JP5050565B2 - Ferritic stainless steel sheet and manufacturing method thereof - Google Patents

Ferritic stainless steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP5050565B2
JP5050565B2 JP2007049323A JP2007049323A JP5050565B2 JP 5050565 B2 JP5050565 B2 JP 5050565B2 JP 2007049323 A JP2007049323 A JP 2007049323A JP 2007049323 A JP2007049323 A JP 2007049323A JP 5050565 B2 JP5050565 B2 JP 5050565B2
Authority
JP
Japan
Prior art keywords
less
stainless steel
ferritic stainless
carbide
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007049323A
Other languages
Japanese (ja)
Other versions
JP2008214649A (en
Inventor
義正 船川
信介 井手
馨 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007049323A priority Critical patent/JP5050565B2/en
Publication of JP2008214649A publication Critical patent/JP2008214649A/en
Application granted granted Critical
Publication of JP5050565B2 publication Critical patent/JP5050565B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、厨房や器物に使用されるフェライト系ステンレス鋼板に関し、特に曲げ加工性に優れたフェライト系ステンレス鋼板及びその製造方法に関する。   The present invention relates to a ferritic stainless steel plate used for kitchens and utensils, and particularly to a ferritic stainless steel plate excellent in bending workability and a method for producing the same.

フェライト系ステンレス鋼板は、耐食性、価格のバランスが良く、建築物外装、厨房器具、化学プラント等に広く用いられている。Cを0.01質量%以上含有するフェライト系ステンレス鋼板は、溶接熱サイクルでCr炭窒化物析出によるCr欠乏層形成で鋭敏化する。このため、プレス成形品の端部はヘムの様な厳しい曲げ加工が行われる場合がある。ところが、フェライト系ステンレス鋼板の曲げ加工では、曲げ割れを生じてしまうため、特に、板厚が1.5mm以下程度の薄物で厳しい曲げ加工ができず、プレス品の形状に制約が生じていた。   Ferritic stainless steel sheets have a good balance of corrosion resistance and price, and are widely used in building exteriors, kitchen appliances, chemical plants, and the like. A ferritic stainless steel sheet containing 0.01% by mass or more of C is sensitized by forming a Cr-deficient layer by Cr carbonitride precipitation in a welding heat cycle. For this reason, the end portion of the press-formed product may be subjected to severe bending such as hem. However, bending of a ferritic stainless steel sheet causes bending cracks, so that a severe bending process cannot be performed particularly with a thin material having a thickness of about 1.5 mm or less, and the shape of the pressed product is restricted.

この曲げ加工性を直接目的としたものではないが、例えば、特許文献1(特開昭54−112320号公報)には、Cr,Si,Mnの含有量を規定して、C,Nの含有量に応じてZrを加え、Zr炭窒化物を形成することで伸びフランジ性を改良する方法が開示されている。   Although this bending workability is not intended directly, for example, Patent Document 1 (Japanese Patent Laid-Open No. 54-112320) defines the contents of Cr, Si, Mn, and contains C, N. A method of improving stretch flangeability by adding Zr according to the amount to form Zr carbonitride is disclosed.

また、特許文献2(特開平10−99952号公報)では、鋳造中の未凝固部にオーステナイト形成元素を添加して、延性を改善するフェライト系ステンレス鋼の製造方法が開示されている。   Patent Document 2 (Japanese Patent Laid-Open No. 10-99952) discloses a method for producing a ferritic stainless steel in which an austenite forming element is added to an unsolidified portion during casting to improve ductility.

また、特許文献3(特開2000−282186号公報)では、C/N比と、オーステナイト形成元素量とを規定した延性に優れるフェライト系ステンレス鋼板が開示されている。   Patent Document 3 (Japanese Patent Laid-Open No. 2000-282186) discloses a ferritic stainless steel sheet excellent in ductility that defines the C / N ratio and the amount of austenite forming elements.

また、特許文献4(特開2001−207244号公報)には、粗大コロニー組織のアスペクト比を5以下とする延性に優れたフェライト系ステンレス鋼板が開示されている。
特開昭54−112320号公報 特開平10−99952号公報 特開2000−282186号公報 特開2001−207244号公報
Patent Document 4 (Japanese Patent Application Laid-Open No. 2001-207244) discloses a ferritic stainless steel sheet having an excellent ductility in which the aspect ratio of a coarse colony structure is 5 or less.
JP 54-112320 A Japanese Patent Laid-Open No. 10-99952 JP 2000-282186 A JP 2001-207244 A

しかし、上記特許文献1に開示されている方法は、伸びフランジ性には優れても曲げ加工性は改善されないという問題がある。   However, the method disclosed in Patent Document 1 has a problem that the bending workability is not improved even if the stretch flangeability is excellent.

また、上記特許文献2に開示されている方法では、表層と内部に組織の差が生じ、曲げ加工時に、この組織の境界で割れが生じるという問題がある。   In addition, the method disclosed in Patent Document 2 has a problem that a difference in structure occurs between the surface layer and the inside, and cracks occur at the boundary between the structures during bending.

また、上記特許文献3に開示されている方法は、伸びは向上するものの、曲げ割れは回避できないという問題がある。   In addition, the method disclosed in Patent Document 3 has a problem that bending cracks cannot be avoided although elongation is improved.

また、上記特許文献4に開示されている方法は、延性が改善されていても、曲げ割れは回避できないという問題がある。   Further, the method disclosed in Patent Document 4 has a problem that bending cracks cannot be avoided even if ductility is improved.

このように、上記の従来技術では、延性の改善は達成できても、厳しい曲げ加工には不向きであるという問題がある。   As described above, the above-described prior art has a problem that even if improvement in ductility can be achieved, it is not suitable for severe bending.

本発明は上記問題点を解決するためになされたもので、曲げ加工性に優れたフェライト系ステンレス鋼板及びその製造方法を提供することを目的とする。   The present invention has been made to solve the above problems, and an object thereof is to provide a ferritic stainless steel sheet excellent in bending workability and a method for producing the same.

本発明者らは、フェライト系ステンレス鋼板の曲げ加工性と、鋼板の組織との関係について詳細な検討を行った。その結果、従来のフェライト系ステンレス鋼板中では、Cr炭化物が列状をなしており、この列状のCr炭化物に沿って亀裂が進行して曲げ割れが生じていることが明らかとなった。   The present inventors have conducted a detailed study on the relationship between the bending workability of a ferritic stainless steel sheet and the structure of the steel sheet. As a result, in the conventional ferritic stainless steel sheet, it was clarified that Cr carbides were arranged in a row, and cracks progressed along the rows of Cr carbides to cause bending cracks.

この列状のCr炭化物は通常の引張試験の伸び値には影響を及ぼさない。しかし、曲げ加工では、曲げの外側は伸び、内側が縮む変形をするため、板厚方向で変形方向が逆となる。そのため、板面に平行に並んだCr炭化物の板厚方向の上下でせん断がおきやすく、Cr炭化物がせん断破壊の起点となることがわかった。なお、通常の引張試験では板全体が同じ方向に引張られることから列状のCr炭化物の形態に影響を受けない。   This row of Cr carbides does not affect the elongation value of a normal tensile test. However, in bending, the outer side of the bending is deformed and the inner side is contracted, so that the deformation direction is reversed in the plate thickness direction. For this reason, it was found that shearing easily occurs above and below the thickness direction of Cr carbides arranged in parallel to the plate surface, and Cr carbides are the starting point of shear fracture. In the normal tensile test, the entire plate is pulled in the same direction, so that it is not affected by the form of the row of Cr carbides.

この列状のCr炭化物形成の原因を調査したところ、圧延方向に展伸した組織を有する熱延板を箱焼鈍する際に、展伸したフェライト粒界に沿って片状のCr炭化物が析出し、これが冷間圧延で粉砕されることで、列状のCr炭化物が冷延鋼板中に析出することがわかった。Cr炭化物が列状になるのを防止するためには、箱焼鈍時に圧延方向に展伸したフェライト粒界にCr炭化物が片状に析出するのを防止すればよい。そして、本発明者らは、Cr炭化物(主としてCr23 または、これと同じ結晶構造を有するCr炭化物)中のCrの一部をFeと置き換えることにより、片状のCr炭化物が球状化することを見出した。さらに、従来、固溶強化で強度を上げて延性を劣化させると考えられてきたMnを低減するのではなく、逆に適量添加することで、Cr炭化物中のFe置換率を制御できることを見出した。 When the cause of the formation of this row of Cr carbide was investigated, when box-annealing a hot-rolled sheet having a structure expanded in the rolling direction, a piece of Cr carbide precipitated along the expanded ferrite grain boundary. It has been found that when this is pulverized by cold rolling, a row of Cr carbide precipitates in the cold-rolled steel sheet. In order to prevent the Cr carbides from forming a line, it is only necessary to prevent the Cr carbides from precipitating in the form of flakes at the ferrite grain boundaries expanded in the rolling direction during box annealing. Then, the present inventors replace part of Cr in Cr carbide (mainly Cr 23 C 6 or Cr carbide having the same crystal structure) with Fe, whereby the flaky Cr carbide is spheroidized. I found out. Furthermore, it has been found that the Fe substitution rate in Cr carbide can be controlled by adding an appropriate amount instead of reducing Mn, which has been considered to increase strength by solid solution strengthening and deteriorate ductility. .

この理由は未だ明らかではないが、MnはCと相互作用をしてCr炭化物の析出速度に影響を与え、その結果、FeがCr炭化物中に取り込まれるようになると考えられる。   The reason for this is not yet clear, but it is considered that Mn interacts with C and affects the precipitation rate of Cr carbide, and as a result, Fe is taken into Cr carbide.

本発明は、上記知見に基づき、さらに検討を加えて完成されたものであり、以下のような特徴を有する。
[1]質量%で、C:0.01〜0.03%、Mn:0.5〜1.0%、Cr:15〜20%、Al:0.01%以下を含むフェライト系ステンレス鋼板であって、
フェライト中にCr炭化物が分散するとともに、前記Cr炭化物中におけるFe及びCrの金属元素の存在比が質量%比で、
Fe/Cr:0.05〜0.15
であることを特徴とする曲げ加工性に優れたフェライト系ステンレス鋼板。
[2]上記[1]において、フェライト系ステンレス鋼板が、さらに、質量%で、Si:0.25%以下、P:0.040%以下、S:0.01%以下、N:0.05%以下を含むことを特徴とするフェライト系ステンレス鋼板。
[3]鋳片を、1000℃以上に加熱し、仕上圧延温度900℃以上、巻取温度800℃以上で熱間圧延した後、850℃以下で熱延板焼鈍することを特徴とする上記[1]又は[2]に記載の曲げ加工性に優れたフェライト系ステンレス鋼板の製造方法。
The present invention has been completed based on the above findings and has been completed and has the following characteristics.
[1] Ferritic stainless steel sheet containing, in mass%, C: 0.01 to 0.03%, Mn: 0.5 to 1.0%, Cr: 15 to 20%, Al: 0.01% or less There,
While Cr carbide is dispersed in the ferrite, the abundance ratio of Fe and Cr metal elements in the Cr carbide is a mass% ratio,
Fe / Cr: 0.05 to 0.15
A ferritic stainless steel sheet excellent in bending workability, characterized by being
[2] In the above [1], the ferritic stainless steel sheet is further, in mass%, Si: 0.25% or less, P: 0.040% or less, S: 0.01% or less, N: 0.05 % Ferritic stainless steel sheet, characterized by comprising
[3] slab, heated above 1000 ° C., finish rolling temperature 900 ° C. or higher, after hot rolling at a coiling temperature 800 ° C. or higher, above, characterized in that the annealing hot rolled sheet at 850 ° C. or less [ The manufacturing method of the ferritic stainless steel plate excellent in the bending workability as described in 1] or [2] .

本発明によれば、曲げ加工性に優れたフェライト系ステンレス鋼板及びその製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the ferritic stainless steel plate excellent in bending workability and its manufacturing method are provided.

以下、本発明を実施するための最良の形態の一例を説明する。   Hereinafter, an example of the best mode for carrying out the present invention will be described.

本発明のフェライト系ステンレス鋼板の組成限定理由について以下説明する。なお、以下の記載において%は、質量%を表すものとする。また、本発明は、板厚が0.1〜0.15mm程度の薄鋼板に好適に用いられる。   The reason for limiting the composition of the ferritic stainless steel sheet of the present invention will be described below. In the following description, “%” represents mass%. Moreover, this invention is used suitably for the thin steel plate whose plate | board thickness is about 0.1-0.15 mm.

[C:0.01〜0.03%]
Cは鋼中に固溶して、熱間圧延中のオーステナイト相を安定化するとともに、Crと結合してCr炭化物(主としてCr23 または、これと同じ結晶構造を有するCr炭化物)を形成する。Cが0.01%を下回ると、熱間圧延中でも、組織がフェライト単一組織となり、オーステナイト中へのC濃縮とCr炭化物の粗大析出が抑制されて、フェライト中にCr炭化物が析出して、硬質化し、延性が低下する。
[C: 0.01 to 0.03%]
C forms a solid solution in steel, stabilizes the austenite phase during hot rolling, and combines with Cr to form Cr carbide (mainly Cr 23 C 6 or Cr carbide having the same crystal structure). To do. When C is less than 0.01%, even during hot rolling, the structure becomes a ferrite single structure, C concentration in austenite and coarse precipitation of Cr carbide are suppressed, Cr carbide is precipitated in ferrite, Hardens and decreases ductility.

一方、Cが0.03%を超えるとCr炭化物量が増加して延性そのものが低下してしまう。このため、Cの含有量を0.01〜0.03%とした。   On the other hand, when C exceeds 0.03%, the amount of Cr carbide increases and ductility itself decreases. For this reason, content of C was made into 0.01 to 0.03%.

[Mn:0.5〜1.0%]
Mnは鋼を固溶強化することから、従来は低減する方が好ましいとされてきた。本発明では、Cr炭化物の形態制御のためにMnを最適量添加する。Mnを0.5%以上添加することで、Cr23 中のCrの一部がFeと置換しやすくなる。一方、1.0%を超えて添加されると、Mnの固溶強化による延性低下が無視できなくなる。また、腐食性が劣化する。このため、Mnの含有量を0.5〜1.0%とした。
[Mn: 0.5 to 1.0%]
Since Mn solidifies and strengthens steel, it has been considered preferable to reduce Mn. In the present invention, an optimum amount of Mn is added to control the morphology of Cr carbide. By adding 0.5% or more of Mn, a part of Cr in Cr 23 C 6 can be easily replaced with Fe. On the other hand, if it is added over 1.0%, a decrease in ductility due to solid solution strengthening of Mn cannot be ignored. Moreover, the corrosiveness is deteriorated. For this reason, the Mn content is set to 0.5 to 1.0%.

