JP2017053776A - Rotation angle detection magnet, rotation angle detector and method for manufacturing rotation angle detection magnet - Google Patents

Rotation angle detection magnet, rotation angle detector and method for manufacturing rotation angle detection magnet Download PDF

Info

Publication number
JP2017053776A
JP2017053776A JP2015178863A JP2015178863A JP2017053776A JP 2017053776 A JP2017053776 A JP 2017053776A JP 2015178863 A JP2015178863 A JP 2015178863A JP 2015178863 A JP2015178863 A JP 2015178863A JP 2017053776 A JP2017053776 A JP 2017053776A
Authority
JP
Japan
Prior art keywords
rotation angle
magnet
angle detection
detection magnet
sensor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015178863A
Other languages
Japanese (ja)
Other versions
JP6801170B2 (en
Inventor
正宏 増澤
Masahiro Masuzawa
正宏 増澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2015178863A priority Critical patent/JP6801170B2/en
Publication of JP2017053776A publication Critical patent/JP2017053776A/en
Application granted granted Critical
Publication of JP6801170B2 publication Critical patent/JP6801170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rotation angle detection magnet being a diameter 2 pole type magnet having excellent magnetization workability even in a small shape and capable of increasing a distance to a sensor element; a rotation angle detector capable of achieving a small size; and a method for manufacturing the rotation angle detection magnet, capable of manufacturing the small rotation angle detection magnet.SOLUTION: A entire magnet 1 has approximately a disc shape and is magnetized in the radial direction, and a central portion thereof has a convex shaped portion 11 comprising a pair of inclined parts 12 and 12 facing each other in the magnetization direction and inclined on the central portion side and a flat part 13 continuous to the pair of inclined parts 12 and 12. The longitudinal size of the flat part 13 is approximately equal to the diameter of the magnet 1. A sensor element for detecting a leakage magnetic flux component from the magnet 1 is provided above the flat part 13.SELECTED DRAWING: Figure 1

Description

本発明は、回転する被検出物の回転角を磁気的に検出する際に使用される回転角検出用磁石、該回転角検出用磁石を備えて被検出物の回転角を検出する回転角検出装置、及び前記回転角検出用磁石を製造する回転角検出用磁石の製造方法に関する。   The present invention relates to a rotation angle detection magnet that is used when magnetically detecting the rotation angle of a rotating object to be detected, and a rotation angle detection that includes the rotation angle detection magnet and detects the rotation angle of the object to be detected. The present invention relates to a rotation angle detection magnet manufacturing method for manufacturing the rotation angle detection magnet.

回転する被検出物の回転角を磁気的に検出する検出装置に使用される磁石の形状は略円板状であることが一般的である。そして、この略円板状の磁石は、その着磁方向の違いにより2つのタイプに類別される。   In general, the shape of a magnet used in a detection device that magnetically detects the rotation angle of a rotating object to be detected is a substantially disk shape. And this substantially disk-shaped magnet is classified into two types by the difference in the magnetization direction.

一方のタイプは、半円分の各領域にN極とS極とを1極ずつ着磁させて、着磁方向を回転軸と直交する径方向としたものであり、径2極着磁型磁石と呼ばれる。他方のタイプは、回転軸方向に沿って異極を着磁させて、着磁方向を回転軸方向と平行にしたものであり、面2極着磁型磁石と呼ばれる。特許文献1には、このような径2極着磁型磁石または面2極着磁型磁石を使用した回転角検出器が開示されている。   One type is one in which N poles and S poles are magnetized one by one in each semicircle region, and the magnetization direction is a radial direction perpendicular to the rotation axis. Called a magnet. The other type is one in which different poles are magnetized along the rotation axis direction so that the magnetization direction is parallel to the rotation axis direction, and is called a plane two-pole magnetized magnet. Patent Document 1 discloses a rotation angle detector using such a diameter dipole magnetized magnet or a surface dipole magnetized magnet.

特開2010−160036号公報JP 2010-160036 A

磁石の着磁方向が何れであっても、磁気検出用のセンサ素子は、回転軸と直交する方向の漏洩磁束成分を検出しており、何れの着磁型の磁石を使用するかは、磁石とセンサ素子との間の距離、センサ素子の感度、磁石の磁力の強さ等を考慮して決定される。   Regardless of the magnetizing direction of the magnet, the sensor element for magnetic detection detects the leakage magnetic flux component in the direction orthogonal to the rotation axis, and which magnet type to use depends on the magnet Is determined in consideration of the distance between the sensor element and the sensor element, the sensitivity of the sensor element, the strength of the magnetic force of the magnet, and the like.

面2極着磁型磁石の場合には、漏洩磁束が磁石表面から遠くへ到達し易くなるため、磁石とセンサ素子との間の距離を大きくとれる。これに対して、径2極着磁型磁石の場合には、漏洩磁束が磁石表面よりも遠くへ到達し難くなるため、センサ素子を磁石近傍に配置せざるを得なくなる。磁石とセンサ素子との距離を大きくとれると、例えばセンサ素子を制御基板などに固定するためのモールド樹脂を厚くしたり、非磁性ステンレスなどのカバーで覆ったりすることが可能になるため、構造上の信頼性が向上するし、構造設計の自由度も増大する。よって、磁石とセンサ素子との間の距離は大きいほど有利な点が多い。   In the case of a surface dipole magnetized magnet, the leakage magnetic flux easily reaches far from the magnet surface, so that the distance between the magnet and the sensor element can be increased. On the other hand, in the case of a two-diameter magnet, the leakage magnetic flux is difficult to reach farther than the magnet surface, so that the sensor element must be arranged near the magnet. If the distance between the magnet and the sensor element can be increased, for example, it is possible to increase the thickness of the mold resin for fixing the sensor element to the control board, etc., or to cover it with a cover such as nonmagnetic stainless steel. This improves the reliability and increases the degree of freedom in structural design. Therefore, there are many advantages as the distance between the magnet and the sensor element increases.

一方で、面2極着磁型磁石と径2極着磁型磁石とでは、着磁の作業性が著しく異なる。面2極に着磁する場合には、磁石の寸法に合わせた専用の着磁ヨーク(着磁コイル及び鉄ヨークを組み合わせたもの)を用いて、磁石を1個ずつ着磁するのが一般的である。これは、着磁に必要な磁界強度が2テスラ以上とかなり大きいので、一度に複数の磁石を着磁するための磁気回路を構成するのが困難なためである。一方、径2極に着磁する場合には、空心コイルを用いることで2テスラ以上の磁界強度を比較的大きな空間で容易に発生し得るため、大量の磁石を一度に径2極へ着磁できる。つまり、径2極着磁は低コストで大量生産向きの着磁方式と言える。   On the other hand, the workability of magnetization is remarkably different between the surface dipole magnetized magnet and the diameter dipole magnetized magnet. When magnetizing two poles on a surface, it is common to magnetize magnets one by one using a dedicated magnetizing yoke (combining magnetized coil and iron yoke) that matches the size of the magnet. It is. This is because the magnetic field strength necessary for magnetization is as high as 2 Tesla or more, and it is difficult to construct a magnetic circuit for magnetizing a plurality of magnets at once. On the other hand, when magnetizing to two poles in diameter, a magnetic field strength of 2 Tesla or more can be easily generated in a relatively large space by using an air-core coil. it can. That is, it can be said that the diameter dipole magnetization is a low cost and suitable for mass production.

以上のように、径2極着磁型磁石は、着磁の作業性が良好であるという利点を有する反面、センサ素子との距離を大きくとり難いという欠点がある。   As described above, the diameter dipole magnetized magnet has an advantage of good workability of magnetization, but has a drawback that it is difficult to increase the distance from the sensor element.

磁石とセンサ素子との距離を大きくする対策として、特許文献1における径2極着磁型磁石では、略円板状の磁石におけるセンサ素子との対向面を周囲より窪ませた形状としている。しかしながら、特許文献1にあっては、磁石におけるセンサ素子との対向面(磁石の中央部)のみを窪ませただけであり、センサ素子に対向しない磁石の縁部はそのままである。そのため、センサ素子を固定する制御基板との距離は依然として短いままであるので、構造上の信頼性は向上しない。また、所要の検出感度を得るために磁石の大きさを保とうとすれば、磁石の直径を長くせざるを得ず、磁石の寸法、及びこの磁石を用いた検出器のサイズが大きくなるという問題がある。   As a measure for increasing the distance between the magnet and the sensor element, the two-diameter magnetized magnet in Patent Document 1 has a shape in which the surface facing the sensor element in the substantially disk-shaped magnet is recessed from the periphery. However, in Patent Document 1, only the surface of the magnet facing the sensor element (the central part of the magnet) is recessed, and the edge of the magnet that does not face the sensor element remains as it is. For this reason, the distance from the control board for fixing the sensor element remains short, and the structural reliability is not improved. Also, if the size of the magnet is to be maintained in order to obtain the required detection sensitivity, the magnet diameter must be increased, and the size of the magnet and the size of the detector using this magnet increase. There is.

本発明は斯かる事情に鑑みてなされたものであり、小さい形状であっても、着磁の作業性が良好であり、しかもセンサ素子までの距離を大きくできる径2極着磁型磁石である回転角検出用磁石、サイズの小型化を図れる回転角検出装置、及び、小型の回転角検出用磁石を製造できる回転角検出用磁石の製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and is a two-diameter magnetized magnet having a good magnetization workability and a large distance to the sensor element even in a small shape. An object of the present invention is to provide a rotation angle detection magnet, a rotation angle detection device capable of reducing the size, and a method of manufacturing a rotation angle detection magnet capable of manufacturing a small rotation angle detection magnet.

本発明に係る回転角検出用磁石は、回転角を磁気的に検出する際に使用される回転角検出用磁石において、径方向に着磁された略円板状をなしており、中央部は凸形状部分となっており、該凸形状部分は、着磁方向に対向して中央部側に傾斜する一対の傾斜部と、該一対の傾斜部に連なる平坦部とを有し、前記平坦部の長手寸法は直径に略等しいことを特徴とする。   The rotation angle detection magnet according to the present invention is a rotation angle detection magnet that is used when magnetically detecting the rotation angle, and has a substantially disk shape that is magnetized in the radial direction. The convex portion has a pair of inclined portions that are inclined to the central portion side in opposition to the magnetization direction, and a flat portion that is continuous with the pair of inclined portions, and the flat portion The longitudinal dimension of is substantially equal to the diameter.

本発明の回転角検出用磁石は、全体が略円板状をなしていて、その径方向に着磁されており、着磁方向に対向して中央部側に傾斜する一対の傾斜部と、この一対の傾斜部に連なる平坦部とからなる凸形状部分を中央部に有している。また、平坦部の長手寸法は直径に略等しい。小型であっても、センサ素子に対向する中央部にこのような凸形状部分を設けているためセンサ素子との距離を大きくできると共に、径2極着磁であるため着磁は容易に行える。   The rotation angle detection magnet of the present invention has a substantially disc shape as a whole, is magnetized in the radial direction, and is opposed to the magnetizing direction, and has a pair of inclined portions inclined toward the central portion side, The central portion has a convex portion composed of a flat portion connected to the pair of inclined portions. Further, the longitudinal dimension of the flat portion is substantially equal to the diameter. Even if it is small in size, such a convex portion is provided in the central portion facing the sensor element, so that the distance from the sensor element can be increased, and since the diameter is dipole magnetization, magnetization can be easily performed.

本発明に係る回転角検出用磁石は、前記平坦部の短手寸法は直径の1/4以上1/2以下であって、自身の回転面と前記傾斜部とのなす角度は30度以上60度以下であることを特徴とする。   In the rotation angle detection magnet according to the present invention, the short dimension of the flat part is ¼ or more and ½ or less of the diameter, and the angle formed between the rotation surface of the flat part and the inclined part is 30 degrees or more and 60 degrees. It is characterized by being less than or equal to degrees.

本発明の回転角検出用磁石では、略矩形状をなす平坦部の長手寸法は直径に略等しく、短手寸法は直径の1/4以上1/2以下であり、傾斜部の傾斜角度(自身の回転面と前記傾斜部とのなす角度、すなわち、回転角検出装置に組み込まれた場合に、回転軸に直交する回転面と傾斜部とのなす角度)は30度以上60度以下である。よって、比較的小型の形状であっても漏洩磁束を遠くへ到達させることができ、遠く離れた位置でのセンサ素子の配置を可能とする。   In the rotation angle detecting magnet of the present invention, the long dimension of the flat portion having a substantially rectangular shape is substantially equal to the diameter, and the short dimension is not less than ¼ and not more than ½ of the diameter. The angle formed between the rotating surface and the inclined portion, that is, the angle formed between the rotating surface orthogonal to the rotation axis and the inclined portion when incorporated in the rotation angle detecting device is 30 degrees or more and 60 degrees or less. Therefore, even if it is a comparatively small shape, a leakage magnetic flux can be made to reach | attain far, and arrangement | positioning of the sensor element in the position far away is enabled.

本発明に係る回転角検出装置は、回転する被検出物の回転角を検出する回転角検出装置において、前記被検出物に取り付けられて回転する回転軸と、該回転軸と一体的に回転する上述した回転角検出用磁石と、該回転角検出用磁石の回転による前記回転軸と直交する方向の漏洩磁束成分を検出するセンサ素子とを備えることを特徴とする。   A rotation angle detection device according to the present invention is a rotation angle detection device that detects a rotation angle of a rotating object to be detected. The rotation angle detection magnet described above and a sensor element that detects a leakage magnetic flux component in a direction orthogonal to the rotation axis due to the rotation of the rotation angle detection magnet are provided.

本発明の回転角検出装置では、センサ素子が、上記の回転角検出用磁石の回転による回転軸と直交する方向の漏洩磁束成分を検出し、この検出結果に基づいて被検出物の回転角を求める。   In the rotation angle detection device of the present invention, the sensor element detects a leakage magnetic flux component in a direction orthogonal to the rotation axis due to the rotation of the rotation angle detection magnet, and based on the detection result, the rotation angle of the object to be detected is detected. Ask.

本発明に係る回転角検出装置は、前記センサ素子は、前記回転角検出用磁石の前記平坦部に対向して配置されていることを特徴とする。   The rotation angle detection device according to the present invention is characterized in that the sensor element is arranged to face the flat portion of the rotation angle detection magnet.

本発明の回転角検出装置では、回転角検出用磁石の平坦部にセンサ素子を対向配置している。よって、回転角検出用磁石とセンサ素子との軸ズレが生じても検出精度は損なわれない。   In the rotation angle detection device of the present invention, the sensor element is disposed opposite to the flat portion of the rotation angle detection magnet. Therefore, the detection accuracy is not impaired even if the axial deviation between the rotation angle detection magnet and the sensor element occurs.

本発明に係る回転角検出装置は、前記回転角検出用磁石を固定するための爪部を有する金属製の固定治具を更に備えることを特徴とする。   The rotation angle detection device according to the present invention further includes a metal fixing jig having a claw portion for fixing the rotation angle detection magnet.

本発明の回転角検出装置では、金属製の固定治具の爪部にて回転角検出用磁石を固定する。よって、回転角検出用磁石が回転軸と確実に一体的に回転するため、回転角の検出精度は高くなる。   In the rotation angle detection device of the present invention, the rotation angle detection magnet is fixed by the claw portion of the metal fixing jig. Therefore, since the rotation angle detection magnet rotates reliably with the rotation shaft, the detection accuracy of the rotation angle is increased.

本発明に係る回転角検出用磁石の製造方法は、回転角を磁気的に検出する際に使用される回転角検出用磁石を製造する方法において、磁性粉と熱硬化性樹脂との混合物を圧縮成形して上述した回転角検出用磁石を製造することを特徴とする。   A method for manufacturing a rotation angle detection magnet according to the present invention is a method for manufacturing a rotation angle detection magnet used when magnetically detecting a rotation angle. In this method, a mixture of magnetic powder and a thermosetting resin is compressed. It is characterized by manufacturing the above-described rotation angle detecting magnet.

本発明の回転角検出用磁石の製造方法では、圧縮成形により回転角検出用磁石を製造する。よって、射出成形に比べて材料に占める磁性粉の割合を大きくできて、小型でありながら必要十分な磁力を有する回転角検出用磁石を製造できる。   In the method for manufacturing a rotation angle detection magnet of the present invention, the rotation angle detection magnet is manufactured by compression molding. Therefore, the proportion of the magnetic powder in the material can be increased as compared with the injection molding, and a rotation angle detecting magnet having a necessary and sufficient magnetic force while being small can be manufactured.

本発明によれば、小型の形状であっても着磁の作業性が良好であり、しかもセンサ素子までの距離を大きくできる径2極着磁型の回転角検出用磁石を提供できる、また、この回転角検出用磁石を使用した検出精度が高い回転角検出装置を提供できる。さらに、この小型であって必要十分な磁力を有する回転角検出用磁石を製造できる。   According to the present invention, it is possible to provide a magnet for rotational angle detection of a diameter two-pole magnetized type that has good workability in magnetization even in a small shape and can increase the distance to the sensor element. A rotation angle detection device with high detection accuracy using this rotation angle detection magnet can be provided. Further, this small-sized rotation angle detecting magnet having a necessary and sufficient magnetic force can be manufactured.

本発明に係る回転角検出用磁石を示す斜視図である。It is a perspective view which shows the magnet for rotation angle detection which concerns on this invention. 本発明に係る回転角検出装置の全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the rotation angle detection apparatus which concerns on this invention. 本発明に係る回転角検出装置を示す断面図、側面図及び上面図である。It is sectional drawing, the side view, and top view which show the rotation angle detection apparatus based on this invention. 本発明に係る回転角検出用磁石における各寸法を表す上面図及び側面図である。It is the top view and side view showing each dimension in the magnet for rotation angle detection which concerns on this invention. 各実施例における回転角検出用磁石の各寸法、及びセンサ素子間の距離を表す図表である。It is a graph showing each dimension of the magnet for rotation angle detection in each Example, and the distance between sensor elements. 従来例と比較例と実施例とにおける磁石の直径、着磁方式、及びセンサ素子間の距離を表す図表である。It is a chart showing the diameter of the magnet in a prior art example, a comparative example, and an Example, a magnetization system, and the distance between sensor elements. 比較例と実施例とにおける磁石の形状及び磁界方向分布を示す概略図である。It is the schematic which shows the shape of a magnet and magnetic field direction distribution in a comparative example and an Example.

以下、本発明をその実施の形態を示す図面に基づいて詳述する。図1は、本発明に係る回転角検出用磁石を示す斜視図である。   Hereinafter, the present invention will be described in detail with reference to the drawings illustrating embodiments thereof. FIG. 1 is a perspective view showing a rotation angle detection magnet according to the present invention.

本発明に係る回転角検出用磁石1(以下、単に磁石1という)は、例えばNd−Fe−B系のボンド磁石であり、全体として略円板状をなしている。磁石1は、回転方向に180度ずつ2等分する各領域にN極及びS極が1極ずつ着磁されており、径2極型着磁磁石である。   A rotation angle detection magnet 1 (hereinafter simply referred to as a magnet 1) according to the present invention is, for example, an Nd—Fe—B bond magnet, and has a substantially disk shape as a whole. The magnet 1 is a two-diameter type magnetized magnet with one N pole and one S pole magnetized in each region that bisects 180 degrees in the rotational direction.

磁石1の中央部は、上方側に(後述するセンサ素子4と対向する側に)突出する凸形状部分11となっている。凸形状部分11は、着磁方向(図1の矢符方向)に対向して中央部側に傾斜する一対の傾斜部12、12と、該一対の傾斜部12、12に連なる平坦部13とを有している。言い換えると、この凸形状部分11では、着磁方向から見た輪郭は傾斜がない矩形状をなしており、着磁方向から90度回転した方向から見た輪郭は、上方に向かう左右対称な一対の傾斜を両端部に有しており、この一対の傾斜に連なった平坦を中央部に有している。   The central portion of the magnet 1 is a convex portion 11 that protrudes upward (to the side facing a sensor element 4 described later). The convex portion 11 includes a pair of inclined portions 12 and 12 that are inclined toward the central portion side in opposition to the magnetization direction (the arrow direction in FIG. 1), and a flat portion 13 that is continuous with the pair of inclined portions 12 and 12. have. In other words, in the convex portion 11, the contour viewed from the magnetizing direction has a rectangular shape with no inclination, and the contour viewed from the direction rotated 90 degrees from the magnetizing direction has a pair of symmetrical left and right. The both ends have a flat slope, and a flat portion connected to the pair of slopes is provided at the central portion.

平坦部13の上面である平坦面は、着磁方向を短手寸法、また着磁方向に直交する方向を長手寸法とした短冊状をなしている。この短冊状の長手寸法は、磁石1の直径にほぼ等しく、短手寸法は磁石1の直径の1/4以上1/2以下である。また、傾斜部12、12の上面は傾斜面であり、傾斜部12、12の傾斜角度は30度以上60度以下である。この傾斜角度は、磁石1の回転面と傾斜部12、12とのなす角度である。   The flat surface which is the upper surface of the flat portion 13 has a strip shape in which the magnetization direction is a short dimension and the direction perpendicular to the magnetization direction is a long dimension. The long dimension of the strip is approximately equal to the diameter of the magnet 1, and the short dimension is ¼ or more and ½ or less of the diameter of the magnet 1. Moreover, the upper surfaces of the inclined portions 12 and 12 are inclined surfaces, and the inclined angles of the inclined portions 12 and 12 are 30 degrees or more and 60 degrees or less. This inclination angle is an angle formed between the rotating surface of the magnet 1 and the inclined portions 12 and 12.

図2は、本発明に係る回転角検出装置の全体構成を示す斜視図である。また、図3は、本発明に係る回転角検出装置を示す断面図、側面図及び上面図である。回転角検出装置10は、図1に構成を示す前述した磁石1と、回転する被検出物(図示せず)に例えば締結により取り付けられて軸心周りに回転する回転軸2と、磁石1を支持固定する固定治具3と、磁石1からの漏洩磁束を検出するセンサ素子4と、センサ素子4に接続された算出部5とを備えている。   FIG. 2 is a perspective view showing the overall configuration of the rotation angle detection device according to the present invention. FIG. 3 is a cross-sectional view, a side view, and a top view showing the rotation angle detection device according to the present invention. The rotation angle detection device 10 includes the above-described magnet 1 having the configuration shown in FIG. 1, the rotation shaft 2 that is attached to a rotating detection target (not shown) by, for example, fastening and rotates around an axis, and the magnet 1. A fixing jig 3 for supporting and fixing, a sensor element 4 for detecting a leakage magnetic flux from the magnet 1, and a calculation unit 5 connected to the sensor element 4 are provided.

固定治具3は、例えば鉄製であって、薄板状をなしている。固定治具3は、磁石1の下面及び側面部を覆っており、着磁方向の両側に設けられた爪部3a、3aにより磁石1を固定している。磁石1の上面は、固定治具3にて覆われておらず、傾斜部12、12の傾斜面と、平坦部13の短冊状の平坦面とは開放されている。   The fixing jig 3 is made of, for example, iron and has a thin plate shape. The fixing jig 3 covers the lower surface and the side surface portion of the magnet 1, and fixes the magnet 1 by claw portions 3a and 3a provided on both sides in the magnetization direction. The upper surface of the magnet 1 is not covered with the fixing jig 3, and the inclined surfaces of the inclined portions 12 and 12 and the strip-like flat surface of the flat portion 13 are open.

回転軸2は、長尺の円柱状をなしており、圧入に耐えられるように例えばステンレス鋼などの低炭素鋼からなる。回転軸2の一端は、固定治具3の中心にかしめ固定されている。回転角の検出時には、回転軸2の他端が被検出物に取り付けられて、被検出物の回転に応じて、回転軸2、固定治具3及び磁石1が一体的に回転するようになっている。   The rotating shaft 2 has a long cylindrical shape, and is made of, for example, low carbon steel such as stainless steel so as to withstand press-fitting. One end of the rotating shaft 2 is caulked and fixed to the center of the fixing jig 3. At the time of detecting the rotation angle, the other end of the rotating shaft 2 is attached to the detected object, and the rotating shaft 2, the fixing jig 3 and the magnet 1 rotate integrally according to the rotation of the detected object. ing.

センサ素子4は、磁石1の平坦部13の上方に適長距離(d)だけ離隔して(図3参照)設けられている。センサ素子4は、磁界の向きの変化によって出力が変化するAMR素子またはGMR素子などの磁気検出素子である。なお、磁石1からのセンサ素子4までの距離dは、センサ素子4の感度、磁石1の磁力の強さなどを考慮して適切に設定すれば良い。   The sensor element 4 is provided above the flat portion 13 of the magnet 1 by an appropriate distance (d) (see FIG. 3). The sensor element 4 is a magnetic detection element such as an AMR element or a GMR element whose output changes with a change in the direction of the magnetic field. The distance d from the magnet 1 to the sensor element 4 may be appropriately set in consideration of the sensitivity of the sensor element 4 and the strength of the magnetic force of the magnet 1.

センサ素子4は、磁石1からの回転軸2と直交する方向の漏洩磁束を検出して算出部5に出力する。算出部5は、センサ素子4からの出力結果に基づいて被検出物の回転角を算出する。   The sensor element 4 detects the leakage magnetic flux from the magnet 1 in the direction orthogonal to the rotation axis 2 and outputs it to the calculation unit 5. The calculation unit 5 calculates the rotation angle of the detected object based on the output result from the sensor element 4.

磁石1の中央部に平坦部13を設けており、平坦部13の上方にセンサ素子4を設けているので、磁石1とセンサ素子4との間に軸ズレが生じた場合でも、検出機能が損なわれ難くなる。よって、平坦部13の短寸の幅は、軸ズレの設計値と略等しくすることが好ましい。   Since the flat part 13 is provided in the center part of the magnet 1 and the sensor element 4 is provided above the flat part 13, even if an axial misalignment occurs between the magnet 1 and the sensor element 4, the detection function is provided. It becomes hard to be damaged. Therefore, it is preferable that the short width of the flat portion 13 is substantially equal to the design value of the axial deviation.

次に、上述したような本発明に係る磁石1の製造方法について説明する。本発明の磁石1は、圧縮成形法を用いて具体的には以下のような手順で製造する。   Next, a method for manufacturing the magnet 1 according to the present invention as described above will be described. The magnet 1 of the present invention is specifically manufactured by the following procedure using a compression molding method.

まず、異方性Nd−Fe−B系磁性粉末に、熱硬化性樹脂(例えばエポキシ樹脂)を添加混合して材料を得る。熱硬化性樹脂は多く含まれると、磁石の磁気特性が低下するので、1質量%以上8質量%以下の添加が好ましい。   First, a material is obtained by adding and mixing a thermosetting resin (eg, epoxy resin) to anisotropic Nd—Fe—B magnetic powder. If a large amount of thermosetting resin is contained, the magnetic properties of the magnet will deteriorate, so addition of 1% by mass or more and 8% by mass or less is preferable.

次いで、得られた材料を成形機内の所定温度のプレス金型に充填し、成形機にて成形圧力を加えて所定形状に賦形しながら空心コイルにより圧下方向に垂直な磁界を印加して着磁することにより、径2極着磁された図1に示すような磁石1を製造する。なお、等方性の磁性粉末を使用する場合には、磁界を印加して成形する必要がない。   Next, the obtained material is filled in a press mold at a predetermined temperature in the molding machine, and a molding pressure is applied by the molding machine to form a predetermined shape, and a magnetic field perpendicular to the rolling direction is applied by an air-core coil to be applied. By magnetizing, the magnet 1 as shown in FIG. When isotropic magnetic powder is used, it is not necessary to apply a magnetic field for molding.

なお、使用する磁性粉末は、異方性Nd−Fe−B系磁性粉末以外に、ハードフェライト粉末、Sm−Fe−N系磁性粉末、Sm−Co系磁性粉末がある。また、異方性Nd−Fe−B系磁性粉末には、熱硬化性樹脂に加えて、滑材を添加してよい。滑材としては例えばステアリン酸カルシウムがある。添加量は0.1質量%以上2質量%以下が好ましい。   The magnetic powder used includes hard ferrite powder, Sm-Fe-N magnetic powder, and Sm-Co magnetic powder in addition to anisotropic Nd-Fe-B magnetic powder. In addition to the thermosetting resin, a lubricant may be added to the anisotropic Nd—Fe—B based magnetic powder. An example of the lubricant is calcium stearate. The addition amount is preferably 0.1% by mass or more and 2% by mass or less.

圧縮成形法では、射出成形法に比べて、材料の大きな流動性が要求されないので、材料における磁性粉末の充填率(割合)を大きくすることができる。よって、本発明では、圧縮成形法により磁石1を製造するので、射出成形に比べて、上述したような形状をなす小型で磁気特性が良い磁石1を製造できる。   Compared to the injection molding method, the compression molding method does not require a large fluidity of the material, so that the filling rate (ratio) of the magnetic powder in the material can be increased. Therefore, in the present invention, since the magnet 1 is manufactured by the compression molding method, it is possible to manufacture a small magnet 1 having a shape as described above and having good magnetic properties as compared with the injection molding.

次に、上述したような本発明に係る磁石1の具体的な実施例について説明する。図4は、本発明に係る回転角検出用磁石における各寸法を表す上面図及び側面図であり、図5は、各実施例(実施例1−3)における回転角検出用磁石の各寸法、及び、センサ素子間の距離を表す図表である。   Next, specific examples of the magnet 1 according to the present invention as described above will be described. FIG. 4 is a top view and a side view showing the dimensions of the rotation angle detection magnet according to the present invention, and FIG. 5 shows the dimensions of the rotation angle detection magnet in each example (Example 1-3). And it is a chart showing the distance between sensor elements.

図4及び図5にあって、Φ(mm)は磁石1の直径を表し、h(mm)は磁石1の高さ(下面から平坦部13の上面までの距離)を表し、w(mm)は平坦部13における短寸の幅を表し、θ(度)は、傾斜部12の傾斜角度を表しており、回転軸2と直交する磁石1の回転面と磁石1の傾斜部12とのなす角度である傾斜部の12の傾斜角を表す。また、図5に示すd(mm)は、前述したように磁石1及びセンサ素子4間の距離を表しており、各実施例にあって、Φ、h、w、θを変更した場合に、センサ素子4の感度を50mTとしたときの距離を表している。   4 and 5, Φ (mm) represents the diameter of the magnet 1, h (mm) represents the height of the magnet 1 (distance from the lower surface to the upper surface of the flat portion 13), and w (mm). Represents a short width in the flat portion 13, and θ (degree) represents an inclination angle of the inclined portion 12, and is formed by the rotating surface of the magnet 1 orthogonal to the rotating shaft 2 and the inclined portion 12 of the magnet 1. This represents the 12 inclination angles of the inclined portion, which is an angle. Further, d (mm) shown in FIG. 5 represents the distance between the magnet 1 and the sensor element 4 as described above, and in each example, when Φ, h, w, θ is changed, The distance when the sensitivity of the sensor element 4 is 50 mT is shown.

なお、回転角検出装置は被検出物に比べて極めて小さくすることが一般的であるので、使用される磁石の直径(Φ)は5〜30mm程度、より好ましくは10〜20mm程度が望まれる。よって、実施例として、図5に示すように、直径(Φ)がそれぞれ、10mm、15mm、20mmである3種の実施例1−3を提示している。   In addition, since it is common to make a rotation angle detection apparatus very small compared with a to-be-detected object, the diameter ((PHI)) of the magnet used is about 5-30 mm, More preferably, about 10-20 mm is desired. Therefore, as examples, as shown in FIG. 5, three types of examples 1-3 having diameters (Φ) of 10 mm, 15 mm, and 20 mm are presented.

本発明の磁石1では、平坦部13は短冊状をなしており、平坦部13の長手寸法は直径(Φ)に略等しく、平坦部13の短手寸法(w)は直径(Φ)の1/4以上1/2以下であって、傾斜部12の傾斜角(θ)は30度以上60度以下であることが好ましい。好ましい理由は、以下の通りである。   In the magnet 1 of the present invention, the flat portion 13 has a strip shape, the longitudinal dimension of the flat portion 13 is substantially equal to the diameter (Φ), and the short dimension (w) of the flat portion 13 is 1 of the diameter (Φ). It is preferable that the inclination angle (θ) of the inclined portion 12 is 30 degrees or more and 60 degrees or less. The preferable reason is as follows.

磁石1の平坦部13の短手寸法(w)が直径(Φ)の1/4未満になって小さすぎる場合には、磁界の均一な領域が狭くなるため、センサ素子4と磁石1との組付け精度を高める必要性が生じて使い勝手が悪くなる。一方、短手寸法(w)が直径(Φ)の1/2を超えて大きすぎる場合には、磁束が上面側へ流れ難くなって、センサ素子4との間の距離(d)を大きく取れなくなる。また、傾斜角(θ)が30度未満になって小さすぎる場合には、磁束が上面側へ流れ難くなって、センサ素子4との間の距離(d)を大きく取れなくなる。一方、傾斜角(θ)が60度を超えて大きすぎる場合には、磁石1の高さ(h)が大きくなって小型化を阻害する。   When the short dimension (w) of the flat portion 13 of the magnet 1 is less than 1/4 of the diameter (Φ) and is too small, the uniform region of the magnetic field is narrowed. It becomes necessary to increase the assembly accuracy, and the usability becomes worse. On the other hand, when the short dimension (w) exceeds 1/2 of the diameter (Φ) and is too large, the magnetic flux hardly flows to the upper surface side, and the distance (d) between the sensor element 4 can be increased. Disappear. When the tilt angle (θ) is less than 30 degrees and is too small, the magnetic flux hardly flows to the upper surface side, and the distance (d) between the sensor element 4 cannot be increased. On the other hand, when the inclination angle (θ) exceeds 60 degrees and is too large, the height (h) of the magnet 1 is increased, which hinders downsizing.

次に、本発明における実施例、本発明との比較を行うための比較例、及び、特許文献1に開示された従来例との関係について説明する。実施例、比較例、従来例はいずれも異方性Nd−Fe−B系の磁性粉末に、熱硬化性樹脂であるエポキシ樹脂を2質量%添加混合し、1×103 MPaにて成形したのち、200℃に加熱して作製した。 Next, the relationship between the embodiment of the present invention, a comparative example for comparison with the present invention, and the conventional example disclosed in Patent Document 1 will be described. In all of the examples, comparative examples, and conventional examples, 2% by mass of an epoxy resin, which is a thermosetting resin, was added to and mixed with anisotropic Nd—Fe—B based magnetic powder and molded at 1 × 10 3 MPa. After that, it was heated to 200 ° C.

図6は、従来例と比較例と実施例とにおける磁石の直径、着磁方式及びセンサ素子間の距離を表す図表である。センサ素子間の距離は、センサ素子の感度を50mTとしたときの距離である。また、図7は、比較例と実施例とにおける磁石の形状及び磁界方向分布を示す概略図である。   FIG. 6 is a chart showing the diameter of the magnet, the magnetization method, and the distance between the sensor elements in the conventional example, the comparative example, and the example. The distance between the sensor elements is a distance when the sensitivity of the sensor elements is 50 mT. FIG. 7 is a schematic diagram showing the shape of the magnet and the magnetic field direction distribution in the comparative example and the example.

図6における従来例1は、特許文献1に開示された例にあるセンサ素子との対向面を窪ませた磁石であり、直径が10mmである面2極着磁型磁石を使用している。また、図6における従来例2は、特許文献1に開示された例にあるセンサ素子との対向面を窪ませた磁石であり、直径が20mmである径2極着磁型磁石を使用している。図6及び図7における比較例1は、直径が10mmである面2極着磁型磁石を使用している。図6及び図7における比較例2は、全体として完全に円板形状をなしており、直径が10mmである径2極着磁型磁石を使用している。図6及び図7における比較例3は、周方向の一部の領域のみに傾斜面を有する本発明の構成とは異なり、周方向の全域にわたって傾斜面を形成した構成をなしており、直径が10mmである径2極着磁型磁石を使用している。図6及び図7における実施例1は、図5に示した形状をなす本発明に係る磁石を使用している。   Conventional example 1 in FIG. 6 is a magnet in which the surface facing the sensor element in the example disclosed in Patent Document 1 is recessed, and a surface two-pole magnetized magnet having a diameter of 10 mm is used. Further, Conventional Example 2 in FIG. 6 is a magnet in which a surface facing the sensor element in the example disclosed in Patent Document 1 is recessed, and a dipole magnetized magnet having a diameter of 20 mm is used. Yes. The comparative example 1 in FIG.6 and FIG.7 uses the surface 2 pole magnetization type | mold magnet whose diameter is 10 mm. The comparative example 2 in FIG.6 and FIG.7 has made the disk shape completely as a whole, and uses the diameter 2 pole magnetization type magnet whose diameter is 10 mm. 6 and 7 is different from the configuration of the present invention in which the inclined surface is provided only in a partial region in the circumferential direction, and has a configuration in which the inclined surface is formed over the entire region in the circumferential direction. A dipole magnet with a diameter of 10 mm is used. 6 and 7 uses the magnet according to the present invention having the shape shown in FIG.

なお、面2極着磁型磁石では、センサ素子との対向面の裏面であって、回転軸と接する面である磁石主面には、通常、磁束漏洩を抑えるためにヨークを張付けている。上記の実施例1、比較例1−3、従来例1及び2では何れも高さを5mmで揃えているが、従来例1及び比較例1は、磁石の高さと前記ヨークの高さとを合わせて5mmとしている。   In the case of a surface dipole magnetized magnet, a yoke is usually attached to the main surface of the magnet which is the back surface of the surface facing the sensor element and in contact with the rotating shaft in order to suppress magnetic flux leakage. In Example 1, Comparative Example 1-3, and Conventional Examples 1 and 2, the heights are all 5 mm, but in Conventional Example 1 and Comparative Example 1, the height of the magnet and the height of the yoke are matched. 5 mm.

従来例1及び比較例1のような面2極着磁の磁石を使用している場合には、従来例2、比較例2及び比較例3のような径2極着磁の磁石を使用している場合に比べて、センサ素子までの距離を大きく取れることが分かる。これに対して、実施例1では、径2極着磁の磁石を使用しているにもかかわらず、面2極着磁の磁石を使用した場合と略同程度であるセンサ素子までの距離を実現できている。   In the case of using the surface two-pole magnetized magnets as in Conventional Example 1 and Comparative Example 1, the magnets with the diameter dipole magnetized as in Conventional Example 2, Comparative Example 2 and Comparative Example 3 are used. It can be seen that the distance to the sensor element can be increased as compared with the case where the sensor element is provided. On the other hand, in Example 1, the distance to the sensor element, which is approximately the same as the case of using the surface dipole magnetized magnet, is used although the dipole magnet is used. It has been realized.

比較例2と比較例3とを比較した場合、周方向全域にわたって傾斜面を形成している比較例3では、傾斜面の存在によって、比較例2に比べて、センサ素子までの距離をより大きくすることができている。しかしながら、比較例3では、同一直径をなす面2極着磁の磁石を使用している例(従来例1及び比較例1)のような大きな離隔距離を達成できていない。   When the comparative example 2 and the comparative example 3 are compared, in the comparative example 3 in which the inclined surface is formed over the entire circumferential direction, the distance to the sensor element is larger than that of the comparative example 2 due to the presence of the inclined surface. Have been able to. However, in Comparative Example 3, a large separation distance cannot be achieved as in the example (Conventional Example 1 and Comparative Example 1) in which two-surface magnets having the same diameter are used.

比較例3と実施例1とを比較した場合、周方向全域にわたって傾斜面を形成した比較例3では中央部付近で磁束の落ち込みが見られてセンサ素子までの距離が小さくなっているのに対して、着磁方向に対向する方向にのみ傾斜面を形成した実施例1ではこのような磁束の落ち込みは見られずにセンサ素子までの距離を大きくできている。しかも、実施例1では、同一直径をなす面2極着磁の磁石を使用している例(従来例1及び比較例1)と同程度の大きな距離を達成できている。   When comparing Comparative Example 3 and Example 1, in Comparative Example 3 in which an inclined surface is formed over the entire circumferential direction, a drop in magnetic flux is seen near the center, and the distance to the sensor element is reduced. In Example 1 in which the inclined surface is formed only in the direction opposite to the magnetization direction, the distance to the sensor element can be increased without such a drop in the magnetic flux. Moreover, in Example 1, a distance as large as that of the example using the surface dipole magnetized magnet having the same diameter (conventional example 1 and comparative example 1) can be achieved.

以上のことから、本発明では、上述した形状をなす径2極着磁の磁石1を用いることにより、径2極着磁型磁石が本来有している着磁の良好な作業性を維持しながら、さらに面2極着磁型磁石の場合と同等であるセンサ素子までの距離を実現することができる。即ち、本発明では、着磁の良好な作業性(言い換えると低コストでの大量生産性)とセンサ素子までの大きな距離(言い換えると構造信頼性及び設計自由度の向上)とを両立することが可能である。   From the above, in the present invention, by using the dipole magnet 1 having the above-mentioned shape, the good workability of magnetization inherent in the dipole magnet has been maintained. However, it is possible to realize a distance to the sensor element that is equivalent to the case of the surface dipole magnetized magnet. That is, in the present invention, it is possible to achieve both good workability of magnetization (in other words, mass productivity at low cost) and a large distance to the sensor element (in other words, improvement in structural reliability and design flexibility). Is possible.

なお、上述した実施の形態では、磁石1と、固定治具3と、回転軸2とを一体化させた構成としたが、固定治具3は用いずに磁石1及び回転軸2にて一体構成とするようにしても良い。また、固定治具3及び回転軸2は何れも用いずに、磁石1を被検出物に直接取り付けて、被検出物の回転角を検出するようにも構成できる。   In the above-described embodiment, the magnet 1, the fixing jig 3, and the rotating shaft 2 are integrated. However, the magnet 1 and the rotating shaft 2 are integrated without using the fixing jig 3. It may be configured. In addition, the fixing jig 3 and the rotating shaft 2 are not used, and the magnet 1 can be directly attached to the detected object to detect the rotation angle of the detected object.

なお、開示された実施の形態は、全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上述の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。   The disclosed embodiments should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 磁石(回転角検出用磁石)
2 回転軸
3 固定治具
3a 爪部
4 センサ素子
5 算出部
11 凸形状部分
12 傾斜部
13 平坦部

1 Magnet (Rotation angle detection magnet)
2 Rotating shaft 3 Fixing jig 3a Claw part 4 Sensor element 5 Calculation part 11 Convex part 12 Inclination part 13 Flat part

Claims (6)

回転角を磁気的に検出する際に使用される回転角検出用磁石において、
径方向に着磁された略円板状をなしており、中央部は凸形状部分となっており、該凸形状部分は、着磁方向に対向して中央部側に傾斜する一対の傾斜部と、該一対の傾斜部に連なる平坦部とを有し、前記平坦部の長手寸法は直径に略等しいことを特徴とする回転角検出用磁石。
In the rotation angle detection magnet used when magnetically detecting the rotation angle,
It has a substantially disk shape magnetized in the radial direction, the central part is a convex part, and the convex part is a pair of inclined parts that incline toward the central part facing the magnetization direction And a flat portion connected to the pair of inclined portions, and the longitudinal dimension of the flat portion is substantially equal to the diameter.
前記平坦部の短手寸法は直径の1/4以上1/2以下であって、自身の回転面と前記傾斜部とのなす角度は30度以上60度以下であることを特徴とする請求項1に記載の回転角検出用磁石。   The short dimension of the flat part is ¼ or more and ½ or less of the diameter, and an angle formed between the rotation surface of the flat part and the inclined part is 30 degrees or more and 60 degrees or less. 1. A magnet for detecting a rotation angle according to 1. 回転する被検出物の回転角を検出する回転角検出装置において、
前記被検出物に取り付けられて回転する回転軸と、
該回転軸と一体的に回転する請求項1または2に記載の回転角検出用磁石と、
該回転角検出用磁石の回転による前記回転軸と直交する方向の漏洩磁束成分を検出するセンサ素子と
を備えることを特徴とする回転角検出装置。
In the rotation angle detection device for detecting the rotation angle of the rotating object to be detected,
A rotating shaft attached to the detected object and rotating;
The rotation angle detection magnet according to claim 1 or 2, wherein the rotation angle detection magnet rotates integrally with the rotation shaft;
A rotation angle detection device comprising: a sensor element that detects a leakage magnetic flux component in a direction orthogonal to the rotation axis due to rotation of the rotation angle detection magnet.
前記センサ素子は、前記回転角検出用磁石の前記平坦部に対向して配置されていることを特徴とする請求項3に記載の回転角検出装置。   The rotation angle detection device according to claim 3, wherein the sensor element is disposed to face the flat portion of the rotation angle detection magnet. 前記回転角検出用磁石を固定するための爪部を有する金属製の固定治具を更に備えることを特徴とする請求項3または4に記載の回転角検出装置。   The rotation angle detection device according to claim 3, further comprising a metal fixing jig having a claw portion for fixing the rotation angle detection magnet. 回転角を磁気的に検出する際に使用される回転角検出用磁石を製造する方法において、
磁性粉と熱硬化性樹脂との混合物を圧縮成形して請求項1または2に記載の回転角検出用磁石を製造することを特徴とする回転角検出用磁石の製造方法。


In a method of manufacturing a rotation angle detection magnet used when magnetically detecting a rotation angle,
A method for producing a rotation angle detection magnet according to claim 1 or 2, wherein a mixture of magnetic powder and thermosetting resin is compression molded to produce the rotation angle detection magnet according to claim 1 or 2.


JP2015178863A 2015-09-10 2015-09-10 Manufacturing method of rotation angle detection magnet, rotation angle detection device and rotation angle detection magnet Active JP6801170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015178863A JP6801170B2 (en) 2015-09-10 2015-09-10 Manufacturing method of rotation angle detection magnet, rotation angle detection device and rotation angle detection magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015178863A JP6801170B2 (en) 2015-09-10 2015-09-10 Manufacturing method of rotation angle detection magnet, rotation angle detection device and rotation angle detection magnet

Publications (2)

Publication Number Publication Date
JP2017053776A true JP2017053776A (en) 2017-03-16
JP6801170B2 JP6801170B2 (en) 2020-12-16

Family

ID=58317706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015178863A Active JP6801170B2 (en) 2015-09-10 2015-09-10 Manufacturing method of rotation angle detection magnet, rotation angle detection device and rotation angle detection magnet

Country Status (1)

Country Link
JP (1) JP6801170B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294474U (en) * 1989-01-10 1990-07-26
JPH03274413A (en) * 1990-03-24 1991-12-05 Seiko Epson Corp Magnetic encoder
JP2003274624A (en) * 2002-03-15 2003-09-26 Hitachi Metals Ltd Magnet unit for detecting angle of rotation
JP2006058256A (en) * 2004-08-24 2006-03-02 Nsk Ltd Rotation detector
JP2009271054A (en) * 2008-04-11 2009-11-19 Yaskawa Electric Corp Position detecting device and rotary linear motion motor with the same
JP3161399U (en) * 2010-05-18 2010-07-29 長野計器株式会社 Pointer reader
JP2012145425A (en) * 2011-01-12 2012-08-02 Tdk Corp Rotation angle sensor
JP2012251843A (en) * 2011-06-02 2012-12-20 Alps Electric Co Ltd Magnet and magnetic detection device using the magnet
DE102011079657A1 (en) * 2011-07-22 2013-01-24 Robert Bosch Gmbh Electric motor with a rotor position magnet
JP2015095642A (en) * 2013-11-08 2015-05-18 株式会社エムジー Magnet reducing magnetic flux density change with cavity fluctuation, and magnetization method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294474U (en) * 1989-01-10 1990-07-26
JPH03274413A (en) * 1990-03-24 1991-12-05 Seiko Epson Corp Magnetic encoder
JP2003274624A (en) * 2002-03-15 2003-09-26 Hitachi Metals Ltd Magnet unit for detecting angle of rotation
JP2006058256A (en) * 2004-08-24 2006-03-02 Nsk Ltd Rotation detector
JP2009271054A (en) * 2008-04-11 2009-11-19 Yaskawa Electric Corp Position detecting device and rotary linear motion motor with the same
JP3161399U (en) * 2010-05-18 2010-07-29 長野計器株式会社 Pointer reader
JP2012145425A (en) * 2011-01-12 2012-08-02 Tdk Corp Rotation angle sensor
JP2012251843A (en) * 2011-06-02 2012-12-20 Alps Electric Co Ltd Magnet and magnetic detection device using the magnet
DE102011079657A1 (en) * 2011-07-22 2013-01-24 Robert Bosch Gmbh Electric motor with a rotor position magnet
JP2015095642A (en) * 2013-11-08 2015-05-18 株式会社エムジー Magnet reducing magnetic flux density change with cavity fluctuation, and magnetization method thereof

Also Published As

Publication number Publication date
JP6801170B2 (en) 2020-12-16

Similar Documents

Publication Publication Date Title
CN100449268C (en) Position sensor utilizing a linear hall-effect sensor
US6501265B2 (en) Angular position detection device having linear output characteristics
US7157907B2 (en) Non-contact rotation angle detecting sensor
JP2017151105A (en) Magnetic angle position sensor
JP5131537B2 (en) Angle detector
JP2006233985A (en) Bearing with rotation detection unit
CN106487163B (en) With the rotor of the sensing wheel of fixation by holding board
US11101717B2 (en) Magnet structure, rotational angle detector, and electric power steering device
US10982974B2 (en) Magnet, magnet structure, and rotational angle detector
JP2007214393A (en) Annular polar anisotropic plastic magnet and rotor used for motor
JP4706407B2 (en) Magnetic encoder device
JP2008209340A (en) Magnetic rotator and rotational angle detector
US20190063955A1 (en) Magnet arrangement for rotational angle detection
JP2017070031A (en) Rotor
JP6801170B2 (en) Manufacturing method of rotation angle detection magnet, rotation angle detection device and rotation angle detection magnet
US20170234699A1 (en) Tapered magnet
JP2008108763A (en) Magnetization apparatus and magnetization method
JP2019118215A (en) Magnet structure, rotation angle detector, and electric power steering device
US20040222786A1 (en) Contactless hall-effect angular position sensor
JP2006313166A (en) Rolling bearing
JP2006300736A (en) Backyoke for magnetic type encoder, magnetic type encoder, and manufacturing method therefor
JP7453684B2 (en) Ring-shaped magnet, method for manufacturing ring-shaped magnet, and mold used therein
JP5012130B2 (en) Angle sensor
JP7151104B2 (en) Magnet structure, rotation angle detector and electric power steering device
JP2617921B2 (en) Brushless motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201109

R150 Certificate of patent or registration of utility model

Ref document number: 6801170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350