JP4543142B2 - 電子雪崩効果による抵抗変化を磁場によって制御した素子及びそれを用いた磁気感応装置 - Google Patents

電子雪崩効果による抵抗変化を磁場によって制御した素子及びそれを用いた磁気感応装置 Download PDF

Info

Publication number
JP4543142B2
JP4543142B2 JP2002055364A JP2002055364A JP4543142B2 JP 4543142 B2 JP4543142 B2 JP 4543142B2 JP 2002055364 A JP2002055364 A JP 2002055364A JP 2002055364 A JP2002055364 A JP 2002055364A JP 4543142 B2 JP4543142 B2 JP 4543142B2
Authority
JP
Japan
Prior art keywords
magnetic field
junction
conductive
region
element according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002055364A
Other languages
English (en)
Other versions
JP2003258268A (ja
Inventor
広幸 秋永
登 三浦
和人 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002055364A priority Critical patent/JP4543142B2/ja
Priority to AU2003211402A priority patent/AU2003211402A1/en
Priority to PCT/JP2003/002347 priority patent/WO2003075360A1/ja
Publication of JP2003258268A publication Critical patent/JP2003258268A/ja
Application granted granted Critical
Publication of JP4543142B2 publication Critical patent/JP4543142B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/82Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、磁気抵抗スイッチ効果素子およびそれを用いた磁気感応装置に関し、特に、電子雪崩効果による大きな抵抗変化を磁場によって制御することに基づく磁気抵抗スイッチ効果素子及びそれを用いた磁気感応装置に関するものである。
【0002】
【従来技術】
近年のCPU能力の向上、情報通信能力の向上によって、コンピュータの外部記憶装置に求められる性能も飛躍的に高くなってきている。特に、その中でもハードディスクドライブは、その情報の入出力速度、記録密度の優位性により、依然として外部記憶装置の中心的位置を占めており、外部記憶装置としてのハードディスクドライブに対する要請も、今後ますます厳しくなることが予想されている。
【0003】
一方、外部記憶装置に対する別の観点の要求としては、小型化の要求がある。
このハードディスクドライブの小型化の進展につれて、従来の磁気誘導型磁気ヘッドでは、ハードディスクの相対速度が径方向で変化することに起因する励起信号の大きさ変動の問題が顕在化してきた。
【0004】
そこで、その解決手段として、磁気抵抗効果素子を用いた磁気ヘッドが考案され、現在、製品化されるに至っている。これらの代表としてスピンバルブ方式のGiant Magneto Resistance素子(以下、「GMR素子」という。)やTunnel Magneto Resistance素子(以下、「TMR素子」という。)がある。しかしながら、これらスピンバルブ方式の磁気ヘッドは、今後の入出力速度要求を満足することは難しいと予想され、早ければここ数年中にも限界に達することが懸念されている。
【0005】
なお、スピンバルブ方式にあっても、材料の選択や素子構造の最適化により、あと数年程度であれば、要求水準に追従できるとの見通しがあるが、その先の要求水準の達成には、従来法とは異なる検出原理に基づいた素子の出現が待たれるところである。
【0006】
【解決すべき課題】
現在実用化されているGMR素子やTMR素子等スピンバルブ型の磁気抵抗素子では、向き合った2層の磁性体薄膜の磁化の相対方向変化に依存した信号電流の変化を読み取っているため、素子のダウンサイジングにより、素子自体の抵抗値が大きくなってしまう。
【0007】
一般に、ハードディスクの読み取りヘッド等に適用される磁気抵抗素子には、記憶容量の増加に伴い素子のダウンサイジングが要求されている一方で、データの高速転送に必須である素子の低抵抗化が同時に求められており、前述のように相矛盾する本質的な物理的特性から、素子原理の限界がある。
言い換えれば、既存の磁気抵抗素子において、低抵抗化・高速化には自ずから限界があり、次世代の磁気抵抗素子の開発に対して大きな技術的課題となっている。
【0008】
一方、これらの素子をメモリなどの用途で用いる場合には、既存の半導体プロセスとの整合性をとることが必要である。メモリの番地指定には、半導体素子とのハイブリッド化が行われるため、SiやGaAsといった基板上に磁気抵抗素子を形成しなければならない。
【0009】
半導体の製造プロセスは、半導体素子の伝導性を変化させる磁性元素を用いたプロセスと非常に相性が悪い。従って、磁性元素金属の多層膜からなるスピンバルブ型磁気抵抗素子は、プロセス整合性が良くない。しかも、ごく薄い層を制度よく積層していくプロセスは、非常に困難で、製造コスト負担も今後ますます大きくなることが予想される。
【0010】
さらに、実用上、これらの素子は、室温で用いることが想定されることから、室温での十分な磁気抵抗効果が得られるものでなければならないという技術的要請のあることを忘れてはならない。
【0011】
【課題を解決するための手段】
本発明は、上記の技術的課題を解決するためのものであって、次の技術的事項からなる。
本発明(1)は、半導体領域上に、相互に離隔した導電領域と、100μm以下の間隔をもってもって配置された2つの電極部を備え、前記各導電領域は、該導電領域間に介在する前記半導体領域からなる少なくとも1つのジャンクションによって電気的に接続するとともに、前記両電極部は、前記導電領域および少なくとも1つの前記ジャンクションを介して電気的に接続することを特徴とする磁気抵抗スイッチ効果素子である。
本発明(2)は、前記導電領域間に介在するジャンクション長さが、最短部で、1〜30nmであることを特徴とする本発明(1)の磁気抵抗スイッチ効果素子である。
本発明(3)は、前記導電領域間に介在するジャンクション長さが、最短部で、1〜10nmであることを特徴とする本発明(1)の磁気抵抗スイッチ効果素子である。
本発明(4)は、前記導電領域と前記電極部が、一体成形されていることを特徴とする本発明(1)〜(3)の何れか1発明の磁気抵抗スイッチ効果素子である。
本発明(5)は、前記導電領域が、前記半導体領域中に島状に分布し、少なくとも1つの島状の導電領域が他の導電領域に対し半導体領域を介して孤立していることを特徴とする本発明(1)〜(4)の何れか1発明の磁気抵抗スイッチ効果素子である。
本発明(6)は、前記導電領域が、堆積法により形成された被膜からなり、該被膜の一部を所要のエッチング法により除去することにより、前記ジャンクションとしたものであることを特徴とする本発明(1)〜(4)の何れか1発明の磁気抵抗スイッチ効果素子である。
本発明(7)は、少なくとも前記導電領域および前記半導体領域を覆う絶縁材からなるキャップ層を更に備えることを特徴とする本発明(1)〜(6)の何れか1発明の磁気抵抗スイッチ効果素子である。
本発明(8)は、さらに少なくとも、該ギャップ部近傍に対しバイアス磁界を付与する手段を備え、磁界強度の変化に対する電極間の電気抵抗の変化の度合いを調整することができることを特徴とする本発明(1)〜(7)の何れか1発明の磁気抵抗スイッチ効果素子を用いた磁気感応装置である。
本発明(9)は、さらに、前記両電極間に印加する電圧を制御する電圧制御手段を設け、該電圧制御手段と前記バイアス磁界付与手段を制御することにより、信号の書き込み、保持、読み出し、消去を可能にした発明(8)の磁気抵抗スイッチ効果素子を用いた磁気感応装置である。
本発明(10)は、磁気センサ用である本発明(8)の磁気感応装置である。
本発明(11)は、メモリー用である本発明(9)の磁気感応装置である。
【0012】
なお、アバランシェ・ブレークダウンを低電位で安定的に発生させるためには、閾値以上の一様な電界が必要であることから、導電領域間の間隔に相当するジャンクション長さは、30nm以下であることが望ましく、より好ましくは、10nm以下であることが望ましい。下限値はアバランシェ・ブレークダウン現象を引き起こすことができるスペース−チャージが確保できる幅以上であれば、特に制限はないが、加工精度の安定性から1nm以上とした。
【0013】
一方、電界強度の一様性を確保する上で、電極間距離は重要であるとともに、高速作動のための低抵抗化の要請から、100μm以下である必要がある。下限は、少なくとも一つのジャンクション長さ以上であり、かつ電極間で短絡を生じない長さ以上であれば、特に制限はない。
【0014】
【作用】
出願人は、磁気抵抗スイッチ素子におけるしきい値電圧以上での電流−電圧特性が、space-charge-limited現象の電流−電圧特性と似通っていることにヒントを得て、輸送現象の温度依存性を調べてみると、第1図のとおり、温度低下とともにブレークダウンの閾値電圧が低下しており、この結果から、支配的な現象としてはアバランシェ・ブレークダウンであると推定した。
【0015】
すなわち、アバランシェ・ブレークダウン現象では、第2図のとおり、電極間に磁界が存在しなければ(図中0Oeの曲線)、ある電圧(この場合では、80V弱)で、アバランシェ・ブレークダウンが発生し、不連続に電流値が急増するのに対し、ギャップ部周辺に磁界が存在すれば(図中5000Oeの曲線)、アバランシェ・ブレークダウンを抑止できる(連続的な電流値の変化)ことから、磁場の検出に、この電子雪崩現象により増幅された電流を用いることができる。なお、アバランシェ・ブレークダウンの発生は、後述のとおり、付与される磁界の強さによって変化する。
したがって、スピンバルブ方式において観察される電流の変化に比べ、桁違いに大きな電流変化が期待でき、磁界の検出感度が飛躍的に向上する。
【0016】
ここで、アバランシェ・ブレークダウン現象において、支配的となる要素は、電圧Vそのものではなく電界Eであり、電界Eには、E=V(電圧)/D(距離)という関係があるため、出願人は、電極間距離を小さくすることにより、電極間電圧Vを小さくしても、所要の電界強度Eを得ることは十分可能であり、低作動電圧で巨大な磁気抵抗スイッチ効果を期待できると考えるに至った。
【0017】
そこで、電極間長さを縮めることで、作動電圧を低減するとともに、電極構造に二端子法を採用できることと相まって、電気抵抗を低減して高速応答を可能にするというダウンサイジングの効果を最大限に活かすことができるようになった。
【0018】
例えば、本発明をハードディスクヘッドへの適用した場合、高速で回転するディスクからの磁気信号は、相当高速でパルス的に増減することになるため、この応答特性もきわめて重要な因子となる。その一例として、第3図に6000Oe、10msecのパルス磁界を付与した場合の磁気抵抗変化の様子を示す。上の曲線がパルス磁界の変化の様子を示し、下の曲線が電流値乃至抵抗値の変化の様子を示す。磁界変動によく追従し、しかも3000%程度という大きな信号として取り出すことができることが分かる。このことは、ハードディスクの磁気ヘッドへの実用に対し大きな可能性を示しているといえる。
【0019】
ここで、上述のとおり、アバランシェ・ブレークダウン現象は電界強度に依存するとともに、高速応答を達成するためには低抵抗化が不可欠であるから、実際上は、電極間距離も所定の長さに限定されなければならない。
【0020】
そこで、この電極間距離の適性範囲を確認するために、第4図に示す素子を試験的に作製した。図中の中央部に位置する逆三角形の領域がジャンクションを含む半導体領域である。該半導体領域を挟んで対を成す電極間の抵抗を、これら電極間に印加する電圧を変化させながら測定した。
【0021】
その結果を第5図に示す。電極間距離を30μm(1μmは10-6m)から210μmまでの範囲で変化させたところ、50Vの電圧印加により、100μm以下で106Ω以下の低抵抗状態が現れることが明らかになった。よって、本発明では、最大電極間距離を100μm以下と限定することにした。
【0022】
一方、アバランシェ・ブレークダウン現象の発生の有無を利用する系においては、室温におけるエネルギー(k300K=3×10-2eV程度)で、閾値電界強度(10〜10V/cm)の坂を越えない範囲で設定されていることが望ましいことから、導電領域間に介在するジャンクションの最短部の長さをdとした場合、dが30nm以下である範囲を好ましい範囲とした。(なお、算出されるdの下限値は、0.3nmとなることから、実質的にプロセス限界であると考えて差し支えない。)
【0023】
以上のとおり、本発明は、アバランシェ・ブレークダウン現象を利用すべく電極間距離乃至ジャンクション長さについて設計したものであって、スピンバルブ方式の素子を小型化するといった単純な理由からは、これらの電極間距離およびジャンクション長さについての具体的限定を到底導出できるものではないことを付言する。
【0024】
また、従来の報告されているグラニュラー構造の磁気抵抗効果素子では、金属微粒子の存在が不可欠であると考えられてきたが、アバランシェ・ブレークダウン現象に基づく素子では、必ずしもグラニュラー構造を必要とせず、特にスペース−チャージを可能とするギャップがあれば十分であって、具体的な微細構造は限定されない。該ギャップの両側の導電領域に電荷がチャージし、所定の臨界値以上の電界が作用した場合には、その下地等の半導体領域を通して電子雪崩が伝播され、結果、電気抵抗が大幅に低下する過程を通して、磁気抵抗スイッチ効果が発生するものと考えられる。
【0025】
言い換えると、例えば、本発明者等にかかる特開2000-340425号公報等に記載された従来のグラニュラー構造の素子では、該ギャップを各粒子が相互に離隔して分布することにより、結果として、各粒子間の半導体領域が本発明にいうジャンクションとして機能している場合があるに過ぎない。
【0026】
本明細書においては、加工の簡便性から下地の半導体領域を「ジャンクション」として利用している態様が記載されているが、そのような態様に限定されるものではなく、導電領域が異種材料領域を介して接合、接触している部分であって、アバランシェ・ブレークダウン現象の起こるものであれば、「ジャンクション」ということができる。
【0027】
したがって、本発明では、グラニュラー構造のように複数のギャップを設ける必要もなく、電極間が、導電領域とそれらを繋ぐジャンクションによって電気的に結合されていればよい。該電極間に所定幅の導電路を形成し、その一部を除去することによって、少なくとも1つの導電領域のギャップを設け、その領域に相当する下地半導体部分をジャンクションとすることによっても、磁気抵抗スイッチ効果が得られる。
【0028】
以上のような電気的接続のための経路の総称として、「ジャンクション」という用語を用いることにする。
【0029】
よって、理論上は、電極同士の直接の短絡を防止できる距離までであれば、装置のダウンサイジングが可能であると予想される。但し、絶縁を図れる限界として、プロセスの安定性も考慮して、電極間距離を1nm以上と下限についても限定することにした。
【0030】
なお、電極部と導電部を一体成形した場合等、電極間距離とジャンクション長さは重畳的な限定となる場合があるが、これは、前述のとおり、高速応答に必要とされる低抵抗化の観点から、電極間距離自体も短い方が望ましく、しかも、従来のスピンバルブ型等の素子では、所要の面積を必要とし、電極間距離をある程度以上近接させることはできないという技術的事由から、この電極間距離にかかる限定を付すことによって、本発明の素子と従来型素子との峻別を文言上で明確にするために、敢えて付した限定である。
【0031】
ここで、アバランシェ・ブレークダウン現象は、後述の実施例にかかる第6図のとおり、電極間電位(上図は59V、下図が61V)により、アバランシェ・ブレークダウン現象にかかる電子雪崩の起きる臨界磁界強度(上図が30Oe、下図が200Oe)が変化する特性を有する。
【0032】
また、第6図(b)のとおり、ギャップ部周辺における磁界強度を、ヒステリシスループ範囲で増減させることにより、抵抗値における不可逆特性が観察できる。
【0033】
【実施の実施の形態】
ここで、まず、試験用の素子を作成した。この素子は、GaAs(111)B半導体基板上に公称膜厚0.2nmのAu成膜を行い、さらに、その上に5nmのSbのキャップ層を設けたものである。現実的には、この程度の膜厚のAu膜は金属微粒子が島状に分布となり、いわゆるグラニュラータイプの素子構成となる。
【0034】
そして、この素子に対して印加する電圧と磁場を変えた場合の電流電圧特性を第2図に示す。電流電圧特性の測定は、2端子法にて室温で行った。磁場は、試料面と電流の向きに平行に印加した。図中の矢印は、電圧の掃引方向を示す。
【0035】
ゼロ磁場時の電流電圧特性は、実線で示すように、電圧上昇時には、約80Vで急激な電流上昇を示す。この転移は非常に鋭く、低電流状態から高電流状態へのスイッチ現象ということができる。このスイッチ現象は、前述のとおり、閾値電圧におけるアバラシェ・ブレークダウンによる電子雪崩現象に起因している。これに対し、磁界を印加するとこのスイッチ現象を抑止することが可能となる。
【0036】
ここで、さらに、アバランシェ・ブレークダウン現象の発生におけるジャンクション長さの影響を明らかにするために、第7図C(下図)に示すような素子を試作した。すなわち、第7図のC(下図)の模式図のように、GaAs(111)B半導体基板上に、5nm程度の段差部を形成し、その上に、導電部としてAu層を形成した。その断面の高分解能透過型電子顕微鏡写真が同図A(上図)であり、高低変化を濃淡で示す原子間力顕微鏡写真が同図B(中図)である。この図の色の濃い領域の幅および段差高さから、ジャンクション長さが10nm以下の間隔となっていることが分かる。
【0037】
上記のジャンクション長さを持つ構造にて、第2図に示す磁気抵抗スイッチ特性が得られていることから、ジャンクション長さの更に好ましい範囲として、1〜10nmであることが明らかになった。
【0038】
【実施例1】
第8図には、本発明の磁気抵抗スイッチ効果素子をハードディスクの磁気ヘッドに適用した場合のヘッド構成を模式的に示す。
図中、1は半導体基板、2は電極、3は磁気シールドである。図中矢印の方向で、この磁気ヘッドは、ハードディスク面と向き合い、磁場信号が電極間に付与される。
【0039】
なお、サブミクロンオーダーで非常に近接した電極部を一定の間隔を保って形成する際の困難性から、好ましくは、図8(b)に示した要部拡大図のように、電極2とは別に導電領域4を形成し、その中央部等に、電子ビーム加工等の加工手段により前記導電領域4を切り欠き、導電領域4を分割した構造を製造し、この切り欠き領域をジャンクションとする素子構成が実用的である。
【0040】
そして、該ジャンクション長さに応じた、電圧−電流特性図のヒステリシス内の電圧を両電極2間に印加し、前記電極間を流れる電流の変化を二探針法にて検出することによって、ハードディスク面上に書き込まれた信号を読み出すものである。
【0041】
なお、電極とジャンクションの配置は、第8図に限定されるものではなく、磁気シールド3間のリードギャップ内に少なくとも1カ所のジャンクションが配置されていれば、いかなるレイアウトも許容されるのはいうまでもない。
【0042】
【実施例2】
第9図には、本発明の磁気抵抗スイッチ効果素子を磁気センサに適用した場合の回路図の一例を示す。具体的な磁気抵抗スイッチ効果素子の構成としては、前記実施例1にかかる第8図の装置に対し、そのリードギャップたる磁気シールド間に、制御用バイアス磁場発生のためのバイアス磁場発生コイル等の配線を併設したものが使用できる。
【0043】
そして、第9図の回路図において、そのバイアス磁場発生コイルへの制御電流量を可変とすることで、磁気抵抗スイッチ効果現象の発生の閾値を制御し、素子の磁場の検出感度を調節することができる。これにより、種々の磁界強度の磁場を検出可能となる。
【0044】
なお、この実施例では、バイアス磁場発生コイルの制御電流を制御して、感度を調節しているが、素子への印加電圧を制御しても同様に感度調節が可能である。
【0045】
【実施例3】
前述のとおり、第6図のaおよびbには、印加電圧及び磁場強度に応じた抵抗値の挙動が記載されており、何れの場合も、磁場がある閾値を超え一旦抵抗値が上昇すると、ヒステリシスループ内の電圧に留まっている限り、磁場を下げても高抵抗値を維持したままとなる。これは、一種の状態の記憶ということができ、メモリーへの応用が考えられる。
【0046】
具体的には、第10図に模式的に示したセル構造を作成し、ワードラインドライバとビットラインドライバ並びに磁界付与手段によって、第10図(b)のタイミングチャートで電圧及び磁界を印加することで、各セルに対し、情報の書き込み、保持、読み出しが可能となる。
【0047】
ここで、ビットラインドライバから印加する電圧には、書き込み時の選択、非選択用の高電位と、読み出し時の選択用の(やや)高めの電位、非使用時又はメモリー内容消去用の低電位のほかに、(やや)高めと低電圧との中間の電位である保持電位の4つの電圧が設定できる必要がある。したがって、このビットラインドライバは、通常のダイナミックRAM等のドライバより複雑になることは避けられないものの、保持電位を印加すれば、ある種のスタティックRAMを構成できる。
【0048】
そして、このメモリーは、電圧をヒステリシスループ範囲以下に一旦下げることにより、メモリー内容を消去できることから、例えば、このメモリー自体が持ち出されるなどの予期しない不正なアクセスを受けた場合、電圧低下によりメモリー内容が消失され、メモリー内容の漏洩を未然に防止できる。このような特性から、個人情報等の一時的な外部記憶として、特に有用である。
【0049】
【発明の効果】
この発明は、支配的に作用する物理現象がアバランシェ・ブレークダウン現象であることに着想を得たことに基づいて、小型化により検出感度が低下するといった従来想定されていた素子のダウンスケール化に伴うデメリットを克服すると同時に、素子の高速化及び低電圧化をともに達成することができたものである。
【0050】
しかも、製造プロセスは非常に簡単で、既存の半導体薄膜製造プロセスとの整合性もよく、室温でも十分動作するものであることから、非常に有益な技術である。
そして、その磁気特性から、ハードディスクドライブヘッドへの適用はもちろんのこと、磁気センサ、メモリー等広範な用途への適用に道を拓いたものと確信する。
【図面の簡単な説明】
【第1図】 磁気抵抗スイッチ効果における温度依存性の測定結果の一例を示す図
【第2図】 磁気抵抗スイッチ効果素子の電圧−電流の測定結果の一例を示す図
【第3図】 パルス磁界に対する磁気抵抗スイッチ効果素子の応答の一例を示す図
【第4図】 磁気抵抗スイッチ効果に対する電極間距離の影響を調べるための試作素子の一例を示す写真。
【第5図】 磁気抵抗スイッチ効果素子における電極間距離−抵抗値の関係を示す図
【第6図】 磁気メモリー素子に適用した場合の、磁場−抵抗値の結果の一例を示す図
【第7図】 磁気抵抗スイッチ効果素子のジャンクション部分の構造を示す図(A:素子断面の高解像度電子顕微鏡写真、B:素子表面の原子力間顕微鏡写真、C:ジャンクション構造の模式図)
【第8図】 磁気抵抗スイッチ効果素子をハードディスクドライブのヘッドに適用した場合の装置構成を模式的に示した図及びその要部拡大図
【第9図】 磁気抵抗スイッチ効果素子を磁気センサーに適用した場合の回路図の一例を示す図
【第10図】 磁気抵抗スイッチ効果素子を磁気メモリーに適用した場合の回路図とそのタイミングチャートの一例を示した図
【符号の説明】
1 半導体基板
2 電極部
3 磁気シールド
4 導電領域
5 磁気抵抗スイッチ効果素子
6 定電圧電源
7 制御用バイアス磁場発生コイル
8 基準抵抗
9 ワードラインドライバ
10 センスアップ・ビットラインドライバ
11 コンタクト
D 電極間距離
d ジャンクション長さ
H 信号磁界
H(I) 制御用バイアス磁場
HR 読み出し用高電位
HW 書き込み用高電位
M 保持電圧
L 低電位

Claims (10)

  1. 半導体領域上に、相互に離隔した導電領域(但し、前記半導体領域上に、導電性微粒子が島状に分布した、グラニュラー構造の導電領域である場合を除く。)と、100μm以下の間隔をもって配置された2つの電極部を備え、前記各導電領域は、該導電領域間に介在する前記半導体領域からなる1つのジャンクションによって電気的に接続するとともに、前記両電極部は、前記導電領域および1つの前記ジャンクションを介して電気的に接続することを特徴とする、電子雪崩効果による抵抗変化を磁場によって制御した素子。
  2. 前記導電領域間に介在するジャンクション長さが、最短部で、1〜30nmであることを特徴とする請求項1記載の素子。
  3. 前記導電領域間に介在するジャンクション長さが、最短部で、1〜10nmであることを特徴とする請求項1記載の素子。
  4. 前記導電領域と前記電極部が、一体成形されていることを特徴とする請求項1〜3の何れか1項記載の素子。
  5. 前記導電領域が、堆積法により形成された被膜からなり、該被膜の一部を所要のエッチング法により除去することにより、前記ジャンクションとしたものであることを特徴とする請求項1〜4の何れか1項記載の素子。
  6. 少なくとも前記導電領域および前記半導体領域を覆う絶縁材からなるキャップ層を更に備えることを特徴とする請求項1〜5の何れか1項記載の素子。
  7. さらに少なくとも、前記ジャンクション近傍に対しバイアス磁界を付与する手段を備え、磁界強度の変化に対する電極間の電気抵抗の変化の度合いを調整することができることを特徴とする請求項1〜6の何れか1項記載の素子を用いた磁気感応装置。
  8. さらに、前記両電極間に印加する電圧を制御する電圧制御手段を設け、該電圧制御手段と前記バイアス磁界付与手段を制御することにより、信号の書き込み、保持、読み出し、消去を可能にした請求項7記載の素子を用いた磁気感応装置。
  9. 磁気センサ用である請求項7記載の磁気感応装置。
  10. メモリー用である請求項8記載の磁気感応装置。
JP2002055364A 2002-03-01 2002-03-01 電子雪崩効果による抵抗変化を磁場によって制御した素子及びそれを用いた磁気感応装置 Expired - Lifetime JP4543142B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002055364A JP4543142B2 (ja) 2002-03-01 2002-03-01 電子雪崩効果による抵抗変化を磁場によって制御した素子及びそれを用いた磁気感応装置
AU2003211402A AU2003211402A1 (en) 2002-03-01 2003-02-28 Magnetoresistive switch effect element and magnetosensitive device comprising it
PCT/JP2003/002347 WO2003075360A1 (fr) 2002-03-01 2003-02-28 Element a effet de commutation magnetoresistant et dispositif magnetoresistant comprenant cet element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002055364A JP4543142B2 (ja) 2002-03-01 2002-03-01 電子雪崩効果による抵抗変化を磁場によって制御した素子及びそれを用いた磁気感応装置

Publications (2)

Publication Number Publication Date
JP2003258268A JP2003258268A (ja) 2003-09-12
JP4543142B2 true JP4543142B2 (ja) 2010-09-15

Family

ID=27784608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002055364A Expired - Lifetime JP4543142B2 (ja) 2002-03-01 2002-03-01 電子雪崩効果による抵抗変化を磁場によって制御した素子及びそれを用いた磁気感応装置

Country Status (3)

Country Link
JP (1) JP4543142B2 (ja)
AU (1) AU2003211402A1 (ja)
WO (1) WO2003075360A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340425A (ja) * 1999-03-25 2000-12-08 Agency Of Ind Science & Technol 磁気抵抗効果薄膜
JP2002164589A (ja) * 2000-11-27 2002-06-07 National Institute Of Advanced Industrial & Technology 磁気抵抗効果素子およびそれを用いた磁気感応装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4276555A (en) * 1978-07-13 1981-06-30 International Business Machines Corporation Controlled avalanche voltage transistor and magnetic sensor
US4288708A (en) * 1980-05-01 1981-09-08 International Business Machines Corp. Differentially modulated avalanche area magnetically sensitive transistor
JP3149975B2 (ja) * 1990-10-08 2001-03-26 キヤノン株式会社 電子波干渉素子及び干渉電流変調方法
JP3141347B2 (ja) * 1991-04-18 2001-03-05 新日本無線株式会社 トランジスタ型磁気センサ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340425A (ja) * 1999-03-25 2000-12-08 Agency Of Ind Science & Technol 磁気抵抗効果薄膜
JP2002164589A (ja) * 2000-11-27 2002-06-07 National Institute Of Advanced Industrial & Technology 磁気抵抗効果素子およびそれを用いた磁気感応装置

Also Published As

Publication number Publication date
WO2003075360A1 (fr) 2003-09-12
AU2003211402A1 (en) 2003-09-16
JP2003258268A (ja) 2003-09-12

Similar Documents

Publication Publication Date Title
US6760201B2 (en) Magnetic tunnel element and its manufacturing method, thin-film magnetic head, magnetic memory and magnetic sensor
KR102099068B1 (ko) 자기 소자, 스커미온 메모리, 스커미온 메모리 장치, 스커미온 메모리 탑재 고체 전자 장치, 데이터 기록 장치, 데이터 처리 장치 및 통신 장치
US5930164A (en) Magnetic memory unit having four states and operating method thereof
US7738219B2 (en) Narrow track extraordinary magneto resistive [EMR] device with wide voltage tabs and diad lead structure
KR100245908B1 (ko) 스핀 밸브를 사용하는 온도 급변 감소 회로를 갖는 디스크드라이브
US6879512B2 (en) Nonvolatile memory device utilizing spin-valve-type designs and current pulses
CA2211699C (en) Nonvolatile magnetoresistive memory with fully closed-flux operation
JP3694233B2 (ja) 不均一ナローギャップ半導体の室温における極超巨大磁気抵抗
TW200301479A (en) Magentic memory device having soft reference layer
KR101985608B1 (ko) 자기 소자, 스커미온 메모리, 스커미온 메모리 장치, 스커미온 메모리 구비 고체 전자 장치, 데이터 기록 장치, 데이터 처리 장치 및 통신 장치
JPH07169005A (ja) 磁気抵抗システム用の電気オーバストレスおよび静電放電の保護
JP4092339B2 (ja) 温度制御式熱アシスト磁気記憶装置
US6597618B2 (en) Magnetic tunnel junction magnetic random access memory
US6515897B1 (en) Magnetic random access memory using a non-linear memory element select mechanism
WO2005119688A1 (en) Sense amplifying magnetic tunnel device
WO2001004970A1 (fr) Dispositif ferromagnetique a magneto-resistance, a effet tunnel a doubles puits quantique
US7613040B1 (en) Methods for using sense lines to thermally control the state of an MRAM
JP4543142B2 (ja) 電子雪崩効果による抵抗変化を磁場によって制御した素子及びそれを用いた磁気感応装置
JP2004288844A (ja) 磁気記憶素子及びこれを用いた磁気記憶装置
KR100791651B1 (ko) 개선된 접합형태를 가지는 나노접합 장치
JP2004172156A (ja) 磁気記憶素子及びその記録方法、並びに磁気記憶装置
JP4386158B2 (ja) Mram及びmramの書き込み方法
US7027323B2 (en) Storage device having parallel connected memory cells that include magnetoresistive elements
US7362549B2 (en) Storage device having first and second magnetic elements that interact magnetically to indicate a storage state
US6985381B2 (en) System and method for reading magnetization orientation of MRAM cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090114

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4543142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term