ここで、Cr23 または、これと同じ結晶構造を有するCr炭化物中のCr元素の一部がFe元素と置換されたCr炭化物の状態をCr23−iFe と表すものとする。なお、前記iは、1以上22以下の整数を表す。また、格子点にあるFeまたはCrの一部が欠落しているCr23−iFe も結晶構造が同じである限り含まれる。 Here, Cr 23 C 6 or a state of Cr carbide in which a part of Cr element in Cr carbide having the same crystal structure is substituted with Fe element is expressed as Cr 23-i Fe i C 6. . Note that i represents an integer of 1 to 22. Further, Cr 23-i Fe i C 6 lacking a part of Fe or Cr at the lattice point is included as long as the crystal structure is the same.

[Cr:15〜20%]
Crは鋼表面にCr酸化物を形成し、耐食性向上に寄与する元素である。Mnを積極的に添加することから、15%未満のCr添加量ではステンレスとしての耐食性を維持できない。一方、20%を超えて添加すると、Crの固溶強化による延性低下が著しい。このため、Crの含有量を15〜20%とした。
[Cr: 15-20%]
Cr is an element that forms Cr oxide on the steel surface and contributes to the improvement of corrosion resistance. Since Mn is actively added, the corrosion resistance as stainless steel cannot be maintained with a Cr addition amount of less than 15%. On the other hand, if added over 20%, the ductility drop due to the solid solution strengthening of Cr is remarkable. For this reason, the content of Cr is set to 15 to 20%.

[Al:0.01%以下]
Alは脱酸剤として作用するとともに、鋼中ではNと結合してAlNとして析出する。AlNは、熱延板中のフェライト粒界に微細析出することから、展伸した熱延板組織の熱延板焼鈍での等軸化を阻害し、Cr炭化物のフェライト粒界への片状析出を促進する。このため、AlNの析出量を低減するため、Alの含有量を0.01%以下、好ましくは0.005%以下、さらに好ましくは0.003%以下とする。
[Al: 0.01% or less]
Al acts as a deoxidizing agent and also bonds with N in steel and precipitates as AlN. Since AlN is finely precipitated at the ferrite grain boundaries in the hot rolled sheet, it inhibits equiaxed hot-rolled sheet annealing of the expanded hot-rolled sheet structure, and flaky precipitation of Cr carbide on the ferrite grain boundaries Promote. For this reason, in order to reduce the precipitation amount of AlN, the Al content is set to 0.01% or less, preferably 0.005% or less, and more preferably 0.003% or less.

本発明においては、上記成分の他に、さらに、Si:0.20%以下、P:0.040%以下、S:0.01%以下、N:0.05%以下を含有することが好ましい。以下、これらの組成限定理由について説明する。   In the present invention, in addition to the above components, Si: 0.20% or less, P: 0.040% or less, S: 0.01% or less, N: 0.05% or less are preferably contained. . Hereinafter, the reasons for limiting the composition will be described.

[Si:0.25%以下]
Siは脱酸剤として作用する元素であり、鋼を著しく固溶強化する元素である。Alを低減する本発明においては、Siで脱酸させる目的で、0.05%以上の添加が好ましい。一方、Cの含有量を下げていることから、Siの含有量を0.25%以下として、熱間圧延時におけるオーステナイト分率を維持することが好ましい。これより、Siの含有量は0.25%以下とすることが好ましく、0.05%以上、0.25%以下とすることがさらに好ましい。
[Si: 0.25% or less]
Si is an element that acts as a deoxidizer, and is an element that significantly strengthens steel by solid solution. In the present invention for reducing Al, addition of 0.05% or more is preferable for the purpose of deoxidation with Si. On the other hand, since the C content is lowered, it is preferable to keep the austenite fraction during hot rolling by setting the Si content to 0.25% or less. Accordingly, the Si content is preferably 0.25% or less, and more preferably 0.05% or more and 0.25% or less.

[P:0.040%以下]
Pは、鋼を固溶強化する。また、フェライト粒界に偏析して鋼を脆化する。このため、Pの含有量を0.040%以下とすることが好ましく、より好ましくは0.030%以下、さらに好ましくは0.020%以下とする。
[P: 0.040% or less]
P strengthens the steel by solid solution. Moreover, it segregates at the ferrite grain boundaries and embrittles the steel. For this reason, the P content is preferably 0.040% or less, more preferably 0.030% or less, and still more preferably 0.020% or less.

[S:0.01%以下]
Sは鋼中で硫化物を形成する。Mnを含有する鋼ではMnSが析出する。このMnSはフェライト粒界に片状に析出することから延性を劣化、特に曲げ加工性を劣化させることからSはできるだけ低減することが好ましい。このため、Sの含有量を0.01%以下とすることが好ましく、より好ましくは0.005%以下とする。
[S: 0.01% or less]
S forms sulfides in the steel. MnS precipitates in steel containing Mn. Since this MnS precipitates in the form of flakes at the ferrite grain boundaries, ductility is deteriorated, particularly bending workability is deteriorated, so S is preferably reduced as much as possible. For this reason, the S content is preferably 0.01% or less, and more preferably 0.005% or less.

[N:0.05%以下]
Nは熱間圧延中のオーステナイトを安定化させるとともにCr窒化物(CrN)を形成する。Cr炭化物とCr窒化物とでは、同じ含有量でも析出物の体積は大きく異なり、Cr窒化物の方が体積は小さい。このため、Nの含有量は0.05%以下とすることが好ましく、オーステナイトの安定化のために0.01%以上とすることが好ましい。
[N: 0.05% or less]
N stabilizes austenite during hot rolling and forms Cr nitride (Cr 2 N). Even if the Cr carbide and Cr nitride have the same content, the volume of the precipitate is greatly different, and the volume of Cr nitride is smaller. Therefore, the N content is preferably 0.05% or less, and preferably 0.01% or more for stabilizing austenite.

上記成分以外はFe及び不可避不純物である。前記不純物としては、Ni:0.5%以下、Cu:0.1%以下、Mo:0.1%以下、V:0.06%以下、Nb:0.03%以下、Ti:0.03%以下、Ca:0.01%以下、Mg:0.01%以下、B:0.001%以下が許容できるが少ない程好ましい。

[Fe/Cr:0.05〜0.15]
Cr炭化物Cr23−iFe 中のFe/Crの存在比は本発明においては重要である。Cr23−iFe 中におけるFe及びCrの金属元素の存在比(Fe/Cr)が質量%比で0.05を下回ると、つまり、Cr炭化物中のFe量が低下し過ぎるとCr炭化物が片状に析出するため冷延板中に列状のCr炭化物が生成してしまう。一方、前記Fe/Crが0.15を超えるとCr炭化物が微細化してしまい、鋼を硬質化且つ低延性化してしまう。このため、Cr23−iFe 中におけるFe及びCrの金属元素の存在比が質量%比で0.05〜0.15とする。
Other than the above components are Fe and inevitable impurities. The impurities include Ni: 0.5% or less, Cu: 0.1% or less, Mo: 0.1% or less, V: 0.06% or less, Nb: 0.03% or less, Ti: 0.03 % Or less, Ca: 0.01% or less, Mg: 0.01% or less, and B: 0.001% or less are acceptable, but the smaller the better.

[Fe / Cr: 0.05 to 0.15]
The abundance ratio of Fe / Cr in the Cr carbide Cr 23-i Fe i C 6 is important in the present invention. If the abundance ratio of Fe and Cr metal elements (Fe / Cr) in Cr 23-i Fe i C 6 is less than 0.05 by mass%, that is, if the amount of Fe in Cr carbide is too low, Cr Since the carbide precipitates in a piece shape, a row of Cr carbides is generated in the cold-rolled sheet. On the other hand, if the Fe / Cr exceeds 0.15, Cr carbides are refined, and the steel is hardened and reduced in ductility. For this reason, the abundance ratio of Fe and Cr metal elements in Cr 23-i Fe i C 6 is set to 0.05 to 0.15 in mass% ratio.

以上のように、本発明のフェライト系ステンレス鋼板は、フェライト相と、Cr炭化物、Cr窒化物及びこれらの複合体とからなるフェライト単一組成を有する。但し、不可避不純物による析出物、例えば、TiS,Ti,NbC,VNなどは不可避不純物レベルの含有量であれば許容できる。フェライト以外のベイナイト相、マルテンサイト相、オーステナイト相が混入すると鋼が硬質化して高い延性が得られないばかりではなく、曲げ加工性も劣化する。このため、本発明においては、フェライト単一組成とすることが好ましい。 As described above, the ferritic stainless steel sheet of the present invention has a ferrite single composition comprising a ferrite phase, Cr carbide, Cr nitride, and a composite thereof. However, precipitates due to inevitable impurities, such as TiS, Ti 4 C 2 S 2 , NbC, and VN, are acceptable if the content is inevitable impurity level. When a bainite phase, martensite phase, or austenite phase other than ferrite is mixed, not only the steel becomes hard and high ductility cannot be obtained, but also bending workability is deteriorated. For this reason, in the present invention, a single ferrite composition is preferable.

また、本発明のフェライト系ステンレス鋼板は、フェライト中に前記Cr炭化物Cr23−iFe が分散している。ここで、前記分散した状態とは、圧延方向に列状に連なっているものではなく、ランダムに分散しているものである。列状とは、圧延方向5mmの長さの、圧延方向に平行な板厚断面で、圧延方向にCr炭化物が5つ以上並んでいるものである。特に限定するものではないが、列と列の間隔が20μm以下の列の群れが板厚方向に10個以上存在すると延性が劣化しやすい。このため、列の群れは板厚方向に9個以下が好ましい。 In the ferritic stainless steel sheet of the present invention, the Cr carbide Cr 23-i Fe i C 6 is dispersed in ferrite. Here, the dispersed state is not in a row in the rolling direction but is randomly dispersed. The column shape is a plate thickness section parallel to the rolling direction and having a length of 5 mm in the rolling direction, and five or more Cr carbides are arranged in the rolling direction. Although not particularly limited, ductility tends to be deteriorated when there are 10 or more groups of rows having a row-to-row spacing of 20 μm or less in the thickness direction. For this reason, the group of rows is preferably 9 or less in the thickness direction.

以下、上記本発明のフェライト系ステンレス鋼板の製造方法の一例を説明する。   Hereinafter, an example of the manufacturing method of the ferritic stainless steel sheet of the present invention will be described.

本発明のステンレス鋼板は、上記フェライト系ステンレス鋼素材に熱間圧延工程と、熱延板焼鈍および酸洗処理を施す熱延板焼鈍工程と、冷間圧延工程と、冷延板焼鈍工程とを施して製造される。   The stainless steel sheet of the present invention comprises a hot rolling process, a hot rolled sheet annealing process for subjecting the ferritic stainless steel material to hot rolling sheet annealing and pickling treatment, a cold rolling process, and a cold rolled sheet annealing process. Manufactured.

上記組成のステンレス溶鋼を公知の溶製方法で溶製した後、公知の鋳造方法、好ましくは連続鋳造方法でスラブ(「鋳片」ともいう。)とする。本発明においては、前記溶製方法、鋳造方法については特に限定されるものではなく、通常の方法のいずれかを適用することができる。   After the molten stainless steel having the above composition is melted by a known melting method, a slab (also referred to as “slab”) is obtained by a known casting method, preferably a continuous casting method. In the present invention, the melting method and the casting method are not particularly limited, and any of ordinary methods can be applied.

前記熱間圧延工程では、前記スラブを1000℃以上に加熱する。加熱温度が1000℃未満では圧延荷重が高くなり、表面粗さが著しく上昇して、表面品質が劣化する。これが曲げ加工の亀裂の起点となり、曲げ割れが発生しやすくなる。   In the hot rolling step, the slab is heated to 1000 ° C. or higher. When the heating temperature is less than 1000 ° C., the rolling load is increased, the surface roughness is remarkably increased, and the surface quality is deteriorated. This becomes a starting point of the bending crack, and the bending crack is likely to occur.

前記1000℃以上に加熱されたステンレススラブを、仕上圧延温度900℃以上で熱間圧延し、巻取温度800℃以上で巻き取り、熱間圧延工程を終了する。900℃以上で圧延することで、熱延板中のフェライト粒が著しく展伸することを抑制する。また、巻取温度800℃以上とすることで、熱延板中のフェライト粒の等軸化を促進する。仕上圧延温度が900℃未満または巻取温度が800℃未満では、熱延板中のフェライト粒が展伸したままであることから、熱延板中にCr炭化物が片状に析出しやすくなり、これが冷間圧延で割れて、圧延方向に並んだ列状のCr炭化物が形成しやすくなるため曲げ加工性が劣化する。   The stainless slab heated to 1000 ° C. or higher is hot-rolled at a finish rolling temperature of 900 ° C. or higher, wound at a winding temperature of 800 ° C. or higher, and the hot rolling step is completed. By rolling at 900 ° C. or higher, it is possible to prevent the ferrite grains in the hot rolled sheet from spreading significantly. Further, by setting the coiling temperature to 800 ° C. or higher, the equiaxed ferrite grains in the hot rolled sheet are promoted. When the finish rolling temperature is less than 900 ° C. or the winding temperature is less than 800 ° C., the ferrite grains in the hot rolled sheet remain stretched, so that Cr carbide tends to precipitate in the hot rolled sheet in the form of a piece, Since this is cracked by cold rolling and it becomes easy to form a row of Cr carbides arranged in the rolling direction, bending workability deteriorates.

また、本発明においては、前記熱間圧延終了後、850℃以下で熱延板焼鈍する。この熱延板焼鈍温度が850℃を超えると、Cr炭化物のフェライト粒界に沿った成長が著しくなり、片状となる。これも、冷間圧延で粉砕されて、冷延焼鈍板中の列状Cr炭化物を形成して曲げ加工性が劣化する。その後、通常の方法で酸洗処理を行うことで熱延板焼鈍工程を終了する。   Moreover, in this invention, after the said hot rolling completion | finish, hot-rolled sheet annealing is performed at 850 degrees C or less. When this hot-rolled sheet annealing temperature exceeds 850 ° C., the growth along the ferrite grain boundary of Cr carbide becomes remarkable, resulting in a flake shape. This is also pulverized by cold rolling to form row-like Cr carbide in the cold-rolled annealed plate, and the bending workability is deteriorated. Then, a hot-rolled sheet annealing process is complete | finished by performing a pickling process by a normal method.

前記熱延板焼鈍工程の終了後に、通常の方法により冷間圧延工程及び冷延板焼鈍工程を経ることで本発明に係るフェライト系ステンレス鋼板が製造される。   After the hot-rolled sheet annealing step, the ferritic stainless steel sheet according to the present invention is manufactured through a cold rolling process and a cold-rolled sheet annealing process by a normal method.

表1に示す組成のステンレス鋼を溶製し、スラブとした。次に、これらのスラブを1200℃に加熱して、表2に示す条件で熱間圧延を行った。得られた熱延板を表2に示す温度で箱焼鈍した。続けて、混酸(HF:3mass%+HNO )で酸洗し、板厚4mmの熱延板を作製した。 Stainless steel having the composition shown in Table 1 was melted to form a slab. Next, these slabs were heated to 1200 ° C. and hot-rolled under the conditions shown in Table 2. The obtained hot-rolled sheet was box-annealed at the temperature shown in Table 2. Subsequently, mixed acid: pickling with (HF 3mass% + HNO 3) , to prepare a hot rolled sheet having a thickness of 4 mm.

この熱延板を80%の圧延率で冷間圧延を行った。その後、830℃で30秒均熱で焼鈍し、冷延板を作製した。得られた冷延板の引張試験、曲げ試験及び析出物観察をSEM及びTEMで行った。   This hot-rolled sheet was cold-rolled at a rolling rate of 80%. Then, it annealed by 830 degreeC for 30 second soaking, and produced the cold rolled sheet. The obtained cold-rolled sheet was subjected to tensile test, bending test and observation of precipitates by SEM and TEM.

以下、前記引張試験、曲げ試験及び析出物観察の条件を示す。   Hereinafter, the conditions for the tensile test, the bending test, and the observation of precipitates are shown.

[引張試験]
圧延方向と引張方向が平行となるようにJIS13号Bに規定された引張試験片を採取し、JIS Z2241の規定に準拠して引張試験を行い、降伏応力YS(MPa)、引張強度TS(MPa)および延性EL(%)の測定を行った。
[Tensile test]
A tensile test piece specified in JIS No. 13B is collected so that the rolling direction and the tensile direction are parallel, and a tensile test is performed in accordance with the specification of JIS Z2241, yield stress YS (MPa), tensile strength TS (MPa ) And ductility EL (%) were measured.

[曲げ試験]
幅30mm、長さ200mmの長方形の板を、幅方向が圧延方向と平行となるように切り出し、曲げ半径t/2で180°曲げを行った。曲げ部の割れの有無を目視で判断し、割れの無いものを「○」、割れの生じたものを「×」と評価した。
[Bending test]
A rectangular plate having a width of 30 mm and a length of 200 mm was cut out so that the width direction was parallel to the rolling direction, and was bent by 180 ° with a bending radius t / 2. The presence or absence of cracks in the bent portion was visually determined, and those having no cracks were evaluated as “◯”, and those having cracks were evaluated as “×”.

[析出物観察]
(イ)SEM(走査電子顕微鏡)観察
圧延方向に平行な板厚断面中央部を研磨し、王水により腐食した。その断面をSEMで観察し、Cr炭化物の列状の析出の有無を確認した。観察範囲は圧延方向に5mmの長さである。局所的に列状の析出が認められても、曲げ割れが生じるものではないことから、列状の顕著なもの、同じ長手方向位置で板厚方向に列が10個以上あるものを「列状」析出とし、それ以外のものについては「ランダム」と評価した。
[Precipitation observation]
(A) SEM (scanning electron microscope) observation The central part of the plate thickness section parallel to the rolling direction was polished and corroded by aqua regia. The cross section was observed by SEM, and the presence or absence of the precipitation of Cr carbide was confirmed. The observation range is 5 mm long in the rolling direction. Even if precipitation in a row is recognized locally, bending cracks do not occur. Therefore, a row having a remarkable row shape or a row having 10 or more rows in the thickness direction at the same longitudinal position is referred to as “row shape”. "Deposition" and the others were evaluated as "random".

(ロ)TEM(透過電子顕微鏡)観察
レプリカ法でCr炭化物を採取し、EDX(エネルギー分散型X線検出装置)でCr炭化物中のCrとFeの存在比(質量%比)を測定した。
(B) TEM (Transmission Electron Microscope) Observation Cr carbide was collected by a replica method, and the abundance ratio (mass% ratio) of Cr and Fe in the Cr carbide was measured by EDX (energy dispersive X-ray detector).

Figure 0005050565
Figure 0005050565

Figure 0005050565
Figure 0005050565

析出物観察結果、引張試験及び曲げ試験の結果を表3に示す。表3に示すように、本発明例は、比較例に比べて曲げ試験において良好な結果を示し、曲げ加工性に優れていることが確認できた。   Table 3 shows the results of the precipitate observation, the tensile test, and the bending test. As shown in Table 3, the inventive examples showed better results in the bending test than the comparative examples, and it was confirmed that the bending workability was excellent.

Figure 0005050565
Figure 0005050565

Claims (3)

質量%で、C:0.01〜0.03%、Mn:0.5〜1.0%、Cr:15〜20%、Al:0.01%以下を含むフェライト系ステンレス鋼板であって、
フェライト中にCr炭化物が分散するとともに、前記Cr炭化物中におけるFe及びCrの金属元素の存在比が質量%比で、
Fe/Cr:0.05〜0.15
であることを特徴とする曲げ加工性に優れたフェライト系ステンレス鋼板。
A ferritic stainless steel sheet containing, in mass%, C: 0.01 to 0.03%, Mn: 0.5 to 1.0%, Cr: 15 to 20%, Al: 0.01% or less,
While Cr carbide is dispersed in the ferrite, the abundance ratio of Fe and Cr metal elements in the Cr carbide is a mass% ratio,
Fe / Cr: 0.05 to 0.15
A ferritic stainless steel sheet excellent in bending workability, characterized by being
フェライト系ステンレス鋼板が、さらに、質量%で、Si:0.25%以下、P:0.040%以下、S:0.01%以下、N:0.05%以下を含むことを特徴とする請求項1に記載のフェライト系ステンレス鋼板。   The ferritic stainless steel sheet further includes, by mass%, Si: 0.25% or less, P: 0.040% or less, S: 0.01% or less, and N: 0.05% or less. The ferritic stainless steel sheet according to claim 1. 片を、1000℃以上に加熱し、仕上圧延温度900℃以上、巻取温度800℃以上で熱間圧延した後、850℃以下で熱延板焼鈍することを特徴とする請求項1または2に記載の曲げ加工性に優れたフェライト系ステンレス鋼板の製造方法。 The slab, heated to above 1000 ° C., finish rolling temperature 900 ° C. or higher, after hot rolling at a coiling temperature 800 ° C. or higher, according to claim 1 or 2, characterized in that annealing hot rolled sheet at 850 ° C. or less The manufacturing method of the ferritic stainless steel plate excellent in the bending workability of description .
JP2007049323A 2007-02-28 2007-02-28 Ferritic stainless steel sheet and manufacturing method thereof Active JP5050565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007049323A JP5050565B2 (en) 2007-02-28 2007-02-28 Ferritic stainless steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007049323A JP5050565B2 (en) 2007-02-28 2007-02-28 Ferritic stainless steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008214649A JP2008214649A (en) 2008-09-18
JP5050565B2 true JP5050565B2 (en) 2012-10-17

Family

ID=39835059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007049323A Active JP5050565B2 (en) 2007-02-28 2007-02-28 Ferritic stainless steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5050565B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6644489B2 (en) * 2015-07-16 2020-02-12 三菱日立パワーシステムズ株式会社 Gas turbine combustor
KR102523533B1 (en) * 2020-12-03 2023-04-19 주식회사 포스코 Ferritic stainless steel with improved grain boundary erosion and its manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001098328A (en) * 1999-09-24 2001-04-10 Kawasaki Steel Corp Method of producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP4626484B2 (en) * 2005-10-27 2011-02-09 Jfeスチール株式会社 Ferritic stainless steel cold-rolled steel sheet excellent in press formability and manufacturing method thereof

Also Published As

Publication number Publication date
JP2008214649A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
JP4324072B2 (en) Lightweight high strength steel with excellent ductility and its manufacturing method
TWI494447B (en) High-strength steel sheet excellent in formability, high-strength zinc plated steel sheet and the like (2)
JP6779320B2 (en) Clad steel sheet with excellent strength and formability and its manufacturing method
TWI494448B (en) High-strength steel sheets, high-strength zinc-plated steel sheets, and the like, which are excellent in formability (1)
JP5423191B2 (en) High strength steel plate and manufacturing method thereof
JP4084733B2 (en) High strength low specific gravity steel plate excellent in ductility and method for producing the same
JP6017341B2 (en) High strength cold-rolled steel sheet with excellent bendability
WO2012036312A1 (en) High-strength hot-rolled steel sheet having superior fatigue resistance properties and method for producing same
WO2012036309A1 (en) High-strength hot-rolled steel sheet having excellent bending workability and method for producing same
JP6519016B2 (en) Hot rolled steel sheet and method of manufacturing the same
JP2007063668A (en) High-tension steel sheet and process for producing the same
JP6383368B2 (en) Cold rolled flat steel product for applying deep drawing and method for producing the same
JP4682805B2 (en) Ferritic stainless steel cold-rolled steel sheet excellent in press formability and manufacturing method thereof
JP2008202115A (en) High-strength steel sheet having excellent ductility, and method for producing the same
JP4682806B2 (en) Ferritic stainless steel cold-rolled steel sheet excellent in press formability and manufacturing method thereof
JP4626484B2 (en) Ferritic stainless steel cold-rolled steel sheet excellent in press formability and manufacturing method thereof
CN114502760B (en) Ferritic stainless steel sheet, method for producing same, and ferritic stainless steel member
JP6682988B2 (en) High-tensile steel plate with excellent ductility and method of manufacturing the same
JP5287553B2 (en) Non-tempered high-tensile steel plate with yield strength of 885 MPa or more and method for producing the same
JP5453747B2 (en) Stainless cold-rolled steel sheet excellent in punching processability and manufacturing method thereof
WO2020196311A1 (en) High-strength steel plate and method for manufacturing same
JP5045050B2 (en) Ferritic stainless hot rolled steel sheet for cold rolling and method for producing the same
JP5050565B2 (en) Ferritic stainless steel sheet and manufacturing method thereof
JP6123693B2 (en) High-strength steel sheet with excellent delayed fracture resistance on sheared surface and method for producing the same
JP2011001564A (en) Ferritic stainless steel sheet having excellent roughening resistance and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

R150 Certificate of patent or registration of utility model

Ref document number: 5050565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250