JP2009271054A - Position detecting device and rotary linear motion motor with the same - Google Patents

Position detecting device and rotary linear motion motor with the same Download PDF

Info

Publication number
JP2009271054A
JP2009271054A JP2008320419A JP2008320419A JP2009271054A JP 2009271054 A JP2009271054 A JP 2009271054A JP 2008320419 A JP2008320419 A JP 2008320419A JP 2008320419 A JP2008320419 A JP 2008320419A JP 2009271054 A JP2009271054 A JP 2009271054A
Authority
JP
Japan
Prior art keywords
linear motion
magnetic field
permanent magnet
shaft
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008320419A
Other languages
Japanese (ja)
Other versions
JP5151958B2 (en
JP2009271054A5 (en
Inventor
Masanobu Kakihara
正伸 柿原
Motomichi Oto
基道 大戸
Toru Shikayama
透 鹿山
Hironobu Yoshitake
博信 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2008320419A priority Critical patent/JP5151958B2/en
Publication of JP2009271054A publication Critical patent/JP2009271054A/en
Publication of JP2009271054A5 publication Critical patent/JP2009271054A5/ja
Application granted granted Critical
Publication of JP5151958B2 publication Critical patent/JP5151958B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small and accurate position detecting device and a rotary linear motion motor. <P>SOLUTION: The position detecting device of the rotary linear motion motor comprises a permanent magnet 15 in a truncated cone shape fixed to a motor shaft 16, and a magnetic field detecting element 14 attached to a fixed body 13, wherein the two magnetic field detecting elements 14 are arranged in a rotating direction so that two signals having a phase difference of 90 degrees electrically can be obtained, magnetic flux density detected by the magnetic field detecting element 14 varies as a sine wave in a circumferential direction, and amplitude of the magnetic flux density linearly varies in a linear motion direction regarding a position, and a rotating angle θ and a linear motion position (z) of the motor shaft can be calculated from an output signal V1 of a first magnetic field detecting element 141 and an output signal V2 of a second magnetic field detecting element 142. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、回転運動と直動運動を行う軸の回転位置と直動位置を同時に検出する位置検出装置およびそれを備えた回転直動モータに関する。
The present invention relates to a position detection device that simultaneously detects a rotational position and a linear motion position of a shaft that performs a rotational motion and a linear motion, and a rotary linear motion motor including the position detection device.

従来のモータ軸の回転運動と軸方向への運動(以下、直動運動)を同時に行う回転直動モータの位置検出装置は、回転運動と直動運動の位置検出を別々の装置で行うようにしていた。(例えば、特許文献1、2参照)。   A conventional rotary linear motor position detection device that simultaneously performs rotational motion of the motor shaft and axial motion (hereinafter referred to as linear motion) is configured to detect the position of rotational motion and linear motion separately. It was. (For example, refer to Patent Documents 1 and 2).

図14は特許文献1に記載された回転直動モータの回転に関する位置検出部の側断面図である。
図において、モータ部1では、モータ軸9が回転運動を行うような構成をしており、回転用の位置検出部2は、直動軸受3が回転軸受4に回転自在に取り付け支持されている。従って、直動軸受3はモータ軸9と同期回転し、モータ軸9の軸方向の移動が可能となっている。回転信号発生部5は直動軸受3に同期回転してモータ軸の回転信号を発する。回転信号検出部6は、回転信号発生部5からの信号を定位置で受けてモータ軸9の回転位置を検出する。
FIG. 14 is a side cross-sectional view of a position detection unit relating to rotation of the rotary linear motor described in Patent Document 1.
In the figure, the motor unit 1 is configured such that the motor shaft 9 performs a rotational motion, and the position detecting unit 2 for rotation is supported by the linear motion bearing 3 being rotatably attached to the rotary bearing 4. . Therefore, the linear motion bearing 3 rotates synchronously with the motor shaft 9 so that the motor shaft 9 can move in the axial direction. The rotation signal generator 5 rotates in synchronization with the linear motion bearing 3 and generates a rotation signal of the motor shaft. The rotation signal detector 6 receives the signal from the rotation signal generator 5 at a fixed position and detects the rotation position of the motor shaft 9.

また図15は回転直動モータの直動に関する位置検出部の側断面図を示したものである。図において、モータ部1では、モータ軸9が直動運動を行うような構成をしており、直動用の位置検出部2では、直動軸受3が回転軸受4を介してモータ軸9の下端部を支持している。直動信号発生部7はモータ軸9の直動運動に対してのみ直動軸受3と同期して移動することにより、モータ軸9の直動信号を発する。直動信号検出部8は、直動信号発生部7からの信号を受けて、モータ軸9の直動位置を検出する。   FIG. 15 is a side sectional view of the position detection unit related to the linear motion of the rotary linear motion motor. In the figure, the motor unit 1 is configured such that the motor shaft 9 performs a linear motion. In the linear motion position detection unit 2, the linear motion bearing 3 is connected to the lower end of the motor shaft 9 via the rotary bearing 4. Supporting the department. The linear motion signal generator 7 generates a linear motion signal of the motor shaft 9 by moving in synchronization with the linear motion bearing 3 only with respect to the linear motion of the motor shaft 9. The linear motion signal detection unit 8 receives a signal from the linear motion signal generation unit 7 and detects the linear motion position of the motor shaft 9.

従来の回転直動モータでは、回転位置と直動位置を同時に検出する場合、モータ軸9を長く延ばし、図14と図15に示した回転用と直動用の位置検出部2を直動方向に並べて構成する必要があった。

特開2000−14115号公報(第6−7頁、図1、図4) 特開2004−45080号公報(第10頁、図1、図2、図3)
In the conventional rotary / linear motion motor, when the rotational position and the linear motion position are detected simultaneously, the motor shaft 9 is elongated and the rotational and linear motion position detectors 2 shown in FIGS. 14 and 15 are moved in the linear motion direction. It was necessary to configure side by side.

Japanese Unexamined Patent Publication No. 2000-14115 (page 6-7, FIGS. 1 and 4) JP 200445080 A (page 10, FIG. 1, FIG. 2, FIG. 3)

このように、従来の回転直動モータは、モータ軸の回転・直動位置を検出する装置を別々に組み合わせて構成していたため、位置検出装置が大きくなるという問題があった。
さらに、モータ軸の回転・直動運動がそれぞれ、回転・直動位置の検出に干渉しないよう、位置検出部に回転軸受と直動軸受を組み合わせて使用するため、回転軸受と直動軸受の組み立て精度や軸受のあそびの影響により検出誤差が発生するという問題があった。
本発明はこのような問題点に鑑みてなされたものであり、小型かつ精度の良い位置検出装置およびそれを備えた回転直動モータを提供することを目的とする。
As described above, since the conventional rotary / linear motion motor is configured by separately combining devices for detecting the rotation / linear motion position of the motor shaft, there is a problem that the position detection device becomes large.
In addition, since the rotation and linear motion of the motor shaft does not interfere with the detection of the rotation and linear motion position, respectively, the position detector is used in combination with a rotary bearing and linear motion bearing. There was a problem that a detection error occurred due to the influence of accuracy and play of the bearing.
The present invention has been made in view of such problems, and an object of the present invention is to provide a small and accurate position detection device and a rotary linear motion motor including the same.

上記問題を解決するため、本発明は、次のように構成したのである。
請求項1に記載の発明は、回転運動と直動運動が可能となるよう支持された軸と、
前記軸に固定された永久磁石と、
前記永久磁石に空隙を介して対向し、固定体に取り付けられた磁界検出素子と、
前記磁界検出素子からの信号を処理する信号処理回路とを備えた位置検出装置において、前記磁界検出素子は前記永久磁石の回転方向側面に2個配置され、
2個の磁界検出素子からの検出信号は90度の位相差をもち、
前記磁界検出素子が検出する磁束密度は前記軸の回転方向に対して正弦波状に変化し、
直動方向に対して磁束密度の振幅が位置に関して変化するように構成した磁気回路を備え、
前記磁界検出素子からの2検出信号から回転位置と直動位置を求める。
請求項2に記載の発明は、前記2個の磁界検出素子の2つの検出信号の比の逆正接演算から回転位置を、また前記2つの検出信号の二乗和の平方根演算により直動位置を検出する。
In order to solve the above problem, the present invention is configured as follows.
The invention according to claim 1 is a shaft supported so as to be capable of rotational motion and linear motion;
A permanent magnet fixed to the shaft;
A magnetic field detection element that is opposed to the permanent magnet via a gap and is attached to a fixed body,
And a signal processing circuit that processes a signal from the magnetic field detection element, wherein the two magnetic field detection elements are arranged on a side surface in the rotation direction of the permanent magnet,
The detection signals from the two magnetic field detection elements have a phase difference of 90 degrees,
The magnetic flux density detected by the magnetic field detection element changes sinusoidally with respect to the rotational direction of the shaft,
A magnetic circuit configured such that the amplitude of the magnetic flux density changes with respect to the position with respect to the linear motion direction;
The rotational position and the linear motion position are obtained from the two detection signals from the magnetic field detection element.
The invention according to claim 2 detects the rotational position from the arc tangent calculation of the ratio of the two detection signals of the two magnetic field detection elements, and the linear movement position by the square root calculation of the square sum of the two detection signals. To do.

請求項3に記載の発明は、前記永久磁石は前記軸の直動方向に円錐台形状となっており、前記軸に対して垂直方向に2極着磁されている。
請求項4に記載の発明は、前記永久磁石を焼結磁石またはボンド磁石で円錐台形状に成形の後、前記軸に対して垂直方向に2極着磁されている。
請求項5に記載の発明は、前記永久磁石は複数個の永久磁石が前記軸の直動方向に並べて配置され、各々の前記永久磁石は前記軸に対して垂直方向に2極着磁され、各々の前記永久磁石の極は同じ方向になるように並べられ、各々の前記永久磁石の半径は前記軸の直動方向とともに変えられており、前記軸の直動方向に並べたときに前記複数の永久磁石が形成する稜線が円錐台形状になるようにしている。
According to a third aspect of the present invention, the permanent magnet has a truncated cone shape in the linear motion direction of the shaft, and is two-pole magnetized in a direction perpendicular to the shaft.
According to a fourth aspect of the present invention, the permanent magnet is formed into a truncated cone shape by using a sintered magnet or a bonded magnet, and thereafter, two poles are magnetized in a direction perpendicular to the axis.
According to a fifth aspect of the present invention, the permanent magnet includes a plurality of permanent magnets arranged side by side in the linear movement direction of the shaft, and each of the permanent magnets is magnetized in two poles in a direction perpendicular to the shaft, The poles of each of the permanent magnets are arranged in the same direction, and the radius of each of the permanent magnets is changed along with the linear motion direction of the shaft, and the plurality of permanent magnets are arranged in the linear motion direction of the shaft. The ridgeline formed by the permanent magnet is formed in a truncated cone shape.

請求項6に記載の発明は、前記円錐台形状の永久磁石の稜線を凹曲面としている。
請求項7記載の発明は、前記円錐台形状の永久磁石の稜線を凸曲面としている。
請求項8記載の発明は、前記円錐台形状の永久磁石の稜線を凹曲面と凸曲面を組み合わせた形状としている。
請求項9、14記載の発明は、前記軸がモータの回転軸である。
請求項10、15記載の発明は、前記位置検出装置を搭載した回転直動モータである。
According to a sixth aspect of the present invention, the ridge line of the frustoconical permanent magnet is a concave curved surface.
According to a seventh aspect of the present invention, the ridge line of the frustoconical permanent magnet is a convex curved surface.
In the invention according to claim 8, the ridgeline of the frustoconical permanent magnet has a shape obtained by combining a concave curved surface and a convex curved surface.
In the present invention, the shaft is a rotating shaft of a motor.
The invention described in claims 10 and 15 is a rotary linear motor equipped with the position detecting device.

請求項11記載の発明は、回転運動と直動運動が可能となるよう支持された軸と、
前記軸に固定された円筒状の永久磁石と、前記永久磁石に空隙を介して対向し、固定体に取り付けられた磁界検出素子と、前記磁界検出素子からの信号を処理する信号処理回路とを備えた位置検出装置において、前記磁界検出素子は前記永久磁石の回転方向側面に2個配置され、2個の磁界検出素子からの検出信号は90度の位相差をもち、前記円筒状の永久磁石は磁界検出素子が検出する磁束密度が前記軸の回転方向に対して正弦波状に変化し、
直動方向に対しては磁束密度の振幅が位置に関して線形特性又は一価関数の非線形特性で変化するように着磁されており、前記磁界検出素子からの2検出信号から回転位置と直動位置を求めることを特徴としている。
請求項12記載の発明は、前記永久磁石は焼結磁石またはボンド磁石で円筒形状に成形の後、前記軸に対して垂直方向に2極着磁したことを特徴としている。
請求項13記載の発明は、前記2個の磁界検出素子の2つの検出信号の比の逆正接演算から回転位置を検出し、直動位置検出に関し、前記磁束密度特性が線形特性の場合は前記2つの検出信号を二乗和の平方根演算して得られる値から直動位置を検出し、前記磁束密度が前記非線形特性の場合は更に前記一価関数の逆関数を計算することにより直動位置を検出することを特徴としている。
The invention according to claim 11 is a shaft supported so as to be capable of rotational motion and linear motion,
A cylindrical permanent magnet fixed to the shaft; a magnetic field detection element attached to the fixed body facing the permanent magnet through a gap; and a signal processing circuit for processing a signal from the magnetic field detection element In the position detection apparatus provided, two of the magnetic field detection elements are arranged on the side surface in the rotation direction of the permanent magnet, and detection signals from the two magnetic field detection elements have a phase difference of 90 degrees, and the cylindrical permanent magnet The magnetic flux density detected by the magnetic field detecting element changes in a sine wave shape with respect to the rotational direction of the shaft,
With respect to the linear motion direction, the amplitude of the magnetic flux density is magnetized so as to change with a linear characteristic or a non-linear characteristic of a monovalent function with respect to the position, and from the two detection signals from the magnetic field detection element, the rotational position and the linear motion position. It is characterized by seeking.
According to a twelfth aspect of the present invention, the permanent magnet is formed into a cylindrical shape by a sintered magnet or a bond magnet, and is then magnetized in two directions perpendicular to the axis.
According to a thirteenth aspect of the present invention, the rotational position is detected from the arc tangent calculation of the ratio of the two detection signals of the two magnetic field detecting elements, and the linear motion position is detected. The linear motion position is detected from the value obtained by calculating the square root of the sum of squares of the two detection signals. When the magnetic flux density is the nonlinear characteristic, the linear motion position is further calculated by calculating the inverse function of the monovalent function. It is characterized by detecting.

請求項1、2または11に記載の発明によると、磁界検出素子が検出する磁束密度が円周方向には正弦波状に変化し、軸の軸方向に向かって直線状に変化するようにし、磁界検出素子は90度間隔で2個設けられており、軸の回転位置を2つの検出信号の比の逆正接演算から、また軸の直動位置を2つの検出信号の二乗和の平方根演算により求めることができるので、磁気式エンコーダを小型化することができる。
また、構成が単純なため組み立て精度や軸受のあそびの影響による検出誤差を小さくすることができる。
According to the first, second, or eleventh aspect of the invention, the magnetic flux density detected by the magnetic field detecting element changes in a sine wave shape in the circumferential direction and changes linearly in the axial direction of the shaft. Two detection elements are provided at intervals of 90 degrees, and the rotational position of the shaft is obtained from the arctangent calculation of the ratio of the two detection signals, and the linear movement position of the shaft is obtained by the square root calculation of the sum of squares of the two detection signals. Therefore, the magnetic encoder can be reduced in size.
In addition, since the configuration is simple, detection errors due to the effects of assembly accuracy and play of the bearing can be reduced.

請求項3に記載の発明によると、前記永久磁石は軸の軸方向に円錐台形状となっており、2極着磁されているので、磁束密度が回転方向には正弦波状に変化し、軸の直動方向に直線状に変化するように分布させることが可能になる。
請求項4に記載の発明によると、前記永久磁石を焼結磁石またはボンド磁石を用いることによって容易に成形することができる。
According to the invention described in claim 3, since the permanent magnet has a truncated cone shape in the axial direction of the shaft and is magnetized in two poles, the magnetic flux density changes sinusoidally in the rotational direction, Can be distributed so as to change linearly in the linear motion direction.
According to invention of Claim 4, the said permanent magnet can be easily shape | molded by using a sintered magnet or a bond magnet.

請求項5に記載の発明によると、前記永久磁石は複数の永久磁石を軸の直動方向に並べて構成され、それぞれの永久磁石は2極着磁されており、それぞれの永久磁石の極は同じ方向になるように並べられ、それぞれの永久磁石の半径は軸の直動方向とともに変えられており、軸の直動方向に並べたときに円錐台形状になるようにしたので、磁束密度が円周方向には正弦波状に変化し、軸の直動方向に向かって直線状に変化するように分布させることができる。   According to a fifth aspect of the present invention, the permanent magnet is configured by arranging a plurality of permanent magnets in the linear motion direction of the shaft, each permanent magnet is magnetized in two poles, and each permanent magnet has the same pole. The radius of each permanent magnet is changed along with the linear motion direction of the shaft, and when arranged in the linear motion direction of the shaft, it has become a truncated cone shape. It can be distributed so that it changes in a sine wave shape in the circumferential direction and changes in a linear shape in the linear motion direction of the shaft.

請求項6乃至8に記載の発明によると、円錐台の稜線を曲線形状とすることで、軸方向位置に対する磁束密度変化の直線性を向上させることが可能になる。
請求項9、14記載の発明によると軸をモータの回転軸を用い直接に磁石を取り付けることにより小型に構成できる。
請求項10、15記載の発明によると、小型の位置検出装置を取付けることにより回転直動モータ自体を小型に構成できる。
請求項12記載の発明によると、永久磁石を円筒形状にすることによって容易に製造することができる。また、軸の直動方向の移動ストロークを長くすることができる。
請求項13記載の発明によると、軸方向の特性が非線形特性であっても一価関数で表される特性であれば補正することで高精度の直動位置を測定できる。
According to the sixth to eighth aspects of the present invention, it is possible to improve the linearity of the magnetic flux density change with respect to the axial position by making the ridge line of the truncated cone into a curved shape.
According to the ninth and fourteenth aspects of the present invention, the shaft can be made compact by directly attaching the magnet using the rotating shaft of the motor.
According to the tenth and fifteenth inventions, the rotation / linear motion motor itself can be made small by attaching a small position detection device.
According to invention of Claim 12, it can manufacture easily by making a permanent magnet cylindrical shape. Further, the movement stroke of the shaft in the linear motion direction can be lengthened.
According to the thirteenth aspect of the invention, even if the axial characteristic is a non-linear characteristic, a highly accurate linear motion position can be measured by correcting it if it is a characteristic represented by a monovalent function.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の回転直動モータの位置検出装置の構造を示す断面図である。
図1において11はモータ部であり、12は位置検出部である。15は円錐台形状の永久磁石であり、モータ軸に対して垂直方向に2極に着磁されている。13は固定体であり、磁気回路を形成するために、鉄や電磁鋼板などの磁性体で構成される。14は磁界検出素子であり、第1の磁界検出素子141と第2の磁界検出素子142で構成され、第1の磁界検出素子141と第2の磁界検出素子142は永久磁石15の回転方向側面に、それぞれ検出信号が90度位相のずれた信号になるように配置されている。16はモータ軸であり、回転運動と直動運動が可能となるよう支持されている。ただし、ここでは支持機構を省略している。円錐台形状の永久磁石15は例えば圧粉磁心材料を用いた焼結磁石、もしくはフェライト磁石などの磁石を砕いてゴムやプラスチックに練り込んだ柔軟性のあるボンド磁石を用いて形成することができる。
FIG. 1 is a sectional view showing the structure of a position detecting device for a rotary direct acting motor according to the present invention.
In FIG. 1, 11 is a motor unit, and 12 is a position detection unit. Reference numeral 15 denotes a frustoconical permanent magnet, which is magnetized in two poles in a direction perpendicular to the motor shaft. Reference numeral 13 denotes a fixed body, which is composed of a magnetic body such as iron or an electromagnetic steel plate in order to form a magnetic circuit. Reference numeral 14 denotes a magnetic field detection element, which includes a first magnetic field detection element 141 and a second magnetic field detection element 142, and the first magnetic field detection element 141 and the second magnetic field detection element 142 are side surfaces in the rotational direction of the permanent magnet 15. In addition, the detection signals are arranged so that the signals are 90 degrees out of phase. Reference numeral 16 denotes a motor shaft, which is supported so as to be capable of rotating and linear motion. However, the support mechanism is omitted here. The frustum-shaped permanent magnet 15 can be formed by using, for example, a sintered magnet using a powder magnetic core material or a flexible bonded magnet obtained by crushing a magnet such as a ferrite magnet and kneading it into rubber or plastic. .

図2は図1のA−A’における磁石の断面と磁化方向を示したものである。
磁石15を2極としているので、第1の磁界検出素子141と第2の磁界検出素子142の検出信号をモータ軸の回転に対して90度位相のずれた信号とするために、2つの磁界検出素子をそれぞれ機械角で90度離れた位置に配置する。
本実施例が従来の実施例と異なる点は、これまで別々の検出装置を用いて検出していた回転方向と直動方向の位置検出を、2個の磁界検出素子を用いて回転方向と直動方向の位置を同時に検出する点である。
本実施例の動作について説明する。図3は軸の回転位置と直動位置に対する磁界検出素子の検出磁束密度の変化を示したものである。軸の回転運動に対して磁界検出素子の検出磁束密度は正弦波状に変化し、軸の直動運動に対しては、検出磁束密度は直線的に変化する。図4は回転方向の位置をある位置に固定して、直動方向の位置を変化させた時の磁束密度の振幅の変化を模式的に示したものである。
直動方向の位置zの検出範囲をZ1,Z2とし、Z1,Z2の位置における磁束密度をB1,B2とすれば、この磁束密度分布は次式で表すことができる。

回転角θp、直動方向の位置をZpとすれば、この位置における第1の磁界検出素子141および第2の磁界検出素子142が出力する電圧V1,V2は次のようになる。


ここでKは磁界検出素子が出力する電圧と磁束密度との比例定数である。
従って回転角θpは2つの磁界検出素子の検出信号の比の逆正接演算により、すなわち次式で求めることができる。

また、直動位置Zpは2つの磁界検出素子の検出信号の二乗和の平方根演算、すなわち次式で求めることができる。

ここでC1,C2は定数であり、次のように表される。


このように本実施例では、回転位置と直動位置の検出が2個の磁界検出素子の出力を用いることで可能になるので、小型の位置検出装置が実現することができる。
FIG. 2 shows a cross section and a magnetization direction of the magnet at AA ′ in FIG.
Since the magnet 15 has two poles, two magnetic fields are used in order to make the detection signals of the first magnetic field detection element 141 and the second magnetic field detection element 142 out of phase by 90 degrees with respect to the rotation of the motor shaft. The detection elements are respectively arranged at positions separated by 90 degrees in mechanical angle.
The difference between the present embodiment and the conventional embodiment is that the position detection in the rotational direction and the linear motion direction, which have been detected by using different detection devices so far, is performed by using two magnetic field detection elements. This is the point where the position in the moving direction is detected simultaneously.
The operation of this embodiment will be described. FIG. 3 shows changes in the detected magnetic flux density of the magnetic field detecting element with respect to the rotational position and the linear motion position of the shaft. The detected magnetic flux density of the magnetic field detecting element changes sinusoidally with respect to the rotational movement of the shaft, and the detected magnetic flux density changes linearly with respect to the linear motion of the shaft. FIG. 4 schematically shows changes in the magnetic flux density amplitude when the position in the rotational direction is fixed at a certain position and the position in the linear motion direction is changed.
If the detection range of the position z in the linear motion direction is Z1 and Z2, and the magnetic flux density at the position of Z1 and Z2 is B1 and B2, this magnetic flux density distribution can be expressed by the following equation.

If the rotation angle θp and the position in the linear motion direction are Zp, the voltages V1 and V2 output from the first magnetic field detection element 141 and the second magnetic field detection element 142 at this position are as follows.


Here, K is a proportional constant between the voltage output from the magnetic field detection element and the magnetic flux density.
Therefore, the rotation angle θp can be obtained by the arc tangent calculation of the ratio of the detection signals of the two magnetic field detection elements, that is, the following equation.

The linear motion position Zp can be obtained by the square root calculation of the sum of squares of the detection signals of the two magnetic field detection elements, that is, the following equation.

Here, C1 and C2 are constants and are expressed as follows.


As described above, in this embodiment, the rotation position and the linear movement position can be detected by using the outputs of the two magnetic field detection elements, so that a small position detection apparatus can be realized.

図5は第2の実施例を示す回転直動モータの位置検出装置の断面図である。図において17は半径が異なる円筒状の永久磁石を複数重ね、稜線を円錐台形状としたものである。各々の永久磁石は2極に着磁されており、磁極が同じ方向になるように重ねられている。図6は図5のB−B’における磁石の断面と磁化方向を示したものである。
このように本実施例では、焼結磁石やボンド磁石のような一体の成形磁石を使用しなくても実施例1と同機能の位置検出装置を実現することができる。
FIG. 5 is a cross-sectional view of a position detecting device for a rotary linear motor showing a second embodiment. In the figure, reference numeral 17 denotes a plurality of cylindrical permanent magnets having different radii, and a ridge line having a truncated cone shape. Each permanent magnet is magnetized in two poles, and the magnetic poles are stacked so that they are in the same direction. FIG. 6 shows the cross section and the magnetization direction of the magnet at BB ′ in FIG.
As described above, in the present embodiment, a position detecting device having the same function as that of the first embodiment can be realized without using an integrated molded magnet such as a sintered magnet or a bonded magnet.

図7は第3の実施例を示す磁石の形状である。図7(a)は永久磁石を一体で形成した場合を示し、図7(b)は円筒状の永久磁石を複数個積み重ねた場合を示す。磁石端部において漏れ磁束の影響が大きくなる場合、磁石端部付近に磁界検出素子が対抗すると、検出磁束密度が著しく減少するため、図に示すように端部付近の磁石の径を大きくし、円錐台形状の稜線を凹曲面にすることで、軸方向位置の変化に対する磁束密度の直線性を向上させることができる。
FIG. 7 shows the shape of a magnet according to the third embodiment. FIG. 7A shows a case where the permanent magnets are integrally formed, and FIG. 7B shows a case where a plurality of cylindrical permanent magnets are stacked. When the influence of leakage magnetic flux becomes large at the magnet end, if the magnetic field detection element counteracts near the magnet end, the detected magnetic flux density is remarkably reduced, so the diameter of the magnet near the end is increased as shown in the figure, By making the frustoconical ridge line into a concave curved surface, the linearity of the magnetic flux density with respect to the change in the axial position can be improved.

図8は第4の実施例を示す磁石の形状である。図8(a)は永久磁石を一体で形成した場合を示し、図8(b)は円筒状の永久磁石を複数個積み重ねた場合を示す。磁石端部の漏れ磁束の影響が無視できる場合、中央部の磁石の径を大きくし、端部の磁石の径を小さく円錐台形状の稜線を凸曲面にし、軸方向位置の変化に対する磁束密度の直線性を向上させることができる。このような形状にする理由を以下に述べる。
磁界検出素子の検出磁束密度の大きさは、磁石の発生する磁束密度の大きさと、磁石周面から磁界検出素子までの距離に依存する。磁石の発生する磁束密度は磁石形状と周辺に存在する磁性体により定まるパーミアンス係数で決まる。磁石径が大きい場合、内部に発生する反磁界が減少するとともに、磁石と磁性体でできた固定体までの距離が短くなるため、パーミアンス係数が大きくなり、磁石の発生する磁束密度は大きくなる。さらに、磁石径が大きい場合、磁石面から磁界検出素子までの距離が短くなるため、磁界検出素子の検出磁束密度は大きくなる。以上の2つの効果により、検出磁束密度は磁石の径に対して、単純に比例するのではなく、1.5〜2乗程度に比例する。したがって、円錐台磁石の中央部を凸曲面にすることで、軸方向位置の変化に対する磁束密度の直線性を向上させることができる。
FIG. 8 shows the shape of a magnet according to the fourth embodiment. FIG. 8A shows a case where the permanent magnets are integrally formed, and FIG. 8B shows a case where a plurality of cylindrical permanent magnets are stacked. When the influence of leakage magnetic flux at the magnet end is negligible, the diameter of the magnet at the center is increased, the diameter of the magnet at the end is decreased, the frustoconical ridge is formed as a convex curved surface, and Linearity can be improved. The reason for this shape will be described below.
The magnitude of the detected magnetic flux density of the magnetic field detecting element depends on the magnitude of the magnetic flux density generated by the magnet and the distance from the magnet circumferential surface to the magnetic field detecting element. The magnetic flux density generated by the magnet is determined by the permeance coefficient determined by the magnet shape and the surrounding magnetic material. When the magnet diameter is large, the demagnetizing field generated inside decreases and the distance between the magnet and the fixed body made of the magnetic material decreases, so that the permeance coefficient increases and the magnetic flux density generated by the magnet increases. Furthermore, when the magnet diameter is large, the distance from the magnet surface to the magnetic field detection element is shortened, so that the detected magnetic flux density of the magnetic field detection element is increased. Due to the above two effects, the detected magnetic flux density is not simply proportional to the diameter of the magnet, but is proportional to about 1.5 to the square. Therefore, by making the central portion of the truncated cone magnet a convex curved surface, the linearity of the magnetic flux density with respect to the change in the axial position can be improved.

図9は第5の実施例を示す磁石の形状である。図9(a)は永久磁石を一体で形成した場合を示し、図9(b)は円筒状の永久磁石を複数個積み重ねた場合を示す。
磁石端部近傍については、実施例3に示したように、漏れ磁束による磁束密度の減少分を補正するために、磁石径を大きくし、円錐台形状の稜線を凹曲面にする。
一方、磁石中央部の径については、実施例4に示したように、磁石のパーミアンス係数と磁界検出素子までの距離を考慮して、円錐台形状の稜線を凸曲面にする。
このような磁石形状にすることで、直動方向の広い領域で、軸方向位置の変化に対する磁束密度の直線性を向上させることができる。
FIG. 9 shows the shape of a magnet according to the fifth embodiment. FIG. 9A shows a case where the permanent magnets are integrally formed, and FIG. 9B shows a case where a plurality of cylindrical permanent magnets are stacked.
In the vicinity of the magnet end portion, as shown in the third embodiment, in order to correct the decrease in the magnetic flux density due to the leakage magnetic flux, the magnet diameter is increased and the frustoconical ridge line is formed into a concave curved surface.
On the other hand, with respect to the diameter of the magnet central portion, as shown in the fourth embodiment, the frustoconical ridge line is formed as a convex curved surface in consideration of the permeance coefficient of the magnet and the distance to the magnetic field detection element.
By adopting such a magnet shape, the linearity of the magnetic flux density with respect to the change in the axial position can be improved in a wide region in the linear motion direction.

図10は本発明の第6の実施例を示す回転直動モータの位置検出装置の構造を示す断面図である。 実施例1との違いは15が円筒形状の永久磁石であり、モータ軸16に対して垂直方向に2極に着磁され、軸方向に磁化が漸増するように着磁されていることである。他の構成要素は同じであるので説明は省略する。本実施例では2極で構成しているが、多極であっても同様に構成することができる。
図11は図10の永久磁石15のみを取り出した側断面図であり、磁化の様子を示したものである。永久磁石15は軸方向に磁化が漸増するように着磁される。すなわち、第1の磁界検出素子141および、第2の磁界検出素子142の検出信号がモータ軸の直動位置に対して、概ね線形的に増減するように、着磁が施される。
本実施例の動作は実施例1で説明した動作と同じになるためここでは説明を省略する。
FIG. 10 is a sectional view showing the structure of a position detecting device for a rotary linear motion motor according to a sixth embodiment of the present invention. The difference from the first embodiment is that 15 is a cylindrical permanent magnet, which is magnetized in two poles perpendicular to the motor shaft 16 and magnetized so that the magnetization gradually increases in the axial direction. . Since other components are the same, description thereof is omitted. In this embodiment, it is configured with two poles, but it can be configured similarly even with multiple poles.
FIG. 11 is a side sectional view showing only the permanent magnet 15 of FIG. 10 and shows the state of magnetization. The permanent magnet 15 is magnetized so that the magnetization gradually increases in the axial direction. That is, magnetization is performed so that the detection signals of the first magnetic field detection element 141 and the second magnetic field detection element 142 increase or decrease substantially linearly with respect to the linear movement position of the motor shaft.
Since the operation of this embodiment is the same as that described in the first embodiment, the description thereof is omitted here.

図12に本実施例における永久磁石の着磁方法に関し、着磁器と永久磁石の断面図を示した例である。図において15は円筒状の永久磁石であり、着磁コイル21に通電を行い、着磁磁極20から発生する磁束を受け、着磁が施される。
この場合、永久磁石15は軸に対して垂直方向に2極着磁され、軸方向には永久磁石の磁化が漸増するように着磁される。すなわち、上部においては永久磁石15の周面から着磁磁極面までの距離が長いため永久磁石15の磁化は低いが、永久磁石15の下部に行くほど磁化は大きくなる。このようにして、一度の通電により、永久磁石15を着磁することができる。
FIG. 12 shows an example of a sectional view of a magnetizer and a permanent magnet with respect to the method for magnetizing the permanent magnet in the present embodiment. In the figure, reference numeral 15 denotes a cylindrical permanent magnet, which energizes the magnetizing coil 21 to receive a magnetic flux generated from the magnetized magnetic pole 20 and is magnetized.
In this case, the permanent magnet 15 is two-pole magnetized in a direction perpendicular to the axis, and is magnetized so that the magnetization of the permanent magnet gradually increases in the axis direction. That is, in the upper part, since the distance from the peripheral surface of the permanent magnet 15 to the magnetized magnetic pole surface is long, the magnetization of the permanent magnet 15 is low, but the magnetization increases toward the lower part of the permanent magnet 15. In this way, the permanent magnet 15 can be magnetized by a single energization.

永久磁石の周方向に磁束密度が正弦波状に変化させるような着磁を行うことはさほど難しくないが、円筒状永久磁石の軸方向に磁束密度が線形的に変化させるように着磁するのは比較的難しい。図13に示すように軸方向の位置Zに対して、検出磁束密度Bは非線形に変化することがある。
このような場合、検出磁束密度B(θ,z)は、直動位置zの一価関数f(z)を用いて、以下のように表すことができる。

ここで、モータ軸のある回転角θp、直動方向の位置Zpおいて、第1の磁界検出素子141および第2の磁界検出素子142が出力する、それぞれの電圧V1,V2は次のようになる。

ここで、f(Zp)は第1、第2の磁界検出素子が出力する電圧V1,V2から、

と表されるので、直動位置Zpは


で定められる。ただし、一般的にはf−1(Zp)を理論的に求めることが困難であるので、あらかじめ、位置と出力電圧に対する複数個のサンプリングデータを取得し、f−1(Zp)を例えば多項式補間などを行い表現することができる。
このようにして、直動位置Zpを定めることができる。
It is not so difficult to magnetize the magnetic flux density in the circumferential direction of the permanent magnet, but it is not difficult to magnetize so that the magnetic flux density changes linearly in the axial direction of the cylindrical permanent magnet. Relatively difficult. As shown in FIG. 13, the detected magnetic flux density B may change nonlinearly with respect to the position Z in the axial direction.
In such a case, the detected magnetic flux density B (θ, z) can be expressed as follows using the monovalent function f (z) of the linear motion position z.

Here, at the rotation angle θp of the motor shaft and the position Zp in the linear motion direction, the respective voltages V1 and V2 output from the first magnetic field detection element 141 and the second magnetic field detection element 142 are as follows: Become.

Here, f (Zp) is obtained from the voltages V1 and V2 output from the first and second magnetic field detecting elements.

Therefore, the linear motion position Zp is


Determined by However, since it is generally difficult to determine f -1 a (Zp) theoretically beforehand, it obtains a plurality of sampling data with respect to the position and the output voltage, f -1 a (Zp) for example polynomial interpolation Can be expressed.
In this way, the linear motion position Zp can be determined.

以上のように磁界検出素子が検出する磁束密度が軸の回転方向には正弦波状に変化し、かつ、軸の直動方向には磁束密度の振幅が直線状に変化するように構成した磁気回路と、その磁界変化を2つの磁界検出素子で検出し、90度位相の異なる検出信号から回転と直動の位置を検出するようにしたので、回転と直動の位置を同時に検出する小型の磁気式エンコーダ装置を実現することができる。
なお、上記実施例の説明では軸としてモータ軸としたが軸はモータ軸に限らず、たとえば検出器としての専用の軸であっても良い。
As described above, a magnetic circuit configured such that the magnetic flux density detected by the magnetic field detecting element changes in a sinusoidal shape in the rotational direction of the shaft, and the amplitude of the magnetic flux density changes linearly in the linear motion direction of the shaft. The change in the magnetic field is detected by two magnetic field detection elements, and the rotation and linear motion positions are detected from detection signals that are 90 degrees out of phase. An encoder system can be realized.
In the description of the above embodiment, the motor shaft is used as the shaft. However, the shaft is not limited to the motor shaft, and may be a dedicated shaft as a detector, for example.

本発明によればモータ軸などの軸の回転位置と直動位置を小型の検出器で検出することができるので、回転直動モータなどの軸の位置検出装置としての用途へ適用することができる。
According to the present invention, since the rotational position and linear motion position of a shaft such as a motor shaft can be detected by a small detector, the present invention can be applied to a use as a shaft position detection device such as a rotational linear motion motor. .

第1実施例を示す回転直動モータの位置検出装置の側断面図Side sectional view of the position detecting device of the rotary linear motor showing the first embodiment 第1実施例の回転直動モータの位置検出装置のA−A’に沿った断面図Sectional drawing along A-A 'of the position detection apparatus of the rotary linear motion motor of 1st Example. 回転と直動方向全体の磁束密度分布を示す模式図Schematic diagram showing magnetic flux density distribution in the entire rotation and linear motion direction 直動方向の位置に対する磁束密度の振幅の変化を示す模式図Schematic diagram showing changes in amplitude of magnetic flux density with respect to position in linear motion direction 第2実施例を示す回転直動モータの位置検出装置の側断面図Side sectional view of a position detecting device for a rotary linear motor showing a second embodiment. 第2実施例の回転直動モータの位置検出装置のB−B’に沿った断面図Sectional drawing along B-B 'of the position detection apparatus of the rotary linear motion motor of 2nd Example. 第3実施例を示す磁石の側断面図Side sectional view of magnet showing third embodiment 第4実施例を示す磁石の側断面図Side sectional view of magnet showing fourth embodiment 第5実施例を示す磁石の側断面図Side sectional view of magnet showing fifth embodiment 第6実施例を示す回転直動モータの位置検出装置の側断面図Side sectional view of position detecting device for rotary linear motor showing sixth embodiment 第6実施例を示す永久磁石の側断面図Side sectional view of a permanent magnet showing a sixth embodiment 第6実施例での永久磁石の着磁方法の構成を示す側断面図Side sectional view showing the configuration of the permanent magnet magnetization method in the sixth embodiment 直動方向の位置に対する磁束密度の振幅の変化を示す模式図Schematic diagram showing changes in amplitude of magnetic flux density with respect to position in linear motion direction 従来の回転位置を検出する位置検出装置の側断面図Side sectional view of a conventional position detection device for detecting the rotational position 従来の直動位置を検出する位置検出装置の側断面図Side sectional view of a conventional position detection device for detecting a linear motion position

符号の説明Explanation of symbols

1 モータ部
2 位置検出部
3 直動軸受
4 回転軸受
5 回転信号発生部
6 回転信号検出部
7 直動信号発生部
8 直動信号検出部
9 モータ軸
11 モータ部
12 位置検出部
13 固定体
14 磁界検出素子
141 第1の磁界検出素子
142 第2の磁界検出素子
15 永久磁石
16 モータ軸
17 永久磁石
20 着磁磁極
21 着磁コイル
DESCRIPTION OF SYMBOLS 1 Motor part 2 Position detection part 3 Linear motion bearing 4 Rotary bearing 5 Rotation signal generation part 6 Rotation signal detection part 7 Linear motion signal generation part 8 Direct motion signal detection part 9 Motor shaft 11 Motor part 12 Position detection part 13 Fixed body 14 Magnetic field detection element 141 First magnetic field detection element 142 Second magnetic field detection element 15 Permanent magnet 16 Motor shaft 17 Permanent magnet 20 Magnetized magnetic pole 21 Magnetized coil

Claims (15)

回転運動と直動運動が可能となるよう支持された軸と、前記軸に固定された永久磁石と、前記永久磁石に空隙を介して対向し、固定体に取り付けられた磁界検出素子と、前記磁界検出素子からの信号を処理する信号処理回路とを備えた位置検出装置において、
前記磁界検出素子は前記永久磁石の回転方向側面に2個配置され、
2個の磁界検出素子からの検出信号は90度の位相差をもち、
前記磁界検出素子が検出する磁束密度は前記軸の回転方向に対して正弦波状に変化し、
直動方向に対して磁束密度の振幅が位置に関して直線で変化するように構成した磁気回路を備え、前記磁界検出素子からの2検出信号から回転位置と直動位置を求めることを特徴とする位置検出装置。
A shaft supported so as to be capable of rotational motion and linear motion; a permanent magnet fixed to the shaft; a magnetic field detection element attached to a fixed body facing the permanent magnet through a gap; In a position detection device including a signal processing circuit that processes a signal from a magnetic field detection element,
Two magnetic field detecting elements are arranged on the side surface of the permanent magnet in the rotational direction,
The detection signals from the two magnetic field detection elements have a phase difference of 90 degrees,
The magnetic flux density detected by the magnetic field detection element changes sinusoidally with respect to the rotational direction of the shaft,
A position comprising a magnetic circuit configured such that the amplitude of the magnetic flux density changes linearly with respect to the linear motion direction, and the rotational position and the linear motion position are obtained from two detection signals from the magnetic field detection element. Detection device.
前記2個の磁界検出素子の2つの検出信号の比の逆正接演算から回転位置を、また前記2つの検出信号の二乗和の平方根演算により直動位置を検出することを特徴とする請求項1記載の位置検出装置。 2. The rotational position is detected from an arctangent calculation of a ratio of two detection signals of the two magnetic field detection elements, and a linear movement position is detected by a square root calculation of a sum of squares of the two detection signals. The position detection device described. 前記永久磁石は前記軸の直動方向に円錐台形状となっており、
前記軸に対して垂直方向に2極着磁されていることを特徴とする請求項1記載の位置検出装置。
The permanent magnet has a truncated cone shape in the linear motion direction of the shaft,
The position detecting device according to claim 1, wherein the magnetic pole is magnetized in two directions perpendicular to the axis.
前記永久磁石は焼結磁石またはボンド磁石で円錐台形状に成形の後、前記軸に対して垂直方向に2極着磁したことを特徴とする請求項3記載の位置検出装置。 4. The position detecting apparatus according to claim 3, wherein the permanent magnet is formed of a sintered magnet or a bonded magnet into a truncated cone shape, and is then magnetized in two directions perpendicular to the axis. 前記永久磁石は複数個の永久磁石が前記軸の直動方向に並べて配置され、
各々の前記永久磁石は前記軸に対して垂直方向に2極着磁され、
各々の前記永久磁石の極は同じ方向になるように並べられ、
各々の前記永久磁石の半径は前記軸の直動方向とともに変えられており、
前記軸の直動方向に並べたときに前記複数の永久磁石が形成する稜線が円錐台形状になるようにしたことを特徴とする請求項1または3記載の位置検出装置。
The permanent magnet is a plurality of permanent magnets arranged side by side in the linear movement direction of the shaft,
Each of the permanent magnets is magnetized in two directions perpendicular to the axis,
The poles of each said permanent magnet are arranged in the same direction,
The radius of each permanent magnet is changed with the linear motion direction of the shaft,
4. The position detecting device according to claim 1, wherein a ridge line formed by the plurality of permanent magnets has a truncated cone shape when arranged in the linear motion direction of the shaft.
前記円錐台形状の永久磁石の稜線を凹曲面としたことを特徴とする請求項3または5記載の位置検出装置。 6. The position detection device according to claim 3, wherein a ridge line of the frustoconical permanent magnet is a concave curved surface. 前記円錐台形状の永久磁石の稜線を凸曲面としたことを特徴とする請求項3または5記載の位置検出装置。 6. The position detecting device according to claim 3, wherein a ridge line of the frustoconical permanent magnet is a convex curved surface. 前記円錐台形状の永久磁石の稜線を凹曲面と凸曲面を組み合わせた形状としたことを特徴とする請求項3または5記載の位置検出装置。   6. The position detection device according to claim 3, wherein the ridgeline of the frustoconical permanent magnet is a combination of a concave curved surface and a convex curved surface. 前記軸がモータ軸であることを特徴とする請求項1または3記載の位置検出装置。 4. The position detection apparatus according to claim 1, wherein the shaft is a motor shaft. 前記位置検出装置を搭載した請求項1または3記載の回転直動モータ。   The rotary linear motor according to claim 1 or 3, wherein the position detection device is mounted. 回転運動と直動運動が可能となるよう支持された軸と、前記軸に固定された円筒状の永久磁石と、前記永久磁石に空隙を介して対向し、固定体に取り付けられた磁界検出素子と、前記磁界検出素子からの信号を処理する信号処理回路とを備えた位置検出装置において、
前記磁界検出素子は前記永久磁石の回転方向側面に2個配置され、
2個の磁界検出素子からの検出信号は90度の位相差をもち、
前記円筒状の永久磁石は磁界検出素子が検出する磁束密度が前記軸の回転方向に対して正弦波状に変化し、直動方向に対しては磁束密度の振幅が位置に関して線形特性又は一価関数の非線形特性で変化するように着磁されており、前記磁界検出素子からの2検出信号から回転位置と直動位置を求めることを特徴とする位置検出装置。
A shaft supported so as to be capable of rotational motion and linear motion, a cylindrical permanent magnet fixed to the shaft, and a magnetic field detection element attached to the fixed body facing the permanent magnet via a gap And a position detection device comprising a signal processing circuit that processes a signal from the magnetic field detection element,
Two magnetic field detecting elements are arranged on the side surface of the permanent magnet in the rotational direction,
The detection signals from the two magnetic field detection elements have a phase difference of 90 degrees,
In the cylindrical permanent magnet, the magnetic flux density detected by the magnetic field detecting element changes in a sine wave shape with respect to the rotation direction of the shaft, and the amplitude of the magnetic flux density with respect to the linear motion direction is a linear characteristic or a monovalent function. A position detecting device characterized in that the rotation position and the linear movement position are obtained from two detection signals from the magnetic field detection element.
前記永久磁石は焼結磁石またはボンド磁石で円筒形状に成形の後、前記軸に対して垂直方向に2極着磁したことを特徴とする請求項11記載の位置検出装置。 The position detecting device according to claim 11, wherein the permanent magnet is formed into a cylindrical shape with a sintered magnet or a bonded magnet, and is then magnetized in two directions perpendicular to the axis. 前記2個の磁界検出素子の2つの検出信号の比の逆正接演算から回転位置を検出し、
直動位置検出に関し、前記磁束密度が線形特性の場合は前記2つの検出信号を二乗和の平方根演算して得られる値から直動位置を検出し、前記磁束密度が前記非線形特性の場合は更に前記一価関数の逆関数を計算することにより直動位置を検出することを特徴とする請求項11記載の位置検出装置。
A rotational position is detected from an arctangent calculation of a ratio of two detection signals of the two magnetic field detection elements;
Regarding linear motion position detection, when the magnetic flux density has a linear characteristic, the linear motion position is detected from a value obtained by calculating the square root of the sum of squares of the two detection signals, and when the magnetic flux density has the nonlinear characteristic, The position detecting device according to claim 11, wherein the linear motion position is detected by calculating an inverse function of the monovalent function.
前記軸がモータ軸であることを特徴とする請求項11記載の位置検出装置。 The position detection device according to claim 11, wherein the shaft is a motor shaft. 前記位置検出装置を搭載した請求項11記載の回転直動モータ。 The rotation / linear motion motor according to claim 11, wherein the position detection device is mounted.
JP2008320419A 2008-04-11 2008-12-17 POSITION DETECTION DEVICE AND ROTARY LINEAR MOTOR HAVING THE SAME Expired - Fee Related JP5151958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008320419A JP5151958B2 (en) 2008-04-11 2008-12-17 POSITION DETECTION DEVICE AND ROTARY LINEAR MOTOR HAVING THE SAME

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008103031 2008-04-11
JP2008103031 2008-04-11
JP2008320419A JP5151958B2 (en) 2008-04-11 2008-12-17 POSITION DETECTION DEVICE AND ROTARY LINEAR MOTOR HAVING THE SAME

Publications (3)

Publication Number Publication Date
JP2009271054A true JP2009271054A (en) 2009-11-19
JP2009271054A5 JP2009271054A5 (en) 2010-08-12
JP5151958B2 JP5151958B2 (en) 2013-02-27

Family

ID=41437722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008320419A Expired - Fee Related JP5151958B2 (en) 2008-04-11 2008-12-17 POSITION DETECTION DEVICE AND ROTARY LINEAR MOTOR HAVING THE SAME

Country Status (1)

Country Link
JP (1) JP5151958B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016090354A (en) * 2014-11-04 2016-05-23 株式会社デンソー Rotation angle and stroke-amount detection device
JP2017053776A (en) * 2015-09-10 2017-03-16 日立金属株式会社 Rotation angle detection magnet, rotation angle detector and method for manufacturing rotation angle detection magnet
US9719771B2 (en) 2012-02-16 2017-08-01 Infineon Technologies Ag Rotation angle sensor for absolute rotation angle determination even upon multiple revolutions
JP2020200845A (en) * 2019-06-06 2020-12-17 株式会社Soken Engagement clutch

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0550307U (en) * 1991-12-03 1993-07-02 パイオニア精密株式会社 Linear sensor
JP2004056835A (en) * 2002-05-28 2004-02-19 Aichi Steel Works Ltd Bonded magnet for motor and motor
JP2007143385A (en) * 2005-10-21 2007-06-07 Yaskawa Electric Corp Direct acting rotation actuator and system
JP2007256250A (en) * 2006-02-23 2007-10-04 Denso Corp Rotation angle detecting device
JP2010066203A (en) * 2008-09-12 2010-03-25 Mitsubishi Electric Corp Position detector of movable part, and two-degree-of-freedom actuator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0550307U (en) * 1991-12-03 1993-07-02 パイオニア精密株式会社 Linear sensor
JP2004056835A (en) * 2002-05-28 2004-02-19 Aichi Steel Works Ltd Bonded magnet for motor and motor
JP2007143385A (en) * 2005-10-21 2007-06-07 Yaskawa Electric Corp Direct acting rotation actuator and system
JP2007256250A (en) * 2006-02-23 2007-10-04 Denso Corp Rotation angle detecting device
JP2010066203A (en) * 2008-09-12 2010-03-25 Mitsubishi Electric Corp Position detector of movable part, and two-degree-of-freedom actuator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9719771B2 (en) 2012-02-16 2017-08-01 Infineon Technologies Ag Rotation angle sensor for absolute rotation angle determination even upon multiple revolutions
DE102012202404B4 (en) 2012-02-16 2018-04-05 Infineon Technologies Ag Angle of rotation sensor for absolute rotation angle determination even with multiple revolutions
JP2016090354A (en) * 2014-11-04 2016-05-23 株式会社デンソー Rotation angle and stroke-amount detection device
JP2017053776A (en) * 2015-09-10 2017-03-16 日立金属株式会社 Rotation angle detection magnet, rotation angle detector and method for manufacturing rotation angle detection magnet
JP2020200845A (en) * 2019-06-06 2020-12-17 株式会社Soken Engagement clutch
JP7294744B2 (en) 2019-06-06 2023-06-20 株式会社Soken meshing clutch

Also Published As

Publication number Publication date
JP5151958B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
JP5120384B2 (en) Rotation angle detection device, rotator, and rotation angle detection method
JP5079816B2 (en) Preferably a magnetic position sensor having a magnet shape that varies pseudo-sinusoidally.
KR101331182B1 (en) Magnetic Angular Position Sensor for a Course up to 360°
JP3775257B2 (en) Angle sensor
JP5558361B2 (en) Magnetic angle or linear position sensor not susceptible to external fields
CN101416020B (en) Position sensor with variable direction of magnetization and method of production
TWI579533B (en) Absolute encoder devices and motors
US8970210B2 (en) Bidirectional magnetic position sensor having field rotation
JP2009025319A (en) Rotation angle detector and rotary machine
KR20130077872A (en) Magnetic multi-turn absolute position detection device
JP4903586B2 (en) Magnetic angular position sensor
JP2008151774A (en) Rotation angle detector and rotating machine
WO2008075620A1 (en) Rotation angle detection device
JPWO2008050581A1 (en) Rotation angle detector
JP5201493B2 (en) Position detection device and linear drive device
JP5151958B2 (en) POSITION DETECTION DEVICE AND ROTARY LINEAR MOTOR HAVING THE SAME
US8928313B2 (en) Magnetic encoder with improved resolution
JP4900838B2 (en) Position detection device and linear drive device
CN110260890B (en) System for determining at least one rotation parameter of a rotating member
JP2009300143A (en) Magnetic position detecting apparatus
JP4001849B2 (en) Magnetic rotary position sensor
JP5135277B2 (en) Rotary position detector

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100624

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111107

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees