo in the MC composition is 0.5 or more and 1.2 or less. In the range of Ti depletion and Mo excess where the atomic ratio is less than this, MC precipitation is substantially difficult to occur. When the Ti excess component has an atomic ratio exceeding 1.2, the initial composition of MC is close to the Ti-rich thermal equilibrium composition. Therefore, Ostwald growth is promoted in the latter stage of CT treatment, and MC cannot be maintained finely. For this reason, although each addition amount is dependent also on the addition amount of carbon, it controls in the range of Ti: 0.05-0.10%, Mo: 0.09-0.40%.

Mn:0.50〜1.30%
Mnは、固溶強化能の高い元素で、鋼の強度レベルの調整に使われるほか、鋼の変態温度を低下させる。本発明の鋼においては、オーステナイト相からフェライト相への変態とMCの析出時期を熱延工程における巻取り温度に調整する効果があり、600〜650℃前後の巻取りを実現するには0.50%以上の添加が必要である。但し、1.30%を越える添加では、変態点が下がり、巻取り時のMC析出が十分に起こらない場合があることから、上限を1.30%とした。
Mn: 0.50 to 1.30%
Mn is an element with high solid solution strengthening ability, and is used to adjust the strength level of steel and lowers the transformation temperature of steel. In the steel of the present invention, there is an effect of adjusting the transformation time from the austenite phase to the ferrite phase and the MC precipitation time to the coiling temperature in the hot rolling process, and 0.50% to realize coiling around 600-650 ° C. The above addition is necessary. However, if the addition exceeds 1.30%, the transformation point decreases, and MC precipitation during winding may not occur sufficiently, so the upper limit was made 1.30%.

Si+Al:0.50%以下
Siは、固溶強化能の高い元素で、鋼の強度レベルの調整に使われるほか、鋼の変態温度を上昇させる。Alは、通常脱酸工程で良く用いられる元素であり、SiやMnと同様、固溶強化能の高い元素で、鋼の強度レベルの調整にも使われる。また、Siと同様、鋼の変態温度を上昇させる効果がある。本発明の鋼においては、オーステナイト相からフェライト相へのMCの析出時期を熱延工程における巻取り温度に調整する必要があるが、既に述べたように、SiやAlはMC析出を促進する効果があり、また、圧延後の二相域温度を確保することが困難になるためSi、Al含有量が合計で0.50%を上限とする。
Si + Al: 0.50% or less
Si is an element with high solid-solution strengthening ability, and is used to adjust the strength level of steel and raises the transformation temperature of steel. Al is an element commonly used in the deoxidation process. Like Si and Mn, Al is an element with a high solid solution strengthening ability, and is also used to adjust the strength level of steel. Moreover, like Si, it has the effect of raising the transformation temperature of steel. In the steel of the present invention, it is necessary to adjust the precipitation time of MC from the austenite phase to the ferrite phase to the coiling temperature in the hot rolling process, but as already mentioned, Si and Al are effective in promoting MC precipitation. In addition, since it becomes difficult to secure the two-phase region temperature after rolling, the upper limit is 0.50% in total for the Si and Al contents.

以下本発明に基づく、実施例について述べる。
表3に示す組成を有する鋼を50kg真空溶解炉にて溶製した。これらのスラブを、1250℃x30min.の再加熱後、仕上げ温度950℃で板厚み3.0mmまで熱間圧延し、650℃x60min.の巻取り相当の処理を実施した。これらの熱延板のL方向からJIS5号試験片を採取し、引張り試験を実施し、引張強度(TS)および伸び(EL)を測定した。また同一試料より透過電子顕微鏡用の薄膜試料を作成し、当該試料中の微細なMC析出物の外形および組成について調査した。
Examples of the present invention will be described below.
Steel having the composition shown in Table 3 was melted in a 50 kg vacuum melting furnace. These slabs were reheated at 1250 ° C. × 30 min., Hot-rolled to a sheet thickness of 3.0 mm at a finishing temperature of 950 ° C., and subjected to a treatment equivalent to winding at 650 ° C. × 60 min. JIS No. 5 test specimens were collected from the L direction of these hot-rolled sheets, subjected to a tensile test, and measured for tensile strength (TS) and elongation (EL). A thin film sample for a transmission electron microscope was prepared from the same sample, and the outer shape and composition of fine MC precipitates in the sample were investigated.

電子顕微鏡による析出物の外形については、[001]bcc入射方位近傍の回折条件で20万倍以上での観察を実施し、高密度で観測される板状析出物の最大長手方向の大きさの平均値を求めた。また、これらの組成については、1nmの電子プローブによるエネルギー分散型X線分光分析(EDS)を実施し、定量分析によってTiとMoの原子比の平均値を求めた。 Regarding the outer shape of the precipitate by electron microscope, observation was performed at a magnification of 200,000 times or more under the diffraction conditions near the [001] bcc incident direction, and the maximum longitudinal size of the plate-like precipitate observed at high density was observed. The average value was obtained. For these compositions, energy dispersive X-ray spectroscopic analysis (EDS) with an electron probe of 1 nm was performed, and the average value of the atomic ratio of Ti and Mo was determined by quantitative analysis.

材質および、析出物の外形とその組成比(Ti/Mo)を表3に併せて示した。鋼1および2は、Ti添加量が足りないため、MC析出が促進していないため、高伸びを示すものの発明鋼と比較して低強度である。鋼3は、P添加量が足りないために、Ti/Mo比は発明範囲内であるがMCのサイズが抑制出来ていない。   Table 3 shows the material, the outer shape of the precipitate, and the composition ratio (Ti / Mo). Steels 1 and 2 have a low strength compared to the invention steels, although exhibiting high elongation, because MC precipitation is not promoted because the Ti addition amount is insufficient. In Steel 3, since the addition amount of P is insufficient, the Ti / Mo ratio is within the scope of the invention, but the size of MC cannot be suppressed.

一方、鋼8は、Pが発明の範囲を超えていること、鋼9についてはTi過剰のバランスになっていることから、MCのサイズおよび組成が発明範囲を外れており、十分な強度が得られていない。これらに対して、P添加量、TiおよびMo添加量が発明の範囲内にある鋼4乃至7については、MCのサイズおよび組成比が適正に制御されており、強度および伸びバランスが高位安定している。   On the other hand, steel 8 has a P exceeding the range of the invention, and steel 9 has a balance of Ti excess, so the size and composition of MC are out of the range of the invention, and sufficient strength is obtained. It is not done. On the other hand, for steels 4 to 7, in which the addition amounts of P, Ti and Mo are within the scope of the invention, the size and composition ratio of MC are appropriately controlled, and the strength and elongation balance are highly stable. ing.

Figure 0005458641
Figure 0005458641

特に、軽量化、製造コスト低減の観点で、更なる高強度・高成型性鋼板の安定製造が望まれる中、本発明が提供する微細炭化物分散鋼は、特に自動車分野等において強度および成形性が要求される部材用の素材として有望である。   In particular, from the viewpoint of weight reduction and production cost reduction, while it is desired to stably produce a high strength and high formability steel sheet, the fine carbide dispersed steel provided by the present invention has strength and formability especially in the automotive field and the like. It is promising as a material for required members.

Claims (2)

質量%で、C:0.040〜0.060%, N:0.0020〜0.0045%, Mn:0.50〜1.30%, Si+Al:0.50%以下、Pを0.050〜 0.100%含有し、MC形成元素としてTiとMoを、Ti:0.05〜0.10%, Mo:0.090.40%の範囲で含有し、残部がFeおよび不可避的不純物からなり、MC析出物を構成するTiとMoの組成比(原子比:Ti/Mo)が0.5≦Ti/Mo≦1.2であり、フェライト相内のMC析出物のサイズが8nm未満に制御されたフェライト単相組織を有する熱延鋼板である微細炭化物分散鋼。 In mass%, C: 0.040 ~ 0.060%, N: 0.0020 ~ 0.0045%, Mn: 0.50 ~ 1.30 %, Si + Al: 0.50% or less, P contains 0.050 ~ 0.100%, and Ti and Mo as MC forming elements , Ti: 0.05 to 0.10%, Mo: 0.09 to 0.40%, with the balance being Fe and inevitable impurities, composition ratio of Ti and Mo constituting MC precipitates (atomic ratio: Ti / Mo) Is a fine carbide-dispersed steel, which is a hot-rolled steel sheet having a ferrite single-phase structure in which 0.5 ≦ Ti / Mo ≦ 1.2 and the size of MC precipitates in the ferrite phase is controlled to be less than 8 nm. 質量%で、C:0.040〜0.060%, N:0.0020〜0.0045%, Mn:0.50〜1.30%, Si+Al:0.5%以下、Pを0.060〜 0.080%含有し、MC形成元素としてTiとMoを、Ti:0.05〜0.10%, Mo:0.09〜0.40%の範囲で含有し、残部がFeおよび不可避的不純物からなり、MC析出物を構成するTiとMoの組成比(原子比:Ti/Mo)が0.5≦Ti/Mo≦1.2であり、フェライト相内のMC析出物のサイズが8nm未満に制御されたフェライト単相組織を有する熱延鋼板である強度・延性バランスに優れた微細炭化物分散鋼。 In mass%, C: 0.040 ~ 0.060%, N: 0.0020 ~ 0.0045%, Mn: 0.50 ~ 1.30 %, Si + Al: 0.5% or less, P is contained in 0.060 ~ 0.080%, and Ti and Mo as MC forming elements , Ti: 0.05 to 0.10%, Mo: 0.09 to 0.40%, with the balance being Fe and inevitable impurities, composition ratio of Ti and Mo constituting MC precipitates (atomic ratio: Ti / Mo) Is a hot-rolled steel sheet having a ferrite single-phase structure in which the size of MC precipitates in the ferrite phase is controlled to be less than 8 nm , and is a fine carbide-dispersed steel excellent in strength and ductility balance.
JP2009102847A 2009-04-21 2009-04-21 Carbide dispersion steel Expired - Fee Related JP5458641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009102847A JP5458641B2 (en) 2009-04-21 2009-04-21 Carbide dispersion steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009102847A JP5458641B2 (en) 2009-04-21 2009-04-21 Carbide dispersion steel

Publications (2)

Publication Number Publication Date
JP2010255016A JP2010255016A (en) 2010-11-11
JP5458641B2 true JP5458641B2 (en) 2014-04-02

Family

ID=43316265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009102847A Expired - Fee Related JP5458641B2 (en) 2009-04-21 2009-04-21 Carbide dispersion steel

Country Status (1)

Country Link
JP (1) JP5458641B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5434675B2 (en) * 2010-03-01 2014-03-05 新日鐵住金株式会社 High tensile cold-rolled steel sheet and method for producing the same
JP5838796B2 (en) 2011-12-27 2016-01-06 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof
WO2016161992A2 (en) 2015-10-13 2016-10-13 中国农业科学院农田灌溉研究所 Novel pressure-less irrigation device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3637885B2 (en) * 2001-09-18 2005-04-13 Jfeスチール株式会社 Ultra-high-strength steel sheet excellent in workability, manufacturing method and processing method thereof
JP3888128B2 (en) * 2000-10-31 2007-02-28 Jfeスチール株式会社 High formability, high-tensile hot-rolled steel sheet with excellent material uniformity, manufacturing method and processing method thereof
JP2002322539A (en) * 2001-01-31 2002-11-08 Nkk Corp Thin steel sheet having excellent press formability and working method therefor
JP4576859B2 (en) * 2004-03-18 2010-11-10 Jfeスチール株式会社 Method for producing thick high-strength hot-rolled steel sheet with excellent workability
JP4547951B2 (en) * 2004-03-18 2010-09-22 Jfeスチール株式会社 Thick high-strength hot-rolled steel sheet excellent in workability and method for producing the same

Also Published As

Publication number Publication date
JP2010255016A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
JP6064955B2 (en) Manufacturing method of high strength seamless steel pipe for oil wells with excellent resistance to sulfide stress cracking
EP2799562B1 (en) Hot-rolled steel sheet and process for manufacturing same
US10626476B2 (en) High specific strength steel sheet and method for manufacturing same
EP3219820B1 (en) Nickel-base alloy-clad steel plate and method for producing the same
EP2765211B1 (en) High-tensile-strength hot-rolled steel sheet and method for producing same
JP4485561B2 (en) High tensile steel plate for welding with excellent base metal toughness
KR20140047743A (en) Hot-rolled steel sheet with high tensile strength and superior processability and method for producing same
WO2014097559A1 (en) Low-yield-ratio high-strength cold-rolled steel sheet and method for manufacturing same
JP4976906B2 (en) Thick steel plate with excellent HAZ toughness, base material toughness, elongation, and strength-elongation balance
WO2013094130A1 (en) High-strength steel sheet and process for producing same
JP5741426B2 (en) High strength hot-rolled steel sheet and manufacturing method thereof
JP5510024B2 (en) High-strength steel sheet excellent in hole expansibility and local ductility and method for producing the same
JP2005314796A (en) High strength hot rolled steel sheet having excellent elongation property, stretch flange property and tensile fatigue property, and its production method
WO2013115205A1 (en) Hot-rolled steel for power generator rim and method for manufacturing same
JP5458641B2 (en) Carbide dispersion steel
WO2016186033A1 (en) Spring steel
JP4317418B2 (en) High strength thin steel sheet with excellent hole expandability and ductility
JP2007138189A (en) High-strength steel sheet having superior workability, and manufacturing method therefor
JP6390572B2 (en) Cold-rolled steel sheet, plated steel sheet, and production method thereof
KR100853328B1 (en) High strength thin steel sheet excellent in hole expansibility and ductility
TWI506147B (en) A high strength hot rolled steel sheet and method for manufacturing the same
JP4317417B2 (en) High strength thin steel sheet with excellent hole expandability and ductility
JP5889518B2 (en) High corrosion resistance ferritic stainless steel sheet with excellent toughness and method for producing the same
JP5050565B2 (en) Ferritic stainless steel sheet and manufacturing method thereof
JP4201310B2 (en) High strength steel plate with excellent SR resistance and method for producing the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131230

R150 Certificate of patent or registration of utility model

Ref document number: 5458641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees