JP4540656B2 - Composition for porous ceramics, porous ceramics using the same, and method for producing the same - Google Patents

Composition for porous ceramics, porous ceramics using the same, and method for producing the same Download PDF

Info

Publication number
JP4540656B2
JP4540656B2 JP2006320870A JP2006320870A JP4540656B2 JP 4540656 B2 JP4540656 B2 JP 4540656B2 JP 2006320870 A JP2006320870 A JP 2006320870A JP 2006320870 A JP2006320870 A JP 2006320870A JP 4540656 B2 JP4540656 B2 JP 4540656B2
Authority
JP
Japan
Prior art keywords
steel slag
weight
particle size
experimental example
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006320870A
Other languages
Japanese (ja)
Other versions
JP2007176788A (en
Inventor
雅興 今井
賢一郎 三浦
洋 富田
主税 長友
Original Assignee
雅興 今井
賢一郎 三浦
洋 富田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 雅興 今井, 賢一郎 三浦, 洋 富田 filed Critical 雅興 今井
Priority to JP2006320870A priority Critical patent/JP4540656B2/en
Publication of JP2007176788A publication Critical patent/JP2007176788A/en
Application granted granted Critical
Publication of JP4540656B2 publication Critical patent/JP4540656B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Description

本発明は、多孔質セラミックス用組成物及びそれを用いた多孔質セラミックス並びにその製造方法に関するものである。   The present invention relates to a composition for porous ceramics, porous ceramics using the same, and a method for producing the same.

鉄鋼生産に伴って副生される鉄鋼スラグは、鉄鋼の生産に対して約30%も発生することが知られている。このように大量に発生する鉄鋼スラグの処理は、鉄鋼業界のみならず社会的にも大きな問題となっている。
また、砕石の生産に対して30%以上発生する砕石チップや、廃タイル,廃食器,廃瓦,廃土管,陶磁器製造時の不良品等の陶磁器屑の処理についても、同様に苦慮している現状がある。
このように大量に発生し、安価に入手できる鉄鋼スラグや陶磁器屑等の利用方法としては、大量に消費する土木建材用の原材料として最適なことから、例えば(特許文献1)に「鉄鋼スラグ,ガラス廃材,陶磁器質粒子等の無機質骨材とセメントを混練して硬化させたブロック基層に、セラミックタイルからなる表層を積層した透水性ブロック」が記載されている。
(特許文献2)には、「陶磁器セルベン,岩石の砕石,鉄鋼スラグのいずれかの骨材の表面が、長石類等の焼結バインダによって熔化されたセラミックブロック」が開示されている。
(特許文献3)には、「陶磁器質タイル等の無機質粒体Aと鉄鋼スラグ等の無機質粒体Bとを成形、焼成したブロック」が開示されており、実施例3には「磁器質タイル(無機質粒体A)90重量%と鉄鋼スラグ(無機質粒体B)10重量%とを含む骨材原料に、5重量%の水を添加して混合した後、10重量%のガラス粉を加え混合・混練し、次いで高圧プレス機を用いて14.7MPaの圧力で加圧し焼成してブロックを得たこと」が記載されている。
特開2002−327402号公報 特開平9−309772号公報 特開2003−146772号公報
It is known that about 30% of steel slag produced as a by-product of steel production is generated with respect to steel production. Treatment of steel slag generated in such a large amount is a serious problem not only in the steel industry but also in society.
In addition, we are also struggling with the disposal of crushed stone chips, which are generated over 30% of the production of crushed stone, and ceramic waste such as waste tiles, waste tableware, waste tiles, waste clay pipes, and defective products during the manufacture of ceramics. There is a present situation.
As a method of using steel slag and ceramic scraps that are generated in large quantities and can be obtained at low cost in this way, it is optimal as a raw material for civil engineering and building materials to be consumed in large quantities. For example, (Patent Document 1) states that “steel slag, A water-permeable block is described in which a surface layer made of ceramic tiles is laminated on a block base layer obtained by kneading and hardening inorganic aggregates such as glass waste and ceramic particles and cement.
(Patent Document 2) discloses “a ceramic block in which the surface of an aggregate of ceramic cerven, rock crushed stone, or steel slag is melted by a sintered binder such as feldspar”.
(Patent Document 3) discloses "a block obtained by molding and firing inorganic particles A such as ceramic tiles and inorganic particles B such as steel slag". (Inorganic particles A) 90% by weight and steel slag (inorganic particles B) 10% by weight Aggregate material, 5% by weight of water is added and mixed, and then 10% by weight of glass powder is added. The block was obtained by mixing and kneading, and then pressurizing and firing at a pressure of 14.7 MPa using a high-pressure press machine ”.
JP 2002-327402 A JP-A-9-309772 Japanese Patent Laid-Open No. 2003-146772

しかしながら上記従来の技術においては、以下のような課題を有していた。
(1)(特許文献1)に開示の技術は、セメントを混練して硬化させているので、セメントからアルカリ成分が溶出するおそれがあり、溶出水のpHが問題になる緑化ブロックや藻場育成用部材等の用途には使用することができないという課題を有していた。
(2)(特許文献2)に開示の技術は、陶磁器セルベン,岩石の砕石,鉄鋼スラグのいずれかの骨材を長石類等の焼結バインダとともに焼成したものであるが、陶磁器セルベン,岩石の砕石を焼結バインダとともに焼成した場合には、連続気孔が形成され難く多孔性が低下するという課題を有していた。また、鉄鋼スラグを焼結バインダとともに焼成した場合には、曲げ強度等の機械的強度が低下するという課題を有していた。
(3)(特許文献3)に開示の技術は、骨材原料中、磁器質タイルは90重量%、鉄鋼スラグは10重量%であって鉄鋼スラグの配合量が少ないため、焼成されたブロックに連続気孔が形成され難く多孔性が低下する。また陶磁器タイルと鉄鋼スラグの総重量に対するガラス粉の配合量が10重量%と少ないため、常圧の鋳込み成形等で成形した場合には機械的強度が低下するという課題を有していた。
(4)(特許文献3)に開示の技術は、高圧プレス機を用い14.7MPaもの高圧で加圧して成形しているため、成形の圧力によってブロックが緻密化し機械的強度は高められるが、気孔率が低下し透水性や保水性が低下するという課題を有していた。
However, the above conventional techniques have the following problems.
(1) Since the technology disclosed in (Patent Document 1) kneads and hardens the cement, there is a risk that alkaline components may be eluted from the cement, and the pH of the elution water becomes a problem. It had the subject that it cannot be used for uses, such as a member.
(2) The technology disclosed in (Patent Document 2) is one in which any of ceramic cerven, rock crushed stone, and steel slag is fired together with a sintered binder such as feldspar. When the crushed stone is fired together with the sintered binder, there is a problem that continuous pores are hardly formed and the porosity is lowered. In addition, when steel slag is fired together with a sintered binder, there is a problem that mechanical strength such as bending strength is lowered.
(3) Since the technology disclosed in (Patent Document 3) is 90% by weight of porcelain tiles and 10% by weight of steel slag in the aggregate material, the amount of steel slag is small, so that the fired block It is difficult to form continuous pores and the porosity is lowered. Moreover, since the compounding quantity of the glass powder with respect to the total weight of a ceramic tile and steel slag is as small as 10 weight%, when it shape | molded by the casting molding of normal pressure etc., it had the subject that mechanical strength fell.
(4) Since the technology disclosed in (Patent Document 3) is molded by pressing at a high pressure of 14.7 MPa using a high-pressure press, the block is densified by the molding pressure and the mechanical strength is increased. It had the subject that porosity falls and water permeability and water retention fall.

本発明は上記従来の課題を解決するもので、廃棄物の有効利用を図ることができるとともに成形性に優れ、またコンクリートと同等以上の圧縮強度を有するとともに結合された粒子間に連続気孔が確実に形成されるため透水性に優れ、用途によって粒径等を調整することによって保水性にも優れ、さらにアルカリ溶出が少なく重金属等の有害な溶出のおそれもなく応用性に優れる多孔質セラミックス用組成物を提供することを目的とする。
また、本発明は、三次元網目状の連続気孔が形成され透水性に優れる透水性ブロック,粒子間の隙間が小さく保水性に優れる緑化ブロック,藻の胞子が付着し易く付着した胞子が水流に流され難いような形状の凹凸を表面に形成することができ、またアルカリ溶出が少なく重金属等の有害な溶出もなく良好な藻の育成環境(着生基盤)を整えることができ漁礁としても最適な藻場育成用部材,三次元網目状の微細な連続気孔が形成され、通液することによって濾過効果が得られ、さらにバクテリア等の着生基盤にすることで優れた浄化性能を有する浄化用部材としても最適な多孔質セラミックスを提供することを目的とする。
また、本発明は、コンクリートと同等以上の圧縮強度を有し、また結合された粒子間に連続気孔が確実に形成されるため透水性に優れ、用途によって粒径等を調整することによって保水性にも優れるとともに、成形性に優れ生産性に優れる多孔質セラミックスの製造方法を提供することを目的とする。
The present invention solves the above-described conventional problems, and can effectively use waste, has excellent formability, has compressive strength equal to or higher than that of concrete, and ensures continuous pores between bonded particles. The composition for porous ceramics is excellent in water permeability by adjusting the particle size, etc. depending on the application, and also has excellent applicability with little alkali elution and no risk of harmful elution such as heavy metals. The purpose is to provide goods.
In addition, the present invention provides a water-permeable block in which continuous pores having a three-dimensional network shape are formed and excellent in water permeability, a greening block in which gaps between particles are small and excellent in water retention, and algae spores easily adhere to the water flow. It is possible to form irregularities that are difficult to be washed away on the surface, and there is little alkali elution, and there is no harmful elution of heavy metals, etc., and a good algae growth environment (establishment base) can be prepared, making it ideal as a fishing reef For cultivating algae, a three-dimensional network of fine continuous pores is formed, a filtration effect is obtained by passing the liquid, and a purification base that has excellent purification performance by using a growth base such as bacteria An object is to provide an optimum porous ceramic as a member.
In addition, the present invention has a compressive strength equal to or greater than that of concrete, and continuous pores are surely formed between the bonded particles, so that it has excellent water permeability and water retention by adjusting the particle size and the like depending on the application. It is another object of the present invention to provide a method for producing porous ceramics that is excellent in moldability and excellent in moldability and productivity.

上記従来の課題を解決するために本発明の多孔質セラミックス用組成物及びそれを用いた多孔質セラミックス並びにその製造方法は、以下の構成を有している。
請求項1に記載の多孔質セラミックスは、砕石や陶磁器屑を破砕した粒径が0.01〜1.7mmの骨材チップ100重量部と、粒径が0.01〜3mmの鉄鋼スラグ30〜300重量部と、前記骨材チップと前記鉄鋼スラグの総重量に対し粒径が0.1mm以下のガラス質材15〜50wt%と、を含有する多孔質セラミックス用組成物が所定形状に鋳込成形され焼成されている構成を有している。
この構成により、以下の作用が得られる。
(1)骨材チップと鉄鋼スラグの粒径が0.01〜3mmなので、成形体の空隙率を確保することができ、またガラス質材の粒径が0.1mm以下なので、焼結時に鉄鋼スラグと骨材チップの空隙を確保しながらガラス質材の融液で三次元的に結合させることができるため、透水性や保水性に優れるとともに高い機械的強度を有する多孔質セラミックスを得ることができる。
(2)骨材チップ100重量部と、CaOとSiO を主成分とする鉄鋼スラグ30〜300重量部と、骨材チップと鉄鋼スラグの総重量に対し15〜50wt%のガラス質材とを含有しているので、焼成された多孔質セラミックス用組成物は、低融点のガラス質材と鉄鋼スラグの表面が融解して融液が発生し、発生した融液が鉄鋼スラグと骨材チップの間隙に浸入して液相のブリッジが形成され骨材チップと鉄鋼スラグが三次元的に結合されるので、コンクリートと同等以上の圧縮強度を有し、また結合された粒子間に連続気孔が確実に形成されるため透水性を有し、さらに鉄鋼スラグの表面の微細孔により保水性を有する多孔質セラミックスを製造できる。
(3)骨材チップと鉄鋼スラグとガラス質材とを含有しているので、廃棄物の有効利用を図ることができるとともに、アルカリ溶出が少なく重金属等の有害な溶出のおそれもなく緑化ブロックや藻場育成用部材等としても用いることができ応用性に優れる。
(4)成形の際に水を添加すると、水と接触した鉄鋼スラグから微量の石灰やシリカが溶け出し鉄鋼スラグの表面に水和生成物が形成され成形体が硬化されるので、成形体の強度を高めることができ金型等から取り出しやすく成形性に優れる。
(5)混練物を型に流し込み鋳込成形後、乾燥させて成形体を得るので、安定して三次元網目状の連続気孔を形成させることができ生産安定性に優れた多孔質セラミックスを得ることができる。
(6)多孔質セラミックスは、三次元網目状の連続気孔が形成されるので透水性に優れ、透水性ブロックとして好適に用いることができる。
(7)また、多孔質セラミックスは、骨材チップと鉄鋼スラグの粒子間に細かな間隙を形成することができ、鉄鋼スラグの表面の微細孔と相まって保水性や吸水性を高めることができ、緑化ブロックとしても好適に用いることができる。
(8)また、骨材チップと鉄鋼スラグとガラス質材とを含有した多孔質セラミックスは、アルカリ溶出が少なく重金属等の有害な溶出のおそれがなく、さらに数μmから数十μmの大きさの藻の胞子や動物の幼生が多孔質セラミックスの表面の凹凸に定着し易いため、藻場育成部材として良好な藻の育成環境を整えることができる。
(9)また、多孔質セラミックスは、三次元網目状の微細な連続気孔が形成されるので、通液することによって濾過効果が得られ浄化性能を有し、連続気孔内に有機物等が詰まって濾過効果が低下したときは、加熱・燃焼させて有機物を焼失させれば再び濾過効果を発現させることができ取扱性に優れ、さらにバクテリア等の着生基盤にすることで優れた浄化性能を有する浄化用部材として用いることができる。
In order to solve the above conventional problems, the composition for porous ceramics of the present invention, the porous ceramics using the composition, and the production method thereof have the following configurations.
The porous ceramic according to claim 1 is composed of 100 parts by weight of an aggregate chip having a particle size of 0.01 to 1.7 mm obtained by crushing crushed stone and ceramic waste, and a steel slag 30 to 30 μm having a particle size of 0.01 to 3 mm. A porous ceramic composition containing 300 parts by weight and a vitreous material having a particle diameter of 0.1 to 50 mm with respect to the total weight of the aggregate chip and the steel slag is cast into a predetermined shape. It has the structure which is shape | molded and baked.
With this configuration, the following effects can be obtained.
(1) Since the particle size of the aggregate chip and the steel slag is 0.01 to 3 mm, the porosity of the formed body can be secured, and the particle size of the vitreous material is 0.1 mm or less, so that the steel is sintered during sintering. Because it can be three-dimensionally bonded with the melt of vitreous material while securing the gap between the slag and the aggregate chip, it is possible to obtain a porous ceramic having excellent mechanical properties and water permeability and high mechanical strength. it can.
(2) 100 parts by weight of aggregate chips, 30 to 300 parts by weight of steel slag mainly composed of CaO and SiO 2 , and 15 to 50 wt% of vitreous material based on the total weight of the aggregate chips and steel slag. As a result, the fired composition for porous ceramics melts the surface of the low-melting glassy material and the steel slag to generate a melt, and the generated melt is composed of the steel slag and the aggregate chip. Since it penetrates into the gap and forms a liquid phase bridge, the aggregate chip and steel slag are three-dimensionally connected, so it has a compressive strength equal to or higher than that of concrete and ensures continuous pores between the combined particles. Therefore, it is possible to produce porous ceramics having water permeability and water retention by the fine pores on the surface of the steel slag.
(3) Since it contains aggregate chips, steel slag, and glassy material, it is possible to effectively use waste, and there is little alkali elution and no risk of harmful elution such as heavy metals. It can also be used as a member for growing seaweed beds and has excellent applicability.
(4) When water is added during molding, a small amount of lime or silica is melted from the steel slag in contact with water and a hydrated product is formed on the surface of the steel slag, and the molded product is cured. The strength can be increased and it is easy to take out from a mold or the like, and the moldability is excellent.
(5) Since the kneaded product is poured into a mold and dried to obtain a molded body, a three-dimensional network-like continuous pore can be formed stably, and a porous ceramic excellent in production stability is obtained. be able to.
(6) The porous ceramics are excellent in water permeability since three-dimensional network-like continuous pores are formed, and can be suitably used as a water permeable block.
(7) Moreover, the porous ceramics can form fine gaps between the particles of the aggregate chip and the steel slag, and can increase water retention and water absorption in combination with fine pores on the surface of the steel slag. It can also be suitably used as a greening block.
(8) In addition, porous ceramics containing aggregate chips, steel slag, and glassy material have little alkali elution and no risk of harmful elution such as heavy metals, and have a size of several μm to several tens of μm. Since algae spores and animal larvae are easily fixed on the irregularities of the surface of the porous ceramics, it is possible to prepare a favorable algae growth environment as an algae field growth member.
(9) In addition, porous ceramics have fine continuous pores in the form of a three-dimensional network, so that the filtration effect can be obtained and the purification performance can be obtained by passing the liquid, and the organic pores are clogged in the continuous pores. When the filtration effect declines, if it is heated and burned to burn off the organic matter, the filtration effect can be expressed again and it is easy to handle. In addition, it has excellent purification performance by making it a bacterial base It can be used as a purification member.

ここで、骨材チップの粒径としては、0.01〜3mmの範囲に分級したものが好適に用いられる。粒径が0.01mm未満の骨材チップでは、成形時の充填率が高まるため気孔率が低下し透水性や保水性が低下し、3mmを超える骨材チップでは機械的強度が低下するため、いずれも好ましくない。
鉄鋼スラグの粒径としては、0.01〜3mmの範囲に分級したものが好適に用いられる。粒径が0.01mm未満の鉄鋼スラグでは、成形時の充填率が高まるため気孔率が低下し透水性や保水性が低下し、3mmを超える鉄鋼スラグでは機械的強度が低下するため、いずれも好ましくない。
ガラス質材の粒径としては、0.1mm以下の範囲、好ましくは0.01〜0.1mmの範囲に分級したものが好適に用いられる。粒径が0.01mm未満のガラス質材では、飛散や凝集し易く混合や成形の際の取扱性に欠け生産性が低下し、0.1mmを超えるガラス質材では、焼結時にガラス質材が溶融して発生した融液で鉄鋼スラグと骨材チップが三次元的に結合され難く、機械的強度が低下するため、いずれも好ましくない。
骨材チップとしては、砕石や陶磁器屑を破砕したものや、砕石を製造する際に生じた細粒が用いられる。
砕石としては、堆積岩質,変性岩質,火成岩質,深成岩質等の1種若しくは複数種の砕石を用いることができる。
陶磁器屑としては、廃タイル,廃食器,廃衛生陶器、廃瓦,廃土管,廃碍子,陶磁器製造不良品等の焼き物の無機質廃棄物が用いられる。
Here, as the particle size of the aggregate chip, those classified into a range of 0.01 to 3 mm are preferably used. In an aggregate chip having a particle size of less than 0.01 mm, the porosity is decreased because of a high filling rate at the time of molding, water permeability and water retention are decreased, and in an aggregate chip exceeding 3 mm, mechanical strength is decreased. Neither is preferred.
As the particle size of the steel slag, those classified into a range of 0.01 to 3 mm are preferably used. In steel slag having a particle size of less than 0.01 mm, the filling rate at the time of molding increases, so the porosity decreases, water permeability and water retention decrease, and in steel slag exceeding 3 mm, the mechanical strength decreases. It is not preferable.
As the particle size of the vitreous material, those classified in the range of 0.1 mm or less, preferably in the range of 0.01 to 0.1 mm are suitably used. A glassy material having a particle size of less than 0.01 mm tends to scatter and agglomerate and lacks handling properties during mixing and molding, resulting in a decrease in productivity. Since the steel slag and the aggregate chip are less likely to be three-dimensionally joined by the melt generated by melting, and the mechanical strength is lowered, both are not preferable.
As the aggregate chip , crushed stones or ceramic scraps or fine particles produced when producing crushed stones are used.
As the crushed stone, one or more kinds of crushed stones such as sedimentary rock, modified rock, igneous rock, plutonic rock, etc. can be used.
As ceramic waste, inorganic wastes such as waste tiles, waste tableware, waste sanitary ware, waste tiles, waste soil pipes, waste insulators, and defective ceramic products are used.

鉄鋼スラグとしては、銑鉄製造過程で生成される高炉徐冷スラグ,高炉水砕スラグ等の高炉スラグ、鋼の製造過程で生成される転炉スラグ等の製鋼スラグ等を用いることができる。なかでも、高炉水砕スラグが好適に用いられる。透水性が大きく軽量で、また粉砕し易く加工性に優れ、さらにSiOやAlの含有量が多く砕石や陶磁器屑と同様の成分を有しているため焼結され易く、機械的強度を高めることができる。 As the steel slag, blast furnace slag such as blast furnace slow-cooled slag and blast furnace granulated slag produced in the pig iron production process, steel slag such as converter slag produced in the steel production process, and the like can be used. Among these, blast furnace granulated slag is preferably used. It is easy to sinter due to its large water permeability, light weight, easy to pulverize, excellent processability, and high content of SiO 2 and Al 2 O 3 and the same components as crushed stone and ceramic waste. Strength can be increased.

ガラス質材としては、使用済みのビン類,窓ガラス,板ガラス等のガラス製品、ガラス製品製造不良品等を回収し粉砕したものが用いられる。また、ソーダ化合物,ソーダ長石,カスミ石等の塩基性原料、珪酸質の火山堆積物やその二次堆積物であるシラス等も用いることができる。なかでも、使用済みのビン類,窓ガラス,板ガラス等のガラス製品、ガラス製品製造不良品等を回収し粉砕したものが好適に用いられる。廃棄物の再利用ができ省資源性に優れるからである。   As the vitreous material, used glass products such as used bottles, window glass, plate glass, etc., and those obtained by collecting and pulverizing defective products are used. In addition, basic raw materials such as soda compounds, soda feldspar, and kasumiite, siliceous volcanic deposits, and shirasu which are secondary deposits thereof can also be used. Among these, used bottles, glass products such as window glass and plate glass, glass product defective products and the like are recovered and pulverized. This is because the waste can be reused and is excellent in resource saving.

骨材チップ、鉄鋼スラグ、ガラス質材の配合量は、骨材チップ100重量部に対し、鉄鋼スラグ30〜300重量部好ましくは50〜200重量部、骨材チップと鉄鋼スラグの総重量に対しガラス質材15〜50wt%好ましくは20〜45wt%が好適である。鉄鋼スラグの配合量が50重量部より少なくなるにつれ、連続気孔が形成され難くなり多孔性が低下し保水性や透水性が低下する傾向がみられ、200重量部より多くなるにつれ焼結体の機械的強度が低下する傾向がみられる。特に、30重量部より少なくなるか300重量部より多くなるとこれらの傾向が著しくなるため、好ましくない。骨材チップと鉄鋼スラグの総重量に対するガラス質材の配合率が20wt%より少なくなるにつれ、焼結時にガラス質材が溶融して発生する融液量が少なくなるため、鉄鋼スラグと骨材チップが三次元的に結合され難くなり機械的強度が低下する傾向がみられ、45wt%より多くなるにつれ、焼結時の融液量が多くなるため鉄鋼スラグと骨材チップの間隙が融液で埋まり気孔率が低下し透水性や保水性が低下する傾向がみられる。15wt%より少なくなるか50wt%より多くなると、これらの傾向が著しくなるため、好ましくない。   The amount of aggregate chip, steel slag, and vitreous material is 30 to 300 parts by weight, preferably 50 to 200 parts by weight of steel slag, preferably 50 to 200 parts by weight, and 100 to 100 parts by weight of aggregate chip. A glassy material of 15 to 50 wt%, preferably 20 to 45 wt% is suitable. As the amount of steel slag is less than 50 parts by weight, continuous pores are less likely to be formed, and the porosity tends to decrease and the water retention and water permeability tend to decrease. There is a tendency for the mechanical strength to decrease. In particular, when the amount is less than 30 parts by weight or more than 300 parts by weight, these tendencies become remarkable, which is not preferable. As the compounding ratio of the vitreous material with respect to the total weight of the aggregate chip and the steel slag is less than 20 wt%, the amount of melt generated by melting the vitreous material during sintering decreases, so the steel slag and the aggregate chip Tends to be difficult to bond in three dimensions and the mechanical strength tends to decrease. As the amount exceeds 45 wt%, the amount of melt during sintering increases, so the gap between the steel slag and the aggregate tip is melted. There is a tendency for the porosity to decrease and the water permeability and water retention to decrease. If the amount is less than 15 wt% or more than 50 wt%, these tendencies become remarkable, which is not preferable.

多孔質セラミックスを藻場育成用部材として利用する場合には、直方体状、立方体状、上下を平らに形成した略球状、卵状、椀状等の種々の形状に形成することができる。なかでも、上下を平らに形成した略球状の藻場育成用部材は、水底に沈めると、略球状の側面と水底との間の隙間にアワビ等の貝類が好んで潜み、よじ登って上面に繁殖した藻を食することができるため、貝類の養殖効果も期待できるため好適に用いられる。
また、藻場育成用部材として利用する場合には、多孔質セラミックス用組成物の鉄鋼スラグとして転炉スラグを用いたり、多孔質セラミックス用組成物に鉄系化合物や貝殻等を混合したりするのが好ましい。転炉スラグは鉄分の含有量が多いため、水中に浸漬された藻場育成用部材から鉄分が溶出し易く、また貝殻からマグネシウムやカルシウム等も溶出し易いため、藻類等の栄養成分となり繁殖させ易くなるからである。
When using porous ceramics as a member for growing seaweed beds, it can be formed in various shapes such as a rectangular parallelepiped shape, a cubic shape, a substantially spherical shape in which the top and bottom are flat, an egg shape, and a bowl shape. Among them, the roughly spherical algae cultivating member formed flat on the top and bottom is submerged in the bottom of the water, and shellfish such as abalone prefer to lurk in the gap between the substantially spherical side surface and the bottom of the sea, and climb up to breed on the top surface. It can be eaten by the algae, so it is preferably used because it can be expected to produce shellfish culture effects.
In addition, when used as a member for cultivating seaweed beds, converter slag is used as the steel slag of the composition for porous ceramics, or iron-based compounds or shells are mixed with the composition for porous ceramics. Is preferred. Because converter slag has a high iron content, iron easily elutes from seaweed cultivation members immersed in water, and magnesium and calcium are also easily eluted from shells. It is because it becomes easy.

また、多孔質セラミックスを浄化用部材として利用する場合には、骨材チップ及び鉄鋼スラグの粒径を0.01〜2mmにするのが好ましい。骨材チップと鉄鋼スラグが形成する間隙を小さくし、バクテリア等を定着し易くするためである。この場合、骨材チップ及び鉄鋼スラグの粒径が2mmを超えると、骨材チップと鉄鋼スラグで形成される平均の連続気孔径が大きくなり、バクテリア等の定着性が低下し浄化性能が低下する傾向がみられる。   Moreover, when using porous ceramics as a purification | cleaning member, it is preferable to make the particle size of an aggregate chip | tip and steel slag into 0.01-2 mm. This is because the gap formed by the aggregate chip and the steel slag is reduced to facilitate the establishment of bacteria and the like. In this case, if the particle size of the aggregate chip and the steel slag exceeds 2 mm, the average continuous pore diameter formed by the aggregate chip and the steel slag is increased, the fixability of bacteria and the like is lowered, and the purification performance is lowered. There is a trend.

本発明の請求項に記載の多孔質セラミックスの製造方法は、(a)砕石や陶磁器屑を破砕した粒径が0.01〜1.7mmの骨材チップ100重量部と、粒径が0.01〜3mmの鉄鋼スラグ30〜300重量部と、前記骨材チップと前記鉄鋼スラグの総重量に対し粒径が0.1mm以下の15〜50wt%のガラス質材と、を含有する多孔質セラミックス用組成物を混合し混合物を得る乾式混合工程と、(b)前記混合物に水を加えて混練し混練物を得る湿式混合工程と、(c)前記混練物を鋳込成形し成形体を得る成形工程と、(d)前記成形工程で得られた成形体を乾燥させる乾燥工程と、を備えた構成を有している。
この構成により、以下のような作用が得られる。
(1)多孔質セラミックス用組成物が骨材チップ100重量部と、CaOとSiOを主成分とする鉄鋼スラグ30〜300重量部と、骨材チップと鉄鋼スラグの総重量に対し15〜50wt%のガラス質材とを含有しているので、焼成することによって低融点のガラス質材と鉄鋼スラグの表面が融解して融液が発生し、発生した融液が鉄鋼スラグと骨材チップの間隙に浸入して液相のブリッジが形成され骨材チップと鉄鋼スラグが三次元的に結合されるので、コンクリートと同等以上の圧縮強度を有し、また結合された粒子間に連続気孔が確実に形成されるため透水性を有し、さらに鉄鋼スラグの表面の微細孔により保水性を有する多孔質セラミックスを製造できる。
(2)多孔質セラミックス用組成物を混合し混合物を得た後、混合物に水を加えて混練物を得るようにして湿式混合時間を短縮したので、予め所定の粒径に破砕した骨材チップや鉄鋼スラグが混練中に砕かれて粒度分布が変化してしまうのを防止することができ、所望の透水性や保水性等を発現させることができる。
(3)混合物に水を加えて混練することによって、水と接触した鉄鋼スラグから微量の石灰やシリカが溶け出し鉄鋼スラグの表面に水和生成物が形成され成形体が硬化されるので、成形体の強度を高めることができ成形性に優れ生産性に優れる。
The method for producing a porous ceramic according to claim 2 of the present invention is as follows: (a) 100 parts by weight of an aggregate chip having a particle size of 0.01 to 1.7 mm obtained by crushing crushed stone or ceramic waste, and a particle size of 0 Porous containing 30 to 300 parts by weight of steel slag of 0.01 to 3 mm and a glassy material of 15 to 50 wt% having a particle size of 0.1 mm or less with respect to the total weight of the aggregate chip and the steel slag A dry mixing step of mixing a ceramic composition to obtain a mixture; (b) a wet mixing step of adding water to the mixture to knead to obtain a kneaded product; and (c) casting the kneaded product to form a molded body. And (d) a drying step for drying the molded body obtained in the molding step .
With this configuration, the following effects can be obtained.
(1) The composition for porous ceramics is 100 to 50 parts by weight of aggregate chips, 30 to 300 parts by weight of steel slag mainly composed of CaO and SiO 2 , and 15 to 50 wt with respect to the total weight of the aggregate chips and steel slag. % Of the glassy material, the surface of the low-melting glassy material and the steel slag melts when fired, and a melt is generated. The generated melt is composed of the steel slag and the aggregate chip. Since it penetrates into the gap and forms a liquid phase bridge, the aggregate chip and steel slag are three-dimensionally connected, so it has a compressive strength equal to or higher than that of concrete and ensures continuous pores between the combined particles. Therefore, it is possible to produce porous ceramics having water permeability and water retention by the fine pores on the surface of the steel slag.
(2) After mixing the composition for porous ceramics to obtain a mixture, the wet mixing time was shortened by adding water to the mixture to obtain a kneaded product. And steel slag can be prevented from being crushed during kneading to change the particle size distribution, and desired water permeability and water retention can be exhibited.
(3) By adding water to the mixture and kneading, a small amount of lime or silica is melted from the steel slag in contact with water, and a hydrated product is formed on the surface of the steel slag, and the compact is cured. The strength of the body can be increased and the moldability is excellent and the productivity is excellent.

ここで、乾式混合工程や湿式混合工程における混合手段としては、公知の装置が用いられ、例えばモルタルミキサ、アイリッヒミキサ、ニーダ、リボンミキサ、傾動ミキサ等通常のものが使用できる、   Here, as a mixing means in the dry mixing step and the wet mixing step, a known device is used, and for example, a normal one such as a mortar mixer, an Eirich mixer, a kneader, a ribbon mixer, a tilting mixer can be used.

湿式混合工程では、混合物に水とともにバインダや解膠剤を加えて混練する。骨材チップ等を水に分散させるとともに成形体の保形性を高めるためである。バインダとしては、メチルセルロース,ヒドロキシプロピルセルロース,カルボキシメチルセルロース誘導体等のセルロース誘導体、デキストリン,プルラン等の多糖類、ポリビニルアルコール,ワックス系エマルジョン等の水溶性高分子等が用いられる。解膠剤としては、ケイ酸ソーダ等の無機系やポリアクリル酸,ポリカルボン酸アンモニウム等の高分子系が用いられる。
混合物に加える水の量としては、混合物の重量に対して5〜15wt%が好適である。水の量が5wt%未満になると成形体が硬化し難くなり、15wt%を超えると成形体が硬化するまでの時間や乾燥時間が長くなり成形性が低下し生産性に欠けるため、いずれも好ましくない。
In the wet mixing step, a binder and a peptizer are added to the mixture together with water and kneaded. This is to disperse aggregate chips and the like in water and to improve the shape retention of the molded body. As the binder, cellulose derivatives such as methylcellulose, hydroxypropylcellulose and carboxymethylcellulose derivatives, polysaccharides such as dextrin and pullulan, water-soluble polymers such as polyvinyl alcohol and wax emulsions, and the like are used. As the peptizer, inorganic systems such as sodium silicate and polymer systems such as polyacrylic acid and ammonium polycarboxylate are used.
The amount of water added to the mixture is preferably 5 to 15 wt% with respect to the weight of the mixture. When the amount of water is less than 5 wt%, the molded body is difficult to cure, and when it exceeds 15 wt%, the time until the molded body is cured and the drying time are increased, and the moldability is reduced and productivity is lacking. Absent.

成形工程では、合成樹脂製や金属製で所定の形状に形成された型に混練物を流し込む方法(鋳込成形)が好適に用いられる。加圧プレスや振動プレス等の方法を用いると、三次元網目状の連続気孔の形成が困難になるからである。なお、流し込み時間を短縮するため、加圧鋳込み、凍結鋳込み、遠心鋳込み等を採用することもできる。
型に流し込んだ混練物は、乾燥させて硬化させる。これにより成形体が得られる。乾燥方法としては、熱風乾燥方式、赤外線乾燥方式、マイクロ波乾燥方式等が用いられる。
In the molding step, a method (casting) in which the kneaded material is poured into a mold made of a synthetic resin or metal and having a predetermined shape is suitably used. This is because, when a method such as a pressure press or a vibration press is used, it is difficult to form a three-dimensional network-like continuous pore. In order to shorten the pouring time, pressure casting, freeze casting, centrifugal casting, or the like can be employed.
The kneaded material poured into the mold is dried and cured. Thereby, a molded object is obtained. As a drying method, a hot air drying method, an infrared drying method, a microwave drying method, or the like is used.

複層構造の多孔質セラミックスを製造することもできる。この場合は、基層原料としての多孔質セラミックス用組成物の混練物を型に流し込み、一旦乾燥させる。次いで、骨材チップや鉄鋼スラグの粒度や配合比を変えた積層原料としての多孔質セラミックス用組成物の混練物を、乾燥した基層原料の上に流し込み、再度乾燥させる。これを繰り返すことによって2層以上の複層構造の多孔質セラミックスの成形体を製造することができる。   A porous ceramic having a multilayer structure can also be produced. In this case, the kneaded product of the composition for porous ceramics as the base layer material is poured into a mold and once dried. Next, a kneaded product of the composition for porous ceramics as a laminated raw material in which the particle size and blending ratio of aggregate chips and steel slag are changed is poured onto the dried base layer raw material and dried again. By repeating this, a formed body of porous ceramics having a multilayer structure of two or more layers can be produced.

成形体を焼成することによって、多孔質セラミックスを得ることができる。焼成温度は、多孔質セラミックス用組成物の配合割合により、900〜1200℃の範囲で適宜設定することができる。
焼成装置としては、電気炉の他、量産装置として一般的なローラーハースキルン、トンネルキルン、シャトルキルン等を用いることができる。
Porous ceramics can be obtained by firing the compact. The firing temperature can be appropriately set in the range of 900 to 1200 ° C. depending on the blending ratio of the composition for porous ceramics.
As a baking apparatus, in addition to an electric furnace, a general roller hearth kiln, tunnel kiln, shuttle kiln or the like can be used as a mass production apparatus.

本発明の請求項3に記載の多孔質セラミックスの製造方法は、請求項2の(a)乃至(d)工程により、第一成形体を形成する第一成形体形成工程と、前記骨材チップや前記鉄鋼スラグの粒度や配合比を変え乾式配合し積層原料としての積層用の多孔質セラミックス用組成物を得、次いで、前記第一成形体の上に鋳込成形する積層鋳込成形工程と、次いで、乾燥させる積層成形体乾燥工程と、を備えている。
この構成により、以下のような作用が得られる。
(1)層ごとに保水率と気孔率の異なった多孔質セラミックスを得ることができる。
本発明の請求項4に記載の多孔質セラミックスの製造方法は、乾燥した前記成形体又は前記積層成形体を900〜1200℃の温度で焼成する焼成工程を備えた構成を有している。
この構成により、以下の作用が得られる。
(1)多孔質セラミックス用組成物が骨材チップ100重量部と、CaOとSiO を主成分とする鉄鋼スラグ30〜300重量部と、骨材チップと鉄鋼スラグの総重量に対し15〜50wt%のガラス質材とを含有しているので、焼成することによって低融点のガラス質材と鉄鋼スラグの表面が融解して融液が発生し、発生した融液が鉄鋼スラグと骨材チップの間隙に浸入して液相のブリッジが形成され骨材チップと鉄鋼スラグが三次元的に結合されるので、コンクリートと同等以上の圧縮強度を有し、また結合された粒子間に連続気孔が確実に形成されるため透水性を有し、さらに鉄鋼スラグの表面の微細孔により保水性を有する多孔質セラミックスを製造できる。
According to a third aspect of the present invention, there is provided a porous ceramic manufacturing method comprising: a first molded body forming step of forming a first molded body by the steps (a) to (d) of claim 2; and the aggregate chip. Or a dry casting process by changing the particle size or mixing ratio of the steel slag to obtain a porous ceramic composition for laminating as a laminating material, and then cast-molding on the first molded body, Then, a laminated molded body drying step is performed for drying.
With this configuration, the following effects can be obtained.
(1) Porous ceramics having different water retention and porosity for each layer can be obtained.
The manufacturing method of the porous ceramics of Claim 4 of this invention has the structure provided with the baking process which bakes the dried said molded object or the said laminated molded object at the temperature of 900-1200 degreeC.
With this configuration, the following effects can be obtained.
(1) The composition for porous ceramics is 100 to 50 parts by weight of aggregate chips, 30 to 300 parts by weight of steel slag mainly composed of CaO and SiO 2 , and 15 to 50 wt with respect to the total weight of the aggregate chips and steel slag. % Of the glassy material, the surface of the low-melting glassy material and the steel slag melts when fired, and a melt is generated. The generated melt is composed of the steel slag and the aggregate chip. Since it penetrates into the gap and forms a liquid phase bridge, the aggregate chip and steel slag are three-dimensionally connected, so it has a compressive strength equal to or higher than that of concrete and ensures continuous pores between the combined particles. Therefore, it is possible to produce porous ceramics having water permeability and water retention by the fine pores on the surface of the steel slag.

以上のように、本発明の多孔質セラミックス用組成物及びそれを用いた多孔質セラミックス並びにその製造方法によれば、以下のような有利な効果が得られる。
請求項1に記載の発明によれば、
(1)骨材チップと鉄鋼スラグの粒径が0.01〜3mmなので、成形体の空隙率を確保することができ、またガラス質材の粒径が0.1mm以下なので、焼結時に鉄鋼スラグと骨材チップの空隙を確保しながらガラス質材の融液で三次元的に結合させることができるため、透水性や保水性に優れるとともに高い機械的強度を有する多孔質セラミックスを提供することができる。
(2)骨材チップ100重量部と、CaOとSiO を主成分とする鉄鋼スラグ30〜300重量部と、骨材チップと鉄鋼スラグの総重量に対し15〜50wt%のガラス質材とを含有しているので、焼成された多孔質セラミックス用組成物は、低融点のガラス質材と鉄鋼スラグの表面が融解して融液が発生し、発生した融液が鉄鋼スラグと骨材チップの間隙に浸入して液相のブリッジが形成され骨材チップと鉄鋼スラグが三次元的に結合されるので、コンクリートと同等以上の圧縮強度を有し、また結合された粒子間に連続気孔が確実に形成されるため透水性を有し、さらに鉄鋼スラグの表面の微細孔により保水性を有する多孔質セラミックスを提供することができる。
(3)骨材チップと鉄鋼スラグとガラス質材とを含有しているので、廃棄物の有効利用を図ることができるとともに、アルカリ溶出が少なく重金属等の有害な溶出のおそれもなく緑化ブロックや藻場育成用部材等としても用いることができ応用性に優れた多孔質セラミックスを提供することができる。
(4)成形の際に水を添加すると、水と接触した鉄鋼スラグから微量の石灰やシリカが溶け出し鉄鋼スラグの表面に水和生成物が形成され成形体が硬化されるので、成形体の強度を高めることができ金型等から取り出しやすく成形性に優れた多孔質セラミックスを提供することができる。
(5)混練物を型に流し込み鋳込成形後、乾燥させて成形体を得るので、安定して三次元網目状の連続気孔を形成させることができ生産安定性に優れた多孔質セラミックスを提供することができる。
(6)多孔質セラミックスは、三次元網目状の連続気孔が形成されるので透水性に優れ、透水性ブロックとして好適に用いることができる。
(7)また、多孔質セラミックスは、骨材チップと鉄鋼スラグの粒子間に細かな間隙を形成することができ、鉄鋼スラグの表面の微細孔と相まって保水性や吸水性を高めることができ、緑化ブロックとしても好適に用いることができる。
(8)また、骨材チップと鉄鋼スラグとガラス質材とを含有した多孔質セラミックスは、アルカリ溶出が少なく重金属等の有害な溶出のおそれがなく、さらに数μmから数十μmの大きさの藻の胞子や動物の幼生が多孔質セラミックスの表面の凹凸に定着し易いため、藻場育成部材として良好な藻の育成環境を整えることができる。
(9)また、多孔質セラミックスは、三次元網目状の微細な連続気孔が形成されるので、通液することによって濾過効果が得られ浄化性能を有し、連続気孔内に有機物等が詰まって濾過効果が低下したときは、加熱・燃焼させて有機物を焼失させれば再び濾過効果を発現させることができ取扱性に優れ、さらにバクテリア等の着生基盤にすることで優れた浄化性能を有する浄化用部材として用いることができる。
As described above, according to the composition for porous ceramics of the present invention, the porous ceramics using the composition, and the production method thereof, the following advantageous effects can be obtained.
According to the invention of claim 1,
(1) Since the particle size of the aggregate chip and the steel slag is 0.01 to 3 mm, the porosity of the formed body can be secured, and the particle size of the vitreous material is 0.1 mm or less, so that the steel is sintered during sintering. To provide porous ceramics that have excellent water permeability and water retention and high mechanical strength because it can be three-dimensionally bonded with a melt of vitreous material while ensuring a gap between slag and aggregate chips. Can do.
(2) 100 parts by weight of aggregate chips, 30 to 300 parts by weight of steel slag mainly composed of CaO and SiO 2 , and 15 to 50 wt% of vitreous material based on the total weight of the aggregate chips and steel slag. As a result, the fired composition for porous ceramics melts the surface of the low-melting glassy material and the steel slag to generate a melt, and the generated melt is composed of the steel slag and the aggregate chip. Since it penetrates into the gap and forms a liquid phase bridge, the aggregate chip and steel slag are three-dimensionally connected, so it has a compressive strength equal to or higher than that of concrete and ensures continuous pores between the combined particles. Therefore, it is possible to provide a porous ceramic having water permeability and further having water retention properties due to fine pores on the surface of the steel slag.
(3) Since it contains aggregate chips, steel slag, and glassy material, it is possible to effectively use waste, and there is little alkali elution and no risk of harmful elution such as heavy metals. It can be used as a member for growing seaweed beds and the like, and can provide a porous ceramic having excellent applicability.
(4) When water is added during molding, a small amount of lime or silica is melted from the steel slag in contact with water and a hydrated product is formed on the surface of the steel slag, and the molded product is cured. It is possible to provide a porous ceramic that can increase the strength and is easily taken out from a mold or the like and excellent in moldability.
(5) Since the kneaded material is poured into a mold and dried to obtain a molded body, a three-dimensional network-like continuous pore can be formed stably and a porous ceramic excellent in production stability is provided. can do.
(6) The porous ceramics are excellent in water permeability since three-dimensional network-like continuous pores are formed, and can be suitably used as a water permeable block.
(7) Moreover, the porous ceramics can form fine gaps between the particles of the aggregate chip and the steel slag, and can increase water retention and water absorption in combination with fine pores on the surface of the steel slag. It can also be suitably used as a greening block.
(8) In addition, porous ceramics containing aggregate chips, steel slag, and glassy material have little alkali elution and no risk of harmful elution such as heavy metals, and have a size of several μm to several tens of μm. Since algae spores and animal larvae are easily fixed on the irregularities of the surface of the porous ceramics, it is possible to prepare a favorable algae growth environment as an algae field growth member.
(9) In addition, porous ceramics have fine continuous pores in the form of a three-dimensional network, so that the filtration effect can be obtained and the purification performance can be obtained by passing the liquid, and the organic pores are clogged in the continuous pores. When the filtration effect declines, if it is heated and burned to burn off the organic matter, the filtration effect can be expressed again and it is easy to handle. In addition, it has excellent purification performance by making it a bacterial base It can be used as a purification member.

請求項に記載の発明によれば、
(1)多孔質セラミックス用組成物が骨材チップ100重量部と、CaOとSiO を主成分とする鉄鋼スラグ30〜300重量部と、骨材チップと鉄鋼スラグの総重量に対し15〜50wt%のガラス質材とを含有しているので、焼成することによって低融点のガラス質材と鉄鋼スラグの表面が融解して融液が発生し、発生した融液が鉄鋼スラグと骨材チップの間隙に浸入して液相のブリッジが形成され骨材チップと鉄鋼スラグが三次元的に結合されるので、コンクリートと同等以上の圧縮強度を有し、また結合された粒子間に連続気孔が確実に形成されるため透水性を有し、さらに鉄鋼スラグの表面の微細孔により保水性を有する多孔質セラミックスを製造できる多孔質セラミックスの製造方法を提供できる。
(2)多孔質セラミックス用組成物を混合し混合物を得た後、混合物に水を加えて混練物を得るようにして湿式混合時間を短縮したので、予め所定の粒径に破砕した骨材チップや鉄鋼スラグが混練中に砕かれて粒度分布が変化してしまうのを防止することができ、所望の透水性や保水性等を発現させることができる多孔質セラミックスの製造方法を提供できる。
(3)混合物に水を加えて混練することによって、水と接触した鉄鋼スラグから微量の石灰やシリカが溶け出し鉄鋼スラグの表面に水和生成物が形成され成形体が硬化されるので、成形体の強度を高めることができ成形性に優れ生産性に優れた多孔質セラミックスの製造方法を提供することができる。
According to invention of Claim 2 ,
(1) The composition for porous ceramics is 100 to 50 parts by weight of aggregate chips, 30 to 300 parts by weight of steel slag mainly composed of CaO and SiO 2 , and 15 to 50 wt with respect to the total weight of the aggregate chips and steel slag. % Of the glassy material, the surface of the low-melting glassy material and the steel slag melts when fired, and a melt is generated. The generated melt is composed of the steel slag and the aggregate chip. Since it penetrates into the gap and forms a liquid phase bridge, the aggregate chip and steel slag are three-dimensionally connected, so it has a compressive strength equal to or higher than that of concrete and ensures continuous pores between the combined particles. Therefore, it is possible to provide a method for producing porous ceramics that can produce porous ceramics that have water permeability and water retention by fine pores on the surface of steel slag.
(2) After mixing the composition for porous ceramics to obtain a mixture, the wet mixing time was shortened by adding water to the mixture to obtain a kneaded product. Further, it is possible to prevent the steel slag from being crushed during kneading and to change the particle size distribution, and to provide a method for producing porous ceramics capable of expressing desired water permeability and water retention.
(3) By adding water to the mixture and kneading, a small amount of lime or silica is melted from the steel slag in contact with water, and a hydrated product is formed on the surface of the steel slag, and the compact is cured. The manufacturing method of the porous ceramics which can raise the intensity | strength of a body and is excellent in a moldability and excellent in productivity can be provided.

本発明の請求項3に記載の発明によれば、  According to invention of Claim 3 of this invention,
(1)層ごとに保水率と気孔率の異なった多孔質セラミックスを提供することができる。(1) It is possible to provide porous ceramics having different water retention rates and porosity for each layer.
本発明の請求項4に記載の発明によれば、According to invention of Claim 4 of this invention,
(1)多孔質セラミックス用組成物が骨材チップ100重量部と、CaOとSiO(1) The composition for porous ceramics is 100 parts by weight of an aggregate chip, CaO and SiO 2 を主成分とする鉄鋼スラグ30〜300重量部と、骨材チップと鉄鋼スラグの総重量に対し15〜50wt%のガラス質材とを含有しているので、焼成することによって低融点のガラス質材と鉄鋼スラグの表面が融解して融液が発生し、発生した融液が鉄鋼スラグと骨材チップの間隙に浸入して液相のブリッジが形成され骨材チップと鉄鋼スラグが三次元的に結合されるので、コンクリートと同等以上の圧縮強度を有し、また結合された粒子間に連続気孔が確実に形成されるため透水性を有し、さらに鉄鋼スラグの表面の微細孔により保水性を有する多孔質セラミックスの製造方法を提供できる。30 to 300 parts by weight of steel slag containing as a main component and 15 to 50 wt% of vitreous material based on the total weight of the aggregate chip and the steel slag, so that the glass material having a low melting point is obtained by firing. The surface of the steel and steel slag melts to generate a melt, and the generated melt penetrates into the gap between the steel slag and aggregate chip, forming a liquid phase bridge, and the aggregate chip and steel slag are three-dimensional. Therefore, it has a compressive strength equal to or higher than that of concrete, and it has water permeability because the continuous pores are surely formed between the bonded particles, and water retention is also achieved by the fine pores on the surface of the steel slag. The manufacturing method of the porous ceramics which have can be provided.

以下、本発明を実施例により具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
(実験例1)
砕石を生産する際に生じた細粒を粒径1〜1.7mmに分級した骨材チップ100重量部と、高炉水砕スラグを破砕し粒径1〜1.5mmに分級した鉄鋼スラグ100重量部と、廃ガラスを粉砕して粒径0.01〜0.1mmに分級したガラス質材30重量部と、を乾式混合した後、市販の水溶性高分子系のバインダを溶かした水を骨材チップ等の混合物に対して10wt%加え、湿式混合して混練物を得た。
混練物をステンレス製でブロック状に形成された金型に流し込んだ後、金型を低温加熱して混練物を乾燥させてブロック状の成形体を得た。成形体を電気炉にて1100℃の温度で1時間焼成して、長さ200mm、幅100mm、厚さ45mmのブロック状に形成された実験例1の多孔質セラミックスを得た。
(実験例2)
鉄鋼スラグを150重量部、ガラス質材を50重量部にした以外は実験例1と同様にして、実験例2の多孔質セラミックスを得た。
(実験例3)
ガラス質材を50重量部にした以外は実験例1と同様にして、実験例3の多孔質セラミックスを得た。
(実験例4)
骨材チップとして、廃衛生陶器を粉砕して粒径1〜1.7mmに分級した陶磁器屑を用い、鉄鋼スラグを150重量部(粒径1〜1.5mm)、ガラス質材を75重量部にした以外は、実験例1と同様にして、実験例4の多孔質セラミックスを得た。
(実験例5)
ガラス質材を90重量部にした以外は実験例1と同様にして、実験例5の多孔質セラミックスを得た。
(実験例6)
ガラス質材を100重量部にした以外は実験例1と同様にして、実験例6の多孔質セラミックスを得た。
(実験例7)
鉄鋼スラグを30重量部、ガラス質材を32.5重量部にした以外は実験例1と同様にして、実験例7の多孔質セラミックスを得た。
(実験例8)
鉄鋼スラグを50重量部、ガラス質材を37.5重量部にした以外は実験例1と同様にして、実験例8の多孔質セラミックスを得た。
(実験例9)
鉄鋼スラグを200重量部、ガラス質材を75重量部にした以外は実験例1と同様にして、実験例9の多孔質セラミックスを得た。
(実験例10)
鉄鋼スラグを300重量部、ガラス質材を100重量部にした以外は実験例1と同様にして、実験例10の多孔質セラミックスを得た。
Hereinafter, the present invention will be specifically described by way of examples. The present invention is not limited to these examples.
(Experimental example 1)
100 parts by weight of aggregate chips obtained by classifying fine particles produced when producing crushed stone into a particle size of 1 to 1.7 mm, and 100 weights of steel slag obtained by crushing blast furnace granulated slag and classifying it into a particle size of 1 to 1.5 mm And 30 parts by weight of a vitreous material obtained by pulverizing waste glass and classifying it to a particle size of 0.01 to 0.1 mm are dry-mixed, and then water in which a commercially available water-soluble polymer binder is dissolved is boned. 10 wt% was added to the mixture such as the material chips and wet mixed to obtain a kneaded product.
After the kneaded product was poured into a mold made of stainless steel and formed into a block shape, the mold was heated at a low temperature to dry the kneaded product to obtain a block-shaped molded body. The molded body was fired in an electric furnace at a temperature of 1100 ° C. for 1 hour to obtain a porous ceramic of Experimental Example 1 formed into a block shape having a length of 200 mm, a width of 100 mm, and a thickness of 45 mm.
(Experimental example 2)
A porous ceramic of Experimental Example 2 was obtained in the same manner as in Experimental Example 1, except that the steel slag was 150 parts by weight and the vitreous material was 50 parts by weight.
(Experimental example 3)
A porous ceramic of Experimental Example 3 was obtained in the same manner as in Experimental Example 1 except that the vitreous material was changed to 50 parts by weight.
(Experimental example 4)
As the aggregate chip, ceramic waste that was pulverized from waste sanitary ware and classified to a particle size of 1 to 1.7 mm was used. Steel slag was 150 parts by weight (particle size of 1 to 1.5 mm) and glassy material was 75 parts by weight. Except for the above, the porous ceramic of Experimental Example 4 was obtained in the same manner as Experimental Example 1.
(Experimental example 5)
A porous ceramic of Experimental Example 5 was obtained in the same manner as in Experimental Example 1 except that the vitreous material was changed to 90 parts by weight.
(Experimental example 6)
A porous ceramic of Experimental Example 6 was obtained in the same manner as in Experimental Example 1 except that the vitreous material was changed to 100 parts by weight.
(Experimental example 7)
A porous ceramic of Experimental Example 7 was obtained in the same manner as in Experimental Example 1 except that the steel slag was changed to 30 parts by weight and the vitreous material was changed to 32.5 parts by weight.
(Experimental example 8)
A porous ceramic of Experimental Example 8 was obtained in the same manner as in Experimental Example 1 except that 50 parts by weight of steel slag and 37.5 parts by weight of glassy material were used.
(Experimental example 9)
A porous ceramic of Experimental Example 9 was obtained in the same manner as in Experimental Example 1 except that the steel slag was changed to 200 parts by weight and the vitreous material was changed to 75 parts by weight.
(Experimental example 10)
A porous ceramic of Experimental Example 10 was obtained in the same manner as in Experimental Example 1 except that 300 parts by weight of steel slag and 100 parts by weight of the vitreous material were used.

(実験例11)
砕石を生産する際に生じた細粒を粒径0.01〜0.5mmに分級した骨材チップ100重量部と、高炉水砕スラグを破砕し粒径0.01〜0.5mmに分級した鉄鋼スラグ100重量部と、廃ガラスを粉砕して粒径0.01〜0.1mmに分級したガラス質材30重量部と、を混合して混練物を得た以外は実験例1と同様にして、実験例11の多孔質セラミックスを得た。
(実験例12)
鉄鋼スラグを150重量部、ガラス質材を50重量部にした以外は実験例11と同様にして、実験例12の多孔質セラミックスを得た。
(実験例13)
ガラス質材を50重量部にした以外は実験例11と同様にして、実験例13の多孔質セラミックスを得た。
(実験例14)
骨材チップとして、廃衛生陶器を粉砕して粒径0.01〜0.5mmに分級した陶磁器屑を用い、鉄鋼スラグを150重量部(粒径0.01〜0.5mm)、ガラス質材を75重量部にした以外は、実験例11と同様にして、実験例14の多孔質セラミックスを得た。
(実験例15)
ガラス質材を90重量部にした以外は実験例11と同様にして、実験例15の多孔質セラミックスを得た。
(実験例16)
ガラス質材を100重量部にした以外は実験例11と同様にして、実験例16の多孔質セラミックスを得た。
(実験例17)
鉄鋼スラグを30重量部、ガラス質材を32.5重量部にした以外は実験例11と同様にして、実験例17の多孔質セラミックスを得た。
(実験例18)
鉄鋼スラグを50重量部、ガラス質材を37.5重量部にした以外は実験例11と同様にして、実験例18の多孔質セラミックスを得た。
(実験例19)
鉄鋼スラグを200重量部、ガラス質材を75重量部にした以外は実験例11と同様にして、実験例19の多孔質セラミックスを得た。
(実験例20)
鉄鋼スラグを300重量部、ガラス質材を100重量部にした以外は実験例11と同様にして、実験例20の多孔質セラミックスを得た。
(Experimental example 11)
100 parts by weight of aggregate chips obtained by classifying fine particles produced during crushed stone production to a particle size of 0.01 to 0.5 mm and blast furnace granulated slag were crushed and classified to a particle size of 0.01 to 0.5 mm. Except that a kneaded material was obtained by mixing 100 parts by weight of steel slag and 30 parts by weight of a vitreous material obtained by pulverizing waste glass and classifying it to a particle size of 0.01 to 0.1 mm, and the same as in Experimental Example 1. Thus, the porous ceramic of Experimental Example 11 was obtained.
(Experimental example 12)
A porous ceramic of Experimental Example 12 was obtained in the same manner as in Experimental Example 11 except that the steel slag was 150 parts by weight and the vitreous material was 50 parts by weight.
(Experimental example 13)
A porous ceramic of Experimental Example 13 was obtained in the same manner as in Experimental Example 11 except that the vitreous material was changed to 50 parts by weight.
(Experimental example 14)
As the aggregate chip, ceramic waste that was pulverized from waste sanitary ware and classified to a particle size of 0.01 to 0.5 mm was used, and 150 parts by weight of steel slag (particle size of 0.01 to 0.5 mm), vitreous material The porous ceramic of Experimental Example 14 was obtained in the same manner as in Experimental Example 11 except that the amount was changed to 75 parts by weight.
(Experimental example 15)
A porous ceramic of Experimental Example 15 was obtained in the same manner as in Experimental Example 11 except that the vitreous material was changed to 90 parts by weight.
(Experimental example 16)
A porous ceramic of Experimental Example 16 was obtained in the same manner as in Experimental Example 11 except that the vitreous material was changed to 100 parts by weight.
(Experimental example 17)
A porous ceramic of Experimental Example 17 was obtained in the same manner as in Experimental Example 11 except that the steel slag was changed to 30 parts by weight and the vitreous material was changed to 32.5 parts by weight.
(Experiment 18)
A porous ceramic of Experimental Example 18 was obtained in the same manner as in Experimental Example 11 except that 50 parts by weight of steel slag and 37.5 parts by weight of vitreous material were used.
(Experimental example 19)
A porous ceramic of Experimental Example 19 was obtained in the same manner as Experimental Example 11 except that the steel slag was changed to 200 parts by weight and the vitreous material was changed to 75 parts by weight.
(Experiment 20)
A porous ceramic of Experimental Example 20 was obtained in the same manner as in Experimental Example 11 except that 300 parts by weight of the steel slag and 100 parts by weight of the vitreous material were used.

(実験例21)
粒径が0.01mm未満の骨材チップ及び鉄鋼スラグを用いた以外は実験例1と同様にして、実験例21の多孔質セラミックスを得た。
(実験例22)
粒径3〜5mmに分級した骨材チップ及び鉄鋼スラグを用いた以外は実験例1と同様にして、実験例22の多孔質セラミックスを得た。
(実験例23)
粒径が0.01mm未満のガラス質材を用いた以外は実験例1と同様にして、実験例23の多孔質セラミックスを得た。
(実験例24)
粒径0.1〜0.5mmに分級したガラス質材を用いた以外は実験例1と同様にして、実験例24の多孔質セラミックスを得た。
(実験例25)
粒径1〜1.7mmに分級した骨材チップ、粒径0.01〜0.5mmに分級した鉄鋼スラグを用いた以外は実験例1と同様にして、実験例25の多孔質セラミックスを得た。
(実験例26)
粒径0.01〜0.5mmに分級した骨材チップ、粒径1〜1.5mmに分級した鉄鋼スラグを用いた以外は実験例1と同様にして、実験例26の多孔質セラミックスを得た。
(実験例27)
砕石を生産する際に生じた細粒を粒径1〜1.7mmに分級した骨材チップ100重量部と、高炉水砕スラグを破砕し粒径1〜1.5mmに分級した鉄鋼スラグ100重量部と、廃ガラスを粉砕して粒径0.01〜0.1mmに分級したガラス質材30重量部と、を乾式混合した後、市販の水溶性高分子系のバインダを適量溶かした水を骨材チップ等の混合物に対して10wt%加え、湿式混合して混練物を得た。混練物をステンレス製でブロック状に形成された金型に流し込んだ後、金型を低温加熱して混練物をほぼ乾燥させた。
同様に、粒径0.01〜0.5mmに分級した骨材チップ100重量部、粒径0.01〜0.5mmに分級した鉄鋼スラグ100重量部、粒径0.01〜0.1mmに分級したガラス質材30重量部を水と混合して混練物を作成し、先に作成したほぼ乾燥した混練物の上に流し込んで積層体を製造した。次いで、金型を低温加熱して積層体を乾燥させた。金型から脱型させた積層体(成形体)を電気炉にて1100℃の温度で1時間焼成して、長さ200mm、幅100mm、厚さ45mmのブロック状に形成された実験例27の多孔質セラミックスを得た。
(Experimental example 21)
A porous ceramic of Experimental Example 21 was obtained in the same manner as in Experimental Example 1 except that an aggregate chip having a particle size of less than 0.01 mm and steel slag were used.
(Experimental example 22)
A porous ceramic of Experimental Example 22 was obtained in the same manner as in Experimental Example 1 except that aggregate chips and steel slag classified into particle sizes of 3 to 5 mm were used.
(Experimental example 23)
A porous ceramic of Experimental Example 23 was obtained in the same manner as in Experimental Example 1 except that a glassy material having a particle size of less than 0.01 mm was used.
(Experimental example 24)
A porous ceramic of Experimental Example 24 was obtained in the same manner as in Experimental Example 1 except that a vitreous material classified to a particle size of 0.1 to 0.5 mm was used.
(Experimental example 25)
A porous ceramic of Experimental Example 25 is obtained in the same manner as in Experimental Example 1 except that an aggregate chip classified to a particle size of 1 to 1.7 mm and a steel slag classified to a particle size of 0.01 to 0.5 mm are used. It was.
(Experimental example 26)
A porous ceramic of Experimental Example 26 was obtained in the same manner as in Experimental Example 1 except that an aggregate chip classified to a particle size of 0.01 to 0.5 mm and a steel slag classified to a particle size of 1 to 1.5 mm were used. It was.
(Experiment 27)
100 parts by weight of aggregate chips obtained by classifying fine particles produced when producing crushed stone into a particle size of 1 to 1.7 mm, and 100 weights of steel slag obtained by crushing blast furnace granulated slag and classifying it into a particle size of 1 to 1.5 mm And 30 parts by weight of a vitreous material obtained by pulverizing waste glass and classifying it to a particle size of 0.01 to 0.1 mm, and then mixing water in which an appropriate amount of a commercially available water-soluble polymer binder is dissolved. 10 wt% of the mixture such as aggregate chips was added and wet mixed to obtain a kneaded product. After the kneaded product was poured into a mold made of stainless steel and formed in a block shape, the mold was heated at a low temperature to substantially dry the kneaded product.
Similarly, 100 parts by weight of aggregate chips classified to a particle size of 0.01 to 0.5 mm, 100 parts by weight of steel slag classified to a particle size of 0.01 to 0.5 mm, and a particle size of 0.01 to 0.1 mm 30 parts by weight of the classified vitreous material was mixed with water to prepare a kneaded product, which was poured onto the previously prepared kneaded product that had been dried to produce a laminate. Next, the mold was heated at a low temperature to dry the laminate. The laminated body (molded body) removed from the mold was baked in an electric furnace at a temperature of 1100 ° C. for 1 hour, and formed into a block shape having a length of 200 mm, a width of 100 mm, and a thickness of 45 mm. A porous ceramic was obtained.

(比較例1)
鉄鋼スラグを10重量部、ガラス質材を27.5重量部にした以外は実験例1と同様にして、比較例1の多孔質セラミックスを得た。
(比較例2)
鉄鋼スラグを320重量部、ガラス質材を105重量部にした以外は実験例1と同様にして、比較例2の多孔質セラミックスを得た。
(比較例3)
ガラス質材を20重量部にした以外は実験例1と同様にして、比較例3の多孔質セラミックスを得た。
(比較例4)
ガラス質材を110重量部にした以外は実験例1と同様にして、比較例4の多孔質セラミックスを得た。
(比較例5)
ガラス質材を50重量部にした以外は実験例1と同様にして、骨材チップ及び鉄鋼スラグと混合した。次いで、市販の水溶性高分子系のバインダを溶かした水を骨材チップ等の混合物に対して5wt%加えて混合した。混合物をブロック状に形成された金型に入れた後、高圧プレス機を用いて14.7MPaの圧力で加圧して成形体を得た。金型を低温加熱して混練物を乾燥させてブロック状の成形体を得た。成形体を電気炉にて1100℃の温度で1時間焼成して、長さ200mm、幅100mm、厚さ45mmのブロック状に形成された比較例5の多孔質セラミックスを得た。
(Comparative Example 1)
A porous ceramic of Comparative Example 1 was obtained in the same manner as in Experimental Example 1 except that the steel slag was changed to 10 parts by weight and the vitreous material was changed to 27.5 parts by weight.
(Comparative Example 2)
A porous ceramic of Comparative Example 2 was obtained in the same manner as in Experimental Example 1 except that 320 parts by weight of the steel slag and 105 parts by weight of the vitreous material were used.
(Comparative Example 3)
A porous ceramic of Comparative Example 3 was obtained in the same manner as in Experimental Example 1 except that the vitreous material was changed to 20 parts by weight.
(Comparative Example 4)
A porous ceramic of Comparative Example 4 was obtained in the same manner as in Experimental Example 1 except that the vitreous material was changed to 110 parts by weight.
(Comparative Example 5)
It was mixed with aggregate chips and steel slag in the same manner as in Experimental Example 1 except that the vitreous material was changed to 50 parts by weight. Subsequently, 5 wt% of water in which a commercially available water-soluble polymer binder was dissolved was added to and mixed with the mixture such as aggregate chips. The mixture was placed in a block-shaped mold and then pressed at a pressure of 14.7 MPa using a high-pressure press to obtain a molded body. The mold was heated at a low temperature to dry the kneaded product to obtain a block-shaped molded body. The molded body was fired in an electric furnace at a temperature of 1100 ° C. for 1 hour to obtain a porous ceramic of Comparative Example 5 formed in a block shape having a length of 200 mm, a width of 100 mm, and a thickness of 45 mm.

以上の多孔質セラミックスの曲げ強度及び保水率を測定した。曲げ強度はJASS7 M−101に準拠して測定した。保水率は、以下のような方法で求めた。
まず、乾燥した多孔質セラミックスの重量(乾燥重量)を測定した。次いで、この多孔質セラミックスを水中に投入し起泡が出なくなるまで放置した。その後、静かに水中より取り出し水滴が落ちなくなるまで待ち、重量(保水重量)を測定した。測定した乾燥重量と保水重量を、保水率(wt%)=((保水重量−乾燥重量)÷乾燥重量)×100の式に代入して、保水率を求めた。
曲げ強度と保水率を表1にまとめて示す。なお、表1には、骨材チップと鉄鋼スラグの総重量に対するガラス質材の割合(wt%)も示した。
The bending strength and water retention of the above porous ceramics were measured. The bending strength was measured according to JASS7 M-101. The water retention rate was determined by the following method.
First, the weight (dry weight) of the dried porous ceramic was measured. Next, this porous ceramic was put into water and allowed to stand until no foaming occurred. Thereafter, the sample was gently taken out from the water and waited until no water droplets dropped, and the weight (water retention weight) was measured. The measured dry weight and water retention weight were substituted into the formula of water retention ratio (wt%) = ((water retention weight−dry weight) ÷ dry weight) × 100 to obtain the water retention ratio.
The bending strength and water retention rate are summarized in Table 1. Table 1 also shows the ratio (wt%) of the vitreous material to the total weight of the aggregate chip and the steel slag.

Figure 0004540656
Figure 0004540656

表1において、ガラス質材の配合割合を変えた実験例1〜6、比較例3,4の曲げ強度及び保水率を比べると、ガラス質材の配合量が減ると曲げ強度が低下し、ガラス質材の配合量が増えると保水率が低下していることがわかった。特に、骨材チップと鉄鋼スラグの総重量に対し15〜45wt%のガラス質材を配合した場合に、3MPa以上の曲げ強度と20%以上の保水率を両立できることが確認された。また、骨材チップ及び鉄鋼スラグの粒径を変えた実験例1〜6と実験例11〜16の曲げ強度及び保水率を比べると、粒径の小さな方が曲げ強度が大きくなり保水率が小さくなることがわかった。
また、鉄鋼スラグの配合割合を変えた実験例3,7〜10、比較例1,2の曲げ強度及び保水率を比べると、鉄鋼スラグの配合量が減ると保水率が低下し、鉄鋼スラグの配合量が増えると曲げ強度が低下していることがわかった。特に、骨材チップ100重量部に対し30〜300重量部の鉄鋼スラグを配合した場合に、2MPa以上の曲げ強度と30%以上の保水率を両立できることが確認された。また、骨材チップ及び鉄鋼スラグの粒径を変えた実験例3,7〜10と実験例13,17〜20の曲げ強度及び保水率を比べると、粒径の小さな方が曲げ強度が大きくなり保水率が小さくなることがわかった。
In Table 1, when the bending strength and water retention of Experimental Examples 1 to 6 and Comparative Examples 3 and 4 in which the mixing ratio of the vitreous material is changed are compared, the bending strength decreases as the blending amount of the vitreous material decreases. It was found that the water retention rate decreased as the amount of the material added increased. In particular, it was confirmed that when a vitreous material of 15 to 45 wt% was blended with respect to the total weight of the aggregate chip and the steel slag, both a bending strength of 3 MPa or more and a water retention rate of 20% or more can be achieved. Moreover, when the bending strength and the water retention rate of Experimental Examples 1 to 6 and Experimental Examples 11 to 16 in which the particle sizes of the aggregate chip and the steel slag are changed are compared, the smaller the particle size, the higher the bending strength and the lower the water retention rate. I found out that
Moreover, when the bending strength and the water retention rate of Experimental Examples 3 and 10 to 10 and Comparative Examples 1 and 2 in which the mixing ratio of the steel slag was changed, the water retention rate decreased when the mixing amount of the steel slag decreased, and the steel slag It was found that the bending strength decreased as the blending amount increased. In particular, when 30 to 300 parts by weight of steel slag was added to 100 parts by weight of the aggregate chip, it was confirmed that a bending strength of 2 MPa or more and a water retention rate of 30% or more can be achieved. Moreover, when the bending strength and water retention of Experimental Examples 3, 7 to 10 and Experimental Examples 13 and 17 to 20 in which the particle sizes of the aggregate chip and the steel slag were changed were compared, the bending strength was increased when the particle size was smaller. It was found that the water retention rate was small.

粒径が0.01mm未満の骨材チップ及び鉄鋼スラグを用いた実験例21の多孔質セラミックスは、実験例1及び11の多孔質セラミックスと比較して、曲げ強度は高いが保水率が著しく低くなることがわかった。
粒径3〜5mmに分級した骨材チップ及び鉄鋼スラグを実験例22の多孔質セラミックスは、実験例1の多孔質セラミックスと比較して、曲げ強度及び保水率とも低くなることがわかった。
粒径が0.01mm未満のガラス質材を用いた実験例23の多孔質セラミックスは、実験例1及び11の多孔質セラミックスの曲げ強度及び保水率とほぼ同じであるが、ガラス質材を微粉砕する必要があるため生産性に欠けることがわかった。
粒径0.1〜0.5mmに分級したガラス質材を用いた実験例24の多孔質セラミックス、粒径1〜1.7mmに分級した骨材チップと粒径0.01〜0.5mmに分級した鉄鋼スラグを用いた実験例25の多孔質セラミックス、粒径0.01〜0.5mmに分級した骨材チップと粒径1〜1.5mmに分級した鉄鋼スラグを用いた実験例26の多孔質セラミックスは、実験例1及び11の多孔質セラミックスと比較して、いずれも曲げ強度及び保水率とも低くなることがわかった。実験例25、26の多孔質セラミックスの曲げ強度及び保水率の測定結果から、骨材チップ及び鉄鋼スラグは、略同一の粒径範囲に分級したものを用いることで、曲げ強度及び保水率を両立させられることがわかった。これは、骨材チップと鉄鋼スラグの粒径範囲を略同一にすることで、成形体における骨材チップと鉄鋼スラグの充填状態を整えることができたため、曲げ強度及び保水率を両立できたものと推察している。
また、高圧プレスで成形した比較例5と実験例3の曲げ強度及び保水率を比べると、高圧プレスで成形した比較例5の多孔質セラミックスの保水率が、実験例3の多孔質セラミックスより低いことがわかった。これは、成形の圧力によって成形体が緻密化し、気孔率が低下し保水性が低下したためであると考えている。
The porous ceramic of Experimental Example 21 using an aggregate chip having a particle size of less than 0.01 mm and steel slag has a higher bending strength but a significantly lower water retention rate than the porous ceramics of Experimental Examples 1 and 11. I found out that
It was found that the aggregate ceramic and steel slag classified into particle diameters of 3 to 5 mm were lower in both the bending strength and the water retention rate of the porous ceramic of Experimental Example 22 than the porous ceramic of Experimental Example 1.
The porous ceramic of Experimental Example 23 using a vitreous material having a particle size of less than 0.01 mm has almost the same bending strength and water retention rate as the porous ceramics of Experimental Examples 1 and 11, but the vitreous material is slightly smaller. It was found that productivity was lacking because it was necessary to grind.
Porous ceramics of Experimental Example 24 using a vitreous material classified to a particle size of 0.1 to 0.5 mm, an aggregate chip classified to a particle size of 1 to 1.7 mm, and a particle size of 0.01 to 0.5 mm Experiment 26 using the porous ceramics of Experimental Example 25 using classified steel slag, Aggregate chips classified to a particle size of 0.01 to 0.5 mm, and Steel slag classified to a particle size of 1 to 1.5 mm It was found that both the porous ceramics and the porous ceramics of Experimental Examples 1 and 11 had lower bending strength and water retention. From the measurement results of the bending strength and water retention rate of the porous ceramics of Experimental Examples 25 and 26, the aggregate chip and the steel slag are both classified into substantially the same particle size range, thereby achieving both bending strength and water retention rate. I found out that This is because it was possible to adjust the filling state of the aggregate chip and the steel slag in the molded body by making the particle size range of the aggregate chip and the steel slag substantially the same, so that both bending strength and water retention rate could be achieved. I guess.
Moreover, when the bending strength and water retention of Comparative Example 5 and Experimental Example 3 formed by high pressure press are compared, the water retention of the porous ceramic of Comparative Example 5 formed by high pressure press is lower than that of the porous ceramic of Experimental Example 3. I understood it. This is considered to be because the compacted body was densified by the molding pressure, the porosity was lowered, and the water retention was lowered.

実験例27の多孔質セラミックスは、粒径範囲の異なる混練物を積層し焼成したものであるが、本実施例の製造方法によって得られた多孔質セラミックスは、4MPa以上の曲げ強度と30%以上の保水率を両立できたことがわかった。これにより、2層以上の複層構造の多孔質セラミックスを容易に安定して製造することができることが確認された。実験例27の複層構造の多孔質セラミックスは、層毎に保水率と気孔率が異なることを利用して、粒径1〜1.7mmの骨材チップで製造された層に植生させ、粒径0.01〜0.5mmの骨材チップで製造された層を保水層として用いることで緑化ブロックとして好適に用いられる。   The porous ceramic of Experimental Example 27 is obtained by laminating and firing kneaded materials having different particle size ranges. The porous ceramic obtained by the manufacturing method of this example has a bending strength of 4 MPa or more and 30% or more. It was found that the water retention rate was compatible. Thereby, it was confirmed that porous ceramics having a multilayer structure of two or more layers can be produced easily and stably. The porous ceramics of the multilayer structure of Experimental Example 27 are vegetated into layers manufactured with aggregate chips having a particle size of 1 to 1.7 mm by utilizing the fact that the water retention rate and the porosity are different for each layer. It is suitably used as a greening block by using a layer made of aggregate chips having a diameter of 0.01 to 0.5 mm as a water retention layer.

次に、実験例3の多孔質セラミックスの圧縮強度を測定したところ、33〜50MPaであった。これは一般のコンクリートと同等以上の強度である。
また、実験例1〜27の多孔質セラミックスを水中に投入し起泡が出なくなるまで放置した後、静かに水中より取り出し水滴が落ちなくなるまで待ち、これを−20℃に設定された恒温室内に放置して、多孔質セラミックスが保水した水を凍結させた。恒温室内に入れてから17時間経過後、多孔質セラミックスを恒温室から取り出し、室温(11℃)に放置した。3時間経過後、多孔質セラミックスの外観を目視観察したところ、欠けたり割れたりするものはみられなかった。凍結した多孔質セラミックスに急激な温度変化を与えても破損することのない機械的強度を有していることから、舗装用ブロックや緑化ブロックとして好適に用いることができることが明らかである。
Next, when the compressive strength of the porous ceramic of Experimental Example 3 was measured, it was 33 to 50 MPa. This is at least as strong as ordinary concrete.
Moreover, after putting the porous ceramics of Experimental Examples 1 to 27 into water and leaving them until foaming does not occur, they are gently taken out from the water and wait until no water drops fall, and this is placed in a temperature-controlled room set at −20 ° C. The water retained by the porous ceramics was frozen by allowing to stand. After 17 hours from putting in the temperature-controlled room, the porous ceramic was taken out of the temperature-controlled room and left at room temperature (11 ° C.). When the appearance of the porous ceramic was visually observed after 3 hours, no chipping or cracking was observed. It is apparent that the frozen porous ceramics can be suitably used as a paving block or a greening block because it has mechanical strength that does not break even when a sudden temperature change is applied.

また、吸水させた実験例1の多孔質セラミックスの上に芝の種を蒔いて室内(室温20〜25℃)に放置したところ、10日程で発芽し、発芽から12日後には4〜5cm程に成長した。この間に水は多孔質セラミックスに2回しか与えていないことから、本実施例の多孔質セラミックスは高い保水能力を有しており、緑化ブロックとして好適であることがわかる。一方、市販のコンクリートブロックの上に芝の種を蒔いて水を与えたところ、多孔質セラミックスの場合と比較して発芽時期が遅いうえに発芽量が少なく、さらに芝を引っ張ると簡単に抜けてしまった。   Further, when seeds of turf were sowed on the porous ceramics of Experimental Example 1 soaked in water and allowed to stand indoors (room temperature 20 to 25 ° C.), germination occurred in about 10 days, and about 4 to 5 cm after 12 days from germination. I grew up. Since water is given to the porous ceramics only twice during this period, it can be seen that the porous ceramic of this example has a high water retention capacity and is suitable as a greening block. On the other hand, when water was sprayed on a commercially available concrete block and water was given, the germination time was slow compared to the case of porous ceramics, and the amount of germination was small. Oops.

また、実験例1の多孔質セラミックスを粉砕した試料について、平成3年環境庁告示第46号「土壌の汚染に係る環境基準について」に準拠して検液を作成し溶出量試験を行ったところ、カドミウム,鉛,六価クロム,砒素,銅,ホウ素等の溶出量は、いずれも定量下限値以下であった。このことから、本実施例の多孔質セラミックスは環境負荷が小さく、透水性ブロック,緑化ブロック,藻場育成用部材,浄化用部材として、好適であることが明らかである。
次に、藻場育成用部材の例として、アカモクの播種を試みた実験について説明する。海水が流水状態で浸かるように水槽内に設置した実験例1の多孔質セラミックスの上に、採集したアカモクの卵を蒔いたところ、25日後に葉長約5mmの幼体に生長した。レンガ、御影石、コンクリートブロックについてもアカモクの播種を同様に試みたところ、同様に幼体の生長は確認されたが、流水によってレンガ等から抜けてしまう幼体が多数存在することが確認された。
また、浄化用部材としての例であるが、都市河川の白濁した河川水60Lを水槽に入れ、実験例1の多孔質セラミックスを2つ水槽内に浸漬してエアーポンプで水を撹拌したところ、約48時間後には水道水と同程度の透明度に変化させることができた。
In addition, a sample prepared by pulverizing the porous ceramic of Experimental Example 1 was prepared according to the Environmental Agency Notification No. 46 “Environmental Standards Concerning Soil Contamination” in 1991, and the dissolution test was conducted. The leaching amounts of cadmium, lead, hexavalent chromium, arsenic, copper, boron, etc. were all below the lower limit of quantification. From this, it is clear that the porous ceramic of the present example has a small environmental load and is suitable as a water permeable block, a greening block, a seaweed cultivation member, and a purification member.
Next, as an example of the seaweed cultivating member, an experiment in which seeding of red mock is tried will be described. The collected red mock eggs were sprinkled on the porous ceramics of Experimental Example 1 installed in the water tank so that the seawater was immersed in flowing water. After 25 days, it grew to a juvenile having a leaf length of about 5 mm. As for the bricks, granite, and concrete blocks, we also tried to sow red mock-ups. The growth of juveniles was confirmed in the same way, but it was confirmed that there were many juveniles that escaped from the bricks by running water.
Moreover, although it is an example as a purification | cleaning member, when 60 L of cloudy river water of a city river is put into a water tank, when two porous ceramics of Experimental Example 1 are immersed in a water tank and water is stirred with an air pump, After about 48 hours, the transparency could be changed to the same level as tap water.

本発明は、多孔質セラミックス用組成物及びそれを用いた透水性ブロック、緑化ブロック、藻場育成用部材、浄化用部材並びに多孔質セラミックスの製造方法に関し、廃棄物の有効利用を図ることができるとともに成形性に優れ、またコンクリートと同等以上の圧縮強度を有するとともに結合された粒子間に連続気孔が確実に形成されるため透水性に優れ、さらにアルカリ溶出が少なく重金属等の有害な溶出のおそれもなく応用性に優れた多孔質セラミックス用組成物の提供、また、三次元網目状の連続気孔が形成され透水性に優れる透水性ブロック,粒子間の隙間が小さく保水性に優れる緑化ブロック,藻の胞子が付着し易く、付着した胞子が水流に流され難いような形状の凹凸を表面に形成することができ、またアルカリ溶出が少なく重金属等の有害な溶出もなく良好な藻の育成環境を整え漁礁としても最適な藻場育成用部材,有用バクテリア等の着生基盤にすることで優れた浄化性能を有する浄化用部材としても好適な多孔質セラミックスの提供、また、コンクリートと同等以上の圧縮強度を有し、また結合された粒子間に連続気孔が確実に形成されるため透水性に優れるとともに、成形性に優れ生産性に優れる多孔質セラミックスの製造方法を提供することができる。   The present invention relates to a composition for porous ceramics, a water permeable block, a greening block, a member for growing seaweed beds, a member for purification, and a method for producing porous ceramics using the composition. In addition, it has excellent formability, has compressive strength equal to or higher than that of concrete, and continuous pores are reliably formed between the bonded particles, so it has excellent water permeability, and there is little alkali elution, and there is a risk of harmful elution of heavy metals, etc. Providing a porous ceramic composition with excellent applicability, water-permeable blocks with three-dimensional network-like continuous pores and excellent water permeability, greening blocks with small gaps between particles and excellent water retention, algae Can be formed on the surface with a shape that makes it difficult for the attached spores to flow into the water stream, and there is little alkali elution and heavy Suitable as a member for growing algae, which is ideal for fishing reefs, and as a base for the growth of useful bacteria, etc. Providing porous ceramics, and having compressive strength equal to or higher than that of concrete, and continuous pores are reliably formed between the bonded particles, so that it has excellent water permeability and excellent moldability and productivity. A method for producing porous ceramics can be provided.

Claims (4)

砕石や陶磁器屑を破砕した粒径が0.01〜1.7mmの骨材チップ100重量部と、粒径が0.01〜3mmの鉄鋼スラグ30〜300重量部と、前記骨材チップと前記鉄鋼スラグの総重量に対し粒径が0.1mm以下のガラス質材15〜50wt%と、を含有する多孔質セラミックス用組成物が所定形状に鋳込成形され焼成されていることを特徴とする多孔質セラミックス。 100 parts by weight of aggregate chips having a particle size of 0.01 to 1.7 mm obtained by crushing crushed stone and ceramic waste, 30 to 300 parts by weight of steel slag having a particle size of 0.01 to 3 mm, the aggregate chips and the above A porous ceramic composition containing 15 to 50 wt% of a glassy material having a particle size of 0.1 mm or less with respect to the total weight of steel slag is cast into a predetermined shape and fired. Porous ceramics. (a)砕石や陶磁器屑を破砕した粒径が0.01〜1.7mmの骨材チップ100重量部と、粒径が0.01〜3mmの鉄鋼スラグ30〜300重量部と、前記骨材チップと前記鉄鋼スラグの総重量に対し粒径が0.1mm以下のガラス質材15〜50wt%と、を混合し多孔質セラミックス用組成物を得る乾式混合工程と、(b)前記混合物に水を加えて混練し混練物を得る湿式混合工程と、(c)前記混練物を鋳込成形し成形体を得る成形工程と、(d)前記成形工程で得られた成形体を乾燥させる乾燥工程と、を備えていることを特徴とする多孔質セラミックスの製造方法。 (A) 100 parts by weight of aggregate chips having a particle size of 0.01 to 1.7 mm obtained by crushing crushed stone and ceramic waste, 30 to 300 parts by weight of steel slag having a particle size of 0.01 to 3 mm, and the aggregate A dry mixing step of mixing a chip and a vitreous material having a particle size of 0.1 to 50% by weight with respect to the total weight of the steel slag to obtain a composition for porous ceramics; and (b) adding water to the mixture. A wet mixing step of adding a kneaded product to obtain a kneaded product, (c) a molding step of casting the kneaded product to obtain a molded product, and (d) a drying step of drying the molded product obtained in the molding step And a method for producing porous ceramics. 請求項2の(a)乃至(d)工程により、第一成形体を形成する第一成形体形成工程と、前記骨材チップや前記鉄鋼スラグの粒度や配合比を変え乾式混合し積層原料としての積層用多孔質セラミックス用組成物を得、次いで、前記第一成形体の上に鋳込成形する積層鋳込成形工程と、次いで、乾燥させる積層成形体乾燥工程と、を備えていることを特徴とする多孔質セラミックスの製造方法。According to the steps (a) to (d) of claim 2, a first molded body forming step for forming a first molded body, and dry mixing is performed by changing the particle size and blending ratio of the aggregate chip and the steel slag. A layered porous ceramics composition for lamination, and then a laminated casting process for casting on the first molded body, and then a laminated molded body drying process for drying. A method for producing a porous ceramic. 乾燥した前記成形体又は前記積層成形体を900〜1200℃の温度で焼成する焼成工程を備えていることを特徴とする請求項2又は3に記載の多孔質セラミックスの製造方法。The method for producing a porous ceramic according to claim 2 or 3, further comprising a firing step of firing the dried molded body or the laminated molded body at a temperature of 900 to 1200 ° C.
JP2006320870A 2005-11-29 2006-11-28 Composition for porous ceramics, porous ceramics using the same, and method for producing the same Expired - Fee Related JP4540656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006320870A JP4540656B2 (en) 2005-11-29 2006-11-28 Composition for porous ceramics, porous ceramics using the same, and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005343874 2005-11-29
JP2006320870A JP4540656B2 (en) 2005-11-29 2006-11-28 Composition for porous ceramics, porous ceramics using the same, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007176788A JP2007176788A (en) 2007-07-12
JP4540656B2 true JP4540656B2 (en) 2010-09-08

Family

ID=38302321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006320870A Expired - Fee Related JP4540656B2 (en) 2005-11-29 2006-11-28 Composition for porous ceramics, porous ceramics using the same, and method for producing the same

Country Status (1)

Country Link
JP (1) JP4540656B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101961706B1 (en) * 2018-04-06 2019-07-17 김형기 Method for recycling inorganic waste into environmental resources

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5898350B1 (en) * 2015-03-09 2016-04-06 フジタ道路株式会社 Paving material
JP6504376B1 (en) * 2018-01-18 2019-04-24 近江バラス有限会社 Lawn growth material for golf course green and method of manufacturing the same
JP6762018B2 (en) * 2019-02-08 2020-09-30 近江バラス有限会社 Grass growing material for aeration of golf course green
CN110862242B (en) * 2019-11-15 2021-10-01 中国科学院山西煤炭化学研究所 Water permeable brick prepared by taking natural zeolite and steel slag as raw materials
CN111072400B (en) * 2019-12-19 2023-04-28 佛山生态海绵城市科技发展有限公司 Iron ore waste residue ceramic water permeable brick and preparation process thereof
CN111320489A (en) * 2020-03-04 2020-06-23 中南大学 Solid waste based high-strength foamed ceramic and preparation method thereof
CN115159957B (en) * 2021-04-01 2023-09-01 国家能源投资集团有限责任公司 Composition for producing coal-based solid waste porous ceramic, preparation method and application thereof
CN116675554B (en) * 2023-07-31 2023-10-17 广东四通建材股份有限公司 High-strength stone-like ceramic water permeable brick and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119068A (en) * 1998-10-14 2000-04-25 Denki Kagaku Kogyo Kk Degreasing/burning implement for aluminum nitride molded form
JP2000281466A (en) * 1999-03-30 2000-10-10 Nichias Corp Production of aluminum borate porous inorganic material
JP2001122658A (en) * 1999-10-22 2001-05-08 Inax Corp Moisture conditioning building material and its production process
JP2001342055A (en) * 2000-03-28 2001-12-11 Toray Ind Inc Water-pervious ceramic block and its production method
JP2002327402A (en) * 2001-03-01 2002-11-15 Toray Ind Inc Permeable block and its manufacturing method
JP2003146772A (en) * 2001-07-16 2003-05-21 Toray Ind Inc Block and method of manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02111672A (en) * 1988-10-18 1990-04-24 Seraeesu:Kk Production of building material
JPH0483772A (en) * 1990-07-23 1992-03-17 Nippon Steel Chem Co Ltd Production of molding of expanded ceramics
JP3228546B2 (en) * 1992-02-27 2001-11-12 京セラ株式会社 Vacuum suction device and manufacturing method thereof
JP3446409B2 (en) * 1995-07-21 2003-09-16 東レ株式会社 Method for producing water-permeable ceramic block
JPH09110532A (en) * 1995-10-16 1997-04-28 Nkk Corp Heat resistant material and its production

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119068A (en) * 1998-10-14 2000-04-25 Denki Kagaku Kogyo Kk Degreasing/burning implement for aluminum nitride molded form
JP2000281466A (en) * 1999-03-30 2000-10-10 Nichias Corp Production of aluminum borate porous inorganic material
JP2001122658A (en) * 1999-10-22 2001-05-08 Inax Corp Moisture conditioning building material and its production process
JP2001342055A (en) * 2000-03-28 2001-12-11 Toray Ind Inc Water-pervious ceramic block and its production method
JP2002327402A (en) * 2001-03-01 2002-11-15 Toray Ind Inc Permeable block and its manufacturing method
JP2003146772A (en) * 2001-07-16 2003-05-21 Toray Ind Inc Block and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101961706B1 (en) * 2018-04-06 2019-07-17 김형기 Method for recycling inorganic waste into environmental resources

Also Published As

Publication number Publication date
JP2007176788A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
JP4540656B2 (en) Composition for porous ceramics, porous ceramics using the same, and method for producing the same
KR101518443B1 (en) Compositions of pervious concrete products by using the aggregates from industrial wastes and method for the same
CN108774041A (en) A kind of water-permeable brick and preparation method thereof for making aggregate with artificial carbonization slag bead
CN106242428A (en) A kind of sludge ceramsite water-permeable brick and preparation method thereof
JP2008247728A (en) Method for producing water-retentive block
JP5435255B2 (en) Geopolymer solidified product using sewage sludge molten slag as active filler and method for producing the same
CN1651352A (en) Tundish dry ribration material for continuous casting and its preparation method
CN106904903B (en) A kind of gradient type porous concrete product and preparation method thereof
JP2007145704A (en) Porous ceramic and method for manufacturing the same
CN107324837B (en) It is a kind of to be retained permeable drainage paving slab brick and preparation method thereof
TW201307247A (en) Interlocking block
CA2663806C (en) The manufacturing method of construction materials using waterworks sludge
KR100599241B1 (en) Manufacturing method for soil conditioner using zeolite
JP2013227768A (en) Interlocking block
KR100611331B1 (en) Porous sintered paving material and manufacturing method thereof
JP4129695B2 (en) Method for producing porous water-absorbing ceramics
JPH0930873A (en) Production of water-permeable ceramic block
JP2003020265A (en) Method for producing multicolored brick
KR101298697B1 (en) Permeable mortar composition and using a tree-lined block protection pitcher
JP2001295210A (en) Water permeable block and manufacturing method therefor
JP4437198B2 (en) Method for producing foam using crushed sludge and the like, and foam
JP4064319B2 (en) Method for manufacturing vegetation planting base material
JP3216034B2 (en) Porous sintered body and method for producing the same
JP2001039780A (en) Production of water permeable ceramic block
JP2005350333A (en) Environmental protection type lightweight concrete

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091127

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20091130

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100622

R150 Certificate of patent or registration of utility model

Ref document number: 4540656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees