JP2006233985A - Bearing with rotation detection unit - Google Patents

Bearing with rotation detection unit Download PDF

Info

Publication number
JP2006233985A
JP2006233985A JP2005045080A JP2005045080A JP2006233985A JP 2006233985 A JP2006233985 A JP 2006233985A JP 2005045080 A JP2005045080 A JP 2005045080A JP 2005045080 A JP2005045080 A JP 2005045080A JP 2006233985 A JP2006233985 A JP 2006233985A
Authority
JP
Japan
Prior art keywords
rotation
bearing
magnetic
sensor
generating means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005045080A
Other languages
Japanese (ja)
Other versions
JP4704065B2 (en
Inventor
Toru Takahashi
亨 高橋
Yoshitaka Nagano
佳孝 永野
Hiroshi Isobe
浩 磯部
Takashi Koike
孝誌 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005045080A priority Critical patent/JP4704065B2/en
Priority to DE112006000444.1T priority patent/DE112006000444B4/en
Priority to PCT/JP2006/302193 priority patent/WO2006090588A1/en
Priority to CN200680004888.XA priority patent/CN101120177B/en
Priority to US11/884,892 priority patent/US7988363B2/en
Publication of JP2006233985A publication Critical patent/JP2006233985A/en
Application granted granted Critical
Publication of JP4704065B2 publication Critical patent/JP4704065B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane
    • G01P13/04Indicating positive or negative direction of a linear movement or clockwise or anti-clockwise direction of a rotational movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/723Shaft end sealing means, e.g. cup-shaped caps or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/02Housings
    • G01P1/026Housings for speed measuring devices, e.g. pulse generator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/443Devices characterised by the use of electric or magnetic means for measuring angular speed mounted in bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/487Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing with a rotation detection unit capable of miniaturizing in size and shortening an axial length. <P>SOLUTION: The bearing with a rotation detection unit has a magnetism generating means 2 for having directivity around a rotation center O at an inner ring 21 side of the bearing 20. A rotary sensor 3 which outputs rotation or angle information by sensing the magnetism of the magnetism generating means 2 is mounted at an outer ring 22 side while it is positioned on an axis of the bearing. The magnetism generating means 2 is fixed on a fixing member, for example, a rotary shaft 10 fixed on a bore side of an inner ring 21 of the bearing 20. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、各種の機器における回転検出、例えば小型モータの回転制御のための回転検出や、事務機器の位置検出のための回転検出、ロボットの関節角度の検出等に用いられる回転検出装置付き軸受に関する。   The present invention relates to a bearing with a rotation detection device used for rotation detection in various devices, for example, rotation detection for rotation control of a small motor, rotation detection for position detection of office equipment, detection of a joint angle of a robot, etc. About.

ロボットの関節等の回転あるいは角度を検出するために、関節部の軸を支持するための軸受と一体となった回転検出装置付き軸受が設置される。このような回転検出装置付き軸受は、小型であることが望まれ、特に、ロボットの指などの関節に装着する場合には、より小型であることが望まれる。このような要請に応えるために、本出願人は、先に図22に示すような回転検出装置付き軸受を提案した(例えば特許文献1)。   In order to detect the rotation or angle of a robot joint or the like, a bearing with a rotation detector integrated with a bearing for supporting the shaft of the joint is installed. Such a bearing with a rotation detection device is desired to be small, and in particular when mounted on a joint such as a finger of a robot, it is desired to be smaller. In order to respond to such a request, the present applicant has previously proposed a bearing with a rotation detection device as shown in FIG. 22 (for example, Patent Document 1).

同図の回転検出装置付き軸受は、回転輪である内輪51側に回転中心回りの方向性を有する磁気発生手段32を配置すると共に、固定輪である外輪52側に、前記磁気発生手段32の磁気を検出する磁気ラインセンサ33を、磁気発生手段32に対向して配置したものである。磁気発生手段32は永久磁石32Aと磁性体ヨーク32Bとでなり、内輪51の外径面に圧入嵌合される磁気発生手段取付部材45を介して内輪51に取付けられる。回転軸40と内輪51は一体となって回転するので、磁気発生手段32も磁気発生手段取付部材45と共に回転軸40と一体となって回転する。磁気ラインセンサ33は、外輪52の内径面に圧入嵌合されるセンサ取付部材57を介して外輪52に取付けられる。
特開2004−37133号公報
In the bearing with a rotation detection device of the figure, a magnetic generating means 32 having a direction around the center of rotation is arranged on the inner ring 51 side which is a rotating ring, and the magnetic generating means 32 is arranged on the outer ring 52 side which is a fixed ring. A magnetic line sensor 33 for detecting magnetism is arranged opposite to the magnetism generating means 32. The magnetism generating means 32 comprises a permanent magnet 32A and a magnetic yoke 32B, and is attached to the inner ring 51 via a magnetizing means attaching member 45 that is press-fitted to the outer diameter surface of the inner ring 51. Since the rotating shaft 40 and the inner ring 51 rotate integrally, the magnetism generating means 32 also rotates together with the rotating shaft 40 together with the magnetism generating means mounting member 45. The magnetic line sensor 33 is attached to the outer ring 52 via a sensor attachment member 57 that is press-fitted to the inner diameter surface of the outer ring 52.
JP 2004-37133 A

しかし、上記構成の回転検出装置付き軸受では、軸受への組付け構造については最適化されておらず、軸方向寸法が長い。すなわち、内輪51の外径面に圧入嵌合される磁気発生手段取付部材45を介在させることで、磁気発生手段32を内輪51に取付けているので、全体の軸方向寸法が長くなり、小型化が十分でなかった。   However, in the bearing with the rotation detection device having the above configuration, the assembly structure to the bearing is not optimized, and the axial dimension is long. That is, since the magnetism generating means 32 is attached to the inner ring 51 by interposing the magnetism generating means mounting member 45 that is press-fitted into the outer diameter surface of the inner ring 51, the overall axial dimension is lengthened and the size is reduced. Was not enough.

この発明の目的は、小型化が可能で、特に軸方向寸法を短くできる回転検出装置付き軸受を提供することである。   An object of the present invention is to provide a bearing with a rotation detecting device that can be miniaturized and that can shorten the axial dimension.

この発明の回転検出装置付き軸受は、軸受の内輪側に回転中心回りの方向性を有する磁気発生手段を有し、外輪側に前記磁気発生手段の磁気を感知して回転または角度の情報を出力する回転センサを、軸受軸心に位置して取付けた回転検出装置付き軸受であって、前記磁気発生手段を、軸受の内輪の内径側に固定された固定部材に固定したことを特徴とする。
この構成によると、磁気発生手段を、軸受の内輪の内径側に固定された固定部材に固定しているので、外径側に固定した固定部材を用いる場合と異なり、固定部材が内輪の端面よりも大きく突出させる必要がなく、軸方向の長さを短くすることができる。
The bearing with a rotation detection device of the present invention has a magnetism generating means having directionality around the center of rotation on the inner ring side of the bearing, and outputs rotation or angle information by sensing magnetism of the magnetism generating means on the outer ring side. The rotation sensor is a bearing equipped with a rotation detecting device mounted on the bearing shaft, wherein the magnetism generating means is fixed to a fixing member fixed to the inner diameter side of the inner ring of the bearing.
According to this configuration, since the magnetism generating means is fixed to the fixing member fixed to the inner diameter side of the inner ring of the bearing, unlike the case where the fixing member fixed to the outer diameter side is used, the fixing member is more than the end surface of the inner ring. Therefore, it is not necessary to make the protrusions protrude greatly, and the axial length can be shortened.

前記固定部材は軸であっても良い。この構成の場合、磁気発生手段を固定する固定部材を軸で兼用するので、従来では別途に必要であった固定部材を設ける必要がなく、部品点数を削減でき、また軸方向の長さ短縮効果をさらに上げることができる。   The fixing member may be a shaft. In this configuration, since the fixing member for fixing the magnetism generating means is also used as the shaft, there is no need to provide a fixing member that was conventionally required separately, the number of parts can be reduced, and the axial length reduction effect Can be further increased.

前記固定部材が軸とは別の部材であって、内輪内径面に圧入または接着等で固定されたものであっても良い。軸と別体の固定部材に磁気発生手段を固定するので、回転検出装置付き軸受から軸を分離できるという従来例の特徴を持ちつつ、軸方向の長さを従来例の場合に比べて短くできる。   The fixing member may be a member different from the shaft, and may be fixed to the inner ring inner surface by press-fitting or bonding. Since the magnetism generating means is fixed to a fixing member separate from the shaft, the length in the axial direction can be shortened compared to the conventional example while having the feature of the conventional example that the shaft can be separated from the bearing with the rotation detecting device. .

この発明において、前記固定部材が内輪の端面、または内輪に加工された軸方向を向く段面に接触することで、前記固定部材が位置決めされていても良い。内輪の端面に接触するものとする場合、固定部材が内輪嵌合部分の外周にフランジを有するものであって、フランジで内輪の端面に接触するものとしても良い。
この構成の場合、内輪の端面または前記段面を基準面として、固定部材を内輪の内径側に容易に位置決めすることができる。これにより、固定部材における磁気発生手段の固定面が軸受の軸心に対して垂直となるように、つまり磁気発生手段が回転センサと平行になるように、固定部材を内輪に取付けることができる。したがって、磁気発生手段と回転センサの平行度とクリアランスを所定の精度に保つことができる。その結果、回転センサの表面での磁界パターンの強度が磁気発生手段の回転によって変動するのを抑えることができる。また、上記クリアランスを従来の場合よりも小さくできることから、回転センサの感知する磁界が大きくなり、それだけS/N比が向上する。この2つの効果によって、回転検出装置の回転検出精度を向上させることができる。
In this invention, the fixing member may be positioned by contacting the end surface of the inner ring or a stepped surface facing the axial direction processed into the inner ring. When it is assumed that it contacts the end surface of the inner ring, the fixing member may have a flange on the outer periphery of the inner ring fitting portion, and may contact the end surface of the inner ring with the flange.
In the case of this configuration, the fixing member can be easily positioned on the inner diameter side of the inner ring using the end face of the inner ring or the stepped surface as a reference plane. As a result, the fixing member can be attached to the inner ring so that the fixing surface of the magnetism generating means in the fixing member is perpendicular to the axis of the bearing, that is, the magnetism generating means is parallel to the rotation sensor. Therefore, the parallelism and clearance between the magnetism generating means and the rotation sensor can be maintained at a predetermined accuracy. As a result, it is possible to suppress the intensity of the magnetic field pattern on the surface of the rotation sensor from fluctuating due to rotation of the magnetism generating means. Further, since the clearance can be made smaller than in the conventional case, the magnetic field sensed by the rotation sensor is increased, and the S / N ratio is improved accordingly. With these two effects, the rotation detection accuracy of the rotation detection device can be improved.

この発明において、前記磁気発生手段が、軸方向に着磁された2つの永久磁石で構成されたものであっても良い。
この構成の場合、固定部材を磁性体とすると、固定部材が磁気発生手段の磁路となるので、磁気発生手段から発生して対向する回転センサの表面を通過する磁束が増加して、回転検出感度を向上させることができる。また、従来例のように永久磁石と磁性体ヨークの組み合わせで磁気発生手段を構成するのではなく、永久磁石だけで磁気発生手段を構成していることから、従来例の場合よりも薄形の磁気発生手段とでき、この点からも軸方向の長さを短くできる。
In this invention, the magnetism generating means may be composed of two permanent magnets magnetized in the axial direction.
In this configuration, if the fixing member is made of a magnetic material, the fixing member becomes a magnetic path of the magnetism generating means. Therefore, the magnetic flux generated from the magnetism generating means and passing through the surface of the opposing rotation sensor is increased, thereby detecting the rotation. Sensitivity can be improved. In addition, the magnetism generating means is not composed of the combination of the permanent magnet and the magnetic yoke as in the conventional example, but the magnetism generating means is composed of only the permanent magnet, so that it is thinner than the conventional example. From this point, the axial length can be shortened.

この発明において、前記磁気発生手段が、片面にN極とS極の両方を持つ一つの永久磁石からなるものであっても良い。この構成の場合、一つの永久磁石だけで磁気発生手段を簡単に構成できる。また、固定部材側に永久磁石の磁束が通過しないので、固定部材の磁気特性が回転センサを通過する磁束に殆ど影響を与えることがない。したがって、回転検出精度に影響を与えることなく、磁性体および非磁性体のいずれの固定部材であっても使用することができる。   In the present invention, the magnetism generating means may be composed of one permanent magnet having both N pole and S pole on one side. In the case of this configuration, the magnetism generating means can be easily configured with only one permanent magnet. Further, since the magnetic flux of the permanent magnet does not pass to the fixed member side, the magnetic characteristics of the fixed member hardly affect the magnetic flux passing through the rotation sensor. Therefore, any fixing member of a magnetic body and a non-magnetic body can be used without affecting the rotation detection accuracy.

この発明において、前記固定部材に凹み部を設け、この凹み部の中に永久磁石を固定しても良い。永久磁石には他の永久磁石や磁性体との間に吸引力や反発力が働くので、固定部材が磁性体からなる場合、固定部材への永久磁石の組付けが容易でない。しかし、固定部材に形成した凹み部に永久磁石を挿入することで、固定部材への永久磁石の固定を軸ずれを少なくして精度良く容易に行うことができる。   In this invention, you may provide a recessed part in the said fixing member, and may fix a permanent magnet in this recessed part. Since the permanent magnet has an attractive force or a repulsive force between another permanent magnet or a magnetic body, when the fixing member is made of a magnetic body, it is not easy to assemble the permanent magnet to the fixing member. However, by inserting the permanent magnet into the recess formed in the fixing member, the permanent magnet can be fixed to the fixing member easily with high accuracy with less axial deviation.

この発明において、前記磁気発生手段および前記固定部材よりも柔軟な樹脂等の柔軟材料で前記永久磁石を取り囲み、前記柔軟材料を前記永久磁石と共に前記凹み部の中に固定しても良い。永久磁石が例えば焼結製の場合は機械的強度が脆く圧入に適さないが、上記組付け構造とすることにより、凹み部への永久磁石の圧入が可能となる。   In this invention, you may surround the said permanent magnet with flexible materials, such as resin softer than the said magnetism generation means and the said fixing member, and may fix the said flexible material in the said recessed part with the said permanent magnet. When the permanent magnet is made of, for example, sintered material, the mechanical strength is fragile and is not suitable for press-fitting. However, by using the above assembly structure, the permanent magnet can be press-fitted into the recess.

この発明において、固定部材が非磁性体であって、前記磁気発生手段と前記固定部材との間に磁性体ヨークを挟み込んでも良い。磁気発生手段が軸方向に着磁された永久磁石であると、固定部材が非磁性体からなる場合、永久磁石を固定部材に直接固定すると磁気発生手段の磁気効率が悪くなる。しかし、磁性体ヨークを介在させた上記組付け構造とすることにより、回転センサの表面を通過する磁束を磁性体ヨークの無い場合に比べて数割増加させることができる。その結果、回転センサが感知する磁気信号のS/N比が向上して、回転検出精度のさらなる向上が可能となる。   In the present invention, the fixing member may be a nonmagnetic material, and a magnetic yoke may be sandwiched between the magnetism generating means and the fixing member. When the magnetism generating means is a permanent magnet magnetized in the axial direction, when the fixing member is made of a non-magnetic material, the magnetic efficiency of the magnetism generating means is deteriorated if the permanent magnet is directly fixed to the fixing member. However, by adopting the above assembly structure in which the magnetic yoke is interposed, the magnetic flux passing through the surface of the rotation sensor can be increased by several percent compared to the case without the magnetic yoke. As a result, the S / N ratio of the magnetic signal sensed by the rotation sensor is improved, and the rotation detection accuracy can be further improved.

この発明において、前記回転センサが、複数の磁気センサ素子と、その磁気センサ素子の出力を回転信号または角度信号に変換する手段とを一体化したものであり、例えば半導体チップに集積されたものであっても良い。このように、半導体チップに磁気センサ素子と角度信号変換手段とを集積して一体化すると、磁気センサ素子と角度信号変換手段間の配線が不要となり、回転センサのコンパクト化が可能で、断線等に対する信頼性も向上し、回転検出装置の組み立て作業も容易になる。   In the present invention, the rotation sensor is formed by integrating a plurality of magnetic sensor elements and means for converting the output of the magnetic sensor elements into a rotation signal or an angle signal, for example, integrated on a semiconductor chip. There may be. As described above, if the magnetic sensor element and the angle signal conversion means are integrated and integrated on the semiconductor chip, wiring between the magnetic sensor element and the angle signal conversion means becomes unnecessary, the rotation sensor can be made compact, and the wire breakage, etc. As a result, the rotation detecting device can be easily assembled.

この発明において、前記回転センサは、磁気センサ素子を仮想の矩形上の4辺における各辺に沿って配置した4辺の磁気ラインセンサを有し、磁気ラインセンサの矩形配置の内部に、磁気ラインセンサのセンサ出力を回転情報または角度情報に変換する計算手段を配置しても良い。
この構成の場合、回転センサを構成する半導体チップのチップサイズをより小さくすることができる。
In the present invention, the rotation sensor includes a four-side magnetic line sensor in which magnetic sensor elements are arranged along four sides of a virtual rectangle, and the magnetic line sensor is provided inside the rectangular arrangement of the magnetic line sensor. You may arrange | position the calculation means which converts the sensor output of a sensor into rotation information or angle information.
In the case of this configuration, the chip size of the semiconductor chip constituting the rotation sensor can be further reduced.

この構成の場合に、前記回転センサの内部にある複数の磁気センサが、磁気発生手段が回転することにより回転する磁界の正弦信号と余弦信号を検出し、さらに、変換回路が、磁気センサの検出した信号を回転信号または角度信号に変換する計算手段を持っているものであっても良い。   In this configuration, the plurality of magnetic sensors inside the rotation sensor detect a sine signal and a cosine signal of a magnetic field that rotates as the magnetism generating means rotates, and the conversion circuit detects the magnetic sensor. It may have a calculation means for converting the processed signal into a rotation signal or an angle signal.

この発明の回転検出装置付き軸受は、軸受の内輪側に回転中心回りの方向性を有する磁気発生手段を有し、外輪側に前記磁気発生手段の磁気を感知して回転または角度の情報を出力する回転センサを、軸受軸心に位置して取付けた回転検出装置付き軸受であって、前記磁気発生手段を、軸受の内輪の内径側に固定された固定部材に固定したため、小型化が可能で、特に軸方向長さを短くできる。   The bearing with a rotation detection device of the present invention has a magnetism generating means having directionality around the center of rotation on the inner ring side of the bearing, and outputs rotation or angle information by sensing magnetism of the magnetism generating means on the outer ring side. The rotation sensor is a bearing with a rotation detection device mounted on the bearing shaft center, and the magnetism generating means is fixed to a fixing member fixed to the inner diameter side of the inner ring of the bearing, so that the size can be reduced. In particular, the axial length can be shortened.

この発明の一実施形態を図面と共に説明する。図1は、この実施形態の回転検出装置付き軸受の断面図を示す。この回転検出装置付き軸受は、転がり軸受20に回転検出装置1を組み込んだものある。転がり軸受20は、内輪21と外輪22の転走面間に、保持器23に保持された転動体24を介在させたものである。転動体24はボールからなり、この転がり軸受20は単列の深溝玉軸受とされている。内輪21には回転軸10が圧入状態に嵌合しており、外輪22は軸受使用機器のハウジング(図示せず)に設置されている。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a cross-sectional view of a bearing with a rotation detection device of this embodiment. This bearing with a rotation detection device is one in which the rotation detection device 1 is incorporated in a rolling bearing 20. The rolling bearing 20 includes a rolling element 24 held by a cage 23 between rolling surfaces of an inner ring 21 and an outer ring 22. The rolling element 24 is formed of a ball, and the rolling bearing 20 is a single row deep groove ball bearing. The rotary shaft 10 is fitted in the inner ring 21 in a press-fit state, and the outer ring 22 is installed in a housing (not shown) of a bearing-using device.

回転検出装置1は、転がり軸受20の内輪21側に配置された磁気発生手段2と、外輪22側に配置された回転センサ3とを備える。ここで言う内輪21側とは、内輪21または内輪21と共に回転する部材のことであり、外輪22側とは外輪22または外輪22に固定された部材のことである。
磁気発生手段2は永久磁石からなり、図2に示すように、発生する磁気が転がり軸受20の回転中心Oの回りの方向性を有するものである。この永久磁石からなる磁気発生手段2は、転がり軸受20の回転中心Oが永久磁石2の中心と一致するように、回転軸10を固定部材としてその一端面の中央に固定される。磁気発生手段2は、回転軸10の回転によって上記回転中心Oの回りをN磁極およびS磁極が旋回移動する。
The rotation detection device 1 includes magnetism generating means 2 arranged on the inner ring 21 side of the rolling bearing 20 and a rotation sensor 3 arranged on the outer ring 22 side. Here, the inner ring 21 side is an inner ring 21 or a member that rotates together with the inner ring 21, and the outer ring 22 side is an outer ring 22 or a member fixed to the outer ring 22.
The magnetism generating means 2 is made of a permanent magnet, and as shown in FIG. 2, the generated magnetism has directionality around the rotation center O of the rolling bearing 20. The magnetism generating means 2 made of a permanent magnet is fixed to the center of one end surface of the rotary shaft 10 as a fixed member so that the rotation center O of the rolling bearing 20 coincides with the center of the permanent magnet 2. In the magnetism generating means 2, the N magnetic pole and the S magnetic pole rotate around the rotation center O by the rotation of the rotating shaft 10.

回転センサ3は磁気発生手段2の磁気を感知して回転または角度の情報を出力するセンサである。回転センサ3は、転がり軸受20の回転中心Oの軸方向に向けて磁気発生手段2と対向するように、センサ取付部材27を介して外輪22側に取付けられる。具体的には、外輪22に前記センサ取付部材27が取付けられ、このセンサ取付部材27に回転センサ3が固定されている。センサ取付部材27は、外周部の先端円筒部27aを外輪22の内径面に嵌合させ、この先端円筒部27aの近傍に形成した鍔部27bを外輪22の幅面に係合させて軸方向に位置決めがなされている。また、センサ取付部材27には、回転センサ3の出力を取り出すための出力ケーブル29も取付けられている。   The rotation sensor 3 is a sensor that senses the magnetism of the magnetism generating means 2 and outputs rotation or angle information. The rotation sensor 3 is attached to the outer ring 22 side via a sensor attachment member 27 so as to face the magnetism generating means 2 in the axial direction of the rotation center O of the rolling bearing 20. Specifically, the sensor attachment member 27 is attached to the outer ring 22, and the rotation sensor 3 is fixed to the sensor attachment member 27. The sensor mounting member 27 has an outer peripheral tip cylindrical portion 27a fitted to the inner diameter surface of the outer ring 22, and a flange portion 27b formed in the vicinity of the distal cylindrical portion 27a is engaged with the width surface of the outer ring 22 in the axial direction. Positioning has been made. An output cable 29 for taking out the output of the rotation sensor 3 is also attached to the sensor attachment member 27.

回転センサ3は、図3に平面図で示すように、複数の磁気センサ素子5aと、その磁気センサ素子5aの出力を回転信号または角度信号に変換する計算手段である変換回路6とを1つの半導体チップ4上に集積したものである。半導体チップ4上において、磁気センサ素子5aは、仮想の矩形上の4辺における各辺に沿って配置されて、4辺の磁気ラインセンサ5A〜5Dとされる。この場合、前記矩形の中心O’は、転がり軸受20の回転中心Oに一致する。4辺の磁気ラインセンサ5A〜5Dは、同図の例ではセンサ素子5aが一列に並んだものとしているが、センサ素子5aが複列に並行に並んだものであっても良い。
前記変換回路6は、磁気ラインセンサ5A〜5Dの矩形配置の内部に配置される。半導体チップ4は、その素子形成面が前記磁気発生手段(永久磁石)2と対向するように前記センサ取付部材27に固定される。
As shown in a plan view in FIG. 3, the rotation sensor 3 includes a plurality of magnetic sensor elements 5a and a conversion circuit 6 that is a calculation means for converting the output of the magnetic sensor element 5a into a rotation signal or an angle signal. It is integrated on the semiconductor chip 4. On the semiconductor chip 4, the magnetic sensor element 5 a is arranged along each side of the four sides on the virtual rectangle to form the four-side magnetic line sensors 5 </ b> A to 5 </ b> D. In this case, the rectangular center O ′ coincides with the rotational center O of the rolling bearing 20. The four side magnetic line sensors 5A to 5D are configured such that the sensor elements 5a are arranged in a line in the example of the figure, but the sensor elements 5a may be arranged in parallel in a plurality of lines.
The conversion circuit 6 is arranged inside the rectangular arrangement of the magnetic line sensors 5A to 5D. The semiconductor chip 4 is fixed to the sensor mounting member 27 so that its element forming surface faces the magnetism generating means (permanent magnet) 2.

このように、半導体チップ4上に磁気センサ素子5aと変換回路6とを集積して一体化すると、磁気センサ素子5aと変換回路6間の配線が不要となり、回転センサ3のコンパクト化が可能で、断線等に対する信頼性も向上し、回転検出装置1の組み立て作業も容易になる。特に、上記したように矩形に配置された磁気ラインセンサ5A〜5Dの内部に変換回路6を配置すると、チップサイズをより小さくすることができる。   As described above, when the magnetic sensor element 5a and the conversion circuit 6 are integrated and integrated on the semiconductor chip 4, wiring between the magnetic sensor element 5a and the conversion circuit 6 becomes unnecessary, and the rotation sensor 3 can be made compact. In addition, reliability against disconnection and the like is improved, and the assembly operation of the rotation detection device 1 is facilitated. In particular, if the conversion circuit 6 is arranged inside the magnetic line sensors 5A to 5D arranged in a rectangular shape as described above, the chip size can be further reduced.

図4および図5は、前記変換回路6による角度算出処理の説明図である。図5(A)〜(D)は、回転軸10が回転している時の磁気ラインセンサ5A〜5Dによる出力波形図を示し、それらの横軸は各磁気ラインセンサ5A〜5Dにおける磁気センサ素子5aを、縦軸は検出磁界の強度をそれぞれ示す。
いま、図4に示す位置X1とX2に磁気ラインセンサ5A〜5Dの検出磁界のN磁極とS磁極の境界であるゼロクロス位置があるとする。この状態で、各磁気ラインセンサ5A〜5Dの出力は、図5(A)〜(D)に示す信号波形となる。したがって、ゼロクロス位置X1,X2は、磁気ラインセンサ5A,5Cの出力から直線近似することで算出できる。
角度計算は、次式(1)で行うことができる。
θ=tan-1(2L/b) ……(1)
ここでθは、磁石2の回転角度θを絶対角度(アブソリュート値)で示した値である。2Lは、矩形に並べられる各磁気ラインセンサ5A〜5Dより構成される四角形の1辺の長さである。bは、ゼロクロス位置X1,X2間の横方向長さである。
ゼロクロス位置X1,X2が磁気ラインセンサ5B,5Dにある場合には、それらの出力から得られるゼロクロス位置データにより、上記と同様にして回転角度θが算出される。変換回路6で算出された回転角度θは前記出力ケーブル29より出力される。
4 and 5 are explanatory diagrams of angle calculation processing by the conversion circuit 6. 5A to 5D show output waveform diagrams of the magnetic line sensors 5A to 5D when the rotary shaft 10 is rotating, and the horizontal axes thereof are magnetic sensor elements in the magnetic line sensors 5A to 5D. 5a, the vertical axis indicates the intensity of the detected magnetic field.
Now, assume that there are zero-cross positions at the positions X1 and X2 shown in FIG. 4 that are boundaries between the N magnetic pole and the S magnetic pole of the magnetic field detected by the magnetic line sensors 5A to 5D. In this state, the outputs of the magnetic line sensors 5A to 5D have signal waveforms shown in FIGS. Therefore, the zero cross positions X1 and X2 can be calculated by linear approximation from the outputs of the magnetic line sensors 5A and 5C.
The angle calculation can be performed by the following equation (1).
θ = tan −1 (2 L / b) (1)
Here, θ is a value indicating the rotation angle θ of the magnet 2 as an absolute angle (absolute value). 2L is the length of one side of a quadrangle composed of the magnetic line sensors 5A to 5D arranged in a rectangle. b is the lateral length between the zero-cross positions X1 and X2.
When the zero-cross positions X1 and X2 are in the magnetic line sensors 5B and 5D, the rotation angle θ is calculated in the same manner as described above based on the zero-cross position data obtained from the outputs. The rotation angle θ calculated by the conversion circuit 6 is output from the output cable 29.

上記構成の回転検出装置付き軸受によると、回転検出装置1の磁気発生手段(永久磁石)2を、転がり軸受20の内輪21の内径側に固定された固定部材(ここでは回転軸10)に固定しているので、従来の図22の例と異なり、内輪端面から軸方向に突出する固定部材が不要で、軸方向の長さを短くすることができる。また、従来例のように永久磁石と磁性体ヨークの組み合わせで磁気発生手段を構成するのではなく、永久磁石だけで磁気発生手段2を構成していることから、従来例の場合よりも薄形の磁気発生手段2とでき、この点からも軸方向の長さを短くできる。特に、この実施形態では、磁気発生手段2を固定する固定部材を回転軸10で兼用しているので、別途固定部材を設ける必要がなく、部品点数を削減できて、軸方向の長さ短縮効果をさらに上げることができる。   According to the bearing with the rotation detection device having the above-described configuration, the magnetism generating means (permanent magnet) 2 of the rotation detection device 1 is fixed to a fixing member (here, the rotation shaft 10) fixed to the inner diameter side of the inner ring 21 of the rolling bearing 20. Therefore, unlike the conventional example of FIG. 22, a fixing member protruding in the axial direction from the inner ring end face is unnecessary, and the axial length can be shortened. Further, since the magnetism generating means is not composed of a combination of a permanent magnet and a magnetic yoke as in the conventional example, but the magnetism generating means 2 is composed of only the permanent magnet, it is thinner than in the case of the conventional example. From this point, the axial length can be shortened. In particular, in this embodiment, the fixing member for fixing the magnetism generating means 2 is also used by the rotary shaft 10, so that there is no need to provide a separate fixing member, the number of parts can be reduced, and the axial length shortening effect can be reduced. Can be further increased.

上記実施形態では、回転センサ3の構成として、半導体チップ4上に複数の磁気センサ素子5aを矩形に並べた磁気ラインセンサ5A〜5Dで磁気発生手段2の磁気を感知するようにしたが、図6のように半導体チップ4上の中心O’(転がり軸受20の回転中心Oに一致する)の回りに90°の周回角度を隔てて最低限2つの磁気センサ素子5a,5bを配置することで、回転センサ3Aを構成しても良い。
なお、同図の例において、磁気センサ素子5a,5bの出力を回転信号または角度信号に変換する計算手段である変換回路6を、磁気センサ素子5a,5bと共に半導体チップ4上に集積することは、図3の場合と同じである。
In the above embodiment, the rotation sensor 3 is configured such that the magnetism of the magnetism generating means 2 is sensed by the magnetic line sensors 5A to 5D in which a plurality of magnetic sensor elements 5a are arranged in a rectangle on the semiconductor chip 4. 6, at least two magnetic sensor elements 5 a and 5 b are arranged around a center O ′ on the semiconductor chip 4 (corresponding to the rotation center O of the rolling bearing 20) with a 90 ° rotation angle. The rotation sensor 3A may be configured.
In the example shown in the figure, the conversion circuit 6, which is a calculation means for converting the outputs of the magnetic sensor elements 5a and 5b into rotation signals or angle signals, is integrated on the semiconductor chip 4 together with the magnetic sensor elements 5a and 5b. This is the same as in FIG.

図6の例のように回転センサ3Aを構成した場合、2つの磁気センサ素子5a,5bの出力は、磁気発生手段2の回転角θ(図6)に合わせて変化し、図7に示すように一方の磁気センサ素子5aの出力aは正弦信号、他方の磁気センサ素子5bの出力bは余弦信号となる。これにより、回転角θは、a/bの逆正接関数(アークタンジェント)、およびaとbの正負によって計算することができる。この計算は変換回路6で行う。図7の出力波形が理想的な正弦波,余弦波に対して歪む場合は、変換回路6内に補正テーブルを設けることにより歪みを補正して、検出される回転角θの精度劣化を防止するようにしても良い。   When the rotation sensor 3A is configured as in the example of FIG. 6, the outputs of the two magnetic sensor elements 5a and 5b change in accordance with the rotation angle θ (FIG. 6) of the magnetism generating means 2, as shown in FIG. The output a of one magnetic sensor element 5a is a sine signal, and the output b of the other magnetic sensor element 5b is a cosine signal. Thus, the rotation angle θ can be calculated by an arctangent function (arc tangent) of a / b and the sign of a and b. This calculation is performed by the conversion circuit 6. When the output waveform of FIG. 7 is distorted with respect to ideal sine waves and cosine waves, a correction table is provided in the conversion circuit 6 to correct the distortion and prevent deterioration in accuracy of the detected rotation angle θ. You may do it.

また、上記実施形態では、磁気発生手段2の構成について詳述しなかったが、その具体的構成として、図8(A),(B)に側面図および正面図で示すように、軸方向に着磁された2つの四角形の永久磁石2A,2Bを、回転軸10の軸心Oを中心として径方向に並べて配置しても良い。なお、永久磁石2A,2Bの形状は、半円形など他の形状であっても良い。
この構成の場合、回転軸10を磁性体とすると、回転軸10の一部が磁気発生手段2の磁路となるので、磁気発生手段2から発生して対向する半導体チップ4(回転センサ3)の表面を通過する磁束が増加して、回転検出感度を向上させることができる。
In the above embodiment, the configuration of the magnetism generating means 2 has not been described in detail. As a specific configuration thereof, as shown in a side view and a front view in FIGS. The magnetized two quadrangular permanent magnets 2A and 2B may be arranged side by side in the radial direction with the axis O of the rotating shaft 10 as the center. The shapes of the permanent magnets 2A and 2B may be other shapes such as a semicircle.
In the case of this configuration, if the rotating shaft 10 is a magnetic body, a part of the rotating shaft 10 becomes a magnetic path of the magnetism generating means 2, so that the semiconductor chip 4 generated by the magnetism generating means 2 and facing (rotation sensor 3). The magnetic flux passing through the surface of the surface increases, and the rotation detection sensitivity can be improved.

また、磁気発生手段2の他の具体的構成として、図9(A),(B)に側面図および正面図で示すように、1つの円形の永久磁石2Cであって、片面にN磁極およびS磁極を着磁したものを、その中心が回転軸10の軸心Oと一致するように回転軸10の端面に配置しても良い。永久磁石2Cの形状は、四角形など他の形状であっても良い。
この構成の場合、1つの永久磁石2Cだけで磁気発生手段2を簡単に構成できる。また回転軸10側に永久磁石2Cの磁束が通過しないので、回転軸10の磁気特性が半導体チップ4(回転センサ3)を通過する磁束に殆ど影響を与えることがない。したがって、回転検出精度に影響を与えることなく、磁性体および非磁性体のいずれの回転軸10でも使用することができる。
As another specific configuration of the magnetism generating means 2, as shown in a side view and a front view in FIGS. 9A and 9B, there is one circular permanent magnet 2C having an N magnetic pole on one side and A magnet with an S magnetic pole may be arranged on the end surface of the rotating shaft 10 so that the center thereof coincides with the axis O of the rotating shaft 10. The shape of the permanent magnet 2C may be another shape such as a quadrangle.
In the case of this configuration, the magnetism generating means 2 can be easily configured with only one permanent magnet 2C. Further, since the magnetic flux of the permanent magnet 2C does not pass to the rotating shaft 10, the magnetic characteristics of the rotating shaft 10 hardly affect the magnetic flux passing through the semiconductor chip 4 (rotation sensor 3). Therefore, any rotating shaft 10 of a magnetic material and a non-magnetic material can be used without affecting the rotation detection accuracy.

また、上記実施形態では、磁気発生手段である永久磁石2を回転軸10の端面にそのまま固定した場合を示しているが、これに限らず図10(A)に示すように、回転軸10の端面に凹み部10aを形成し、この凹み部10aに永久磁石2を挿入して接着等により図10(B)のように固定しても良い。永久磁石2には他の永久磁石や磁性体との間に吸引力や反発力が働くので、回転軸10が磁性体からなる場合、回転軸10への永久磁石2の組付けが容易でない。しかし、上記のように回転軸10に形成した凹み部10aに永久磁石2を挿入することで、回転軸10への永久磁石2の固定を軸ずれを少なくして精度良く容易に行うことができる。また、図8のように2つの永久磁石2A,2Bで磁気発生手段2を構成する場合も、上記組付け構造を採用することにより、永久磁石2A,2B同士や、これらと磁性体の回転軸10との間に吸引力や反発力が働いても、回転軸10への永久磁石2A,2Bの固定を、軸ずれを少なくして精度良く容易に行うことができる。   Moreover, although the case where the permanent magnet 2 which is a magnetic generation means is fixed to the end surface of the rotating shaft 10 as it is is shown in the said embodiment, not only this but as shown in FIG. A recess 10a may be formed on the end surface, and the permanent magnet 2 may be inserted into the recess 10a and fixed as shown in FIG. Since the permanent magnet 2 has an attractive force and a repulsive force between other permanent magnets and a magnetic body, when the rotating shaft 10 is made of a magnetic material, the assembly of the permanent magnet 2 to the rotating shaft 10 is not easy. However, by inserting the permanent magnet 2 into the recessed portion 10a formed on the rotating shaft 10 as described above, the permanent magnet 2 can be fixed to the rotating shaft 10 easily with high accuracy with less axial deviation. . Further, when the magnetism generating means 2 is constituted by two permanent magnets 2A and 2B as shown in FIG. 8, by adopting the assembly structure described above, the permanent magnets 2A and 2B can be connected to each other, and the rotation shaft of these and the magnetic body. Even if an attractive force or a repulsive force is applied to the rotating shaft 10, the permanent magnets 2A and 2B can be fixed to the rotating shaft 10 easily and accurately with less axial displacement.

図11は、回転軸10の端面に形成した凹み部10aに磁気発生手段である永久磁石2A,2Bを挿入して組み付ける構成の他の例を示す。この場合、図11(B)のように、永久磁石2A,2Bおよび回転軸10よりも比較的柔軟性のある例えば樹脂部材11で永久磁石2A,2Bを取り囲むことにより、永久磁石2A,2Bと樹脂部材11を一体化する。この一体化部品12を回転軸10の端面に形成した凹み部10aに圧入することで、回転軸10への永久磁石2A,2Bの組付けを図っている。
永久磁石2A,2Bが例えば焼結製の場合は、機械的強度が脆く圧入に適さないが、上記組付け構造とすることにより、凹み部10aへの永久磁石2A,2Bの圧入が可能となる。なお、この組付け構造は、図9のように単体の永久磁石2Cの組付けに採用しても良く、この場合にも凹み部10aへの永久磁石2Cの圧入を容易に行うことができる。
FIG. 11 shows another example of a configuration in which the permanent magnets 2A and 2B, which are magnetism generating means, are inserted and assembled into the recess 10a formed on the end surface of the rotating shaft 10. In this case, as shown in FIG. 11B, the permanent magnets 2A and 2B are surrounded by the permanent magnets 2A and 2B, which are relatively flexible than the permanent magnets 2A and 2B and the rotating shaft 10, for example, by the resin member 11. The resin member 11 is integrated. By assembling the integrated component 12 into a recess 10 a formed on the end surface of the rotating shaft 10, the permanent magnets 2 </ b> A and 2 </ b> B are assembled to the rotating shaft 10.
When the permanent magnets 2A and 2B are made of, for example, sintered, the mechanical strength is fragile and is not suitable for press-fitting. However, by adopting the above assembly structure, the permanent magnets 2A and 2B can be press-fitted into the recess 10a. . This assembly structure may be employed for the assembly of a single permanent magnet 2C as shown in FIG. 9, and in this case, the permanent magnet 2C can be easily press-fitted into the recess 10a.

図12は、非磁性体の回転軸10の端面に、図8に示す2つの永久磁石2A,2Bからなる磁気発生手段2を組み付ける構成例を示す。この組付け例では、磁性体ヨーク13を介して、回転軸10の端面に永久磁石2A,2Bを組み付けている。具体的には、磁性体ヨーク13の片面に凹み部13aを形成し、この凹み部13aに永久磁石2A,2Bを挿入固定すると共に、回転軸10の端面に形成した凹み部10aに前記磁性体ヨーク13を挿入固定している。なお、組付順序としては、先に回転軸10の凹み部10aに磁性体ヨーク13を挿入固定した後で、磁性体ヨーク13の凹み部13aに永久磁石2A,2Bを挿入固定しても良い。
磁気発生手段2を構成する2つの永久磁石2A,2Bは軸方向に着磁されているので、回転軸10が非磁性体からなる場合、永久磁石2A,2Bを回転軸10に直接固定すると磁気発生手段2の磁気効率が悪くなる。しかし、磁性体ヨーク13を介在させた上記組付け構造とすることにより、半導体チップ4(回転センサ3)の表面を通過する磁束を磁性体ヨークの無い場合に比べて数割増加させることができる。その結果、回転センサ3が感知する磁気信号のS/N比が向上して、回転検出精度のさらなる向上が可能となる。
FIG. 12 shows a configuration example in which the magnetism generating means 2 composed of the two permanent magnets 2A and 2B shown in FIG. 8 is assembled to the end face of the rotating shaft 10 made of a non-magnetic material. In this assembly example, the permanent magnets 2 </ b> A and 2 </ b> B are assembled to the end surface of the rotating shaft 10 via the magnetic yoke 13. Specifically, a concave portion 13a is formed on one surface of the magnetic yoke 13, the permanent magnets 2A and 2B are inserted and fixed in the concave portion 13a, and the magnetic body is formed in the concave portion 10a formed on the end surface of the rotary shaft 10. The yoke 13 is inserted and fixed. As an assembling order, the permanent magnets 2A and 2B may be inserted and fixed in the recess 13a of the magnetic yoke 13 after the magnetic yoke 13 is inserted and fixed in the recess 10a of the rotary shaft 10 first. .
Since the two permanent magnets 2A and 2B constituting the magnetism generating means 2 are magnetized in the axial direction, when the rotary shaft 10 is made of a nonmagnetic material, the permanent magnets 2A and 2B are magnetically fixed to the rotary shaft 10 directly. The magnetic efficiency of the generating means 2 is deteriorated. However, by adopting the above assembly structure in which the magnetic yoke 13 is interposed, the magnetic flux passing through the surface of the semiconductor chip 4 (rotation sensor 3) can be increased by several percent compared to the case without the magnetic yoke. . As a result, the S / N ratio of the magnetic signal sensed by the rotation sensor 3 is improved, and the rotation detection accuracy can be further improved.

図13は、非磁性体の回転軸10の端面に、図8に示す2つの永久磁石2A,2Bからなる磁気発生手段2を組み付ける他の構成例を示す。この組付け例では、磁性体ヨーク13の片面に2つの永久磁石2A,2Bを重ねて固定すると共に、その周囲を樹脂部材11で取り囲んで一体化部品14とし、回転軸10の端面に形成した凹み部10aに前記一体化部品14を挿入固定している。この場合も、非磁性体の回転軸10と永久磁石2A,2Bとで磁性体ヨーク13が挟まれた構造となって、磁気発生手段2の磁気効率が改善される。   FIG. 13 shows another configuration example in which the magnetism generating means 2 including the two permanent magnets 2A and 2B shown in FIG. 8 is assembled to the end face of the nonmagnetic rotating shaft 10. In this assembly example, two permanent magnets 2A and 2B are overlapped and fixed on one surface of the magnetic yoke 13, and the periphery thereof is surrounded by the resin member 11 to form an integrated component 14, which is formed on the end surface of the rotary shaft 10. The integrated part 14 is inserted and fixed in the recess 10a. Also in this case, the magnetic yoke 13 is sandwiched between the nonmagnetic rotating shaft 10 and the permanent magnets 2A and 2B, so that the magnetic efficiency of the magnetism generating means 2 is improved.

図14は、この発明の他の実施形態を示す。この実施形態の回転検出装置付き軸受は、図1の実施形態において、一端面に磁気発生手段2が固定される回転軸10の軸受内輪21への挿入長さを短くして、磁気発生手段2の軸方向位置を、回転検出装置1の配置側の内輪21の幅面よりも内側に後退させ、またセンサ取付部材27のセンサ取付位置となる幅面部27cの軸方向位置を鍔部27bに揃え、さらにセンサ取付部材27から引き出される出力ケーブル29をフラットケーブル等の偏平なものとしている。その他の構成は図1の場合と同様である。   FIG. 14 shows another embodiment of the present invention. The bearing with a rotation detection device of this embodiment is the same as the embodiment of FIG. 1 except that the insertion length of the rotary shaft 10 with the magnetism generating means 2 fixed to one end face thereof into the bearing inner ring 21 is shortened. The axial position of the inner surface of the inner ring 21 on the arrangement side of the rotation detecting device 1 is retreated to the inner side, and the axial position of the width surface portion 27c serving as the sensor mounting position of the sensor mounting member 27 is aligned with the flange portion 27b. Further, the output cable 29 drawn out from the sensor mounting member 27 is flat such as a flat cable. Other configurations are the same as those in FIG.

この実施形態の場合、回転検出装置1の軸方向位置が図1の実施形態の場合よりも転がり軸受20側に近くなり、センサ取付部材27から軸方向に張り出す出力ケーブル29の張出量も少なくなるので、回転検出装置付き軸受の全体的な軸方向寸法をより短縮化できる。   In the case of this embodiment, the axial position of the rotation detection device 1 is closer to the rolling bearing 20 than in the embodiment of FIG. 1, and the amount of the output cable 29 that projects in the axial direction from the sensor mounting member 27 is also the same. As a result, the overall axial dimension of the bearing with the rotation detection device can be further shortened.

図15は、この発明のさらに他の実施形態を示す。この実施形態の回転検出装置付き軸受は、図1の実施形態において、図14の場合と同様に一端面に磁気発生手段23が固定される回転軸10の軸受内輪21への挿入長さを短くしている。また、センサ取付部材27のセンサ取付位置となる幅面部27cの軸方向位置を鍔部27bに揃えると共に、回転軸10で兼用しない別体の固定部材15を介して軸受内輪21の内径側に磁気発生手段2を取付けている。固定部材15は周縁を円筒部15aとした円板状の部材であり、その円筒部15aを内輪21の内径面に圧入または接着することにより、内輪21の内径側に固定される。磁気発生手段2は、回転センサ3と対向する固定部材15の片面における中心位置(転がり軸受20の回転中心Oに一致する)に固定される。   FIG. 15 shows still another embodiment of the present invention. In the bearing with the rotation detection device of this embodiment, in the embodiment of FIG. 1, the insertion length to the bearing inner ring 21 of the rotating shaft 10 to which the magnetic generating means 23 is fixed to one end face is shortened as in the case of FIG. is doing. In addition, the axial position of the width surface portion 27c, which is the sensor mounting position of the sensor mounting member 27, is aligned with the flange portion 27b, and a magnetic force is applied to the inner diameter side of the bearing inner ring 21 via a separate fixing member 15 that is not shared by the rotary shaft 10. The generating means 2 is attached. The fixing member 15 is a disc-shaped member having a cylindrical portion 15 a at the periphery, and is fixed to the inner diameter side of the inner ring 21 by press-fitting or bonding the cylindrical portion 15 a to the inner diameter surface of the inner ring 21. The magnetism generating means 2 is fixed at the center position on one side of the fixing member 15 facing the rotation sensor 3 (corresponding to the rotation center O of the rolling bearing 20).

この実施形態の場合も、回転検出装置1の軸方向位置が図1の実施形態の場合よりも転がり軸受20側に近くなるので、回転検出装置付き軸受の全体的な軸方向寸法をより短縮化できる。特に、この実施形態では、回転軸10と別体の固定部材15に磁気発生手段2が固定されているので、回転検出装置付き軸受から回転軸10を分離できるという従来例の特徴を持ちつつ、軸方向の長さを従来例の場合に比べて短くできる。   Also in this embodiment, since the axial position of the rotation detection device 1 is closer to the rolling bearing 20 than in the embodiment of FIG. 1, the overall axial dimension of the bearing with the rotation detection device is further shortened. it can. In particular, in this embodiment, the magnetism generating means 2 is fixed to the fixing member 15 that is separate from the rotating shaft 10, so that the rotating shaft 10 can be separated from the bearing with the rotation detection device, The axial length can be shortened compared to the conventional example.

図16は、この発明のさらに他の実施形態を示す。この実施形態の回転検出装置付き軸受も、図1の実施形態において、図15の場合と同様に一端面に磁気発生手段2が固定される回転軸10の軸受内輪21への挿入長さを短くすると共に、回転軸10で兼用しない別体の固定部材15を介して軸受内輪21の内径側に磁気発生手段2を取付けている。固定部材15は円板状で、その回転軸10と対向する片面とは反対側の片面の周縁にフランジ部15bを有する。このフランジ部15bが軸受内輪21の回転検出装置配置側の幅面に当接するように、固定部材15の非フランジ部である小径部分を内輪21の内径面に圧入することで、内輪21の内径側に固定される。   FIG. 16 shows still another embodiment of the present invention. In the bearing with the rotation detection device of this embodiment as well, in the embodiment of FIG. 1, the insertion length of the rotating shaft 10 to which the magnetism generating means 2 is fixed to one end face into the bearing inner ring 21 is shortened as in the case of FIG. In addition, the magnetism generating means 2 is attached to the inner diameter side of the bearing inner ring 21 via a separate fixing member 15 that is not shared by the rotary shaft 10. The fixing member 15 has a disk shape, and has a flange portion 15b on the periphery of one surface opposite to the one surface facing the rotating shaft 10. By press-fitting a small diameter portion, which is a non-flange portion of the fixing member 15, into the inner diameter surface of the inner ring 21 so that the flange portion 15 b comes into contact with the width surface of the bearing inner ring 21 on the rotation detection device arrangement side. Fixed to.

この実施形態の場合、内輪21の幅面を基準面として、固定部材15を内輪21の内径側に容易に位置決めすることができる。これにより、固定部材15における磁気発生手段2の固定面が転がり軸受20の軸心Oに対して垂直となるように、つまり磁気発生手段2が回転センサ3と平行になるように、固定部材15を内輪21に圧入できる。したがって、磁気発生手段2と回転センサ3の平行度とクリアランスを所定の精度に保つことができる。その結果、回転センサ3を構成する半導体チップ4の表面での磁界パターンの強度が磁気発生手段2の回転によって変動するのを抑えることができる。また、上記クリアランスを従来の場合よりも小さくできることから、回転センサ3の感知する磁界が大きくなり、それだけS/N比が向上する。この2つの効果によって、回転検出装置1の回転検出精度を向上させることができる。   In the case of this embodiment, the fixing member 15 can be easily positioned on the inner diameter side of the inner ring 21 using the width surface of the inner ring 21 as a reference plane. As a result, the fixing member 15 is arranged such that the fixing surface of the magnetic generating means 2 in the fixing member 15 is perpendicular to the axis O of the rolling bearing 20, that is, the magnetic generating means 2 is parallel to the rotation sensor 3. Can be press-fitted into the inner ring 21. Therefore, the parallelism and clearance between the magnetism generating means 2 and the rotation sensor 3 can be maintained at a predetermined accuracy. As a result, it is possible to suppress fluctuation of the strength of the magnetic field pattern on the surface of the semiconductor chip 4 constituting the rotation sensor 3 due to the rotation of the magnetism generating means 2. Further, since the clearance can be made smaller than in the conventional case, the magnetic field sensed by the rotation sensor 3 is increased, and the S / N ratio is improved accordingly. With these two effects, the rotation detection accuracy of the rotation detection device 1 can be improved.

図17は、この発明のさらに他の実施形態を示す。この実施形態の回転検出装置付き軸受は、図1の実施形態において、転がり軸受20を複列のアンギュラ玉軸受としたものであり、一列の転動体24は内輪21と外輪22の転走面間に介在し、他の一列の転動体24は回転軸10と外輪22の転走面間に介在する。その他の構成は図1の実施形態の場合と同様である。   FIG. 17 shows still another embodiment of the present invention. In the embodiment shown in FIG. 1, the bearing with a rotation detection device according to this embodiment is configured such that the rolling bearing 20 is a double row angular ball bearing, and one row of rolling elements 24 is between the rolling surfaces of the inner ring 21 and the outer ring 22. The other one row of rolling elements 24 is interposed between the rolling surfaces of the rotating shaft 10 and the outer ring 22. Other configurations are the same as those in the embodiment of FIG.

図18は、この発明のさらに他の実施形態を示す。この実施形態の回転検出装置付き軸受は、図1の実施形態において、単体の回転軸10に代えて、2段構造の回転軸10Aを用いたものである。すなわち、この場合の回転軸10Aは、回転軸主体16と回転軸端部体17とでなり、回転軸端部体17の一端の円筒部17a内に回転軸主体16の一端を嵌合して止め具18で回り止めすることにより、回転軸主体16と回転軸端部体17が連結されている。転がり軸受20の内輪21に前記回転軸端部体17が嵌合し、回転軸端部体17の端面に磁気発生手段2が固定される。その他の構成は図1の実施形態の場合と同様である。   FIG. 18 shows still another embodiment of the present invention. The bearing with a rotation detector of this embodiment uses a two-stage rotating shaft 10A instead of the single rotating shaft 10 in the embodiment of FIG. That is, the rotation shaft 10A in this case is composed of the rotation shaft main body 16 and the rotation shaft end body 17, and one end of the rotation shaft main body 16 is fitted into the cylindrical portion 17a of one end of the rotation shaft end body 17. The rotation shaft main body 16 and the rotation shaft end body 17 are connected by being stopped by the stopper 18. The rotating shaft end body 17 is fitted to the inner ring 21 of the rolling bearing 20, and the magnetism generating means 2 is fixed to the end surface of the rotating shaft end body 17. Other configurations are the same as those in the embodiment of FIG.

この実施形態の場合、回転軸主体16と回転軸端部体17とが分離可能であるため、回転検出装置付き軸受を回転軸主体16から分離することができる。   In the case of this embodiment, since the rotating shaft main body 16 and the rotating shaft end body 17 are separable, the bearing with a rotation detector can be separated from the rotating shaft main body 16.

図19は、この発明のさらに他の実施形態を示す。この実施形態の回転検出装置付き軸受も、図1の実施形態において、単体の回転軸10に代えて、2段構造の回転軸10Aを用いたものである。すなわち、この場合の回転軸10Aも、回転軸主体16と回転軸端部体17とでなり、回転軸主体16の一端の円筒部16a内に回転軸端部体17の一端を嵌合して止め具19で回り止めすることにより、回転軸主体16と回転軸端部体17が連結されている。その他の構成は図18の場合と同様である。   FIG. 19 shows still another embodiment of the present invention. The bearing with a rotation detection device of this embodiment also uses a two-stage rotating shaft 10A in place of the single rotating shaft 10 in the embodiment of FIG. That is, the rotating shaft 10A in this case is also composed of the rotating shaft main body 16 and the rotating shaft end body 17, and one end of the rotating shaft end body 17 is fitted into the cylindrical portion 16a at one end of the rotating shaft main body 16. The rotation shaft main body 16 and the rotation shaft end body 17 are connected to each other by stopping the rotation with the stopper 19. Other configurations are the same as those in FIG.

図20は、この発明のさらに他の実施形態を示す。この実施形態の回転検出装置付き軸受は、図16の実施形態において、固定部材15にフランジ部15bを形成したのに代えて、転がり軸受20の内輪21における回転検出装置設置側の幅面内径側に段差部21aを形成し、この段差部21aに固定部材15を圧入または接着することで、固定部材15を内輪21に固定している。この場合、内輪21の段差部21aの軸方向を向く段面21aaを基準面として固定部材15が軸方向に位置決めされる。   FIG. 20 shows still another embodiment of the present invention. In the embodiment shown in FIG. 16, the bearing with the rotation detection device of this embodiment is arranged on the inner diameter side of the rotation detection device installation side in the inner ring 21 of the rolling bearing 20 instead of forming the flange portion 15 b on the fixing member 15. The fixing member 15 is fixed to the inner ring 21 by forming the step portion 21a and press-fitting or bonding the fixing member 15 to the step portion 21a. In this case, the fixing member 15 is positioned in the axial direction with the step surface 21aa facing the axial direction of the step portion 21a of the inner ring 21 as a reference surface.

この実施形態の場合、固定部材15が内輪21の段差部21aに圧入または接着されることで内輪21に固定されるので、図16の実施形態の場合に比べて、固定部材15の略厚み相当分だけ、固定部材15の軸方向位置を回転軸10側に近付けることができ、回転検出装置付き軸受の全体的な軸方向長さを短縮できる。   In the case of this embodiment, the fixing member 15 is fixed to the inner ring 21 by being press-fitted or bonded to the stepped portion 21a of the inner ring 21, so that it corresponds to the approximate thickness of the fixing member 15 as compared with the case of the embodiment of FIG. Accordingly, the axial position of the fixing member 15 can be brought closer to the rotating shaft 10 side, and the overall axial length of the bearing with the rotation detecting device can be shortened.

図21は、この発明のさらに他の実施形態を示す。この実施形態の回転検出装置付き軸受は、図16の実施形態において、固定部材15への磁気発生手段2の固定に図10の組付け構造を採用したものである。すなわち、回転センサ3と対向する固定部材15の片面に凹み部15cを形成し、この凹み部15cに磁気発生手段(永久磁石)2を挿入固定ししている。   FIG. 21 shows still another embodiment of the present invention. The bearing with a rotation detection device of this embodiment employs the assembly structure of FIG. 10 for fixing the magnetic generating means 2 to the fixing member 15 in the embodiment of FIG. That is, a recess 15c is formed on one surface of the fixing member 15 facing the rotation sensor 3, and the magnetism generating means (permanent magnet) 2 is inserted and fixed in the recess 15c.

この発明の一実施形態にかかる回転検出装置付き軸受の断面図である。It is sectional drawing of the bearing with a rotation detection apparatus concerning one Embodiment of this invention. 同軸受における磁気発生手段の固定部を示す拡大側面図である。It is an enlarged side view which shows the fixing | fixed part of the magnetic generation means in the bearing. 同軸受における回転センサの一例を構成する半導体チップの平面図である。It is a top view of the semiconductor chip which constitutes an example of the rotation sensor in the bearing. 同回転センサの変換回路による角度算出処理の説明図である。It is explanatory drawing of the angle calculation process by the conversion circuit of the rotation sensor. 同回転センサにおける磁気センサアレイの出力を示す波形図である。It is a wave form diagram which shows the output of the magnetic sensor array in the rotation sensor. 回転検出装置付き軸受における回転センサの他の一例を構成する半導体チップの平面図である。It is a top view of a semiconductor chip which constitutes another example of a rotation sensor in a bearing with a rotation detector. 同回転センサにおける磁気センサ素子の出力波形図である。It is an output waveform diagram of the magnetic sensor element in the same rotation sensor. (A)は回転検出装置付き軸受における磁気発生手段の固定部の一例を示す拡大図、(B)は同磁気発生手段の正面図である。(A) is an enlarged view which shows an example of the fixing | fixed part of the magnetic generation means in a bearing with a rotation detection apparatus, (B) is a front view of the magnetic generation means. (A)は同軸受における磁気発生手段の固定部の他の一例を示す拡大側面図、(B)は同磁気発生手段の正面図である。(A) is an enlarged side view showing another example of the fixing portion of the magnetic generation means in the bearing, and (B) is a front view of the magnetic generation means. (A)は同軸受における磁気発生手段の固定部のさらに他の一例の分解側面図、(B)は同磁気発生手段の固定状態の側面図である。(A) is an exploded side view of still another example of the fixing portion of the magnetic generation means in the bearing, and (B) is a side view of the fixed state of the magnetic generation means. (A)は同軸受における磁気発生手段の固定部のさらに他の一例を示す拡大側面図、(B)は同磁気発生手段の正面図である。(A) is an expanded side view which shows another example of the fixing | fixed part of the magnetic generation means in the bearing, (B) is a front view of the magnetic generation means. 同軸受における磁気発生手段の固定部のさらに他の一例を示す拡大側面図である。It is an expanded side view which shows another example of the fixing | fixed part of the magnetic generation means in the same bearing. 同軸受における磁気発生手段の固定部のさらに他の一例を示す拡大側面図である。It is an enlarged side view which shows another example of the fixing | fixed part of the magnetic generation means in the bearing. この発明の他の実施形態にかかる回転検出装置付き軸受の断面図である。It is sectional drawing of the bearing with a rotation detection apparatus concerning other embodiment of this invention. この発明のさらに他の実施形態にかかる回転検出装置付き軸受の断面図である。It is sectional drawing of the bearing with a rotation detection apparatus concerning further another embodiment of this invention. この発明のさらに他の実施形態にかかる回転検出装置付き軸受の断面図である。It is sectional drawing of the bearing with a rotation detection apparatus concerning further another embodiment of this invention. この発明のさらに他の実施形態にかかる回転検出装置付き軸受の断面図である。It is sectional drawing of the bearing with a rotation detection apparatus concerning further another embodiment of this invention. この発明のさらに他の実施形態にかかる回転検出装置付き軸受の断面図である。It is sectional drawing of the bearing with a rotation detection apparatus concerning further another embodiment of this invention. この発明のさらに他の実施形態にかかる回転検出装置付き軸受の断面図である。It is sectional drawing of the bearing with a rotation detection apparatus concerning further another embodiment of this invention. この発明のさらに他の実施形態にかかる回転検出装置付き軸受の断面図である。It is sectional drawing of the bearing with a rotation detection apparatus concerning further another embodiment of this invention. この発明のさらに他の実施形態にかかる回転検出装置付き軸受の断面図である。It is sectional drawing of the bearing with a rotation detection apparatus concerning further another embodiment of this invention. 従来例の断面図である。It is sectional drawing of a prior art example.

符号の説明Explanation of symbols

1…回転検出装置
2…磁気発生手段
2A,2B,2C…永久磁石
3,3A…回転センサ
4…半導体チップ
5a,5b…磁気センサ素子
5A〜5D…磁気ラインセンサ
6…変換回路(計算手段)
10,10A…回転軸
10a…凹み部
11…樹脂部材
13…磁性体ヨーク
13a…凹み部
15…固定部材
20…転がり軸受
21…内輪
22…外輪
DESCRIPTION OF SYMBOLS 1 ... Rotation detection apparatus 2 ... Magnetic generation means 2A, 2B, 2C ... Permanent magnet 3, 3A ... Rotation sensor 4 ... Semiconductor chip 5a, 5b ... Magnetic sensor element 5A-5D ... Magnetic line sensor 6 ... Conversion circuit (calculation means)
DESCRIPTION OF SYMBOLS 10, 10A ... Rotary shaft 10a ... Recessed part 11 ... Resin member 13 ... Magnetic material yoke 13a ... Recessed part 15 ... Fixed member 20 ... Rolling bearing 21 ... Inner ring 22 ... Outer ring

Claims (13)

軸受の内輪側に回転中心回りの方向性を有する磁気発生手段を有し、外輪側に前記磁気発生手段の磁気を感知して回転または角度の情報を出力する回転センサを、軸受軸心に位置して取付けた回転検出装置付き軸受であって、
前記磁気発生手段を、軸受の内輪の内径側に固定された固定部材に固定したことを特徴とする回転検出装置付き軸受。
A rotation sensor that has magnetism generating means having directionality around the center of rotation on the inner ring side of the bearing and outputs rotation or angle information by detecting the magnetism of the magnetism generating means on the outer ring side is located at the bearing axis. Mounted with a rotation detection device,
A bearing with a rotation detecting device, wherein the magnetism generating means is fixed to a fixing member fixed to the inner diameter side of the inner ring of the bearing.
請求項1において、前記固定部材が軸である回転検出装置付き軸受。   The bearing with a rotation detection device according to claim 1, wherein the fixing member is a shaft. 請求項1において、前記固定部材が軸とは別の部材であって、内輪内径面に圧入または接着等で固定されたものである回転検出装置付き軸受。   2. The bearing with a rotation detection device according to claim 1, wherein the fixing member is a member different from the shaft and is fixed to the inner ring inner diameter surface by press-fitting or bonding. 請求項3において、前記固定部材が内輪の端面、または内輪に加工された軸方向を向く段面に接触することで、前記固定部材が位置決めされている回転検出装置付き軸受。   The bearing with a rotation detecting device according to claim 3, wherein the fixing member is positioned by contacting the end surface of the inner ring or a stepped surface facing the axial direction processed into the inner ring. 請求項1ないし請求項4のいずれか1項において、前記磁気発生手段が、軸方向に着磁された2つの永久磁石で構成されたものである回転検出装置付き軸受。   The bearing with a rotation detector according to any one of claims 1 to 4, wherein the magnetism generating means is composed of two permanent magnets magnetized in the axial direction. 請求項1ないし請求項4のいずれか1項において、前記磁気発生手段が、片面にN極とS極の両方を持つ一つの永久磁石からなる回転検出装置付き軸受。   5. A bearing with a rotation detection device according to claim 1, wherein the magnetism generating means is a single permanent magnet having both N and S poles on one side. 請求項5または請求項6において、前記固定部材に凹み部を設け、この凹み部の中に永久磁石を固定した回転検出装置付き軸受。   The bearing with a rotation detecting device according to claim 5 or 6, wherein a recess is provided in the fixing member, and a permanent magnet is fixed in the recess. 請求項7において、前記磁気発生手段および前記固定部材よりも柔軟な樹脂等の柔軟材料で前記永久磁石を取り囲み、前記柔軟材料を前記永久磁石と共に前記凹み部の中に固定した回転検出装置付き軸受。   The bearing with a rotation detecting device according to claim 7, wherein the permanent magnet is surrounded by a flexible material such as a resin that is more flexible than the magnetism generating means and the fixing member, and the flexible material is fixed together with the permanent magnet in the recess. . 請求項1ないし請求項8のいずれか1項において、固定部材が非磁性体であって、前記磁気発生手段と前記固定部材との間に磁性体ヨークを挟み込んだ回転検出装置付き軸受。   9. The bearing with a rotation detection device according to claim 1, wherein the fixing member is a non-magnetic member, and a magnetic yoke is sandwiched between the magnetism generating means and the fixing member. 請求項1ないし請求項9のいずれか1項において、前記回転センサが、複数の磁気センサ素子と、その磁気センサ素子の出力を回転信号または角度信号に変換する手段とを一体化したものである回転検出装置付き軸受。   10. The rotation sensor according to claim 1, wherein the rotation sensor is a combination of a plurality of magnetic sensor elements and means for converting the output of the magnetic sensor elements into a rotation signal or an angle signal. Bearing with rotation detector. 請求項10において、前記回転センサが、半導体チップに集積されたものである回転検出装置付き軸受。   The bearing with a rotation detection device according to claim 10, wherein the rotation sensor is integrated on a semiconductor chip. 請求項11において、前記回転センサは、磁気センサ素子を仮想の矩形上の4辺における各辺に沿って配置した4辺の磁気ラインセンサを有し、磁気ラインセンサの矩形配置の内部に、磁気ラインセンサのセンサ出力を回転情報または角度情報に変換する計算手段を配置した回転検出装置付き軸受。   12. The rotation sensor according to claim 11, wherein the rotation sensor includes a four-side magnetic line sensor in which magnetic sensor elements are arranged along four sides of a virtual rectangle, and a magnetic line sensor is provided inside the rectangular arrangement of the magnetic line sensor. A bearing with a rotation detection device in which calculation means for converting the sensor output of the line sensor into rotation information or angle information is arranged. 請求項11において、前記回転センサの内部にある複数の磁気センサが、磁気発生手段が回転することにより回転する磁界の正弦信号と余弦音号を検出し、さらに、変換回路が、磁気センサの検出した信号を回転信号または角度信号に変換する計算手段を持っている回転検出装置付き軸受。
12. The magnetic sensor according to claim 11, wherein the plurality of magnetic sensors inside the rotation sensor detect a sine signal and a cosine signal of a magnetic field that is rotated by rotation of the magnetism generating means, and the conversion circuit detects the magnetic sensor. A bearing with a rotation detection device having a calculation means for converting the converted signal into a rotation signal or an angle signal.
JP2005045080A 2005-02-22 2005-02-22 Bearing with rotation detector Active JP4704065B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005045080A JP4704065B2 (en) 2005-02-22 2005-02-22 Bearing with rotation detector
DE112006000444.1T DE112006000444B4 (en) 2005-02-22 2006-02-08 Bearing with rotation detection device
PCT/JP2006/302193 WO2006090588A1 (en) 2005-02-22 2006-02-08 Bearing with rotation detection device
CN200680004888.XA CN101120177B (en) 2005-02-22 2006-02-08 Bearing with rotation detection device
US11/884,892 US7988363B2 (en) 2005-02-22 2006-02-08 Bearing with rotation detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005045080A JP4704065B2 (en) 2005-02-22 2005-02-22 Bearing with rotation detector

Publications (2)

Publication Number Publication Date
JP2006233985A true JP2006233985A (en) 2006-09-07
JP4704065B2 JP4704065B2 (en) 2011-06-15

Family

ID=36927230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005045080A Active JP4704065B2 (en) 2005-02-22 2005-02-22 Bearing with rotation detector

Country Status (4)

Country Link
JP (1) JP4704065B2 (en)
CN (1) CN101120177B (en)
DE (1) DE112006000444B4 (en)
WO (1) WO2006090588A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282974A (en) * 2007-05-10 2008-11-20 Ihi Corp Polarizing device for rotating body
JP2009229395A (en) * 2008-03-25 2009-10-08 Ntn Corp Rotation sensor unit
JP2009287704A (en) * 2008-05-30 2009-12-10 Ntn Corp Bearing with rotation detecting device
WO2010038862A1 (en) * 2008-10-03 2010-04-08 日本電産株式会社 Motor
JP2010160037A (en) * 2009-01-08 2010-07-22 Mitsubishi Electric Corp Rotation angle detector
JP2010190846A (en) * 2009-02-20 2010-09-02 Koyo Electronics Ind Co Ltd Magnetic encoder
DE102011079657A1 (en) * 2011-07-22 2013-01-24 Robert Bosch Gmbh Electric motor with a rotor position magnet
KR20140003672A (en) * 2012-06-22 2014-01-10 엘지이노텍 주식회사 Motor
JP2017090313A (en) * 2015-11-12 2017-05-25 愛三工業株式会社 Liquid level detection device
JP2018031617A (en) * 2016-08-23 2018-03-01 三菱電機株式会社 Rotation angle detection device and rotary electric machine using the same
JP6373527B1 (en) * 2017-07-14 2018-08-15 三菱電機株式会社 Rotating electric machine and door device using the same
JP6373532B1 (en) * 2017-07-14 2018-08-15 三菱電機株式会社 Rotating electric machine
JP2018173102A (en) * 2017-03-31 2018-11-08 株式会社不二工機 Motor-operated valve
KR20190008401A (en) * 2019-01-15 2019-01-23 엘지이노텍 주식회사 Motor
US10982792B2 (en) 2017-02-20 2021-04-20 Fujikoki Corporation Electric valve
JPWO2022157828A1 (en) * 2021-01-19 2022-07-28
KR20220106672A (en) * 2021-01-22 2022-07-29 토요 오토메이션 컴퍼니 리미티드 Motor for electric cylinder and encoder for motor
WO2022264204A1 (en) * 2021-06-14 2022-12-22 株式会社五十嵐電機製作所 Magnetic rotary encoder
DE112008002341B4 (en) 2007-08-28 2023-02-02 Ntn Corp. rotation sensor unit

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10677617B2 (en) 2007-05-30 2020-06-09 Infineon Technologies Ag Shaft-integrated angle sensing device
KR101922094B1 (en) * 2012-11-08 2018-11-26 엘지이노텍 주식회사 Moter
EP3121943B1 (en) * 2014-03-19 2018-09-05 Mitsubishi Electric Corporation Electric motor and electric power steering device using same
US10704926B2 (en) 2014-09-02 2020-07-07 Infineon Technologies Ag Shaft-integrated angle sensing device
DE102016009006B4 (en) * 2015-07-29 2024-01-25 Infineon Technologies Ag DRIVE TRAIN OF A MOTOR VEHICLE SYSTEM HAVING A SHAFT-INTEGRATED ANGLE SCANNING DEVICE
DE102019122525A1 (en) * 2019-08-21 2021-02-25 Samson Aktiengesellschaft Rotation angle measurement with a pole ring

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541417A (en) * 1999-04-14 2002-12-03 エス.エヌ.エール.ルールマン Ball bearing with encoder
JP2003097581A (en) * 2001-09-26 2003-04-03 Nsk Ltd Rotary encoder built in bearing unit
JP2003307435A (en) * 2002-04-16 2003-10-31 Nsk Ltd Bearing apparatus with sensor
JP2003307229A (en) * 2002-04-12 2003-10-31 Nsk Ltd Bearing with built-in pulse forming ring and hub unit bearing
JP2004513335A (en) * 2000-11-02 2004-04-30 アクティエボラゲット エスケーエフ Instrumented bearings for steering wheels

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0137270B1 (en) * 1983-09-28 1987-07-22 Werkzeugmaschinenfabrik Oerlikon-Bührle AG Sensor for anti-skid and anti-slip systems for vehicle shaft speed measurement
FR2626631B1 (en) * 1988-01-29 1994-03-25 Snr Roulements ASSEMBLY OF ROLLING BEARING WITH SENSOR DEVICE
JPH0221002U (en) * 1988-07-28 1990-02-13
JPH1169735A (en) * 1997-08-26 1999-03-09 Sankyo Seiki Mfg Co Ltd Manufacture of motor
JP2000198304A (en) * 1998-10-29 2000-07-18 Nsk Ltd Rolling bearing unit for wheel
JP3973983B2 (en) * 2002-07-01 2007-09-12 Ntn株式会社 Rotation detection device and bearing with rotation detection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541417A (en) * 1999-04-14 2002-12-03 エス.エヌ.エール.ルールマン Ball bearing with encoder
JP2004513335A (en) * 2000-11-02 2004-04-30 アクティエボラゲット エスケーエフ Instrumented bearings for steering wheels
JP2003097581A (en) * 2001-09-26 2003-04-03 Nsk Ltd Rotary encoder built in bearing unit
JP2003307229A (en) * 2002-04-12 2003-10-31 Nsk Ltd Bearing with built-in pulse forming ring and hub unit bearing
JP2003307435A (en) * 2002-04-16 2003-10-31 Nsk Ltd Bearing apparatus with sensor

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282974A (en) * 2007-05-10 2008-11-20 Ihi Corp Polarizing device for rotating body
DE112008002341B4 (en) 2007-08-28 2023-02-02 Ntn Corp. rotation sensor unit
JP2009229395A (en) * 2008-03-25 2009-10-08 Ntn Corp Rotation sensor unit
JP2009287704A (en) * 2008-05-30 2009-12-10 Ntn Corp Bearing with rotation detecting device
US8552675B2 (en) 2008-10-03 2013-10-08 Nidec Corporation Motor
WO2010038862A1 (en) * 2008-10-03 2010-04-08 日本電産株式会社 Motor
JP2010093869A (en) * 2008-10-03 2010-04-22 Nippon Densan Corp Motor
JP2010160037A (en) * 2009-01-08 2010-07-22 Mitsubishi Electric Corp Rotation angle detector
JP2010190846A (en) * 2009-02-20 2010-09-02 Koyo Electronics Ind Co Ltd Magnetic encoder
DE102011079657A1 (en) * 2011-07-22 2013-01-24 Robert Bosch Gmbh Electric motor with a rotor position magnet
KR20140003672A (en) * 2012-06-22 2014-01-10 엘지이노텍 주식회사 Motor
KR101940683B1 (en) * 2012-06-22 2019-04-12 엘지이노텍 주식회사 Motor
JP2017090313A (en) * 2015-11-12 2017-05-25 愛三工業株式会社 Liquid level detection device
JP2018031617A (en) * 2016-08-23 2018-03-01 三菱電機株式会社 Rotation angle detection device and rotary electric machine using the same
US10982792B2 (en) 2017-02-20 2021-04-20 Fujikoki Corporation Electric valve
JP2018173102A (en) * 2017-03-31 2018-11-08 株式会社不二工機 Motor-operated valve
US10975984B2 (en) 2017-03-31 2021-04-13 Fujikoki Corporation Electrically operated valve
JP6373527B1 (en) * 2017-07-14 2018-08-15 三菱電機株式会社 Rotating electric machine and door device using the same
WO2019012694A1 (en) * 2017-07-14 2019-01-17 三菱電機株式会社 Rotating electric machine and door device using same
JP6373532B1 (en) * 2017-07-14 2018-08-15 三菱電機株式会社 Rotating electric machine
US11264859B2 (en) 2017-07-14 2022-03-01 Mitsubishi Electric Corporation Rotary electric machine
WO2019012693A1 (en) * 2017-07-14 2019-01-17 三菱電機株式会社 Rotary electric machine
KR20190008401A (en) * 2019-01-15 2019-01-23 엘지이노텍 주식회사 Motor
KR102040531B1 (en) 2019-01-15 2019-11-05 엘지이노텍 주식회사 Motor
JPWO2022157828A1 (en) * 2021-01-19 2022-07-28
WO2022157828A1 (en) * 2021-01-19 2022-07-28 三菱電機株式会社 Rotary electric machine and door device
KR20220106672A (en) * 2021-01-22 2022-07-29 토요 오토메이션 컴퍼니 리미티드 Motor for electric cylinder and encoder for motor
JP2022113104A (en) * 2021-01-22 2022-08-03 東佑達自動化科技股▲ふん▼有限公司 Motor of electric cylinder and encoder for motor
JP7308245B2 (en) 2021-01-22 2023-07-13 東佑達自動化科技股▲ふん▼有限公司 Electric cylinder motor and encoder for the motor
KR102642587B1 (en) * 2021-01-22 2024-03-04 토요 오토메이션 컴퍼니 리미티드 Motor for electric cylinder and encoder for motor
WO2022264204A1 (en) * 2021-06-14 2022-12-22 株式会社五十嵐電機製作所 Magnetic rotary encoder

Also Published As

Publication number Publication date
WO2006090588A1 (en) 2006-08-31
CN101120177A (en) 2008-02-06
JP4704065B2 (en) 2011-06-15
CN101120177B (en) 2013-03-20
DE112006000444B4 (en) 2015-11-05
DE112006000444T5 (en) 2008-02-21

Similar Documents

Publication Publication Date Title
JP4704065B2 (en) Bearing with rotation detector
US7988363B2 (en) Bearing with rotation detection device
JP4376150B2 (en) Rotation angle detector
KR101331182B1 (en) Magnetic Angular Position Sensor for a Course up to 360°
US6741073B2 (en) Bearing provided with rotation sensor and motor employing the same
JP4679358B2 (en) Rotation angle detector
JP2007085889A (en) Bearing with rotation detecting device
US6414482B1 (en) Non-contact type rotational angle sensor and sensor core used in the sensor
US11913784B2 (en) Reduction mechanism and absolute encoder
JP2007263585A (en) Rotation angle detector
JP2008539428A (en) Rotational position sensor
US20190086238A1 (en) Linear motion and rotation detector, linear motion and rotation detector unit, and linear motion and rotation drive device
JP2004144270A (en) Rolling bearing with sensor
US6836111B2 (en) Sensor assembly with a universal sensor module for sensing angular position of an object
JPH08184603A (en) Magnetic sensor-containing bearing unit
JP4925389B2 (en) Encoder
JP2007248105A (en) Bearing with rotation angle detector
JP2008122268A (en) Bearing with rotation detecting device
JP4918406B2 (en) Electromagnetic clutch
JP4869760B2 (en) Bearing with rotation detector
US11852511B2 (en) Absolute encoder
JP6282010B2 (en) Position detection device
JP2009204567A (en) Rotation angle detecting device
JP2006214985A (en) Potentiometer
JP2007010581A (en) Noncontact type potentiometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110309

R150 Certificate of patent or registration of utility model

Ref document number: 4704065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250