JP4543297B2 - Magnetic encoder - Google Patents

Magnetic encoder Download PDF

Info

Publication number
JP4543297B2
JP4543297B2 JP2000379536A JP2000379536A JP4543297B2 JP 4543297 B2 JP4543297 B2 JP 4543297B2 JP 2000379536 A JP2000379536 A JP 2000379536A JP 2000379536 A JP2000379536 A JP 2000379536A JP 4543297 B2 JP4543297 B2 JP 4543297B2
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
field detection
detection means
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000379536A
Other languages
Japanese (ja)
Other versions
JP2002181588A (en
Inventor
浩司 上村
一成 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2000379536A priority Critical patent/JP4543297B2/en
Priority to TW090130428A priority patent/TW528856B/en
Priority to PCT/JP2001/010816 priority patent/WO2002048652A1/en
Publication of JP2002181588A publication Critical patent/JP2002181588A/en
Application granted granted Critical
Publication of JP4543297B2 publication Critical patent/JP4543297B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、回転体の回転位置を検出する磁気式エンコーダに関し、特に小型の磁気式エンコーダに関する。
【0002】
【従来の技術】
従来、回転体の回転位置を検出する小型の磁気式エンコーダとして、図3のようなものがある。図3は、従来の磁気式エンコーダを示す側面図である。図において、1はヨーク、2は永久磁石、3は磁界検出素子、4は回転軸、5はモータである。この磁気式エンコーダは、回転軸4に対して垂直かつ一様に磁界を発生させる永久磁石2と、ヨーク1の間に磁界の方向に対して指向性と極性を有するホール素子などの磁界検出素子3を備えたもので、この磁界検出素子3aを永久磁石2が生成する磁界内に、軸と垂直方向に指向性が最大になるように配置してあり、さらに、もう一つの磁界検出素子3bを軸方向に90度回転させて配置している。また、磁界検出素子の配置を軸角度の異なる2つの磁界検出手段に対して軸角度は同一で極性の異なる2つの磁界検出手段を配置している(図示しない)。
いま、モータ5の駆動により回転軸4が回転すると、回転軸4に固定したヨーク1が回転する。ヨーク1内の磁界の向きが変化するので、固定した磁界検出素子3によって、1回転につき正弦波と余弦波を得ることができる。この2つの信号を図示していない角度演算器などを用いて演算することにより回転位置を検出することができる。演算方法については例えば、一方の磁気検出素子の電圧出力をVa 、他方の磁気検出素子の電圧出力をVb とすると、回転位置θは、θ=ARCTAN( Va/Vb)で算出することができる。
したがって、このような磁気式エンコーダは磁界の振幅が一定の場合に高精度の位置検出が可能となる。
【0003】
【発明が解決しようとする課題】
ところが、従来の永久磁石では磁石が大きいことや複雑な形状をしているため、磁界の平行度が悪い。磁界の平行度が悪いと波形がひずみ、微小角度の検出精度が悪い問題がある。また、永久磁石が複雑な形状を有していることから着磁も困難で有り、実用化を困難なものにしていた。さらに、小型なアクチュエータを作製する場合には、前述の磁気式エンコーダも小型化しなければならないが、磁界を生成する永久磁石は形状が複雑なため加工が困難であり小型化を困難なものにしていた。
そこで、本発明は作製が容易で検出精度が高く、かつ、小型の磁気式エンコーダを提供することを目的とする。
【0004】
【課題を解決するための手段】
上記課題を解決するため、本発明は被検出体と一体に回転する回転軸に対して、垂直かつ一様に磁界を発生する磁界発生手段と、前記磁界の方向に対して指向性と極性を有し、少なくとも1個を前記磁界発生手段が生成する磁界内に回転軸と垂直方向に指向性が最大になるように配置してあり、かつ、少なくとも1個を回転軸のまわりに回転させた位置に配置した磁界検出手段と、前記磁界検出手段から得られた信号を角度情報および位置情報に変換する波形処理回路とからなる磁気式エンコーダにおいて、前記磁界検出手段は少なくとも3個有し、前記磁界検出手段の少なくとも1個の磁界検出感度が最大となる方向が前記2個の磁界検出手段の方向とそれぞれ垂直になるように配置した構成である。
また、前記磁界発生手段を永久磁石と軟磁性体のヨークからなる構造としてもよく、前記永久磁石は気相成長法で形成してもよい。
また、前記磁界検出手段はホール素子または磁気抵抗効果素子としてもよいし、前記ホール素子は半導体からなる基板内に形成され、3個の素子が互いに直交するように形成されていてもよい。
【0005】
【発明の実施の形態】
以下、本発明の実施例を図を用いて詳細に説明する。
本発明の実施例を図1および図2に示す。図1は本発明の磁気式エンコーダを小型のモータと結合させた側面図、図2は図1を矢印の方向から見た正面図である。図において、1はヨーク、2は永久磁石、3は磁界検出素子、4は回転軸、5はモータである。
ヨーク1は、永久磁石2から発する磁界を導くもので、コ字状の3%Si−Feの軟磁性の珪素鋼板を積層し2個のブロックに成形したものからなる。永久磁石2はブロック状のフェライト磁石をヨーク1の中に結合させて形成している。
磁界検出素子3は、3個のホール素子(3a,3b,3c)を用いヨーク1の開口部に配置している。ホール素子3個の検出信号がそれぞれ最大となる方向が互いに垂直になるように設置している。したがって、永久磁石2から発する磁界はヨーク1を通り、磁界検出素子3を設置した空間に均一な磁界を形成する。
また、図示していないが、磁界検出素子3への駆動電源の供給や磁界検出手段からの信号送信を行うための信号線を、波形処理回路に接続している。また、図示しないが、回転軸4は軸受によりケーシングに支持され、磁界検出手段はフレームを介してケーシングに固定されている。
【0006】
次に、本実施例の動作について述べる。
いま、回転軸4の回転によりヨーク1及び永久磁石2がθだけ回転すると、磁界検出素子3aの指向性が最大のベクトル方向と、永久磁石により生成される磁界のベクトル方向はθだけずれる。また、磁界検出素子3a、3bの検出磁界が最大となる方向からそれぞれ軸方向に向かって、ψa 、ψb の角度を有しているとすると、各磁界検出素子3a、3bの補正後の出力Va、Vbはそれぞれ、(1) 式と(2) 式で表される。
Va=Bcosθ/cosψa …(1)
Vb=Bcos(θ+π/2)/cosψb …(2)
さらに、各補正後の出力を用いて、回転軸2の角度の絶対位置Θは、(3) 式として得られる。
Θ=arctan(Va/Vb) …(3)
以上のことから、ψa とψb の値がわかれば、磁界方向の変動による出力振幅の誤差を補正することができる。そこで、磁界検出素子3a、3bがそれぞれ最大になる位置に置いて、ψa とψb は逐次更新され信号処理回路に含まれる記憶領域に記憶され各磁界検出素子の補正に用いられる。具体的には、磁界検出素子3aの出力が最大になるときに、磁界検出素子3cの出力をV3c3amax とすると、あらかじめ計測された磁界検出素子3cの最大値をV3cmax とすれば、(4) 式で与えられる。
ψa =sin-1(V3c3amax /V3cmax ) …(4)
同様に、磁界検出素子3bについて、磁界検出素子3bの出力が最大になるときに、磁界検出素子3cの出力をV3c3bmax とすると、(5) 式で与えられる。
ψb =sin-1(V3c3bmax /V3cmax ) …(5)
従って、(4) 式、(5) 式で得られた値を(1) 式(2) 式に代入し、(3 )式にてΘを求めることができる。
なお、本実施例では磁界発生素子3のホール素子3個を、それぞれ独立させて配置したが、これに限らず3個のホール素子を互いに磁界最大検出が直交するように半導体基板上に形成してもよい。この構成によっても信号の検出精度は前述の実施例と同様によい結果が得られた。
なお、本実施例では、磁界検出素子としてホール素子を用いたが、磁気抵抗効果素子を用いてもよい。また、永久磁石はブロック状のフェライト磁石を用いたが、これに限らず希土類磁石などをスパッタ法を用いて、軟磁性体の端面に付着させてもよい。
【0007】
【発明の効果】
以上述べたように、本発明によれば、磁界検出手段を少なくとも3個有し、この磁界検出手段の少なくとも1個の磁界検出感度が最大となる方向が他の2個の磁界検出手段の方向とそれぞれ垂直になるように配置したので、磁界検出素子の出力変動を容易に補正できる。したがって、実用化が容易となり、検出精度の高い小型の磁気式エンコーダを得る効果がある。
【図面の簡単な説明】
【図1】本発明の磁気式エンコーダを用いたモータの全体構成を示す側面図である。
【図2】図1の矢印方向から見た正面図である。
【図3】従来の磁気式エンコーダを示す側面図である。
【符号の説明】
1:ヨーク
2:永久磁石
3:磁界検出素子
4:回転軸
5:モータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic encoder that detects a rotational position of a rotating body, and more particularly to a small-sized magnetic encoder.
[0002]
[Prior art]
Conventionally, there is a small magnetic encoder as shown in FIG. 3 that detects the rotational position of a rotating body. FIG. 3 is a side view showing a conventional magnetic encoder. In the figure, 1 is a yoke, 2 is a permanent magnet, 3 is a magnetic field detecting element, 4 is a rotating shaft, and 5 is a motor. This magnetic encoder includes a permanent magnet 2 that generates a magnetic field vertically and uniformly with respect to a rotating shaft 4, and a magnetic field detection element such as a Hall element having directivity and polarity with respect to the direction of the magnetic field between the yokes 1. The magnetic field detection element 3a is arranged in the magnetic field generated by the permanent magnet 2 so that the directivity is maximized in the direction perpendicular to the axis, and another magnetic field detection element 3b. Are rotated 90 degrees in the axial direction. Further, two magnetic field detecting means having the same axial angle but different polarities are arranged (not shown) with respect to two magnetic field detecting means having different axial angles.
Now, when the rotating shaft 4 is rotated by driving the motor 5, the yoke 1 fixed to the rotating shaft 4 is rotated. Since the direction of the magnetic field in the yoke 1 changes, a sine wave and a cosine wave can be obtained per rotation by the fixed magnetic field detection element 3. The rotational position can be detected by calculating these two signals using an angle calculator not shown. As for the calculation method, for example, when the voltage output of one magnetic detection element is Va and the voltage output of the other magnetic detection element is Vb, the rotational position θ can be calculated by θ = ARCTAN (Va / Vb).
Therefore, such a magnetic encoder can detect a position with high accuracy when the amplitude of the magnetic field is constant.
[0003]
[Problems to be solved by the invention]
However, the conventional permanent magnet has a large magnet and a complicated shape, and therefore the parallelism of the magnetic field is poor. If the parallelism of the magnetic field is poor, the waveform is distorted and the detection accuracy of minute angles is poor. Further, since the permanent magnet has a complicated shape, it is difficult to magnetize, making it difficult to put it into practical use. Furthermore, when manufacturing a small actuator, the above-mentioned magnetic encoder must also be miniaturized, but the permanent magnet that generates a magnetic field is difficult to process due to its complicated shape, making it difficult to miniaturize it. It was.
Accordingly, an object of the present invention is to provide a small magnetic encoder that is easy to manufacture, has high detection accuracy, and is small.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention has a magnetic field generating means for generating a magnetic field vertically and uniformly with respect to a rotating shaft that rotates integrally with a detected object, and directivity and polarity with respect to the direction of the magnetic field. And at least one is arranged in the magnetic field generated by the magnetic field generating means so that directivity is maximized in the direction perpendicular to the rotation axis, and at least one is rotated around the rotation axis. In a magnetic encoder comprising a magnetic field detection means arranged at a position and a waveform processing circuit for converting a signal obtained from the magnetic field detection means into angle information and position information, the magnetic field detection means has at least three, In this configuration, the direction in which at least one magnetic field detection sensitivity of the magnetic field detection means is maximized is perpendicular to the directions of the two magnetic field detection means.
Further, the magnetic field generating means may be structured by a permanent magnet and a soft magnetic yoke, and the permanent magnet may be formed by a vapor phase growth method.
Further, the magnetic field detecting means may be a Hall element or a magnetoresistive effect element, or the Hall element may be formed in a substrate made of a semiconductor, and three elements may be formed to be orthogonal to each other.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
An embodiment of the present invention is shown in FIGS. FIG. 1 is a side view in which the magnetic encoder of the present invention is coupled to a small motor, and FIG. 2 is a front view of FIG. 1 viewed from the direction of the arrow. In the figure, 1 is a yoke, 2 is a permanent magnet, 3 is a magnetic field detecting element, 4 is a rotating shaft, and 5 is a motor.
The yoke 1 guides a magnetic field generated from the permanent magnet 2, and is formed by stacking U-shaped 3% Si—Fe soft magnetic silicon steel plates and forming them into two blocks. The permanent magnet 2 is formed by connecting a block-shaped ferrite magnet in the yoke 1.
The magnetic field detection element 3 is disposed in the opening of the yoke 1 using three Hall elements (3a, 3b, 3c). They are installed so that the directions in which the detection signals of the three Hall elements become maximum are perpendicular to each other. Therefore, the magnetic field generated from the permanent magnet 2 passes through the yoke 1 and forms a uniform magnetic field in the space where the magnetic field detection element 3 is installed.
Although not shown, a signal line for supplying drive power to the magnetic field detection element 3 and transmitting signals from the magnetic field detection means is connected to the waveform processing circuit. Although not shown, the rotating shaft 4 is supported on the casing by a bearing, and the magnetic field detection means is fixed to the casing via a frame.
[0006]
Next, the operation of this embodiment will be described.
Now, when the yoke 1 and the permanent magnet 2 are rotated by θ due to the rotation of the rotating shaft 4, the vector direction in which the directivity of the magnetic field detecting element 3a is maximum and the vector direction of the magnetic field generated by the permanent magnet are shifted by θ. Further, assuming that angles ψa and ψb are directed in the axial direction from the direction in which the detected magnetic fields of the magnetic field detecting elements 3a and 3b become maximum, respectively, the corrected output Va of each of the magnetic field detecting elements 3a and 3b. , Vb are expressed by equations (1) and (2), respectively.
Va = Bcos θ / cos ψa (1)
Vb = Bcos (θ + π / 2) / cosψb (2)
Furthermore, the absolute position Θ of the angle of the rotating shaft 2 is obtained as equation (3) using the output after each correction.
Θ = arctan (Va / Vb) (3)
From the above, if the values of ψa and ψb are known, it is possible to correct an output amplitude error due to a change in the magnetic field direction. Therefore, ψa and ψb are sequentially updated at positions where the magnetic field detection elements 3a and 3b are maximized, stored in the storage area included in the signal processing circuit, and used for correcting each magnetic field detection element. Specifically, if the output of the magnetic field detection element 3c is V 3c3amax when the output of the magnetic field detection element 3a is maximum, the maximum value of the magnetic field detection element 3c measured in advance is V 3cmax (4 ) Is given by
ψa = sin −1 (V 3c3amax / V 3cmax ) (4)
Similarly, for the magnetic field detection element 3b, when the output of the magnetic field detection element 3b is maximized, assuming that the output of the magnetic field detection element 3c is V 3c3bmax , (5) is given.
ψb = sin −1 (V 3c3bmax / V 3cmax ) (5)
Therefore, the values obtained by the equations (4) and (5) can be substituted into the equations (1) and (2), and Θ can be obtained by the equation (3).
In this embodiment, the three Hall elements of the magnetic field generating element 3 are arranged independently of each other. However, the present invention is not limited to this, and three Hall elements are formed on the semiconductor substrate so that the maximum magnetic field detection is orthogonal to each other. May be. Even with this configuration, the signal detection accuracy was as good as in the previous embodiment.
In the present embodiment, the Hall element is used as the magnetic field detection element, but a magnetoresistive element may be used. Further, although the block-shaped ferrite magnet is used as the permanent magnet, the present invention is not limited to this, and a rare earth magnet or the like may be attached to the end surface of the soft magnetic material using a sputtering method.
[0007]
【The invention's effect】
As described above, according to the present invention, at least three magnetic field detection means are provided, and the direction in which at least one magnetic field detection sensitivity of the magnetic field detection means is maximized is the direction of the other two magnetic field detection means. The output fluctuations of the magnetic field detection element can be easily corrected. Therefore, practical application is facilitated, and there is an effect of obtaining a small magnetic encoder with high detection accuracy.
[Brief description of the drawings]
FIG. 1 is a side view showing the overall configuration of a motor using a magnetic encoder of the present invention.
FIG. 2 is a front view seen from the direction of the arrow in FIG.
FIG. 3 is a side view showing a conventional magnetic encoder.
[Explanation of symbols]
1: Yoke 2: Permanent magnet 3: Magnetic field detection element 4: Rotating shaft 5: Motor

Claims (5)

被検出体と一体に回転する回転軸に対して、垂直かつ一様に磁界を発生する磁界発生手段と、
前記磁界の方向に対して指向性と極性を有し、少なくとも1個を前記磁界発生手段が生成する磁界内に回転軸と垂直方向に指向性が最大になるように配置してあり、かつ、少なくとも1個を前記回転軸のまわりに回転させた位置に配置した磁界検出手段と、
前記磁界検出手段から得られた信号を、前記回転軸の角度の絶対位置を表す角度情報に変換する波形処理回路と
を備え、
前記磁界検出手段は少なくとも3個有し、前記磁界検出手段の少なくとも1個の磁界検出感度が最大となる方向が前記2個の磁界検出手段の方向とそれぞれ垂直になるように配置していることを特徴とする磁気式エンコーダ。
A magnetic field generating means for generating a magnetic field perpendicularly and uniformly with respect to a rotating shaft that rotates integrally with the detected object;
It has directivity and polarity with respect to the direction of the magnetic field, and at least one is arranged in the magnetic field generated by the magnetic field generating means so that directivity is maximized in the direction perpendicular to the rotation axis, and a magnetic field detector at least one was placed at a position rotated around the rotary shaft,
A waveform processing circuit for converting a signal obtained from the magnetic field detection means into angle information representing an absolute position of the angle of the rotation axis ;
With
There are at least three magnetic field detection means, and the magnetic field detection means is arranged such that the direction in which at least one magnetic field detection sensitivity of the magnetic field detection means is maximized is perpendicular to the direction of the two magnetic field detection means. Magnetic encoder characterized by
前記磁界発生手段が永久磁石と軟磁性体のヨークからなることを特徴とする請求項1記載の磁気式エンコーダ。  2. The magnetic encoder according to claim 1, wherein the magnetic field generating means comprises a permanent magnet and a soft magnetic yoke. 前記永久磁石は気相成長法で形成されていることを特徴とする請求項2記載の磁気式エンコーダ。  The magnetic encoder according to claim 2, wherein the permanent magnet is formed by a vapor phase growth method. 前記磁界検出手段はホール素子または磁気抵抗効果素子であることを特徴とする請求項1から3のいずれか1項に記載の磁気式エンコーダ。  The magnetic encoder according to any one of claims 1 to 3, wherein the magnetic field detection means is a Hall element or a magnetoresistive effect element. 前記磁界検出手段は半導体からなる基板内に形成され、3個の素子が互いに直交するように形成されていることを特徴とする請求項1から4のいずれか1項に記載の磁気式エンコーダ。  5. The magnetic encoder according to claim 1, wherein the magnetic field detection unit is formed in a substrate made of a semiconductor, and three elements are formed so as to be orthogonal to each other.
JP2000379536A 2000-12-14 2000-12-14 Magnetic encoder Expired - Fee Related JP4543297B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000379536A JP4543297B2 (en) 2000-12-14 2000-12-14 Magnetic encoder
TW090130428A TW528856B (en) 2000-12-14 2001-12-07 Magnetic type encoder
PCT/JP2001/010816 WO2002048652A1 (en) 2000-12-14 2001-12-10 Magnetic encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000379536A JP4543297B2 (en) 2000-12-14 2000-12-14 Magnetic encoder

Publications (2)

Publication Number Publication Date
JP2002181588A JP2002181588A (en) 2002-06-26
JP4543297B2 true JP4543297B2 (en) 2010-09-15

Family

ID=18847884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000379536A Expired - Fee Related JP4543297B2 (en) 2000-12-14 2000-12-14 Magnetic encoder

Country Status (1)

Country Link
JP (1) JP4543297B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2899967B1 (en) * 2006-04-12 2008-06-20 Valeo Vision Sa METHOD FOR DETERMINING THE ANGULAR POSITION OF A PROJECTOR USING MULTIPLE MEANS FOR MEASURING A MAGNETIC FIELD
JP2014106212A (en) * 2012-11-29 2014-06-09 Honda Motor Co Ltd Target object position attitude calculating device
JP7488800B2 (en) 2021-09-24 2024-05-22 Tdk株式会社 Displacement detection device, displacement detection system, park lock system, and pedal system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157506A (en) * 1991-12-04 1993-06-22 Nippondenso Co Ltd Throttle position sensor
JPH10132506A (en) * 1996-10-30 1998-05-22 Denso Corp Rotation angle sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750161B2 (en) * 1987-07-13 1995-05-31 日本電産株式会社 Magnetic sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157506A (en) * 1991-12-04 1993-06-22 Nippondenso Co Ltd Throttle position sensor
JPH10132506A (en) * 1996-10-30 1998-05-22 Denso Corp Rotation angle sensor

Also Published As

Publication number Publication date
JP2002181588A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
KR101426877B1 (en) Rotation angle detection device, rotary machine, and rotation angle detection method
JP3775257B2 (en) Angle sensor
CN103443590B (en) Absolute encoder device and motor
JP3848670B1 (en) Rotation angle detector
US7583080B2 (en) Rotation angle detection device and rotation angle correction method
JP4319153B2 (en) Magnetic sensor
KR20080077369A (en) Magnetic angular position sensor for a course up to 360°
JP4947250B2 (en) Angle detector
WO2008075623A1 (en) Rotation angle detector
JP4194484B2 (en) Angle detection sensor
JP4352189B2 (en) Magnetic encoder and motor with magnetic encoder
JP2000065596A5 (en) Magnetic encoder and motor with magnetic encoder
JP4543297B2 (en) Magnetic encoder
US20020167310A1 (en) Angle transmitter
JP7242352B2 (en) A system for determining at least one rotational parameter of a rotating member
CN116164778A (en) Position sensor with main rail and Norus rail
JP2009271054A (en) Position detecting device and rotary linear motion motor with the same
JP2001255335A (en) Bearing with rotation detection function
JP5193930B2 (en) Small angle detection sensor
JP2020153980A (en) System for determining at least one rotation parameter of rotating member
JP2009300143A (en) Magnetic position detecting apparatus
JPH0552583A (en) Magnetic encoder
TW202018258A (en) Rotation detection device and encoder and motor using same
JP2001082914A (en) Angle detector
JP2000298036A (en) Rotation sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140709

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees