JPH0552583A - Magnetic encoder - Google Patents

Magnetic encoder

Info

Publication number
JPH0552583A
JPH0552583A JP21682691A JP21682691A JPH0552583A JP H0552583 A JPH0552583 A JP H0552583A JP 21682691 A JP21682691 A JP 21682691A JP 21682691 A JP21682691 A JP 21682691A JP H0552583 A JPH0552583 A JP H0552583A
Authority
JP
Japan
Prior art keywords
phase
phase difference
amplitude ratio
signal
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21682691A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ono
博之 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP21682691A priority Critical patent/JPH0552583A/en
Publication of JPH0552583A publication Critical patent/JPH0552583A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To achieve higher measuring accuracy of a magnetic encoder using a phase difference detection system as one electric multiplication method. CONSTITUTION:An amplitude ratio adjusting circuit 20 is inserted between an magnetoresistance effect element 1 (1a, 1b) and a phase difference detection circuit 10 to convert a 2-phase signal to be obtained from the magnetoresistance effect element into two signals of an equal amplitude holding a phase difference therebetween.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ロボットやマニピュ
レータ等を駆動・制御するアクチュエータの速度および
位置を検出する場合などに用いられる磁気エンコーダに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic encoder used for detecting the speed and position of an actuator for driving and controlling a robot, a manipulator and the like.

【0002】[0002]

【従来の技術】従来より、ロボットやマニピュレータに
組み込まれ回転または直線運動を行うアクチュエータの
位置および速度を瞬時にかつ正確に測定する手段とし
て、角度検出計たる磁気エンコーダが用いられている。
図7に、その構成例を示す。
2. Description of the Related Art Conventionally, a magnetic encoder, which is an angle detector, has been used as a means for instantaneously and accurately measuring the position and speed of an actuator which is incorporated in a robot or a manipulator and rotates or moves linearly.
FIG. 7 shows a configuration example thereof.

【0003】ドラム11の外周上に強磁性体からなる磁
気記録媒体12を形成し、その全周にわたってピッチP
で多極着磁してある。一方、これらの微小磁石の洩れ磁
界に感応する程度のギャップGを介して、磁気抵抗効果
素子(以下適宜MR素子と略記する)1を対向させて配
置してある。MR素子1には、回転方向に(2n+1)
P/4(nは整数)離して2組のMR素子(要素)1
a,1bを配置し、回転方向を知ることができるように
してある。
A magnetic recording medium 12 made of a ferromagnetic material is formed on the outer circumference of the drum 11, and a pitch P is formed over the entire circumference thereof.
It is magnetized with multiple poles. On the other hand, a magnetoresistive effect element (hereinafter appropriately abbreviated as MR element) 1 is arranged so as to face each other through a gap G that is sensitive to the leakage magnetic field of these minute magnets. The MR element 1 has (2n + 1) in the rotation direction.
Two sets of MR elements (elements) 1 separated by P / 4 (n is an integer)
By disposing a and 1b, the direction of rotation can be known.

【0004】ドラム11が回転するに伴い、MR素子1
の抵抗は着磁ピッチPを周期とする正弦波状の変化を示
し、このMR素子1に直流電源13より電圧を印加する
ことにより、上記抵抗変化を電圧変化として取り出せ
る。また、2組のMR素子1a,1bからの微小な2相
信号(それぞれA相およびB相信号という)を増幅器1
4a,14bで増幅し、コンパレータ15a,15bに
よってパルス信号に変換した後、計数回路などを用いて
回転角度(位置)の測定を行う。このようにして、A相
およびB相信号の関係から、ドラム11の回転方向、回
転速度および位置信号出力が得られる。ドラム11の回
転をアクチュエータの運動に対応させておけば、アクチ
ュエータの位置および速度を知ることができる。
As the drum 11 rotates, the MR element 1
Shows a sinusoidal change with the magnetizing pitch P as a cycle, and by applying a voltage from the DC power supply 13 to the MR element 1, the resistance change can be taken out as a voltage change. Further, the minute two-phase signals (referred to as A-phase and B-phase signals, respectively) from the two sets of MR elements 1a and 1b are amplified.
After being amplified by 4a and 14b and converted into pulse signals by the comparators 15a and 15b, the rotation angle (position) is measured using a counting circuit or the like. In this way, the rotation direction, rotation speed, and position signal output of the drum 11 are obtained from the relationship between the A-phase and B-phase signals. If the rotation of the drum 11 is made to correspond to the movement of the actuator, the position and speed of the actuator can be known.

【0005】このような磁気エンコーダにおいて、従来
は着磁ピッチPを小さくすることによって、位置測定精
度の向上が図られてきたが、磁石の寸法が小さくなれば
洩れ磁界も弱くなり、MR素子1で検出できなくなって
しまうために着磁ピッチPの縮小には限界がある。そこ
で近年は、MR素子1から得られたA相およびB相信号
を電気的にてい倍することで測定精度を向上させる方法
が主流となっている。
In such a magnetic encoder, the accuracy of position measurement has been conventionally improved by reducing the magnetizing pitch P. However, as the size of the magnet decreases, the leakage magnetic field also weakens and the MR element 1 Therefore, there is a limit to the reduction of the magnetizing pitch P because it cannot be detected by. Therefore, in recent years, a method of improving the measurement accuracy by electrically multiplying the A-phase and B-phase signals obtained from the MR element 1 has become mainstream.

【0006】次に、このような電気的てい倍法の1つで
ある位相差検出方式における信号処理の流れを図8によ
り説明する。磁気記録媒体の移動(回転)に伴い、MR
素子1より相互に90°位相のずれた微小なA相(sin
θ)およびB相(cos θ)信号が出力される。これらの
信号を増幅記2a,2bで増幅し、その各々の出力とオ
シレータ5より得られる高周波2相正弦波信号(sin ω
tおよびcos ωt)との積(sin ωt・sin θおよびco
s ωt・cos θ)を乗算器6a,6bで求め、さらにそ
の差を減算器7で求める。この差信号(sin (ωt−
θ))とオシレータ5からのレファレンス信号(sin ω
t)との位相差はθである。したがってこの位相差の検
出がしやすいように両信号をコンパレータ8a,8bで
パルスに変換し、デジタル計数回路9において、そのパ
ルスを計数することにより位置信号出力が得られる。
Next, the flow of signal processing in the phase difference detection method which is one of such electrical multiplication methods will be described with reference to FIG. As the magnetic recording medium moves (rotates), the MR
Minute A phase (sin that is 90 ° out of phase with element 1)
θ) and B-phase (cos θ) signals are output. These signals are amplified by amplifiers 2a and 2b, and the respective outputs and the high frequency two-phase sine wave signals (sin ω) obtained from the oscillator 5 are amplified.
t and cos ωt) (sin ωt · sin θ and co
s ωt · cos θ) is obtained by the multipliers 6a and 6b, and the difference is obtained by the subtractor 7. This difference signal (sin (ωt−
θ)) and the reference signal from the oscillator 5 (sin ω
The phase difference with t) is θ. Therefore, both signals are converted into pulses by the comparators 8a and 8b so that the phase difference can be easily detected, and the digital counter circuit 9 counts the pulses to obtain a position signal output.

【0007】[0007]

【発明が解決しようとする課題】従来の電気的てい倍法
の1つである位相差検出方式を用いた磁気エンコーダに
おいては、ドラム11の1周にわたり、磁気記録媒体1
2とMR素子1との間のギャップGがわずかながら変動
するためにA相信号とB相信号との振幅比が変動し、ま
たMR素子1のストライプ方向とドラム11の回転軸と
のわずかな傾きなどにより両信号の位相差が変動し、こ
れら2つの変動量、とりわけ振幅比の変動によって位置
測定精度が左右される。例えば図9および図10は、上
述したような従来の磁気エンコーダについて上記AB相
の振幅比および位相差の変動を測定した一例を示すが、
振幅比および位相差がこのように変動することによっ
て、それぞれ3.0%および0.2%の検出誤差が生じ
た。A相とB相の振幅比の変動による検出誤差が、全検
出誤差3.2%の94%を占めている。
In the magnetic encoder using the phase difference detection method, which is one of the conventional electrical multiplication methods, the magnetic recording medium 1 is provided over the entire circumference of the drum 11.
The gap G between the MR element 1 and the MR element 1 fluctuates slightly, so that the amplitude ratio of the A-phase signal and the B-phase signal fluctuates, and a slight difference between the stripe direction of the MR element 1 and the rotation axis of the drum 11 occurs. The phase difference between the two signals fluctuates due to the inclination and the like, and the positional measurement accuracy depends on these two fluctuation amounts, particularly the fluctuation of the amplitude ratio. For example, FIG. 9 and FIG. 10 show an example of measuring the fluctuation of the amplitude ratio and the phase difference of the AB phase in the conventional magnetic encoder as described above.
This variation in amplitude ratio and phase difference caused detection errors of 3.0% and 0.2%, respectively. The detection error due to the variation of the amplitude ratio of the A phase and the B phase accounts for 94% of the total detection error of 3.2%.

【0008】この発明の目的は、従来の位相差検出方式
による磁気エンコーダにおいて位置測定精度向上の大き
な妨げになっていたA相とB相の振幅比の変動による検
出誤差をなくし、高い測定精度の磁気エンコーダを得る
ことにある。
An object of the present invention is to eliminate the detection error due to the variation of the amplitude ratio of the A phase and the B phase, which has been a great obstacle to the improvement of the position measurement accuracy in the conventional magnetic encoder using the phase difference detection method, and to achieve high measurement accuracy. To get a magnetic encoder.

【0009】[0009]

【課題を解決するための手段】本発明は、MR素子と位
相差検出回路との間に、MR素子から得られるA相信号
とB相信号とを、両者の位相情報を保持しつつ振幅が等
しい2信号に変換する振幅比調整回路を挿入したもので
ある。
According to the present invention, an A-phase signal and a B-phase signal obtained from an MR element are kept between the MR element and the phase difference detection circuit while keeping the phase information of both signals. An amplitude ratio adjusting circuit for converting into two equal signals is inserted.

【0010】[0010]

【作用】振幅比を1にした2信号を用い、位置検出回路
により位相差から位置信号出力を得る。検出誤差の主要
因となっていたAB相の振幅比の変動の影響が除かれる
ため、位置測定精度の向上が可能となる。
The position detection circuit obtains the position signal output from the phase difference by using the two signals having the amplitude ratio of 1. Since the influence of the fluctuation of the amplitude ratio of the AB phase, which is the main factor of the detection error, is eliminated, the position measurement accuracy can be improved.

【0011】[0011]

【実施例】以下、図1〜図6によりこの発明の一実施例
を説明する。図1は本実施例の磁気エンコーダの回路構
成を示す図で、図8と同一符号は同一もしくは相当部分
を示している。MR素子1、増幅器2a,2bおよび位
相差検出回路10の部分は図8と同様であるが、本実施
例では位相差検出回路10の前段に、振幅比調整回路2
0を備えている。振幅比調整回路20は、それぞれ演算
増幅器によって構成された減算器3aおよび加算器3b
ならびに外付固定抵抗4a〜4hからなり、減算器3a
と加算器3bとは増幅度を同じにしてある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a diagram showing a circuit configuration of the magnetic encoder of the present embodiment, and the same reference numerals as those in FIG. 8 indicate the same or corresponding portions. The MR element 1, the amplifiers 2a and 2b, and the phase difference detection circuit 10 are the same as those shown in FIG. 8. However, in this embodiment, the amplitude ratio adjustment circuit 2 is provided before the phase difference detection circuit 10.
It has 0. The amplitude ratio adjusting circuit 20 includes a subtracter 3a and an adder 3b, each of which includes an operational amplifier.
And external fixed resistors 4a to 4h, and a subtractor 3a.
And the adder 3b have the same amplification degree.

【0012】MR素子1から得られる微小信号asin θ
(A相)とbcos θ(B相)とを、増幅器2a,2bで
増幅する。その出力Asinθ(A相)とBcos θ(B
相)との振幅比は、先に図9に示したように0.985
<A/B<1.015の間で変動する。これらのA相信
号およびB相信号をそれぞれ減算器3a、加算器3bに
入力する。その結果、各出力(これをA′相およびB′
相とする)はそれぞれ次のようになる。
Small signal asin θ obtained from the MR element 1
(A phase) and bcos θ (B phase) are amplified by the amplifiers 2a and 2b. The outputs Asin θ (A phase) and B cos θ (B
The amplitude ratio to the phase) is 0.985 as shown in FIG.
It varies between <A / B <1.015. These A-phase signal and B-phase signal are input to the subtractor 3a and the adder 3b, respectively. As a result, each output (this is A'phase and B '
The phases are as follows.

【0013】[0013]

【数1】 [Equation 1]

【0014】このように振幅のそろったA′相信号と
B′相信号とを用い、位相差検出回路10によって従来
例と同様に位置信号出力を得る。
Using the A'phase signal and the B'phase signal having the same amplitude as described above, the phase difference detection circuit 10 obtains the position signal output as in the conventional example.

【0015】図2および図3に、本実施例におけるA′
相とB′相との振幅比および位相差の変動を測定した結
果を示すが、振幅比はドラム11の1周にわたって1.
00であった。位相差は、90°±0.8°で、図10
に示したA相とB相との位相差の変動に比較して大きく
なっているが、これはA′相とB′相との位相差2αが
A相とB相との振幅比A/Bに依存するためである。当
該振幅比が0.985<A/B<1.015の間で変化
した場合、2αは89.13°〜90.85°と、1.
72°の幅で変動することが算出される。従来A相とB
相との位相差がドラム11の1周にわたって0.2°変
動したことを考慮すれば、A′相とB′相との位相差の
変動幅は最大1.92°となる。
2 and 3 show A'in this embodiment.
The results of measuring the variation in the amplitude ratio and the phase difference between the B phase and the B ′ phase are shown below. The amplitude ratio is 1.
It was 00. The phase difference is 90 ° ± 0.8 °, as shown in FIG.
It is larger than the fluctuation of the phase difference between the A phase and the B phase shown in Fig. 4, but this is because the phase difference 2α between the A'phase and the B'phase is the amplitude ratio A / between the A phase and the B phase. This is because it depends on B. When the amplitude ratio changes between 0.985 <A / B <1.015, 2α is 89.13 ° to 90.85 ° and 1.
It is calculated that it varies within a width of 72 °. Conventional phase A and B
Considering that the phase difference with the phase fluctuates by 0.2 ° over the entire circumference of the drum 11, the fluctuation range of the phase difference between the A ′ phase and the B ′ phase is 1.92 ° at maximum.

【0016】A′相とB′相との振幅比および位相差が
上述したように変化することにより、本実施例による測
定結果には図4および図5に白丸で示すような検出誤差
が生ずる。実際は振幅比の変動は皆無であるためそれに
よる検出誤差は全くない。図4および図5には、従来例
におけるA相とB相との振幅比および位相差の変動が検
出誤差に及ぼす影響についても黒丸で示したが、従来例
に比して本実施例では2相信号の振幅比の変動による検
出誤差は3%小さくなる。位相差の変動による検出誤差
は1.8%増大するものの、全検出誤差は差し引き1.
2%の向上となり、位置測定精度は図6に示すように従
来の3.2%(黒丸)から2.0%(白丸)と、1.6
倍もの向上をみた。
Since the amplitude ratio and the phase difference between the A'phase and the B'phase change as described above, the measurement result according to the present embodiment causes a detection error as shown by a white circle in FIGS. 4 and 5. .. In reality, there is no fluctuation in the amplitude ratio, so there is no detection error due to it. In FIG. 4 and FIG. 5, black circles also show the influence of fluctuations in the amplitude ratio between the A phase and the B phase and the phase difference on the detection error in the conventional example. The detection error due to the change in the amplitude ratio of the phase signal is reduced by 3%. Although the detection error due to the fluctuation of the phase difference increases by 1.8%, the total detection error is deducted from 1.
2% improvement, and the position measurement accuracy is 1.6% from the conventional 3.2% (black circle) to 2.0% (white circle) as shown in FIG.
I saw a double improvement.

【0017】[0017]

【発明の効果】以上のようにこの発明によれば、2組の
MR素子と位相検出回路との間に、上記2組のMR素子
から得られるAB2相の電気的信号を、両者の位相情報
を保持しつつ振幅が等しい2信号に変換する振幅比調整
回路を挿入したことにより、位相差検出方式の磁気エン
コーダの測定精度を向上させることができる。
As described above, according to the present invention, an AB 2-phase electric signal obtained from the above-mentioned two sets of MR elements is provided between the two sets of MR elements and the phase detection circuit as phase information of both. By inserting an amplitude ratio adjusting circuit for converting into two signals having the same amplitude, the measurement accuracy of the phase difference detection type magnetic encoder can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示す磁気エンコーダの回
路図である。
FIG. 1 is a circuit diagram of a magnetic encoder showing an embodiment of the present invention.

【図2】振幅比調整回路の2相出力の振幅比の変動を示
す図である。
FIG. 2 is a diagram showing variations in the amplitude ratio of two-phase outputs of the amplitude ratio adjusting circuit.

【図3】振幅比調整回路の2相出力の位相差の変動を示
す図である。
FIG. 3 is a diagram showing variations in phase difference between two-phase outputs of an amplitude ratio adjusting circuit.

【図4】2相出力の振幅比の変動が検出誤差に与える影
響を示す図である。
FIG. 4 is a diagram showing the influence of fluctuations in the amplitude ratio of two-phase outputs on a detection error.

【図5】2相出力の位相差の変動が検出誤差に与える影
響を示す図である。
FIG. 5 is a diagram showing the influence of fluctuations in the phase difference between two-phase outputs on a detection error.

【図6】全検出誤差を従来例との比較において示す図で
ある。
FIG. 6 is a diagram showing all detection errors in comparison with a conventional example.

【図7】磁気エンコーダの一般的構成を示す図である。FIG. 7 is a diagram showing a general configuration of a magnetic encoder.

【図8】従来の位相差検出方式の磁気エンコーダを示す
回路図である。
FIG. 8 is a circuit diagram showing a conventional phase difference detection type magnetic encoder.

【図9】MR素子の2相出力の振幅比の変動を示す図で
ある。
FIG. 9 is a diagram showing changes in the amplitude ratio of the two-phase output of the MR element.

【図10】MR素子の2相出力の位相差の変動を示す図
である。
FIG. 10 is a diagram showing variations in phase difference between two-phase outputs of the MR element.

【符号の説明】[Explanation of symbols]

1(1a,1b) 磁気抵抗効果素子 10 位相差検出回路 12 磁気記録媒体 20 振幅比調整回路 1 (1a, 1b) Magnetoresistive effect element 10 Phase difference detection circuit 12 Magnetic recording medium 20 Amplitude ratio adjustment circuit

【手続補正書】[Procedure amendment]

【提出日】平成4年10月13日[Submission date] October 13, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項1[Name of item to be corrected] Claim 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】次に、このような電気的てい倍法の1つで
ある位相差検出方式における信号処理の流れを図8によ
り説明する。磁気記録媒体の移動(回転)に伴い、MR
素子1より相互に90°位相のずれた微小なA相(sin
θ)およびB相(cos θ)信号が出力される。これらの
信号を増幅2a,2bで増幅し、その各々の出力とオ
シレータ5より得られる高周波2相正弦波信号(sin ω
tおよびcos ωt)との積(sin ωt・sin θおよびco
s ωt・cos θ)を乗算器6a,6bで求め、さらにそ
の差を減算器7で求める。この差信号(sin (ωt−
θ))とオシレータ5からのレファレンス信号(sin ω
t)との位相差はθである。したがってこの位相差の検
出がしやすいように両信号をコンパレータ8a,8bで
パルスに変換し、デジタル計数回路9において、そのパ
ルスを計数することにより位置信号出力が得られる。
Next, the flow of signal processing in the phase difference detection method which is one of such electrical multiplication methods will be described with reference to FIG. As the magnetic recording medium moves (rotates), the MR
Minute A phase (sin that is 90 ° out of phase with element 1)
θ) and B-phase (cos θ) signals are output. These signal amplification unit 2a, amplified by 2b, a high-frequency two-phase sine wave signals obtained from the output and the oscillator 5 of each (sin omega
t and cos ωt) (sin ωt · sin θ and co
s ωt · cos θ) is obtained by the multipliers 6a and 6b, and the difference is obtained by the subtractor 7. This difference signal (sin (ωt−
θ)) and the reference signal from the oscillator 5 (sin ω
The phase difference with t) is θ. Therefore, both signals are converted into pulses by the comparators 8a and 8b so that the phase difference can be easily detected, and the digital counter circuit 9 counts the pulses to obtain a position signal output.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0009】[0009]

【課題を解決するための手段】本発明は、MR素子と位
相差検出回路との間に、MR素子から得られるA相信号
とB相信号とを、両者の位相保持しつつ振幅が等しい
2信号に変換する振幅比調整回路を挿入したものであ
る。
Means for Solving the Problems The present invention is, between the MR element and the phase difference detection circuit, an A-phase signal and the B-phase signal obtained from the MR element, equal amplitude while maintaining both the phase An amplitude ratio adjusting circuit for converting into two signals is inserted.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】[0017]

【発明の効果】以上のようにこの発明によれば、2組の
MR素子と位相検出回路との間に、上記2組のMR素子
から得られるAB2相の電気的信号を、両者の位相
持しつつ振幅が等しい2信号に変換する振幅比調整回路
を挿入したことにより、位相差検出方式の磁気エンコー
ダの測定制度を向上させることができる。
As described above, according to the present invention, between the two sets of MR elements and the phase detection circuit, the AB two-phase electric signals obtained from the two sets of MR elements are supplied to each other . By inserting the amplitude ratio adjusting circuit for converting the two signals having the same amplitude while maintaining the same, it is possible to improve the measurement accuracy of the magnetic encoder of the phase difference detection method.

【手続補正6】[Procedure Amendment 6]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 周期的磁場を発生すべくピッチPで少な
くとも1つの磁化パターン列が書き込まれた磁気記録媒
体と、この磁気記録媒体に近接して、かつ当該磁気記録
媒体の移動方向に相互に(2n+1)P/4隔てて配置
された2組の磁気抵抗効果素子と、これら両磁気抵抗効
果素子から得られるAB2相の電気的信号をそれぞれ電
気的にてい倍する機能を含んだ位相差検出回路とを備え
た位相差検出方式の磁気エンコーダにおいて、磁気抵抗
効果素子と位相差検出回路との間に、A相信号とB相信
号とを、両者の位相情報を保持しつつ振幅が等しい2信
号に変換する振幅調整回路を挿入したことを特徴とする
磁気エンコーダ。
1. A magnetic recording medium in which at least one magnetization pattern sequence is written at a pitch P to generate a periodic magnetic field, and a magnetic recording medium close to the magnetic recording medium and mutually in the moving direction of the magnetic recording medium. Phase difference detection including two sets of magnetoresistive effect elements arranged at a distance of (2n + 1) P / 4 and a function of electrically multiplying AB two-phase electric signals obtained from these magnetoresistive effect elements, respectively. In a phase-difference detection-type magnetic encoder including a circuit, an A-phase signal and a B-phase signal are held between the magnetoresistive effect element and the phase-difference detection circuit while keeping the phase information of both signals and having the same amplitude. A magnetic encoder characterized in that an amplitude adjusting circuit for converting into a signal is inserted.
JP21682691A 1991-08-28 1991-08-28 Magnetic encoder Pending JPH0552583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21682691A JPH0552583A (en) 1991-08-28 1991-08-28 Magnetic encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21682691A JPH0552583A (en) 1991-08-28 1991-08-28 Magnetic encoder

Publications (1)

Publication Number Publication Date
JPH0552583A true JPH0552583A (en) 1993-03-02

Family

ID=16694504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21682691A Pending JPH0552583A (en) 1991-08-28 1991-08-28 Magnetic encoder

Country Status (1)

Country Link
JP (1) JPH0552583A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249370A (en) * 2007-03-29 2008-10-16 Canon Electronics Inc Magnetic material detection sensor and magnetic material detector
JP2009092400A (en) * 2007-10-04 2009-04-30 Ntn Corp Device and method for measuring axial torque of drive shaft
JP2009097950A (en) * 2007-10-16 2009-05-07 Ntn Corp Measuring device and measurement method of shaft torque in drive shaft
JP2009097895A (en) * 2007-10-15 2009-05-07 Ntn Corp Measuring device and measurement method of shaft torque in drive shaft
JP2009097896A (en) * 2007-10-15 2009-05-07 Ntn Corp Shaft torque measuring device and measurement method of drive shaft
JP5473595B2 (en) * 2007-03-30 2014-04-16 Thk株式会社 Magnetic pole detection method and drive guide system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249370A (en) * 2007-03-29 2008-10-16 Canon Electronics Inc Magnetic material detection sensor and magnetic material detector
JP5473595B2 (en) * 2007-03-30 2014-04-16 Thk株式会社 Magnetic pole detection method and drive guide system
JP2009092400A (en) * 2007-10-04 2009-04-30 Ntn Corp Device and method for measuring axial torque of drive shaft
JP2009097895A (en) * 2007-10-15 2009-05-07 Ntn Corp Measuring device and measurement method of shaft torque in drive shaft
JP2009097896A (en) * 2007-10-15 2009-05-07 Ntn Corp Shaft torque measuring device and measurement method of drive shaft
JP2009097950A (en) * 2007-10-16 2009-05-07 Ntn Corp Measuring device and measurement method of shaft torque in drive shaft

Similar Documents

Publication Publication Date Title
US6433536B1 (en) Apparatus for measuring the position of a movable member
EP0235750B1 (en) Apparatus for magnetically detecting position or speed of moving body
WO1999013296A1 (en) Magnetic encoder
JPH0264407A (en) Magnetic absolute position encoder
JP4352189B2 (en) Magnetic encoder and motor with magnetic encoder
JPH0552583A (en) Magnetic encoder
JP7242352B2 (en) A system for determining at least one rotational parameter of a rotating member
JP2023093560A (en) Magnetic sensor system and lens position detection device
US6307366B1 (en) Object position sensor using magnetic effect device
JPH1019602A (en) Magnetic encoder
JPH10206104A (en) Position detecting apparatus
US11204260B2 (en) System for determining at least one rotation parameter of a rotating member
EP1016852B1 (en) Apparatus for measuring the position of a movable member
JP4211278B2 (en) Encoder
JPS60162920A (en) Resolver device using magnetism sensing element
JP2669631B2 (en) Magnetic detector
US20230016570A1 (en) System for determining at least one rotation parameter of a rotating member
JP2556383B2 (en) Magnetic resolver
JPH0719897A (en) Magnetic encoder
JPH0434684B2 (en)
JP2000171539A (en) Magnetism detecting apparatus
JP4465513B2 (en) Position detection device
JPH10122901A (en) Magnetic encoder
JPS63305211A (en) Magnetic encoder for clearing absolute position
JP3326778B2 (en) Magnetic encoder