JP2004056835A - Bonded magnet for motor and motor - Google Patents

Bonded magnet for motor and motor Download PDF

Info

Publication number
JP2004056835A
JP2004056835A JP2002187104A JP2002187104A JP2004056835A JP 2004056835 A JP2004056835 A JP 2004056835A JP 2002187104 A JP2002187104 A JP 2002187104A JP 2002187104 A JP2002187104 A JP 2002187104A JP 2004056835 A JP2004056835 A JP 2004056835A
Authority
JP
Japan
Prior art keywords
magnet
bonded magnet
motor
section
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002187104A
Other languages
Japanese (ja)
Other versions
JP4029679B2 (en
Inventor
Yoshinobu Motokura
本蔵 義信
Hiroshi Matsuoka
松岡 浩
Daisuke Nagaya
長屋 大輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP2002187104A priority Critical patent/JP4029679B2/en
Publication of JP2004056835A publication Critical patent/JP2004056835A/en
Application granted granted Critical
Publication of JP4029679B2 publication Critical patent/JP4029679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the cogging torque without dropping the output torque. <P>SOLUTION: A bonded magnet 10 is in the shape of a hollow cylinder which has a peripheral thick part 12 in its circumference, centering upon an axis 11. The range B of about 135° in electric angle is an electric angle section which generates torque mainly, and the range A of about 45° in the electric angle is a transition section where the direction of magnetic vector at the surface of a magnet changes. In the electric angle section B, it is magnetized so that the magnetic vector at the surface of the magnet may go roughly in the direction of the normal of the circumference of the peripheral thick part 12 and that the magnitude may be equal. Moreover, in the electric angle section A, it is magnetized as shown in Fig. so that the magnetic vector may have the tangent components of in circumferential direction and that the density of the surface magnetic flux in normal direction of the component of its normal may decrease or increase gradually accompanying the progress of the electric angle. The change properties of the surface magnetic flux density in the normal direction at the surface of the magnet at 2π(one cycle) in electric angle are ones shown in Fig. 2. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、モータに使用される中空円筒状の異方性ボンド磁石及びそのボンド磁石を用いたモータに関する。
【0002】
【従来の技術】
モータ用の永久磁石として、中空円筒状に成形した異方性ボンド磁石が知られている。このボンド磁石は所定の磁場分布を発生させた状態で成形することで磁場を配向させている。円筒状のボンド磁石の軸に垂直な断面における配向磁場のパターンには、主として、アキシャル配向とラジアル配向と極配向とがある。アキシャル配向は、断面において1軸方向に配向させる方法であり、ラジアル配向は断面中心から放射状に、即ち、円周の法線方向に配向させる方法である。
【0003】
【発明が解決しようとする課題】
このような配向のボンド磁石を、例えば、2極のDCブラシモータに用いた場合には、主として、モータは次の特性を示す。アキシャル配向のボンド磁石を用いたモータは、電気角の変化に対して法線方向の表面磁束密度が正弦波的に変化するので、コギングトルクは小さいが、出力トルクも小さい。一方、ラジアル配向のボンド磁石を用いたモータは、電気角の変化に対して法線方向の表面磁束密度が大略方形波的に変化するので、出力トルクは大きいが、コギングトルクも大きい。
【0004】
従来の配向方式を用いたボンド磁石は、上記のように、出力トルクを大きくしようとすると、コギングトルクも必然的に大きくなり、コギングトルクを小さくしようとすると、出力トルクも必然的に小さくなるという問題があった。
【0005】
又、特開平5−144632号公報は、表面磁束密度の軸方向に沿った分布に関して、トルク発生に寄与しない端部では軸方向の中心に向かう磁場配向とすることで、トルクの効率的な発生を図ることを提案している。さらに、同公報には軸方向に垂直な断面における磁場分布において、基本的には法線方向に発生している磁場分布を作用円弧面の中央域に集中配向させることが提案されている。このような磁場分布によって磁場がトルク発生に有効に寄与するようにしている。
【0006】
しかしながら、同公報では、軸に垂直な断面での磁場分布が作用円弧の中心領域において、磁場を中心に収束させているので、コギンドトルクが大きくなるという問題がある。又、同公報に記載された配向方法について磁場分布をシミュレートした結果は、作用円弧面の中央部において中心に向かう配向分布は形成されずに、ほぼ円周の全域に渡って法線方向の磁場分布であった。このように、現実には、作用円弧面の中央部において中心に向かって配向した磁場分布は形成されていないと考えられる。
【0007】
そこで、本発明は、出力トルクが大きく、コギングトルクの小さいモータ用ボンド磁石を実現することを目的とする。
【0008】
【課題を解決するための手段及び発明の作用効果】
上記課題を解決するための請求項1に記載の発明の構成は、中空円筒状の異方性ボンド磁石において、異方性ボンド磁石の軸に垂直な断面における法線方向の表面磁束密度は、磁極周期の主たる区間においては法線方向の表面磁束密度の大きさが等しく、磁極の向きが変化する遷移区間においては法線方向の表面磁束密度の絶対値が電気角の増加に対して漸減、漸増させた分布としたことを特徴とするモータ用ボンド磁石である。
又、請求項2の発明は、請求項1に記載のモータ用ボンド磁石を有するモータである。
尚、異方性ボンド磁石としては、異方性希土類ボンド磁石、例えば、Nd−Fe−B系の異方性希土類ボンド磁石を用いると有効である。
【0009】
本発明は、中空円筒状の異方性ボンド磁石の軸に垂直な断面における法線方向の表面磁束密度の分布に特徴がある。即ち、磁極の周期的な変化を電気角を変数として表す時、トルクの発生に主として寄与する電気角区間においては、断面において、磁石表面の磁気ベクトルは法線方向を向いており、磁気ベクトルの法線方向の成分、すなわち、法線方向の表面磁束密度は、大きさが等しい。そして、磁石表面の磁気ベクトルの変化する遷移区間においては、図1(a)に示すように、磁石表面の磁気ベクトルが漸次反転しており、図1(b)に示すように、法線方向の表面磁束密度の絶対値は、電気角の変化に対して滑らかに漸減、漸増している。この結果、トルク発生に主として寄与する電気角区間は、ラジアル配向が得らるために、モータの出力トルクは大きい。一方、磁極が変化する遷移区間では、法線方向の表面磁束密度が、電気角の推移に対して漸減、漸増するように磁化されているので、法線方向の表面磁束密度の急激な変化がなくコギングトルクは小さい。このようにして、モータ特性を向上させることができる。
【0010】
【発明の実施の形態】
以下、本発明を実施の形態に基づいて説明する。なお、本発明は、下記の実施の形態に限定されるものではない。
(第1実施例)
図1は、本発明の具体的な実施の形態に係るボンド磁石の構成を示している。ボンド磁石10には、例示であるが、Nd−Fe−B系の異方性希土類ボンド磁石を用いた。ボンド磁石10は軸11を中心として周辺に外周肉厚部12を有した中空円筒形状をしている。図1(a)は軸11に垂直な横断面図である。
【0011】
図1は、2極着磁の場合を示している。電気角にして約135度の範囲Bが主としてトルクを発生する電気角区間である。また、電気角にして約45度の範囲Aが磁極が変化する遷移区間である。電気角区間Bにおいては、大略外周肉厚部12の法線方向の表面磁束密度は大きさが等しい。また、電気角区間Aにおいては、図示するように電気角の推移に伴って表面の磁気ベクトルは滑らかに反転する。電気角2π(1周期)における法線方向の表面磁束密度の変化特性は図1(b)に示す特性となっている。図1(b)に示すように、区間Bにおいては、法線方向の表面磁束密度はほぼ一定であり、区間Aにおいては法線方向の表面磁束密度は電気角θの増加に伴って、その絶対値が滑らかに漸減、漸増している。
【0012】
なお、ボンド磁石10の軸11に平行な縦断面図における法線方向の表面磁束密度の分布は軸11の方向に沿って一様にしている。しかし、軸11の方向に沿っては一様に磁化させなくとも良い。
【0013】
一方、比較例として、ラジアル配向、アキシャル配向させたボンド磁石を製造した。寸法は上記実施例のボンド磁石と同一である。図3に示すように、ラジアル配向、アキシャル配向させたボンド磁石の法線方向の表面磁束密度は、それぞれ、図示するように変化している。即ち、ラジアル配向させたボンド磁石では、ほぼ全電気角の範囲において法線方向の表面磁束密度はほぼ一定値をとり、磁極の変化点で法線方向の磁束密度は急変している。他方、アキシャル配向させたボンド磁石では、法線方向の表面磁束密度は電気角の1周期に渡りほぼ正弦波的に変化している。また、本実施例のように配向させたボンド磁石の法線方向の表面磁束密度の分布も合わせて図3に示されている。
【0014】
そして、これらのボンド磁石を励磁磁石としてDCブラシモータを製造した。DCブラシモータの寸法は全て同一にした。それらのモータの出力トルクとコギングトルクを、それぞれ、測定した。ラジアル配向のボンド磁石を用いたDCブラシモータの出力トルクを100%、コギングトルクを100%として、アキシャル配向のボンド磁石を用いたモータと、本実施例の配向を用いたボンド磁石のモータの出力トルク、コギングトルクの測定値を図3に示す。
【0015】
アキシャル配向のボンド磁石を用いたモータのコギングトルクは0.5%と大きく低下しているが、出力トルクも65%と大幅に低下した。それに比べて、本実施例の配向のボンド磁石を用いたモータにおいては、出力トルクは95%とほとんど低下させることなく、コギングトルクは30%に大幅に低下させることができた。即ち、わずか5%の出力トルクの低下だけで、コギングトルクを70%も低下させることができた。これは、モータの性能にとって極めて有効な改善である。
【0016】
次に、上記のボンド磁石の配向形成方法を圧縮成形した実施例に基づいて説明する。図4(a)が装置の平面断面図、図4(b)が装置の縦断面図である。図5が金型30のキャビティ35を含む部分の詳細断面図である。金型30のキャビティ35の外側には円筒状のニブ33が設けられ、そのニブ33のさらに外側には、断面が円弧状で軸方向に伸びた柱状の軟磁性体から成るガイド31a、31bが設置されている。ガイド31a、31bが存在しない位置には非磁性体から成るインサート34a、34bが設けられている。そして、ニブ33の内壁に対してキャビティ35を形成して軟磁性体から成るコア32が、ニブ33を貫通して配設されている。コア32の外壁とニブ33の内壁との間に形成された円筒状のキャビティ35に、主に、磁石粉末と樹脂粉末から構成されたボンド磁石原料が供給される。金型30の両側にはポールピース41a、41bが配設されており、それらのポールピース41a、41bを内包するように磁場発生用コイル42a、42bが配設されている。金型30、ニブ33、インサート34a、34bはステンレス等の非磁性体から成る。
【0017】
上記の構成において、コイル42a、42bに直流電流を通電することで、ポールピース41aとポールピース41b間にコア32の軸に垂直に平行な配向磁場が形成される。ポールピース41a、ポールピース41b、ガイド31a、31b、コア32は、磁気回路中の磁気抵抗が極めて小さい部分であり、配向磁場はその部分に収束して流れる。ガイド31a、31bの透磁率は金型30、ニブ33、インサート34a、34bの透磁率に比べて遥かに大きい。このために、図2から明らかなように、ポールピース41a、41bから出力される平行な配向磁場は、ガイド31a、31bに収束して、ガイド31a、31bの壁面に垂直な方向にコア32に向かって案内される。ガイド31a、31bの存在しないところは、透磁率の低いインサート34a、34bと金型30であるので、この部分のコア32の外周面に垂直に向かう配向磁場は、高透磁率ガイドがないために、ほとんど弱まる。その時、一方のガイドのコアに対面する端部付近からもう一方のガイドのコアに対面する端部付近への配向磁場の存在に加え、コアが高透磁率であるため、磁気抵抗が小さく配向磁場はコアの近傍を通る。これにより、磁石の磁極の向きが変化する遷移区間に相当するキャビティ35には配向磁場を接線方向に漸次反転させることになる。
【0018】
上記の構成において、円弧状のガイド31a、31bの軸11を中心とする角度、およそ135度の区間が図1の区間Bに相当する。また、ガイド31a、31bの存在しない角度、およそ45度の区間が図1の遷移区間Aに相当する。このような構成により図1及び図3に示すような法線方向の表面磁束密度分布を得ることができる。キャビティ35の磁束分布に関しては、遷移区間Aにおいては配向磁場が回転することで、図1(b)に示すように電気角の推移に対して、法線方向の表面磁束密度の絶対値が滑らかに漸減、漸増する特性となる。一方、区間Bにおいては、表面磁束密度は絶対値が一定の法線方向だけとなり、区間Bにおいてほぼ一定の表面磁束密度とすることができる。このような構成によって、図1(b)に示すような法線方向の表面磁束密度となる。
【0019】
上記の例は2極配向させたボンド磁石の例であるが、4極配向させる場合には、図6、図7のような装置により製造することができる。即ち、金型30のキャビティの中に軟磁性でできたリング51を設けて、そのリング51の内側とニブ33との間に非磁性材料から成るインサート52a、52b、52c、52dにより、4分割された永久磁石50a、50b、50c、50dを設けている。これらのインサートは、永久磁石間の磁気的短絡を避けるためである。この配置により上述したのと同様に4極配向の場合に磁極が変化する遷移領域において法線方向の表面磁束密度を付与して、法線方向の表面磁束密度の絶対値が電気角の推移に対して滑らかに漸減、漸増させる特性とすることができる。このような構成により、1つの金型で多数個のボンド磁石を製造することができる。
【0020】
異方性希土類ボンド磁石10はプラスチック磁石とも言われ、代表的には、Nd−Fe−B系の磁石粉末を樹脂材料と混合して成形したものである。本出願人により、近年ようやく量産化が可能となったものである。例えば、この異方性希土類ボンド磁石10は、公開番号p2001−7691A、登録番号第2816668号、登録番号第3060104号の製造方法で作製される。この異方性希土類ボンド磁石は、最大エネルギー積10MGOe〜28MGOeのものを、現在、製造することができる。
【0021】
その他、磁石粉末としては、フェライト系、サマリウム−コバルト系、サマリウム−鉄−窒素系等の材料を用いることができる。また、磁石粉末の粒径等は公知のものを使用できる。例えば、フェライト系では平均粒径で1μm程度、希土類系では1〜100μm程度である。樹脂は、公知の材料を用いることができる。ナイロン12、ナイロン6等のポリアミド系合成樹脂や、ポリ塩化ビニル、その酢酸ビニル共重合体、MMA、PS、PPS、PE、PP等の単独又は共重合体したビニル系合成樹脂や、ウレタン、シリコーン、ポリカーボネート、PBT、PET、PEEK、CPE、ハイパロン、ネオプレン、SBR、NBR等の熱可塑性樹脂、又はエポキシ系、フェノール系等の熱硬化性樹脂を用いることができる。磁石粉末と合成樹脂の配合比率は公知のものを用いることができる。例えば、40〜90vol%とすることができる。また、可塑剤、滑剤、抗酸化剤、表面処理剤等を目的に応じて使用することができる。
【0022】
製造条件としては、以下の条件を採用することが可能である。実施例では熱硬化性樹脂を使用したが、熱可塑性樹脂でも良い。実施例では圧縮成形を用いたが、他の公知の成形方法を用いることができる。本実施例では、磁場配向と圧縮成形を同時に行うため、磁場中加熱圧縮成形を用いた。まず、予成形の条件は、金型温度を120℃、成形圧力を2.5t/cm2 、成形時間を15sec、配向磁場を2Tとした。配向の仕方は先に記述した通りである。本成形の条件は、金型温度を150℃、成形圧力を8.0t/cm2 、成形時間を10secとした。着磁は次のように行った。着磁ヨークとして、図4と同様に円筒状のボンド磁石の内側に軟磁性コアを配置した。着磁磁場は、配向磁場と同様に、円筒状のボンド磁石の軸に対して垂直な方向に平行磁場として作用させる。着磁方法は、パルス磁場を用いた。着磁磁場は約4Tである。
【0023】
また、異方性希土類ボンド磁石10は樹脂成形で製作されるので、精度のよい中空円筒状に形成される。そして、異方性希土類ボンド磁石10は容易に精度よく対称的に着磁される。モータ装置内部で磁場が精度よく対称的に発生される。
【0024】
上記実施例は、本発明の実施形態の1例であり他に様々な変形例が考えられる。例えば、上記実施例では異方性希土類ボンド磁石10を2極着磁としたが、2極より多くてもよい。例えば、4極、6極、8極でもよい。磁極数を多くすれば、それだけ磁路長も短くなるので、アーマチャコイルの横切る磁束が増加する。
【0025】
又、上記実施例では、2極着磁の場合に、電気角にして約135度の範囲Bを主としてトルクを発生する電気角区間とし、電気角にして約45度の範囲Aを磁極が変化する遷移区間としている。しかし、遷移区間は約50度の範囲、約30度の範囲、約15度の範囲等を用いることができる。そしてトルクを主として生じる範囲は残りの電気角区間とする。又、4極配置の場合には、遷移区間は上記の1/2が、6極配置の場合には上記の1/3が、8極配置の場合には上記の1/4が用いられる。
【0026】
本発明のボンド磁石は、DCブラシモータの励磁として用いることができる。この場合には、ステータにもロータにも使用でき、モータの種類としては、DCブラシモータの他、ブラシレスモータ、同期モータ等に使用可能である。
【図面の簡単な説明】
【図1】(a)図は、本発明の具体的な実施の形態に係るボンド磁石の表面磁束密度の分布を示した横断面図、(b)図は電気角に対する法線方向の表面磁束密度の変化特性を示した特性図。
【図2】実施の形態に係るボンド磁石の製造時の配向磁場分布を示した断面図及び詳細図。
【図3】本発明の実施の形態に係るボンド磁石の配向磁場分布と着磁された磁石表面の磁気ベクトル分布と磁石表面の法線方向の表面磁束密度分布特性を、従来例のラジアル配向とアキシャル配向のものと比較して説明した説明図。
【図4】(a)図は本発明の実施の形態に係るボンド磁石の配向処理装置の横断面図、(b)図は同配向処理装置の横断面図。
【図5】同配向処理装置の金型内の詳細な構成を示した横断面図。
【図6】(a)図は他の実施の形態にかかる4極配向のボンド磁石の配向処理装置の横断面図、(b)図は同配向処理装置の縦断面図。
【図7】その実施例の形態にかかる配向処理装置の金型の詳細な構成を示した横断面図。
【符号の説明】
10…異方性ボンド磁石
11…軸
12…外周肉厚部
30…金型
31a,31b…ガイド
32…コア
33…ニブ
34a,34b…インサート
35…キャビティ
41a,41b…ポールピース
42a,42b…磁気発生用コイル
50a,50b,50c,50d…永久磁石
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hollow cylindrical anisotropic bonded magnet used for a motor and a motor using the bonded magnet.
[0002]
[Prior art]
As a permanent magnet for a motor, an anisotropic bonded magnet formed into a hollow cylindrical shape is known. This bonded magnet is oriented in a magnetic field by being formed in a state where a predetermined magnetic field distribution is generated. Patterns of the orientation magnetic field in a cross section perpendicular to the axis of the cylindrical bond magnet mainly include axial orientation, radial orientation, and polar orientation. Axial orientation is a method of orienting in a uniaxial direction in a cross section, and radial orientation is a method of orienting radially from the center of the cross section, that is, in a direction normal to the circumference.
[0003]
[Problems to be solved by the invention]
When a bonded magnet having such an orientation is used, for example, in a two-pole DC brush motor, the motor mainly exhibits the following characteristics. A motor using a bond magnet having an axial orientation has a small cogging torque but a small output torque because the surface magnetic flux density in the normal direction changes sinusoidally with a change in electrical angle. On the other hand, a motor using a radially-oriented bonded magnet has a large output torque but a large cogging torque because the surface magnetic flux density in the normal direction changes substantially in a square wave with respect to a change in the electrical angle.
[0004]
As described above, the bond magnet using the conventional orientation method inevitably increases the cogging torque when trying to increase the output torque, and inevitably decreases the output torque when trying to reduce the cogging torque. There was a problem.
[0005]
Japanese Patent Application Laid-Open No. 5-144632 discloses that the distribution of the surface magnetic flux density along the axial direction is such that the end portion that does not contribute to the torque generation has a magnetic field oriented toward the center in the axial direction, thereby efficiently generating torque. It is suggested that Further, the publication proposes that in a magnetic field distribution in a cross section perpendicular to the axial direction, a magnetic field distribution generated basically in a normal direction is concentrated and oriented in a central region of a working arc surface. With such a magnetic field distribution, the magnetic field effectively contributes to torque generation.
[0006]
However, in this publication, the magnetic field distribution in a cross section perpendicular to the axis converges on the magnetic field in the center region of the acting arc, so that there is a problem that the cogged torque increases. In addition, the result of simulating the magnetic field distribution for the orientation method described in the same publication shows that the orientation distribution toward the center is not formed at the center of the working arc surface, and the normal direction is almost distributed over the entire circumference. It was a magnetic field distribution. Thus, in reality, it is considered that a magnetic field distribution oriented toward the center is not formed at the center of the working arc surface.
[0007]
Accordingly, an object of the present invention is to realize a bonded magnet for a motor having a large output torque and a small cogging torque.
[0008]
Means for Solving the Problems and Effects of the Invention
According to a first aspect of the present invention, there is provided a hollow cylindrical anisotropic bonded magnet having a surface magnetic flux density in a normal direction in a cross section perpendicular to an axis of the anisotropic bonded magnet. In the main section of the magnetic pole period, the magnitude of the surface magnetic flux density in the normal direction is equal, and in the transition section in which the direction of the magnetic pole changes, the absolute value of the surface magnetic flux density in the normal direction gradually decreases as the electrical angle increases. A bonded magnet for a motor, characterized in that the distribution is gradually increased.
According to a second aspect of the present invention, there is provided a motor having the motor bonded magnet according to the first aspect.
As the anisotropic bonded magnet, it is effective to use an anisotropic rare earth bonded magnet, for example, an Nd—Fe—B based anisotropic rare earth bonded magnet.
[0009]
The present invention is characterized by the distribution of the surface magnetic flux density in the normal direction in a cross section perpendicular to the axis of the hollow cylindrical anisotropic bonded magnet. That is, when the periodic change of the magnetic pole is represented by the electric angle as a variable, in the electric angle section mainly contributing to the generation of torque, the magnetic vector of the magnet surface in the cross section is oriented in the normal direction, and the magnetic vector The components in the normal direction, that is, the surface magnetic flux densities in the normal direction are equal in magnitude. Then, in the transition section in which the magnetic vector on the magnet surface changes, the magnetic vector on the magnet surface is gradually inverted as shown in FIG. 1A, and as shown in FIG. The absolute value of the surface magnetic flux density gradually decreases and increases with changes in the electrical angle. As a result, in the electrical angle section that mainly contributes to the torque generation, the radial orientation is obtained, and the output torque of the motor is large. On the other hand, in the transition section in which the magnetic pole changes, the surface magnetic flux density in the normal direction is magnetized so as to gradually decrease and increase with the change in the electrical angle. And the cogging torque is small. Thus, the motor characteristics can be improved.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described based on embodiments. Note that the present invention is not limited to the following embodiments.
(First embodiment)
FIG. 1 shows a configuration of a bonded magnet according to a specific embodiment of the present invention. For example, an Nd-Fe-B-based anisotropic rare-earth bonded magnet was used as the bonded magnet 10. The bonded magnet 10 has a hollow cylindrical shape having an outer peripheral thick portion 12 around a shaft 11. FIG. 1A is a cross-sectional view perpendicular to the axis 11.
[0011]
FIG. 1 shows a case of two-pole magnetization. A range B of about 135 degrees in electrical angle is an electrical angle section in which torque is mainly generated. A range A of about 45 degrees in electrical angle is a transition section in which the magnetic pole changes. In the electrical angle section B, the surface magnetic flux densities in the normal direction of the outer peripheral thick part 12 are substantially equal in magnitude. In the electrical angle section A, the magnetic vector on the surface is smoothly inverted with the change of the electrical angle as shown in the figure. The change characteristic of the surface magnetic flux density in the normal direction at an electrical angle of 2π (one cycle) is as shown in FIG. As shown in FIG. 1B, in the section B, the surface magnetic flux density in the normal direction is almost constant, and in the section A, the surface magnetic flux density in the normal direction increases as the electrical angle θ increases. The absolute value smoothly decreases and increases gradually.
[0012]
The distribution of the surface magnetic flux density in the normal direction in the longitudinal sectional view parallel to the axis 11 of the bonded magnet 10 is made uniform along the direction of the axis 11. However, it is not necessary to magnetize uniformly along the direction of the axis 11.
[0013]
On the other hand, as a comparative example, a bonded magnet with radial orientation and axial orientation was manufactured. The dimensions are the same as the bonded magnet of the above embodiment. As shown in FIG. 3, the surface magnetic flux densities in the normal direction of the radially oriented and axially oriented bonded magnets change as shown in the figure. That is, in the radially oriented bond magnet, the surface magnetic flux density in the normal direction has a substantially constant value in the range of almost all electrical angles, and the magnetic flux density in the normal direction changes abruptly at the change point of the magnetic pole. On the other hand, in the bond magnet in the axial orientation, the surface magnetic flux density in the normal direction changes almost sinusoidally over one period of the electrical angle. FIG. 3 also shows the distribution of the surface magnetic flux density in the normal direction of the bonded magnet oriented as in this embodiment.
[0014]
Then, a DC brush motor was manufactured using these bond magnets as excitation magnets. The dimensions of the DC brush motor were all the same. The output torque and cogging torque of those motors were measured, respectively. Assuming that the output torque of the DC brush motor using the bond magnet of the radial orientation is 100% and the cogging torque is 100%, the output of the motor using the bond magnet of the axial orientation and the output of the motor of the bond magnet using the orientation of the present embodiment are used. FIG. 3 shows the measured values of the torque and the cogging torque.
[0015]
The cogging torque of the motor using the axially-oriented bonded magnet was greatly reduced to 0.5%, but the output torque was also significantly reduced to 65%. On the other hand, in the motor using the bonded magnet of the present embodiment, the cogging torque was able to be greatly reduced to 30% while the output torque was hardly reduced to 95%. That is, the cogging torque could be reduced by as much as 70% with only a decrease in the output torque of only 5%. This is a very significant improvement in motor performance.
[0016]
Next, a method of forming the orientation of the bonded magnet will be described based on an example in which compression molding is performed. 4A is a plan sectional view of the device, and FIG. 4B is a longitudinal sectional view of the device. FIG. 5 is a detailed sectional view of a portion including the cavity 35 of the mold 30. A cylindrical nib 33 is provided outside the cavity 35 of the mold 30, and further outside the nib 33, guides 31 a and 31 b formed of a columnar soft magnetic material having an arc-shaped cross section and extending in the axial direction are provided. is set up. Inserts 34a and 34b made of a non-magnetic material are provided at positions where the guides 31a and 31b do not exist. A cavity 32 is formed on the inner wall of the nib 33 and a core 32 made of a soft magnetic material is provided to penetrate the nib 33. To a cylindrical cavity 35 formed between the outer wall of the core 32 and the inner wall of the nib 33, a bonded magnet material mainly composed of magnet powder and resin powder is supplied. Pole pieces 41a and 41b are provided on both sides of the mold 30, and magnetic field generating coils 42a and 42b are provided so as to include the pole pieces 41a and 41b. The mold 30, the nib 33, and the inserts 34a and 34b are made of a non-magnetic material such as stainless steel.
[0017]
In the above configuration, by applying a direct current to the coils 42a and 42b, an orientation magnetic field perpendicular to the axis of the core 32 is formed between the pole pieces 41a and 41b. The pole piece 41a, the pole piece 41b, the guides 31a, 31b, and the core 32 are portions where the magnetic resistance in the magnetic circuit is extremely small, and the orienting magnetic field converges and flows into these portions. The magnetic permeability of the guides 31a, 31b is much larger than the magnetic permeability of the mold 30, the nib 33, and the inserts 34a, 34b. For this reason, as is clear from FIG. 2, the parallel orientation magnetic fields output from the pole pieces 41a and 41b converge on the guides 31a and 31b, and are directed to the core 32 in a direction perpendicular to the wall surfaces of the guides 31a and 31b. You will be guided towards. Since there are no guides 31a and 31b in the inserts 34a and 34b and the mold 30 having low magnetic permeability, the orientation magnetic field perpendicular to the outer peripheral surface of the core 32 in this part is because there is no high magnetic permeability guide. , Almost weakened. At that time, in addition to the existence of the orientation magnetic field from near the end facing the core of one guide to the vicinity of the end facing the core of the other guide, since the core has high magnetic permeability, the magnetic resistance is small and the orientation magnetic field is small. Passes near the core. As a result, the orientation magnetic field is gradually reversed in the tangential direction in the cavity 35 corresponding to the transition section in which the direction of the magnetic pole of the magnet changes.
[0018]
In the above-described configuration, a section having an angle of 135 degrees around the axis 11 of the arc-shaped guides 31a and 31b corresponds to the section B in FIG. In addition, a section where the guides 31a and 31b do not exist, that is, a section of about 45 degrees corresponds to the transition section A in FIG. With such a configuration, a surface magnetic flux density distribution in the normal direction as shown in FIGS. 1 and 3 can be obtained. Regarding the magnetic flux distribution of the cavity 35, the absolute value of the surface magnetic flux density in the normal direction is smooth with respect to the transition of the electrical angle as shown in FIG. The characteristics gradually decrease and gradually increase. On the other hand, in the section B, the absolute value of the surface magnetic flux density is only in the normal direction, and the surface magnetic flux density can be made substantially constant in the section B. With such a configuration, the surface magnetic flux density in the normal direction as shown in FIG.
[0019]
The above example is an example of a bonded magnet with two poles, but in the case of quadrupole orientation, it can be manufactured by an apparatus as shown in FIGS. That is, a ring 51 made of soft magnetic material is provided in the cavity of the mold 30 and is divided into four parts by inserts 52a, 52b, 52c, and 52d made of a nonmagnetic material between the inside of the ring 51 and the nib 33. Provided permanent magnets 50a, 50b, 50c, 50d. These inserts are to avoid a magnetic short circuit between the permanent magnets. With this arrangement, in the same manner as described above, in the transition region where the magnetic pole changes in the case of quadrupole orientation, the surface magnetic flux density in the normal direction is given, and the absolute value of the surface magnetic flux density in the normal direction becomes the transition of the electrical angle. On the other hand, it is possible to have a characteristic of smoothly decreasing and increasing gradually. With such a configuration, a large number of bonded magnets can be manufactured with one mold.
[0020]
The anisotropic rare earth bonded magnet 10 is also called a plastic magnet, and is typically formed by mixing Nd—Fe—B-based magnet powder with a resin material. The present applicant has finally made mass production possible in recent years. For example, the anisotropic rare earth bonded magnet 10 is manufactured by the manufacturing method of publication number p2001-7691A, registration number 2816668, and registration number 3060104. This anisotropic rare-earth bonded magnet having a maximum energy product of 10 MGOe to 28 MGOe can be manufactured at present.
[0021]
In addition, ferrite, samarium-cobalt, and samarium-iron-nitrogen materials can be used as the magnet powder. In addition, a known particle size or the like of the magnet powder can be used. For example, the average particle diameter is about 1 μm for a ferrite type, and about 1 to 100 μm for a rare earth type. As the resin, a known material can be used. Polyamide-based synthetic resin such as nylon 12, nylon 6, etc., polyvinyl chloride, vinyl acetate copolymer thereof, homo- or copolymerized vinyl-based synthetic resin such as MMA, PS, PPS, PE, PP, urethane, silicone And thermoplastic resins such as polycarbonate, PBT, PET, PEEK, CPE, Hypalon, neoprene, SBR and NBR, or thermosetting resins such as epoxy-based and phenol-based resins. Known mixing ratios of the magnet powder and the synthetic resin can be used. For example, it can be 40 to 90 vol%. In addition, a plasticizer, a lubricant, an antioxidant, a surface treatment agent and the like can be used according to the purpose.
[0022]
The following conditions can be adopted as the manufacturing conditions. Although a thermosetting resin is used in the embodiment, a thermoplastic resin may be used. In the embodiment, compression molding is used, but other known molding methods can be used. In this example, in order to simultaneously perform the magnetic field orientation and the compression molding, the heat compression molding in a magnetic field was used. First, the preforming conditions were as follows: the mold temperature was 120 ° C., the molding pressure was 2.5 t / cm 2 , the molding time was 15 sec, and the orientation magnetic field was 2T. The orientation is as described above. The molding conditions were as follows: the mold temperature was 150 ° C., the molding pressure was 8.0 t / cm 2 , and the molding time was 10 seconds. Magnetization was performed as follows. As a magnetization yoke, a soft magnetic core was arranged inside a cylindrical bond magnet as in FIG. The magnetizing magnetic field acts as a parallel magnetic field in a direction perpendicular to the axis of the cylindrical bond magnet similarly to the orientation magnetic field. The magnetizing method used a pulse magnetic field. The magnetizing magnetic field is about 4T.
[0023]
Further, since the anisotropic rare earth bonded magnet 10 is manufactured by resin molding, it is formed in a hollow cylindrical shape with high accuracy. Then, the anisotropic rare earth bonded magnet 10 is easily and accurately and symmetrically magnetized. A magnetic field is precisely and symmetrically generated inside the motor device.
[0024]
The above embodiment is an example of the embodiment of the present invention, and various other modifications are possible. For example, in the above embodiment, the anisotropic rare-earth bonded magnet 10 is magnetized in two poles, but may be larger than two poles. For example, four poles, six poles, or eight poles may be used. As the number of magnetic poles is increased, the magnetic path length is shortened accordingly, so that the magnetic flux traversing the armature coil increases.
[0025]
In the above embodiment, in the case of two-pole magnetization, a range B of about 135 degrees in electrical angle is defined as an electrical angle section in which torque is mainly generated, and a range A of about 45 degrees in electrical angle changes the magnetic pole. Transition section. However, the transition section may use a range of about 50 degrees, a range of about 30 degrees, a range of about 15 degrees, and the like. The range in which torque is mainly generated is the remaining electrical angle section. In the case of the 4-pole arrangement, the above-mentioned 1/2 is used for the transition section, in the case of the 6-pole arrangement, the above-mentioned 1/3 is used, and in the case of the 8-pole arrangement, the above-mentioned 1/4 is used.
[0026]
The bonded magnet of the present invention can be used for exciting a DC brush motor. In this case, the motor can be used for both the stator and the rotor, and the motor can be used for a DC brush motor, a brushless motor, a synchronous motor, and the like.
[Brief description of the drawings]
FIG. 1A is a cross-sectional view showing a distribution of surface magnetic flux density of a bonded magnet according to a specific embodiment of the present invention, and FIG. 1B is a surface magnetic flux in a normal direction with respect to an electrical angle. FIG. 4 is a characteristic diagram showing a density change characteristic.
FIGS. 2A and 2B are a cross-sectional view and a detailed view showing an orientation magnetic field distribution at the time of manufacturing the bonded magnet according to the embodiment. FIGS.
FIG. 3 shows the orientation magnetic field distribution, the magnetic vector distribution on the magnetized magnet surface, and the surface magnetic flux density distribution characteristic in the normal direction of the magnet surface according to the embodiment of the present invention. FIG. 4 is an explanatory diagram illustrating an axial alignment.
FIG. 4A is a cross-sectional view of an apparatus for orienting bonded magnets according to an embodiment of the present invention, and FIG. 4B is a cross-sectional view of the apparatus for orienting bonded magnets.
FIG. 5 is a cross-sectional view showing a detailed configuration inside a mold of the orientation processing apparatus.
6A is a cross-sectional view of an alignment processing apparatus for a quadrupole bonded magnet according to another embodiment, and FIG. 6B is a longitudinal sectional view of the alignment processing apparatus.
FIG. 7 is a cross-sectional view showing a detailed configuration of a mold of the alignment processing apparatus according to the embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Anisotropic bond magnet 11 ... Shaft 12 ... Outer peripheral thick part 30 ... Die 31a, 31b ... Guide 32 ... Core 33 ... Nibs 34a, 34b ... Insert 35 ... Cavities 41a, 41b ... Pole pieces 42a, 42b ... Magnetic Generating coils 50a, 50b, 50c, 50d: permanent magnets

Claims (2)

中空円筒状の異方性ボンド磁石において、
前記異方性ボンド磁石の軸に垂直な断面における表面磁束密度は、磁極周期の主たる区間においては法線方向の表面磁束密度の大きさが等しく、磁極の向きが変化する遷移区間においては法線方向の表面磁束密度の絶対値が電気角の増加に対して漸減、漸増させた分布としたことを特徴とするモータ用ボンド磁石。
In a hollow cylindrical anisotropic bonded magnet,
The surface magnetic flux density in a cross section perpendicular to the axis of the anisotropic bonded magnet is equal in the normal direction in the main section of the magnetic pole period, and normal in the transition section in which the direction of the magnetic pole changes. A bonded magnet for a motor, characterized in that the absolute value of the surface magnetic flux density in the direction has a distribution that gradually decreases and increases with an increase in the electrical angle.
請求項1に記載のモータ用ボンド磁石を有するモータ。A motor having the bonded magnet for a motor according to claim 1.
JP2002187104A 2002-05-28 2002-06-27 Bond magnet for motor and motor Expired - Fee Related JP4029679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002187104A JP4029679B2 (en) 2002-05-28 2002-06-27 Bond magnet for motor and motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002154065 2002-05-28
JP2002187104A JP4029679B2 (en) 2002-05-28 2002-06-27 Bond magnet for motor and motor

Publications (2)

Publication Number Publication Date
JP2004056835A true JP2004056835A (en) 2004-02-19
JP4029679B2 JP4029679B2 (en) 2008-01-09

Family

ID=31948983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002187104A Expired - Fee Related JP4029679B2 (en) 2002-05-28 2002-06-27 Bond magnet for motor and motor

Country Status (1)

Country Link
JP (1) JP4029679B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005104337A1 (en) * 2004-04-20 2005-11-03 Aichi Steel Corporation Anisotropic bond magnet for four-magnetic-pole motor, motor using the same, device for orientation processing of anisotropic bond magnet for four-magnetic-pole motor
WO2007018128A1 (en) 2005-08-08 2007-02-15 Aichi Steel Corporation Anisotropic bond magnet and dc motor employing it
JP2008514168A (en) * 2004-09-22 2008-05-01 シーメンス アクチエンゲゼルシヤフト Secondary parts of electrical machines
JP2008104352A (en) * 2008-01-15 2008-05-01 Aichi Steel Works Ltd Orientation processing method of anisotropic bond magnet for motor
US7560841B2 (en) 2003-07-22 2009-07-14 Aichi Steel Corporation, Ltd. Thin hybrid magnetization type ring magnet, yoke-equipped thin hybrid magnetization type ring magnet, and brush-less motor
JP2009271054A (en) * 2008-04-11 2009-11-19 Yaskawa Electric Corp Position detecting device and rotary linear motion motor with the same
JP2010130724A (en) * 2008-11-25 2010-06-10 Minebea Co Ltd Magnet for electric motors, and dc motor
KR101332545B1 (en) * 2006-04-18 2013-11-22 엘지전자 주식회사 Bldc motor
KR20160000720A (en) * 2014-06-25 2016-01-05 주식회사 코아비스 Polarizing device for a BLDC motor ring magnet
EP2102967A4 (en) * 2007-01-04 2016-07-06 Lg Electronics Inc Brushless dc motor, magnetizing method thereof and washing machine having the same
CN106199468A (en) * 2016-07-20 2016-12-07 北矿磁材科技股份有限公司 A kind of evaluation methodology of bonded permanent ferrite magnetic powder magnetic characteristic
JP2018166399A (en) * 2018-07-10 2018-10-25 日立アプライアンス株式会社 Rotor assembly
JP2019054664A (en) * 2017-09-15 2019-04-04 ミネベアミツミ株式会社 Permanent magnet for motor and dc motor using the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7560841B2 (en) 2003-07-22 2009-07-14 Aichi Steel Corporation, Ltd. Thin hybrid magnetization type ring magnet, yoke-equipped thin hybrid magnetization type ring magnet, and brush-less motor
US7750776B2 (en) 2004-04-20 2010-07-06 Aichi Steel Corporation Anisotropic bonded magnet for use in a 4-pole motor, a motor employing that magnet, and an alignment process apparatus for the anisotropic bonded magnet for use in a 4-pole motor
US7592889B2 (en) 2004-04-20 2009-09-22 Aichi Steel Corporation Anisotropic bond magnet for four-magnetic-pole motor, motor using the same, device for orientation processing of anisotropic bond magnet for four-magnetic-pole motor
WO2005104337A1 (en) * 2004-04-20 2005-11-03 Aichi Steel Corporation Anisotropic bond magnet for four-magnetic-pole motor, motor using the same, device for orientation processing of anisotropic bond magnet for four-magnetic-pole motor
JP2008514168A (en) * 2004-09-22 2008-05-01 シーメンス アクチエンゲゼルシヤフト Secondary parts of electrical machines
WO2007018128A1 (en) 2005-08-08 2007-02-15 Aichi Steel Corporation Anisotropic bond magnet and dc motor employing it
KR101332545B1 (en) * 2006-04-18 2013-11-22 엘지전자 주식회사 Bldc motor
EP2102967A4 (en) * 2007-01-04 2016-07-06 Lg Electronics Inc Brushless dc motor, magnetizing method thereof and washing machine having the same
JP4737202B2 (en) * 2008-01-15 2011-07-27 愛知製鋼株式会社 Method for orienting anisotropic bonded magnet for motor
JP2008104352A (en) * 2008-01-15 2008-05-01 Aichi Steel Works Ltd Orientation processing method of anisotropic bond magnet for motor
JP2009271054A (en) * 2008-04-11 2009-11-19 Yaskawa Electric Corp Position detecting device and rotary linear motion motor with the same
JP2010130724A (en) * 2008-11-25 2010-06-10 Minebea Co Ltd Magnet for electric motors, and dc motor
KR20160000720A (en) * 2014-06-25 2016-01-05 주식회사 코아비스 Polarizing device for a BLDC motor ring magnet
KR101587839B1 (en) 2014-06-25 2016-01-22 주식회사 코아비스 Polarizing device for a BLDC motor ring magnet
US9576715B2 (en) 2014-06-25 2017-02-21 Coavis Device for magnetizing ring-shaped magnet for BLDC motor
CN106199468A (en) * 2016-07-20 2016-12-07 北矿磁材科技股份有限公司 A kind of evaluation methodology of bonded permanent ferrite magnetic powder magnetic characteristic
JP2019054664A (en) * 2017-09-15 2019-04-04 ミネベアミツミ株式会社 Permanent magnet for motor and dc motor using the same
JP2018166399A (en) * 2018-07-10 2018-10-25 日立アプライアンス株式会社 Rotor assembly

Also Published As

Publication number Publication date
JP4029679B2 (en) 2008-01-09

Similar Documents

Publication Publication Date Title
JP3864986B2 (en) Thin hybrid magnetized ring magnet, thin hybrid magnetized ring magnet with yoke, and brushless motor
TWI400857B (en) Rotor-stator structure for electrodynamic machines
CN106165256B (en) Permanent magnet rotary electric machine and its manufacturing method
WO2005104337A1 (en) Anisotropic bond magnet for four-magnetic-pole motor, motor using the same, device for orientation processing of anisotropic bond magnet for four-magnetic-pole motor
JP2015133839A (en) Magnet-embedded rotor
JP4029679B2 (en) Bond magnet for motor and motor
JP2004023085A (en) Method of orienting anisotropically bonded magnet for motor
JP2007214393A (en) Annular polar anisotropic plastic magnet and rotor used for motor
CN106253518A (en) The manufacture method of rotor, motor and rotor
JP2017070031A (en) Rotor
JP2013172585A (en) Shaft type linear motor movable element, permanent magnet, linear motor, magnetic field generating device, and method of manufacturing shaft type linear motor movable element
JP2006019573A (en) Composite bonded magnet and manufacturing method thereof, and rotor of dc brushless motor having composite bonded magnet
JP2769061B2 (en) Extremely anisotropically oriented magnet
JP2017212863A (en) Pole-oriented anisotropic injection molding bond magnet and manufacturing method thereof
WO2018199271A1 (en) Permanent-magnet-field dc motor as well as stator therefor and rare earth anisotropic bond magnet therefor
JP6107299B2 (en) Method for manufacturing outer rotor of internal magnet type synchronous machine
JP4569139B2 (en) Rotor for IPM motor, method for manufacturing rotor for IPM motor using the same, and IPM motor therefor.
JP7275707B2 (en) MAGNET MEMBER MANUFACTURING APPARATUS AND MANUFACTURING METHOD THEREOF
TWI385899B (en) Rotor structure for permanent-magnet machines and manufacture method thereof
JP2005312166A (en) Anisotropic bond magnet for four magnetic pole motor and motor employing it
JP2016144322A (en) Rotor for rotary electric machine and manufacturing method for the same
JP4013916B2 (en) Orientation processing device for anisotropic bonded magnet for 4-pole motor
JP2016178784A (en) Manufacturing device for magnet member, and manufacturing method thereof
JP4737202B2 (en) Method for orienting anisotropic bonded magnet for motor
JP2015142471A (en) Permanent magnet motor and method of magnetizing the same, and manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050221

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070119

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070123

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070323

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070925

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20071008

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20101026

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20111026

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20121026

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20131026

LAPS Cancellation because of no payment of annual fees