JP4541509B2 - Application failure detection device - Google Patents

Application failure detection device Download PDF

Info

Publication number
JP4541509B2
JP4541509B2 JP2000233680A JP2000233680A JP4541509B2 JP 4541509 B2 JP4541509 B2 JP 4541509B2 JP 2000233680 A JP2000233680 A JP 2000233680A JP 2000233680 A JP2000233680 A JP 2000233680A JP 4541509 B2 JP4541509 B2 JP 4541509B2
Authority
JP
Japan
Prior art keywords
coating
supply nozzle
application
light receiving
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000233680A
Other languages
Japanese (ja)
Other versions
JP2002045755A (en
Inventor
博司 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2000233680A priority Critical patent/JP4541509B2/en
Publication of JP2002045755A publication Critical patent/JP2002045755A/en
Application granted granted Critical
Publication of JP4541509B2 publication Critical patent/JP4541509B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coating Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、供給ノズルを用いてワークに塗布する塗布材の塗布不良を検出する塗布不良検出装置に関する。
【0002】
【従来の技術】
従来から、シーリング材や接着剤などの塗布材をワークの表面に、ロボットなどを用いて自動的に塗布するシステムが種々提案されている。この場合、塗布材には粘性があり、しかも、この粘性は温度によっても大きく左右されるため、通常は温度管理を行い、一定の温度下で塗布作業を行うようにしているが、塗布材の性質は自身の温度のみならず、被塗布面を有するワークの温度状態や汚れ(付着油脂や埃)、及び表面状態(めっき、錆)によっても変化してしまう。
【0003】
そのため、塗布切れ等の塗布不良の有無を検出する工程が必要となる、例えば、特開平10−10051号公報には、CCDカメラを用いて塗布完了後の塗布状態を撮像し、この画像を二値化処理して、塗布切れ部が存在しているか否かを検査する技術が開示されている。
【0004】
又、これ以外に、塗布完了後の塗布状態を検出器を用いて部分的に確認する技術も提案されている。
【0005】
【発明が解決しようとする課題】
しかし、何れの技術も塗布作業が完了した後に塗布不良の有無を検出するものであるため、塗布作業完了後のワークを次工程へ直ちに搬送することができず、作業効率が悪い。
【0006】
又、例えば塗布作業開始直後に塗布不良が発生した場合であっても、塗布作業が完了するまでは、塗布不良を検出することができないので、塗布作業自体が無駄になってしまう場合もある。更に、CCDカメラを用いて画像処理を行うシステムは高価であり、簡単に採用することはできない。
【0007】
これに対処するに、検出器を供給ノズルに追従させて移動させ、塗布材を供出した後の塗布状態をほぼリアルタイムで検出することも考えられるが、供給ノズルが塗布用ロボットの先端に固設されている場合、この供給ノズルが直線的に移動するとは限らず、何れの方向へ移動するかを特定することができないため、検出器で供給ノズルを正確に追従することが困難で、塗布不良の検出精度が問題となる。
【0008】
本発明は、上記事情に鑑み、塗布不良をほぼリアルタイムで検出することが可能で、検出時間の短縮化が実現でき、塗布不良が発生した場合には塗布作業の無駄を最小限とすることの可能な塗布不良検出装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため本発明による第1の塗布不良検出装置は、ワークの被塗布面に沿って相対移動し該被塗布面に対して塗布材を供出する供給ノズルと、上記供給ノズルの周囲に交互若しくは周期的に複数配設した投光部及び光センサの受光部と、上記光センサによって受光された上記被塗布面方向からの反射光に基づき上記塗布材の塗布不良を検出する塗布不良検出部とを備え、上記複数の受光部は隣接する受光部同士の検出範囲がラップするように設定されていることを特徴とする。
【0010】
このような構成では、ワークの被塗布面に塗布材を供出する供給ノズルの周囲に発光部部材の投光部及び光センサの受光部を配設したので、塗布作業中に塗布切れ等の塗布不良が発生した場合、リアルタイムで検出することができる。
【0012】
この場合、好ましくは、1)上記投光部及び上記光センサの受光部を上記供給ノズルの周囲に同軸状に配設したことを特徴とする。
【0013】
)上記塗布不良検出部には上記各光センサに設けた光電変換部で光電変換された信号を順次択一的に選択するスイッチ部が接続されていることを特徴とする。
【0014】
)上記光センサが光ファイバセンサであることを特徴とする。
【0015】
)上記塗布不良検出部では上記供給ノズルから上記塗布材の供出が開始された後、所定時間経過後も上記塗布材が検出されないときは塗布不良と判定することを特徴とする。
【0016】
)上記塗布不良検出部では上記供給ノズルから上記塗布材の供出中に上記塗布材が検出されないときは塗布不良と判定することを特徴とする。
【0017】
)上記供給ノズルは上記塗布材の塗布終了後も少なくとも該供給ノズルの塗布終了位置を上記光センサの受光部が通過するまで供給ノズルを上記ワークに対して相対移動させることを特徴とする。
【0018】
)上記投光部及び上記光センサの受光部は上記供給ノズルの外周に配設した保持部材に支持されており、上記保持部材が上記供給ノズルの軸方向に沿ってスライド自在に支持されていることを特徴とする。
【0019】
8))において、上記保持部材は昇降機構を介してスライド自在に支持されていることを特徴とする。
【0020】
)上記受光部が受光ファイバであり、この受光ファイバが色フィルタを兼用していることを特徴とする。
【0021】
【発明の実施の形態】
以下、図面に基づいて本発明の一実施の形態を説明する。図1〜図6に本発明の第1実施の形態を示す。図1に塗布用ロボットの概略構成を示す。
【0022】
この塗布用ロボット1は自在アーム2を備え、この自在アーム2の先端に、供給ノズル3を保持するノズルホルダ2aが設けられている。尚、供給ノズル3には、図示しないポンプユニットが連通されており、このポンプユニットからシーリング材、接着剤等の塗布材が供給される。
【0023】
又、図4、図5に示すように、この塗布材が塗布される被塗布面w1を有するワークwは、図示しない作業用ベンチに載置固定されており、塗布用ロボット1は予め組み込まれているプログラムに従い、供給ノズル3をワークwの被塗布面w1に沿って移動させる。同図に示すように、被塗布面w1は、例えばワークwの周縁上に設けられており、供給ノズル3から連続的に供出される塗布材4が、自在アーム2の移動に伴い被塗布面w1にビード状に塗布される。
【0024】
又、図2、図3に示すように、供給ノズル3の外周にリング状に形成されたセンサ保持部材5が配設されている。このセンサ保持部材5の一側にブラケット5aが固設され、このブラケット5aが供給ノズル3を保持するノズルホルダ2aに固設されている。
【0025】
図3(b)に示すように、センサ保持部材5には、光ファイバセンサ6に設けられている受光部としての受光ファイバ部6aと、光源(図示せず)から延出する投光部としての投光ファイバ部7とが交互に配設されている。尚、各受光ファイバ部6aの間隔は、隣接するもの同士の検出範囲が若干ラップするように設定されている。
【0026】
各ファイバ部6a,7は供給ノズル3と平行に配設されている。この供給ノズル3の先端はワークwの被塗布面w1に対し、ほぼ垂直方向に対設した状態で塗布材4を供出するように設定されているため、各ファイバ部6a,7の端面もワークwに対してほぼ垂直方向に対設される。この場合、各投光ファイバ部7は、投射光が互いに干渉しないような間隔に配設されている。
【0027】
又、投光ファイバ部7は受光ファイバ部6aに対し交互に配設されている必要はなく、受光ファイバ部6aに対して、2つおき、3つおき等、周期的な間隔で配設するようにしても良い。
【0028】
又、図6に自動塗布装置の基本構成を示す。同図に示すように、各光ファイバセンサ6に設けた受光ファイバ部6aの出射端側に光電変換部としての光電スイッチ部6bが配設され、この光電スイッチ部6bがスイッチ部8に接続されており、このスイッチ部8からの検出信号が塗布不良検出部9に出力される。
【0029】
各光電スイッチ部6bは、投光ファイバ部7における光の入力の有無を、予め調整した感度に応じて電気的なON/OFF信号に変換し、スイッチ部8へ出力するもので、本実施の形態では、供給ノズル3からの塗布材4の供給が一時的に滞ることにより形成される塗布切れ部4a(図4、図5参照)の検出を、塗布材4とワークwの表面(及び被塗布面w1)との段差を利用して行っている。
【0030】
すなわち、通常、塗布材4には粘着性があり、ワークwの被塗布面w1に塗布した場合、若干の盛り上がりが生じるため、塗布材4と被塗布面w1との段差を利用して感度調整し、塗布切れ部4aを検出するようにしている。
【0031】
又、別の態様として、受光ファイバ部6a自体を着色して色フィルタとして使用することで、光電スイッチ部6bが特定の色調、或いは明度に感応するように設定し、光ファイバセンサ6をカラーファイバセンサとして機能させるようにしても良い。
【0032】
すなわち、被塗布面w1と塗布材4とに色調差や明度差がある場合には、通常の光ファイバセンサ6を用いるよりも、カラーファイバセンサを用いた方が検出精度が高くなる場合がある。このような場合は、投光ファイバ部7自体を着色して、通常の光ファイバセンサ6をカラーファイバセンサとして機能させることで、構造の簡素化、及び検出精度の向上を図ることができる。
【0033】
例えばワークwが車体であり、この車体の板金が銀色で、この車体に塗布する塗布材(シーリング材)4が青色である場合、或いはワークwが車両の前面ガラスであり、この前面ガラスの外周に設けられている被塗布面w1が黒色セラミック部位であり、この黒色セラミック部位に塗布する塗布材(接着剤)4が黄色である場合には、受光ファイバ部6aを対応する明度或いは色調で着色することで、明度差や色調差により塗布不良を検出することができる。
【0034】
又、スイッチ部8は、各光電スイッチ部6bからの信号を順次択一的に選択して、ある時間差でシリアルに出力するアナログスイッチで構成されている。
【0035】
塗布不良検出部9は、ロボット制御部11からの作業開始信号に同期して塗布不良検出が開始される。塗布不良検出が開始されると、スイッチ部8から順次出力されるON/OFF信号を読込み、このON/OFF信号に基づき塗布切れ部4aの有無を検出する。
【0036】
そして、この塗布不良検出部9で塗布切れ部4aが検出された場合、警報手段10に警報信号を出力すると共に、塗布用ロボット1を制御するロボット制御部11に対して、塗布作業中止信号を出力する。
【0037】
一方、ロボット制御部11は、塗布作業が正常に終了した後も、センサ保持部材5が塗布完了位置を通過するまでは供給ノズル3を継続的に移動させる。
【0038】
次に、上記構成による本実施の形態の作用について説明する。ワークwが作業用ベンチ(図示せず)に載置されると、ロボット制御部11では、予め設定されているプログラムに従い、塗布用ロボット1を動作させ、自在アーム2の先端に固設されている供給ノズル3をワークwの被塗布面w1上に臨ませる。尚、この供給ノズル3を保持するノズルホルダ2aには、センサ保持部材5がブラケット5aを介して固設されているため、このセンサ保持部材5に保持されている各ファイバ部6a,7は、供給ノズル3と常に一体的に移動する。
【0039】
次いで、ロボット制御部11では、図示しないポンプユニットを駆動させて供給ノズル3から塗布材4の供出を開始すると共に、供給ノズル3を被塗布面w1上に沿って移動させる。同時に、塗布不良検出部9に対して塗布開始信号を出力する。
【0040】
塗布不良検出部9ではロボット制御部11からの塗布開始信号をトリガとしてタイマを起動させると共に、スイッチ部8から順次出力される各光ファイバセンサ6の光電スイッチ部6bからON/OFF信号を、所定のタイミングで読込む。
【0041】
センサ保持部材5に保持されている投光ファイバ部7からの投射光はワークwの被塗布面w1を含む表面に出射され、その反射光が光ファイバセンサ6の受光ファイバ部6aに入射し、光電スイッチ部6bで受光される。このとき、光電スイッチ6bを、ワークwの表面と被塗布面w1に塗布された塗布材4との段差を利用し、塗布材4の盛り上がりを検出したときON信号が出力するように感度調整されている。
【0042】
従って、供給ノズル3から被塗布面w1に対して塗布材4の供出が開始された直後は、センサ保持部材5に保持されている何れかの投光ファイバ部7及び対応する受光ファイバ部6aは、被塗布面w1に塗布された塗布材4に未だ達していないため、塗布切れを誤検出してしまうので、タイマにより経過時間を計時し、塗布材4の塗布を開始した後、センサ保持部材5の供給ノズル3の後方に位置する部位の投光ファイバ部7及び対応する受光ファイバ部6aが塗布開始位置を通過するに充分な時間を計時し、所定時間経過後、塗布切れ検出を開始する。
【0043】
塗布切れ検出が開始されると、塗布不良検出部9では、スイッチ部8から順次送られてくる各光ファイバセンサ6の光電スイッチ部6bのON/OFF信号を読込み、何れかの光ファイバセンサ6で塗布材4が検出されているか否かを調べ、何れかの光ファイバセンサ6で塗布材4が検出されているとき、すなわち、何れかの光ファイバセンサ6からON信号が出力されているときは、塗布作業を継続する。
【0044】
そして、塗布作業が所定に終了したときは、再びタイマを起動させ、塗布材4の塗布作業終了位置をセンサ保持部材5に保持されている何れかの投光ファイバ部7及び対応する受光ファイバ部6aが通過するまでに充分な時間を計時し、その間、供給ノズル3を空走させ、所定時間が経過した後、塗布用ロボット1を停止させ、塗布作業を終了すると共に、自在アーム2所定待機位置に戻す。
【0045】
一方、塗布作業開始後、設定時間経過した後も、何れの光電スイッチ部6bからもON信号が検出されないとき、或いは塗布作業中に全ての光電スイッチ部6bからOFF信号が検出されたとき、或いは塗布作業終了後の空走時間中に全ての光電スイッチ部6bからOFF信号が検出されたときは、塗布切れと判定し、警報手段10を駆動させて、作業者に塗布不良を知らせると共に、ロボット制御部11に対して塗布切れ信号を出力する。
【0046】
すると、ロボット制御部11では塗布用ロボット1を直ちに停止させ、塗布作業を中止すると共に、自在アーム2を待機位置へ戻す。
【0047】
このように、本実施の形態では、塗布切れが検出されたとき、塗布作業を直ちに中止するようにしたので、塗布作業の無駄を最小限に止め、作業の効率化を図ることができる。又、光ファイバセンサ6を供給ノズル3の周囲に配設したので、この供給ノズル3が何れの方向へ移動した場合であっても、塗布不良を正確に検出することができ、塗布不良検出精度が向上する。
【0048】
又、図7に本発明の第2実施の形態によるセンサ保持部材の底面図を示す。第1実施の形態ではセンサ保持部材に、互いに対応する受光ファイバ部6aと投光ファイバ部7とを交互に配設したが、本実施の形態では、センサ保持部材12に対し、互いに対応する受光ファイバ部6aと投光ファイバ部7とを供給ノズル3を中心として径方向へ同軸状に配設したもので、作用効果は、第1実施の形態と同様である。
【0049】
又、図8に本発明の第3実施の形態による塗布用ロボットの先端部の拡大図を示す。本実施の形態では、受光ファイバ部6aと投光ファイバ部7とを保持するセンサ保持部材13をノズルホルダ2aに対し、昇降機構14を介して軸方向へ進退自在に保持したものである。
【0050】
すなわち、この昇降機構14のノズルホルダ2aに固設されている回転アクチュエータ15を駆動させると、この回転アクチュエータ15に連設する回転レバー15aが、図8(b)に示す矢印方向へ回転し、リンクアーム16を介して、センサ保持部材13を上方へ引く。
【0051】
このセンサ保持部材13のリンクアーム16に直行する両側には、支持アーム17の基部が固設されており、その上部がノズルホルダ2aの両側に固設されているガイドレール18に挿通されている。
【0052】
従って、センサ保持部材13がリンクアーム16を介して上方へ引かれると、このセンサ保持部材13は支持アーム17とガイドレール18とに支持された状態で、供給ノズル3と同軸状態を維持したまま、上方へスライドする。
【0053】
この昇降機構14を用いることで、例えば供給ノズル3の先端を清掃する場合、簡単に供給ノズル3の先端を露呈させることができる。又、この昇降機構14を塗布用ロボットの動作と連動させ、例えば塗布作業が終了したとき、昇降機構14を動作させてセンサ保持部材13を上方へ待避させることで、周囲に別部品がある場合や、狭い部位に供給ノズル3を移動する場合等に、これらの部材とセンサ保持部材13との干渉を回避することができる。
【0054】
尚、本発明は上記各実施の形態に限るものではなく、例えば光ファイバセンサを投光ファイバ部7と受光ファイバ部6aとを対で構成させた状態でセンサ保持部材5に保持させ、各光センサの投光ファイバから平行光を順次択一的に投光させると共に、これに同期して対応する光電変換部を駆動させるようにしても良い。このようにすることでセンサ同士の干渉が回避され、塗布切れ検出精度が向上する。
【0055】
又、本実施の形態によるセンサ保持部材5は、投光ファイバと受光ファイバとをリング状に配設しているが、四角形、六角形などの多角形に配設しても良い。
【0056】
更に、第3実施の形態におけるセンサ保持部材13は、昇降機構14を用いず手動で上下動できる構造としても良い。
【0057】
【発明の効果】
以上、説明したように本発明によれば、塗布不良の発生をほぼリアルタイムで検出することが可能で、検出時間の短縮化が実現でき、塗布不良が発生した場合には塗布作業の無駄を最小限にすることができる等、優れた効果が奏される。
【図面の簡単な説明】
【図1】第1実施の形態による塗布用ロボットの概略構成図
【図2】同、供給ノズル周辺の拡大図
【図3】同、(a)センサ保持部材の側面図、(b)(a)の底面図
【図4】同、塗布作業中の供給ノズルとセンサ保持部材との関係を示す斜視図
【図5】同、塗布作業中の供給ノズルとセンサ保持部材との関係を示す平面図
【図6】同、自動塗布装置の基本構成を示すブロック図
【図7】第2実施の形態によるセンサ保持部材の底面図
【図8】第3実施の形態による(a)塗布用ロボットの先端部の拡大図、(b)(a)の底面図
【符号の説明】
3 供給ノズル
4 塗布材
6 光ファイバセンサ(光センサ)
6a 受光ファイバ部(受光部)
6b 光電スイッチ部(光電変換部)
7 投光ファイバ部(投光部)
8 スイッチ部
9 塗布不良検出部
5,12,13 センサ保持部材
14 昇降機構
w ワーク
w1 被塗布面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an application failure detection apparatus that detects application failure of an application material applied to a workpiece using a supply nozzle.
[0002]
[Prior art]
Conventionally, various systems for automatically applying a coating material such as a sealing material or an adhesive to the surface of a workpiece using a robot or the like have been proposed. In this case, the coating material has viscosity, and since this viscosity is greatly affected by temperature, the temperature is usually controlled and the coating operation is performed at a constant temperature. The property changes not only by the temperature of itself but also by the temperature state of the workpiece having the surface to be coated, dirt (attached oil and fat and dust), and surface state (plating, rust).
[0003]
For this reason, a process for detecting the presence or absence of application failure such as application failure is required. For example, Japanese Patent Application Laid-Open No. 10-10051 uses a CCD camera to capture an application state after application is completed and A technique for inspecting whether or not an application-cut portion exists by performing a valuation process is disclosed.
[0004]
In addition to this, a technique has also been proposed in which the application state after completion of application is partially confirmed using a detector.
[0005]
[Problems to be solved by the invention]
However, since any technique detects the presence or absence of application failure after the application operation is completed, the work after completion of the application operation cannot be immediately transferred to the next process, resulting in poor work efficiency.
[0006]
For example, even when a coating failure occurs immediately after the start of the coating operation, the coating operation itself may be wasted because the coating failure cannot be detected until the coating operation is completed. Furthermore, a system that performs image processing using a CCD camera is expensive and cannot be easily adopted.
[0007]
In order to cope with this, it is conceivable to detect the application state after delivering the coating material by moving the detector following the supply nozzle, but the supply nozzle is fixed to the tip of the application robot. In this case, the supply nozzle does not always move linearly, and since it cannot be specified in which direction the supply nozzle moves, it is difficult to accurately follow the supply nozzle with a detector, resulting in poor coating. Detection accuracy becomes a problem.
[0008]
In view of the above circumstances, the present invention can detect application failure almost in real time, can reduce the detection time, and minimizes waste of application work when application failure occurs. An object of the present invention is to provide a possible application defect detection device.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a first application defect detection device according to the present invention includes a supply nozzle that moves relative to a surface to be coated of a workpiece and delivers a coating material to the surface to be coated, and a periphery of the supply nozzle. And a plurality of light emitting units and light receiving units arranged alternately or periodically, and a coating defect for detecting a coating defect of the coating material based on reflected light from the coated surface direction received by the light sensor. and a detection unit, the plurality of light receiving portions is characterized that you have been set so that the detection range of the light receiving portions adjacent wraps.
[0010]
In such a configuration, since the light projecting unit of the light emitting unit member and the light receiving unit of the optical sensor are disposed around the supply nozzle that delivers the coating material to the surface to be coated of the workpiece, it is possible to apply a coating that is out of coating during the coating operation. When a defect occurs, it can be detected in real time.
[0012]
In this case, preferably, 1 ) the light projecting unit and the light receiving unit of the photosensor are coaxially arranged around the supply nozzle.
[0013]
2 ) The application failure detecting unit is connected to a switch unit for sequentially selecting signals photoelectrically converted by the photoelectric conversion units provided in the respective optical sensors.
[0014]
3 ) The optical sensor is an optical fiber sensor.
[0015]
4 ) The application failure detection unit is characterized in that, when the application material is not detected even after a predetermined time has elapsed after the supply of the application material from the supply nozzle is started, it is determined that the application is defective.
[0016]
5 ) The application failure detection unit determines that the application failure is detected when the application material is not detected during delivery of the application material from the supply nozzle.
[0017]
6 ) The supply nozzle moves the supply nozzle relative to the workpiece at least until the light receiving portion of the optical sensor passes through the application end position of the supply nozzle even after the application of the application material is completed.
[0018]
7 ) The light projecting unit and the light receiving unit of the optical sensor are supported by a holding member disposed on the outer periphery of the supply nozzle, and the holding member is slidably supported along the axial direction of the supply nozzle. It is characterized by being.
[0019]
8) In 7 ), the holding member is slidably supported via an elevating mechanism.
[0020]
9 ) The light receiving portion is a light receiving fiber, and the light receiving fiber also serves as a color filter.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. 1 to 6 show a first embodiment of the present invention. FIG. 1 shows a schematic configuration of a coating robot.
[0022]
The coating robot 1 includes a free arm 2, and a nozzle holder 2 a that holds a supply nozzle 3 is provided at the tip of the free arm 2. The supply nozzle 3 is connected to a pump unit (not shown), and a coating material such as a sealing material and an adhesive is supplied from the pump unit.
[0023]
Also, as shown in FIGS. 4 and 5, a work w having an application surface w1 to which the application material is applied is placed and fixed on a work bench (not shown), and the application robot 1 is incorporated in advance. The supply nozzle 3 is moved along the application surface w1 of the workpiece w in accordance with the program being executed. As shown in the figure, the coated surface w1 is provided on the periphery of the workpiece w, for example, and the coating material 4 continuously delivered from the supply nozzle 3 is coated with the movement of the universal arm 2. It is applied in a bead shape on w1.
[0024]
As shown in FIGS. 2 and 3, a sensor holding member 5 formed in a ring shape is disposed on the outer periphery of the supply nozzle 3. A bracket 5 a is fixed to one side of the sensor holding member 5, and the bracket 5 a is fixed to a nozzle holder 2 a that holds the supply nozzle 3.
[0025]
As shown in FIG. 3B, the sensor holding member 5 includes a light receiving fiber portion 6a as a light receiving portion provided in the optical fiber sensor 6, and a light projecting portion extending from a light source (not shown). The projecting fiber portions 7 are alternately arranged. Note that the interval between the light receiving fiber portions 6a is set so that the detection range between adjacent ones slightly overlaps.
[0026]
Each fiber part 6 a, 7 is arranged in parallel with the supply nozzle 3. Since the tip of the supply nozzle 3 is set so as to deliver the coating material 4 in a state of being substantially perpendicular to the coated surface w1 of the workpiece w, the end surfaces of the fiber portions 6a and 7 are also arranged on the workpiece. It is opposed in a direction substantially perpendicular to w. In this case, the light projecting fiber portions 7 are arranged at intervals so that the projection lights do not interfere with each other.
[0027]
Further, the light projecting fiber portions 7 do not need to be alternately arranged with respect to the light receiving fiber portion 6a, but are arranged with a periodic interval such as every two or three with respect to the light receiving fiber portion 6a. You may do it.
[0028]
FIG. 6 shows the basic configuration of the automatic coating apparatus. As shown in the figure, a photoelectric switch unit 6b as a photoelectric conversion unit is disposed on the emission end side of the light receiving fiber unit 6a provided in each optical fiber sensor 6, and this photoelectric switch unit 6b is connected to the switch unit 8. The detection signal from the switch unit 8 is output to the application failure detection unit 9.
[0029]
Each photoelectric switch unit 6b converts the presence / absence of light input to the light projecting fiber unit 7 into an electrical ON / OFF signal according to the sensitivity adjusted in advance, and outputs the signal to the switch unit 8. In the embodiment, the detection of the application cut portion 4a (see FIGS. 4 and 5) formed by the supply of the coating material 4 from the supply nozzle 3 temporarily stagnation is detected. This is performed using a step with respect to the coating surface w1).
[0030]
That is, normally, the coating material 4 is sticky, and when applied to the coated surface w1 of the workpiece w, a slight rise occurs. Therefore, the sensitivity adjustment is performed using the step between the coated material 4 and the coated surface w1. In addition, the application cut portion 4a is detected.
[0031]
As another aspect, the light receiving fiber portion 6a itself is colored and used as a color filter, so that the photoelectric switch portion 6b is set to be sensitive to a specific color tone or lightness, and the optical fiber sensor 6 is connected to the color fiber. You may make it function as a sensor.
[0032]
That is, when there is a color tone difference or brightness difference between the coated surface w1 and the coating material 4, the detection accuracy may be higher when the color fiber sensor is used than when the normal optical fiber sensor 6 is used. . In such a case, it is possible to simplify the structure and improve the detection accuracy by coloring the light projecting fiber portion 7 itself and causing the normal optical fiber sensor 6 to function as a color fiber sensor.
[0033]
For example, when the workpiece w is a vehicle body, the sheet metal of the vehicle body is silver, and the coating material (sealing material) 4 applied to the vehicle body is blue, or the workpiece w is the front glass of the vehicle, and the outer periphery of the front glass When the coated surface w1 provided on the black ceramic part is a black ceramic part and the coating material (adhesive) 4 applied to the black ceramic part is yellow, the light receiving fiber part 6a is colored with the corresponding lightness or color tone. By doing so, it is possible to detect an application failure based on a brightness difference or a color tone difference.
[0034]
The switch unit 8 is configured by an analog switch that sequentially selects signals from the photoelectric switch units 6b and outputs them serially at a certain time difference.
[0035]
The application failure detection unit 9 starts application failure detection in synchronization with a work start signal from the robot control unit 11. When the application failure detection is started, the ON / OFF signals sequentially output from the switch unit 8 are read, and the presence / absence of the application cut portion 4a is detected based on the ON / OFF signal.
[0036]
When the application failure detection unit 9 detects the application failure portion 4a, it outputs an alarm signal to the alarm means 10 and sends an application operation stop signal to the robot control unit 11 that controls the application robot 1. Output.
[0037]
On the other hand, the robot control unit 11 continuously moves the supply nozzle 3 until the sensor holding member 5 passes the application completion position even after the application operation has been completed normally.
[0038]
Next, the operation of the present embodiment having the above configuration will be described. When the workpiece w is placed on a work bench (not shown), the robot controller 11 operates the coating robot 1 according to a preset program and is fixed to the tip of the free arm 2. The supply nozzle 3 that is present faces the coated surface w1 of the workpiece w. Since the sensor holding member 5 is fixed to the nozzle holder 2a for holding the supply nozzle 3 via the bracket 5a, the fiber portions 6a and 7 held by the sensor holding member 5 are It always moves integrally with the supply nozzle 3.
[0039]
Next, the robot controller 11 drives a pump unit (not shown) to start feeding the coating material 4 from the supply nozzle 3 and moves the supply nozzle 3 along the surface to be coated w1. At the same time, an application start signal is output to the application failure detection unit 9.
[0040]
The coating start signal from the coating defect detecting section 9, the robot controller 11 causes the timer is started as a trigger, are sequentially output from the switch unit 8, the ON / OFF signal from the photoelectric switch unit 6b of the optical fiber sensor 6 , Read at a predetermined timing.
[0041]
The projection light from the light projecting fiber portion 7 held by the sensor holding member 5 is emitted to the surface including the coated surface w1 of the workpiece w, and the reflected light enters the light receiving fiber portion 6a of the optical fiber sensor 6, Light is received by the photoelectric switch 6b. At this time, the photoelectric switch 6b uses the step between the surface of the workpiece w and the coating material 4 applied to the coated surface w1, and the sensitivity is adjusted so that an ON signal is output when the swelling of the coating material 4 is detected. ing.
[0042]
Therefore, immediately after the supply of the coating material 4 from the supply nozzle 3 to the coated surface w1 is started, any of the light projecting fiber portions 7 and the corresponding light receiving fiber portions 6a held by the sensor holding member 5 are Since the coating material 4 applied to the surface to be coated w1 has not yet been reached, it is erroneously detected that the coating has been cut off. Therefore, the elapsed time is measured by a timer, and the application of the coating material 4 is started. The time required for the light projecting fiber portion 7 and the corresponding light receiving fiber portion 6a located at the rear of the supply nozzle 3 to pass through the coating start position is timed, and after a predetermined time has elapsed, the detection of coating failure is started. .
[0043]
When the application failure detection is started, the application failure detection unit 9 reads the ON / OFF signal of the photoelectric switch unit 6b of each optical fiber sensor 6 sequentially sent from the switch unit 8, and any one of the optical fiber sensors 6 is read. It is checked whether or not the coating material 4 is detected, and when the coating material 4 is detected by any of the optical fiber sensors 6, that is, when an ON signal is output from any of the optical fiber sensors 6. Continue the coating operation.
[0044]
Then, when the coating operation is finished in a predetermined manner, the timer is started again, and any light projecting fiber portion 7 held by the sensor holding member 5 and the corresponding light receiving fiber portion are held at the application work end position of the coating material 4. A sufficient time is measured until 6a passes, during which time the supply nozzle 3 runs idle, and after a predetermined time has elapsed, the coating robot 1 is stopped, the coating operation is completed, and the free arm 2 is in a predetermined standby state. Return to position.
[0045]
On the other hand, when the ON signal is not detected from any of the photoelectric switch sections 6b after the set time has elapsed after the start of the coating work, or when the OFF signals are detected from all the photoelectric switch sections 6b during the coating work, or When OFF signals are detected from all the photoelectric switch sections 6b during the idle time after the coating operation is completed, it is determined that the coating has run out, the alarm means 10 is driven to notify the operator of the coating failure, and the robot An out-of-application signal is output to the control unit 11.
[0046]
Then, the robot controller 11 immediately stops the coating robot 1 to stop the coating operation and return the free arm 2 to the standby position.
[0047]
As described above, in this embodiment, the application work is immediately stopped when the application failure is detected. Therefore, the waste of the application work can be minimized and the work efficiency can be improved. In addition, since the optical fiber sensor 6 is disposed around the supply nozzle 3, it is possible to accurately detect a coating defect regardless of which direction the supply nozzle 3 moves. Will improve.
[0048]
FIG. 7 is a bottom view of the sensor holding member according to the second embodiment of the present invention. In the first embodiment, the light receiving fiber portions 6a and the light projecting fiber portions 7 corresponding to each other are alternately arranged on the sensor holding member. However, in the present embodiment, the light receiving portions corresponding to each other with respect to the sensor holding member 12. The fiber part 6a and the light projecting fiber part 7 are arranged coaxially in the radial direction with the supply nozzle 3 as the center, and the operational effects are the same as in the first embodiment.
[0049]
FIG. 8 shows an enlarged view of the tip of the coating robot according to the third embodiment of the present invention. In the present embodiment, the sensor holding member 13 that holds the light receiving fiber portion 6a and the light projecting fiber portion 7 is held with respect to the nozzle holder 2a via the elevating mechanism 14 so as to be able to advance and retract in the axial direction.
[0050]
That is, when the rotary actuator 15 fixed to the nozzle holder 2a of the lifting mechanism 14 is driven, the rotary lever 15a connected to the rotary actuator 15 rotates in the direction of the arrow shown in FIG. The sensor holding member 13 is pulled upward via the link arm 16.
[0051]
A support arm 17 has a base portion fixed on both sides of the sensor holding member 13 which is perpendicular to the link arm 16, and an upper portion thereof is inserted into a guide rail 18 fixed on both sides of the nozzle holder 2a. .
[0052]
Therefore, when the sensor holding member 13 is pulled upward via the link arm 16, the sensor holding member 13 is supported by the support arm 17 and the guide rail 18 and remains coaxial with the supply nozzle 3. , Slide upwards.
[0053]
By using the elevating mechanism 14, for example, when the tip of the supply nozzle 3 is cleaned, the tip of the supply nozzle 3 can be easily exposed. In addition, when the lifting mechanism 14 is interlocked with the operation of the coating robot, for example, when the coating operation is finished, the lifting mechanism 14 is operated to retract the sensor holding member 13 upward, so that there are other parts around. In addition, when the supply nozzle 3 is moved to a narrow part, interference between these members and the sensor holding member 13 can be avoided.
[0054]
The present invention is not limited to the above-described embodiments. For example, the optical fiber sensor is held by the sensor holding member 5 in a state where the light projecting fiber portion 7 and the light receiving fiber portion 6a are configured in pairs, and each light The parallel light may be alternatively and sequentially projected from the light projecting fiber of the sensor, and the corresponding photoelectric conversion unit may be driven in synchronization therewith. By doing in this way, interference between sensors is avoided and the coating-out detection accuracy improves.
[0055]
In the sensor holding member 5 according to the present embodiment, the light projecting fiber and the light receiving fiber are disposed in a ring shape, but may be disposed in a polygonal shape such as a quadrangle or a hexagon.
[0056]
Furthermore, the sensor holding member 13 in the third embodiment may have a structure that can be manually moved up and down without using the elevating mechanism 14.
[0057]
【The invention's effect】
As described above, according to the present invention, it is possible to detect the occurrence of a coating failure almost in real time, to shorten the detection time, and to minimize the waste of coating work when a coating failure occurs. Excellent effects such as being able to be limited.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a coating robot according to a first embodiment. FIG. 2 is an enlarged view around a supply nozzle. FIG. 3 is a side view of a sensor holding member. FIG. 4 is a perspective view showing the relationship between the supply nozzle and the sensor holding member during the application operation. FIG. 5 is a plan view showing the relationship between the supply nozzle and the sensor holding member during the application operation. FIG. 6 is a block diagram showing the basic configuration of the automatic coating apparatus. FIG. 7 is a bottom view of a sensor holding member according to the second embodiment. FIG. 8A is a tip of a coating robot according to the third embodiment. Enlarged view of the part, bottom view of (b) (a) 【Explanation of symbols】
3 Supply nozzle 4 Coating material 6 Optical fiber sensor (optical sensor)
6a Light receiving fiber part (light receiving part)
6b Photoelectric switch part (photoelectric conversion part)
7 Projection fiber part (projection part)
8 Switch unit 9 Application failure detection unit 5, 12, 13 Sensor holding member 14 Elevating mechanism w Work w1 Surface to be applied

Claims (10)

ワークの被塗布面に沿って相対移動し該被塗布面に対して塗布材を供出する供給ノズルと、
上記供給ノズルの周囲に交互若しくは周期的に複数配設した投光部及び光センサの受光部と、
上記光センサによって受光された上記被塗布面方向からの反射光に基づき上記塗布材の塗布不良を検出する塗布不良検出部と
を備え
上記複数の受光部は隣接する受光部同士の検出範囲がラップするように設定されていることを特徴とする塗布不良検出装置。
A supply nozzle that moves relative to the surface to be coated of the workpiece and delivers the coating material to the surface to be coated;
A plurality of light projecting portions and light receiving portions of the optical sensor disposed alternately or periodically around the supply nozzle;
A coating failure detection unit that detects a coating failure of the coating material based on reflected light from the coated surface direction received by the optical sensor ;
The plurality of coating defect detecting device receiving unit, characterized that you have been set so that the detection range of the light receiving portions adjacent wraps.
上記投光部及び上記光センサの受光部を上記供給ノズルの周囲に同軸状に配設したことを特徴とする請求項1記載の塗布不良検出装置。  2. The coating defect detection device according to claim 1, wherein the light projecting unit and the light receiving unit of the optical sensor are arranged coaxially around the supply nozzle. 上記塗布不良検出部には上記各光センサに設けた光電変換部で光電変換された信号を順次択一的に選択するスイッチ部が接続されていることを特徴とする請求項1記載の塗布不良検出装置。  2. The defective coating according to claim 1, wherein the defective coating application unit is connected to a switch unit for sequentially selecting signals photoelectrically converted by photoelectric conversion units provided in the respective optical sensors. Detection device. 上記光センサが光ファイバセンサであることを特徴とする請求項1〜の何れか1項に記載の塗布不良検出装置。Coating failure detecting apparatus according to any one of claim 1 to 3, wherein the optical sensor is an optical fiber sensor. 上記塗布不良検出部では上記供給ノズルから上記塗布材の供出が開始された後、所定時間経過後も上記塗布材が検出されないときは塗布不良と判定することを特徴とする請求項1〜の何れかに記載の塗布不良検出装置。After dispensing of the coating material from the supply nozzle is initiated in the coating defect detecting section, when after a predetermined time is also not detected the coating material is as claimed in claim 1-4, characterized in that to determine that poor coating The coating defect detection apparatus according to any one of the above. 上記塗布不良検出部では上記供給ノズルから上記塗布材の供出中に上記塗布材が検出されないときは塗布不良と判定することを特徴とする請求項1〜の何れか1項に記載の塗布不良検出装置。Poor coating according to any one of claim 1 to 5 is the coating defect detecting section when not detected the coating material during dispensing of the coating material from the supply nozzle, characterized in that to determine that poor coating Detection device. 上記供給ノズルは上記塗布材の塗布終了後も少なくとも該供給ノズルの塗布終了位置を上記光センサの受光部が通過するまで供給ノズルを上記ワークに対して相対移動させることを特徴とする請求項1〜の何れかに記載の塗布不良検出装置。The supply nozzle moves the supply nozzle relative to the workpiece until the light receiving portion of the optical sensor passes at least the application end position of the supply nozzle even after the application of the application material is completed. The application defect detection device according to any one of to 6 . 上記投光部及び上記光センサの受光部は上記供給ノズルの外周に配設した保持部材に支持されており、上記保持部材が上記供給ノズルの軸方向に沿ってスライド自在に支持されていることを特徴とする請求項1〜の何れかに記載の塗布不良検出装置。The light projecting unit and the light receiving unit of the optical sensor are supported by a holding member disposed on the outer periphery of the supply nozzle, and the holding member is supported slidably along the axial direction of the supply nozzle. The coating defect detection device according to any one of claims 1 to 4 . 上記保持部材は昇降機構を介してスライド自在に支持されていることを特徴とする請求項記載の塗布不良検出装置。9. The application failure detection apparatus according to claim 8, wherein the holding member is slidably supported via an elevating mechanism. 上記受光部が受光ファイバであり、この受光ファイバが色フィルタを兼用していることを特徴とする請求項1〜の何れかに記載の塗布不良検出装置。A said light receiving portion receiving fibers, coating failure detecting apparatus according to any one of claims 1 to 9, characterized in that the light receiving fiber also serves as a color filter.
JP2000233680A 2000-08-01 2000-08-01 Application failure detection device Expired - Fee Related JP4541509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000233680A JP4541509B2 (en) 2000-08-01 2000-08-01 Application failure detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000233680A JP4541509B2 (en) 2000-08-01 2000-08-01 Application failure detection device

Publications (2)

Publication Number Publication Date
JP2002045755A JP2002045755A (en) 2002-02-12
JP4541509B2 true JP4541509B2 (en) 2010-09-08

Family

ID=18726165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000233680A Expired - Fee Related JP4541509B2 (en) 2000-08-01 2000-08-01 Application failure detection device

Country Status (1)

Country Link
JP (1) JP4541509B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130071005A (en) * 2011-12-20 2013-06-28 주식회사 탑 엔지니어링 Paste dispenser

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100583316B1 (en) * 2003-12-11 2006-05-25 엘지.필립스 엘시디 주식회사 Apparatus and method for fabrication of flat panel display
KR101077296B1 (en) 2009-06-19 2011-10-26 유승국 Apparatus and method for applying a silicon damper onto a lcd frame by using cartesian robots
JP5994066B2 (en) * 2013-01-08 2016-09-21 兵神装備株式会社 Application state detection system and application system
CN107150010A (en) * 2017-07-10 2017-09-12 武汉华星光电技术有限公司 Frame glue coating mechanism and frame glue coating measuring method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184067A (en) * 1988-01-14 1989-07-21 Nissan Motor Co Ltd Apparatus for follow-up movement
JPH01184063A (en) * 1988-01-14 1989-07-21 Nissan Motor Co Ltd Viscous material painting apparatus
JPH01184062A (en) * 1988-01-14 1989-07-21 Nissan Motor Co Ltd Viscous material painting apparatus
JPH0333356U (en) * 1989-08-09 1991-04-02
JPH03254850A (en) * 1990-03-05 1991-11-13 Honda Motor Co Ltd Coating device
JPH04114444A (en) * 1990-09-05 1992-04-15 Olympus Optical Co Ltd In-process evaluation device for lb film
JPH05301076A (en) * 1992-04-23 1993-11-16 Toyoda Gosei Co Ltd Method for inspecting application state of adhesive and method for applying adhesive
JPH0731917A (en) * 1993-07-22 1995-02-03 Three Bond Co Ltd Device for coating and inspecting material
JPH11296774A (en) * 1998-04-15 1999-10-29 Aichi Tokei Denki Co Ltd Reading method for city water meter pointer and device therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184067A (en) * 1988-01-14 1989-07-21 Nissan Motor Co Ltd Apparatus for follow-up movement
JPH01184063A (en) * 1988-01-14 1989-07-21 Nissan Motor Co Ltd Viscous material painting apparatus
JPH01184062A (en) * 1988-01-14 1989-07-21 Nissan Motor Co Ltd Viscous material painting apparatus
JPH0333356U (en) * 1989-08-09 1991-04-02
JPH03254850A (en) * 1990-03-05 1991-11-13 Honda Motor Co Ltd Coating device
JPH04114444A (en) * 1990-09-05 1992-04-15 Olympus Optical Co Ltd In-process evaluation device for lb film
JPH05301076A (en) * 1992-04-23 1993-11-16 Toyoda Gosei Co Ltd Method for inspecting application state of adhesive and method for applying adhesive
JPH0731917A (en) * 1993-07-22 1995-02-03 Three Bond Co Ltd Device for coating and inspecting material
JPH11296774A (en) * 1998-04-15 1999-10-29 Aichi Tokei Denki Co Ltd Reading method for city water meter pointer and device therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130071005A (en) * 2011-12-20 2013-06-28 주식회사 탑 엔지니어링 Paste dispenser
KR101871171B1 (en) * 2011-12-20 2018-06-27 주식회사 탑 엔지니어링 Paste dispenser

Also Published As

Publication number Publication date
JP2002045755A (en) 2002-02-12

Similar Documents

Publication Publication Date Title
CN102270560A (en) Wet-processing apparatus
JP4541509B2 (en) Application failure detection device
JP2017162133A (en) Imaging system, measurement system, production system, imaging method, program, recording media, and measurement method
JPH0520150B2 (en)
JP4607313B2 (en) Electronic component mounting system
JPS59123647A (en) Cutter for end of coating sheet
US6243190B1 (en) Light scanning apparatus
CN110869154A (en) Welding system for selective wave soldering
JP2005331542A5 (en)
JP4544761B2 (en) Proximity gap control method, proximity gap control apparatus, and proximity exposure apparatus
KR0135337B1 (en) Auto-tapping machine
KR102150245B1 (en) A strip centering device and control method of the same
CN106645151B (en) Gluing detection device for screws
JPH05301076A (en) Method for inspecting application state of adhesive and method for applying adhesive
JP2757890B2 (en) Light intensity adjustment device in optical inspection
JP3442480B2 (en) Wafer peeling device
KR0137354Y1 (en) Apparatus for arranging without contact at assembly body for automatic assembly
CN216051442U (en) Full-automatic grinding line cleaning and detecting machine
KR20130003493A (en) Inspection equipment and method using the same
JPH07125729A (en) Bag tester
JP6809983B2 (en) Rug top plate inspection device, pail manufacturing system, and pail manufacturing method
JP2001310241A (en) Machining discriminating device of work
JPH0985472A (en) Method for detecting laser output and laser machining head using the method
JPS62250305A (en) Apparatus for inspecting coating film
JP2002087658A (en) Automatic changing head of web roll

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100624

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees