JP2000119068A - Degreasing/burning implement for aluminum nitride molded form - Google Patents

Degreasing/burning implement for aluminum nitride molded form

Info

Publication number
JP2000119068A
JP2000119068A JP10291863A JP29186398A JP2000119068A JP 2000119068 A JP2000119068 A JP 2000119068A JP 10291863 A JP10291863 A JP 10291863A JP 29186398 A JP29186398 A JP 29186398A JP 2000119068 A JP2000119068 A JP 2000119068A
Authority
JP
Japan
Prior art keywords
degreasing
boron nitride
porosity
aluminum nitride
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10291863A
Other languages
Japanese (ja)
Other versions
JP4073558B2 (en
Inventor
Shojiro Watanabe
祥二郎 渡辺
Joji Ichihara
譲治 市原
Takashi Kidokoro
隆 城所
Nobuyuki Yoshino
信行 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP29186398A priority Critical patent/JP4073558B2/en
Publication of JP2000119068A publication Critical patent/JP2000119068A/en
Application granted granted Critical
Publication of JP4073558B2 publication Critical patent/JP4073558B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the subject implement in the form of a boron nitride sintered plate with porous structure having each specific porosity, flexural strength and air permeability coefficient and enabling through operation to burning process including uniform degreasing step. SOLUTION: This degreasing/burning implement is made of boron nitride sintered compact in the form of a porous hexagonal sintered plate, having a porosity of 40-60 vol.%, flexural strength of >=20 MPa, air permeability coefficient of 1.1 to 2.0×1.0-9 mol.m/m2.s.Pa, and the average pore size of its through hole of pref. <=1 μm. The porous hexagonal sintered plate is produced by the following process: hexagonal boron nitride set in order with an average particle size of <=10 μm, oxygen content of 1.5-3 wt.% and boron oxide content of <=0.3 wt.% is molded under a molding pressure so as to afford the porosity of the final sintered compact to a specified value and then burned at 1,800-2,300 deg.C in an inert atmosphere under normal pressures. The porous hexagonal sintered plate thus obtained can be used as this degreasing/burning implement for large-sized/thick-walled aluminum nitride molded forms which prevents to-be- burnt objects from cracking and enables the binder in such objects to be subjected to uniform decomposition/elimination treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、窒化アルミニウム
の脱脂・焼成に用いられるセッター、容器等の器具に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to equipment such as setters and containers used for degreasing and firing aluminum nitride.

【0002】[0002]

【従来の技術】セラミックス製品の作製プロセスは、成
形性を高めるために、通常は原料粉末にPVA(ポリビ
ニルアルコール)等の有機系バインダーを少量添加す
る。次いで、混合・造粒等の処理を行った後、加圧成
形、ドクターブレード等の成形方法で成形体を作製し、
有機系バインダーを除去するための脱脂工程を経て、高
温焼成が行われる。脱脂・焼成工程で用いられるセッタ
ー、容器等の器具(以下、単に「器具」という。)が具
備すべき特性としては、バインダー成分の除去のしやす
さ、化学的安定性(被焼成物と反応しないこと)、耐熱
衝撃性、軽量性等である。
2. Description of the Related Art In a process for producing a ceramic product, a small amount of an organic binder such as PVA (polyvinyl alcohol) is usually added to raw material powder in order to enhance moldability. Then, after performing processing such as mixing and granulation, pressure molding, to produce a molded body by a molding method such as a doctor blade,
High-temperature baking is performed through a degreasing step for removing the organic binder. The characteristics of equipment such as setters and containers used in the degreasing / firing process (hereinafter, simply referred to as “equipment”) include ease of removal of the binder component, chemical stability (reaction with the material to be fired) No), thermal shock resistance, light weight, etc.

【0003】従来、コンデンサー、圧電材料等に用いら
れるPZT、BaTiO3 等の酸化物セラミックスの器
具としては、アルミナ、SiO2、ZrO2、MgO等の
酸化物セラミックスが使用されており、種々の改良が加
えられている。例えば、コーディエライト質多孔体を用
いることによって、耐熱衝撃性と耐薬品性を改善したり
(特開昭57−70203号公報)、アルミナ、SiO
2、ZrO2等からなる多孔質セラミックを用いることに
よって、脱脂工程で発生する分解ガスの透過性能を向上
させたり(特開平5−17261号公報)している。
Conventionally, oxide ceramics such as alumina, SiO 2 , ZrO 2 , and MgO have been used as devices for oxide ceramics such as PZT and BaTiO 3 used for capacitors, piezoelectric materials and the like. Has been added. For example, by using a cordierite porous material, thermal shock resistance and chemical resistance can be improved (Japanese Patent Application Laid-Open No. 57-70203), alumina, SiO 2
2, by using a porous ceramic made of ZrO 2 or the like, and or to improve the permeability of the decomposition gas generated in the degreasing step (JP-A-5-17261).

【0004】また、焼成時に被焼成物との反応・融着を
抑制し、耐久性向上を図るため、器具の被焼成物との接
触面をパラジウム等の貴金属で被覆したり(特開平6−
219870号公報)、耐熱性及び熱衝撃性を改善する
ために、多孔質セラミックス焼結体にCr化合物を含浸
させたり(特開昭62−292681号公報)、被焼成
物中のバインダー成分の脱離性を向上させるために銅単
体を含浸させたり(特開平2−71588号公報)して
いる。
In order to suppress the reaction and fusion with the object to be fired during firing and to improve the durability, the contact surface of the appliance with the object to be fired is coated with a noble metal such as palladium (Japanese Patent Application Laid-Open No. Hei 6-1994).
In order to improve heat resistance and thermal shock resistance, a porous ceramic sintered body is impregnated with a Cr compound (Japanese Patent Application Laid-Open No. 62-292681), or a binder component in a material to be fired is removed. In order to improve the releasability, a simple substance of copper is impregnated (JP-A-2-71588).

【0005】一方、窒化アルミニウム等の非酸化物セラ
ミックスに適用される器具については、酸化物セラミッ
クスの焼成とは異なり、2000℃程度の高温で熱処理
が行われるため、上記のような酸化物セラミックスの多
孔質材料を用いることができず、被焼成物と同質材が用
いられたり、窒化硼素粉末を敷いたり、また窒化硼素焼
結体が用いられたり(特公平2−51867号公報、特
公平2−51868号公報)している。
[0005] On the other hand, with respect to appliances applied to non-oxide ceramics such as aluminum nitride, heat treatment is performed at a high temperature of about 2000 ° C, unlike firing of oxide ceramics. A porous material cannot be used, and the same material as the object to be fired is used, a boron nitride powder is laid, or a boron nitride sintered body is used (Japanese Patent Publication No. 2-51867, Japanese Patent Publication No. -51868).

【0006】特に、窒化硼素は、他のセラミックスと比
べて比重が小さいために軽量化を実現することができ、
また耐熱衝撃性及び化学的安定性にも優れているため、
2000℃付近という高温での焼成が必要となる窒化ア
ルミニウム焼成用の器具として賞用されている。
[0006] In particular, since boron nitride has a lower specific gravity than other ceramics, it is possible to reduce weight.
In addition, because it has excellent thermal shock resistance and chemical stability,
It has been awarded as a tool for firing aluminum nitride, which requires firing at a high temperature of around 2000 ° C.

【0007】窒化アルミニウム焼結体は、半導体用冶具
用途等として、近年、需要が増大しており、しかも大型
化・厚肉化の傾向にある。大型化になればなる程、バイ
ンダー成分を均一に分解・脱離させることが困難とな
り、例えば、被焼成物が器具と接触している部分のバイ
ンダーを除去するには、相当な処理時間が必要となる
か、被焼成物を再配置してから再熱処理をする必要があ
る。また、厚肉部材では、被焼成物中のバインダー成分
が分解後に十分に脱離できずにカーボンとして残存した
り、バインダーの分解成分が揮発する際、被焼成物が割
れたりする問題があり、これを回避するにも相当な処理
時間と手間が必要であった。
[0007] In recent years, the demand for an aluminum nitride sintered body for use as a jig for a semiconductor has been increasing, and there has been a tendency to increase the size and the wall thickness. As the size becomes larger, it becomes more difficult to uniformly decompose and desorb the binder component.For example, a considerable processing time is required to remove the binder in a portion where the object to be fired is in contact with the appliance. Or it is necessary to perform the heat treatment again after rearranging the object to be fired. Further, in the thick member, there is a problem that the binder component in the material to be fired is not sufficiently desorbed after decomposition and remains as carbon, or when the decomposition component of the binder volatilizes, the material to be fired is broken, To avoid this, considerable processing time and labor were required.

【0008】このような問題を解消するため、従来は、
酸化物セラミックスの多孔質部材からなる器具を用い
て、先ず低温の脱脂処理を行い、次いで窒化硼素焼結体
の器具に載せ替えて高温の焼成処理をすることが行われ
ている。しかしながら、脱脂後の窒化アルミニウム成形
体は極めて脆いので、焼成容器に載せ替える際に破損し
やすく、歩留まりが低下した。また、焼成用の器具とし
て使用されている窒化硼素焼結体は気孔率が40%未満
であり、しかも貫通孔(すなわち器具の一方の面から他
方の面に連通している気孔)の存在割合の程度を示す空
気透過係数1.1×10-9mol・m/m2・s・Pa
よりも低いため、それを大型成形物の脱脂処理の器具と
して使用すると、バインダー成分の脱離が十分なされ
ず、カーボン成分が残留してしまうという問題があっ
た。そこで、脱脂処理が可能となるように、窒化硼素焼
結体の気孔率を高め、しかも空気透過係数を大きくした
ものを使用すると、今度は器具の機械的強度が著しく低
下し、使用時に欠けたり破損したりする問題があった。
このように、従来は、窒化アルミニウム焼結体の大型形
状品の作製において、脱脂から焼成までを一貫して行え
る器具はなく、その出現が待たれていた。
In order to solve such a problem, conventionally,
First, a low-temperature degreasing treatment is performed by using an appliance made of a porous member made of an oxide ceramic, and then a high-temperature sintering treatment is performed by replacing the device with a boron nitride sintered body. However, since the aluminum nitride molded body after degreasing is extremely brittle, the aluminum nitride molded body was easily damaged when replaced in a firing container, and the yield was reduced. The boron nitride sintered body used as a firing device has a porosity of less than 40%, and the existence ratio of through holes (ie, pores communicating from one surface of the device to the other surface). Air permeability coefficient 1.1 × 10 -9 mol · m / m 2 · s · Pa
When used as an apparatus for degreasing a large molded product, the binder component is not sufficiently removed, and the carbon component remains. Therefore, if the porosity of the boron nitride sintered body is increased and the air permeability coefficient is increased so that the degreasing treatment can be performed, the mechanical strength of the equipment will be significantly reduced, and the porosity will be reduced during use. There was a problem of breakage.
As described above, in the past, in the production of a large-sized aluminum nitride sintered body, there was no apparatus capable of performing all steps from degreasing to firing, and its appearance has been awaited.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、上記
に鑑みてなされたものであり、窒化アルミニウム成形体
の脱脂を均一に行うことができ、しかも焼成工程までを
一貫して行うことのできる器具を提供することである。
SUMMARY OF THE INVENTION An object of the present invention has been made in view of the above, and it is an object of the present invention to uniformly perform degreasing of an aluminum nitride molded article and to consistently perform a firing step. It is to provide equipment that can do it.

【0010】[0010]

【課題を解決するための手段】すなわち、本発明は、気
孔率40〜60体積%、曲げ強さ20MPa以上、空気
透過係数1.1〜2.0×10-9mol・m/m2・s
・Paである多孔質構造の窒化硼素焼結体からなること
を特徴とする窒化アルミニウム成形体の脱脂・焼成用器
具である。
That is, the present invention provides a porosity of 40 to 60% by volume, a bending strength of 20 MPa or more, and an air permeability coefficient of 1.1 to 2.0 × 10 -9 molm / m 2 · m. s
-An appliance for degreasing and firing an aluminum nitride molded body, comprising a boron nitride sintered body having a porous structure of Pa.

【0011】[0011]

【発明の実施の形態】以下、本発明について更に詳しく
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.

【0012】本発明の器具は、多孔質構造の六方晶窒化
硼素焼結体からなるものであり、その気孔率は40〜6
0体積%である。気孔率は、水銀ポロシメーター法によ
って測定することができる。また、貫通孔は、器具の一
方の面より他方の面に気体を通過させる機能を有する気
孔であり、その程度は空気透過係数を測定することによ
って行うことができる。本発明においては、JIS K
7126に記載されたA法(差圧法)に準じ、室温下に
おいて器具の片面を大気圧に置き、他面を減圧下に晒し
てその圧力差を1.01×105Paに設定したとき
に、測定された空気透過係数が1.1〜2.0×10-9
mol・m/m2・s・Paの範囲である多孔質構造体
が使用される。
The device of the present invention comprises a porous hexagonal boron nitride sintered body having a porosity of 40 to 6%.
0% by volume. The porosity can be measured by a mercury porosimeter method. Further, the through-hole is a pore having a function of allowing gas to pass from one surface of the device to the other surface, and the degree can be determined by measuring an air permeability coefficient. In the present invention, JIS K
According to the method A (differential pressure method) described in No. 7126, when one side of the instrument is placed at atmospheric pressure at room temperature and the other side is exposed to reduced pressure and the pressure difference is set to 1.01 × 10 5 Pa. The measured air permeability coefficient is 1.1 to 2.0 × 10 -9
A porous structure having a range of mol · m / m 2 · s · Pa is used.

【0013】本発明のように、所定の貫通孔で構成され
てなる多孔質構造の六方晶窒化硼素焼結体を、窒化アル
ミニウム成形体の脱脂・焼成用の器具とすることによっ
て、被焼成物である窒化アルミニウム成形体が大型・厚
肉のものであっても、被焼成物の割れを防止して、均一
なバインダーの分解・脱離処理を行うことができ、カー
ボンの残留も起こらない。貫通孔の平均気孔径として
は、1μm以下であることが望ましい。
According to the present invention, a porous hexagonal boron nitride sintered body composed of predetermined through-holes is used as an appliance for degreasing and firing an aluminum nitride molded article, thereby obtaining a material to be fired. Even if the aluminum nitride molded article is a large-sized and thick-walled one, cracking of the object to be fired can be prevented, uniform decomposition and desorption treatment of the binder can be performed, and no carbon remains. The average pore diameter of the through holes is desirably 1 μm or less.

【0014】本発明において、気孔率が40体積%未満
では、窒化アルミニウム成形体中の脱脂が十分できなく
なり、また60体積%をこえると、器具の強度が低下し
てしまい、大型成形品の保持・運搬を行う際に破損する
恐れがある。同様に、空気透過係数が上記範囲以外であ
ると、上記と同様な不都合が生じる。
In the present invention, if the porosity is less than 40% by volume, the aluminum nitride molded article cannot be sufficiently degreased. If the porosity exceeds 60% by volume, the strength of the device is reduced, and the holding of a large molded product. -There is a risk of damage during transportation. Similarly, if the air permeability coefficient is out of the above range, the same disadvantages as described above occur.

【0015】更に、本発明の器具は、室温における3点
曲げ強さが20MPa以上でなければならない。この値
よりも曲げ強さが小さいと、上記と同様に大型成形品の
保持・運搬を行う際に破損してしまう恐れがあり、取扱
いに不便を来す。本発明のように、その曲げ強さを20
MPa以上とすることによって、脱脂処理後の窒化アル
ミニウム成形体を器具に載せた状態で運搬が可能とな
り、しかもそのまま焼成処理に移ることができる。
Further, the device of the present invention must have a three-point bending strength at room temperature of 20 MPa or more. If the flexural strength is smaller than this value, the large molded product may be damaged when the large molded product is held and transported as described above, and the handling is inconvenient. As in the present invention, the flexural strength is 20
By setting the pressure to MPa or more, the aluminum nitride molded body after the degreasing treatment can be transported in a state of being mounted on an appliance, and can be directly transferred to the firing treatment.

【0016】本発明の器具のように、従来の窒化硼素焼
結体に比べて、高気孔率で、空気透過係数が高く、高強
度を保持したものとするには、適正化された六方晶窒化
硼素粉末原料を用い、常圧焼結法によって焼成すること
によって行うことができる。
In order to maintain a high porosity, a high air permeability coefficient and a high strength as compared with the conventional boron nitride sintered body as in the case of the device of the present invention, an optimized hexagonal crystal is required. It can be carried out by firing using a boron nitride powder raw material by a normal pressure sintering method.

【0017】すなわち、本発明に用いる六方晶窒化硼素
粉末は、平均粒径10μm以下、酸素含有量が1.5〜
3重量%で、しかも酸化硼素含有量が0.3重量%以下
のものである。酸化硼素成分は、窒化硼素粉末をメタノ
ール中に分散させ、その溶出量から測定することができ
る。六方晶窒化硼素粉末原料の成形は、金型プレス、冷
間静水圧プレス、押し出し成形などのいずれでもよく、
焼結体中の気孔率が40〜60体積%となるように成形
圧力が調整される。また、焼成は、N2、Arなどの不
活性雰囲気下、温度1800〜2300℃、特に190
0〜2200℃の常圧下で行われる。これを、加圧焼結
をしたり、焼成温度を上記範囲を逸脱させたりすると、
目的とする気孔率、空気透過係数、室温曲げ強さを有す
る窒化硼素焼結体を製造することができなくなる。
That is, the hexagonal boron nitride powder used in the present invention has an average particle size of 10 μm or less and an oxygen content of 1.5 to 1.5 μm.
It is 3% by weight and has a boron oxide content of 0.3% by weight or less. The boron oxide component can be measured by dispersing boron nitride powder in methanol and eluted. The molding of the hexagonal boron nitride powder raw material may be any of mold pressing, cold isostatic pressing, extrusion molding, and the like.
The molding pressure is adjusted so that the porosity in the sintered body is 40 to 60% by volume. The firing is performed under an inert atmosphere such as N 2 or Ar at a temperature of 1800 to 2300 ° C., particularly 190 ° C.
It is performed under normal pressure of 0 to 2200 ° C. When this is pressure-sintered or the firing temperature is deviated from the above range,
This makes it impossible to produce a boron nitride sintered body having the desired porosity, air permeability coefficient, and room-temperature bending strength.

【0018】すなわち、上記適正化された六方晶窒化硼
素粉末を用い、成形後、特定温度で常圧焼結することに
よって、気孔率40〜60体積%、空気透過係数1.1
〜2.0×10-9mol・m/m2・s・Pa、室温3
点曲げ強さ20MPa以上の窒化硼素焼結体の製造が可
能となる。なお、窒化硼素焼結体の純度としては、99
重量%以上であることが好ましく、低純度の器具では窒
化アルミニウム焼結体に不純物が混入する恐れが高ま
る。
That is, the above-mentioned optimized hexagonal boron nitride powder is compacted and sintered at normal pressure at a specific temperature to obtain a porosity of 40 to 60% by volume and an air permeability coefficient of 1.1.
~ 2.0 × 10 -9 mol · m / m 2 · s · Pa, room temperature 3
It is possible to produce a boron nitride sintered body having a point bending strength of 20 MPa or more. The purity of the boron nitride sintered body is 99
It is preferable that the content is not less than% by weight, and in a low-purity tool, there is a high possibility that impurities are mixed into the aluminum nitride sintered body.

【0019】[0019]

【実施例】以下、実施例と比較例をあげて更に具体的に
本発明を説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0020】実施例1〜4 比較例1〜2 平均粒子径、酸素含有量及び酸化硼素含有量が表1であ
る六方晶窒化硼素粉末を用い、4MPaで金型成形後、
実施例1〜4及び比較例1では100MPaのCIP処
理を、また比較例2では50MPaのCIP処理をそれ
ぞれを行った。次いで、これらのCIP成形体を窒素雰
囲気中、温度2000℃で60分間焼成処理を行い、貫
通孔を有する多孔質構造の窒化硼素焼結体(長さ300
mm、幅200mm、厚み5mm)を作製した。
Examples 1-4 Comparative Examples 1-2 A hexagonal boron nitride powder having an average particle diameter, an oxygen content and a boron oxide content shown in Table 1 was used to form a mold at 4 MPa.
In Examples 1 to 4 and Comparative Example 1, a CIP process of 100 MPa was performed, and in Comparative Example 2, a CIP process of 50 MPa was performed. Next, these CIP compacts are baked in a nitrogen atmosphere at a temperature of 2000 ° C. for 60 minutes to obtain a porous boron nitride sintered body having through holes (length 300 mm).
mm, width 200 mm, thickness 5 mm).

【0021】比較例3〜4 平均粒子径、酸素含有量及び酸化硼素含有量が表1であ
る六方晶窒化硼素粉末を用い、ホットプレス法にて圧力
15MPa、温度2000℃で60分間焼成処理を行
い、多孔質構造の窒化硼素焼結体(長さ300mm、幅
200mm、厚み5mm)を作製した。
Comparative Examples 3 and 4 A hexagonal boron nitride powder having an average particle size, oxygen content and boron oxide content shown in Table 1 was calcined by hot pressing at a pressure of 15 MPa and a temperature of 2000 ° C. for 60 minutes. Then, a porous boron nitride sintered body (length 300 mm, width 200 mm, thickness 5 mm) was produced.

【0022】上記で得られた窒化硼素焼結体から3mm
×3mm×3mm形状の試験片を切り出し、水銀ポロシ
メーター(島津製作所社製)により気孔率を測定した。
また、3mm×4mm×40mm形状の試験片を切り出
し、室温における3点曲げ強さを測定した。更に、直径
55mm×厚さ5mmの試験片を切り出し、JISK7
126に記載されたA法(差圧法)に準じ、室温におい
て、片面を大気圧、他面を減圧下に晒し、その圧力差を
1.01×105Paにして空気透過係数を測定した。
3 mm from the boron nitride sintered body obtained above
A test piece having a shape of 3 mm x 3 mm was cut out, and the porosity was measured with a mercury porosimeter (manufactured by Shimadzu Corporation).
Further, a test piece having a shape of 3 mm × 4 mm × 40 mm was cut out, and the three-point bending strength at room temperature was measured. Further, a test piece having a diameter of 55 mm and a thickness of 5 mm was cut out and subjected to JISK7.
In accordance with the method A (differential pressure method) described in No. 126, one side was exposed to atmospheric pressure and the other side under reduced pressure at room temperature, and the pressure difference was set to 1.01 × 10 5 Pa, and the air permeability coefficient was measured.

【0023】次に、窒化アルミニウム粉末に少量のイッ
トリア粉末を混合し、更にバインダーとしてポリビニル
ブチラールを添加し、金型プレス法にて大きさ250m
m×150mm×10mmの成形体を成形した。この成
形体を、実施例1〜4及び比較例1〜4で得られた窒化
硼素焼結体からなるセッターに載せ、温度550℃で1
0時間、空気雰囲気中で脱脂処理を行い、脱脂体の割れ
・クラックの有無を目視観察すると共に、得られた脱脂
体の一部を切り出し、残存カーボンの有無をLECO社
製「CS−344」を用い、高周波加熱燃焼赤外吸収分
析法により測定した。
Next, a small amount of yttria powder is mixed with the aluminum nitride powder, and polyvinyl butyral is further added as a binder.
A molded body of mx 150 mm x 10 mm was molded. The compact was placed on a setter composed of the boron nitride sintered bodies obtained in Examples 1 to 4 and Comparative Examples 1 to 4,
Degreasing treatment was performed in an air atmosphere for 0 hour, and the presence or absence of cracks and cracks in the degreased body was visually observed. A part of the obtained degreased body was cut out to determine whether or not residual carbon was present. Was measured by high-frequency heating combustion infrared absorption analysis.

【0024】次いで、脱脂体をセッターに載せたまま、
六方晶窒化硼素製の容器に収納し、温度1900℃で3
時間焼成を行い、窒化アルミニウム焼結体を製造した。
得られた焼結体を中央部より切断し、切断面の色調の均
一性を目視観察した。これらの結果を表2に示す。
Next, with the degreased body placed on the setter,
Stored in a container made of hexagonal boron nitride,
After firing for a time, an aluminum nitride sintered body was manufactured.
The obtained sintered body was cut from the center, and the uniformity of the color tone of the cut surface was visually observed. Table 2 shows the results.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【発明の効果】本発明の窒化アルミニウム成形体の脱脂
・焼成用器具によれば、大型・厚肉形状の窒化アルミニ
ウム成形体の脱脂処理を均一かつ迅速に行うことがで
き、しかも脱脂体を載せたまま焼成処理を行うことがで
きるので、大型・厚肉形状の均質な窒化アルミニウム焼
結体を容易に製造することができる。
According to the apparatus for degreasing and firing an aluminum nitride molded article of the present invention, a large and thick aluminum nitride molded article can be uniformly and quickly degreased, and the degreased article can be placed thereon. Since the sintering process can be performed as it is, a large-sized and thick-walled homogeneous aluminum nitride sintered body can be easily manufactured.

フロントページの続き (72)発明者 吉野 信行 福岡県大牟田市新開町1 電気化学工業株 式会社大牟田工場内 Fターム(参考) 4G001 BA09 BA35 BA36 BA71 BA73 BB09 BB35 BB36 BB71 BB73 BC13 BC34 BC62 BD04 BD07 BD14 BD36 BD38 BE33 BE34 4G019 FA13 FA15 Continuation of the front page (72) Inventor Nobuyuki Yoshino 1 Shinkaicho, Omuta-shi, Fukuoka F-term in the Omuta Plant of Electrochemical Industry Co., Ltd. 4G001 BA09 BA35 BA36 BA71 BA73 BB09 BB35 BB36 BB71 BB73 BC13 BC34 BC62 BD04 BD07 BD14 BD36 BD38 BE33 BE34 4G019 FA13 FA15

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 気孔率40〜60体積%、曲げ強さ20
MPa以上、空気透過係数1.1〜2.0×10-9mo
l・m/m2・s・Paである多孔質構造の窒化硼素焼
結体からなることを特徴とする窒化アルミニウム成形体
の脱脂・焼成用器具。
1. A porosity of 40 to 60% by volume and a flexural strength of 20
MPa or more, air permeability coefficient 1.1 to 2.0 × 10 -9 mo
An apparatus for degreasing and firing an aluminum nitride molded body, comprising a boron nitride sintered body having a porous structure of l · m / m 2 · s · Pa.
JP29186398A 1998-10-14 1998-10-14 Method for producing sintered boron nitride Expired - Fee Related JP4073558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29186398A JP4073558B2 (en) 1998-10-14 1998-10-14 Method for producing sintered boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29186398A JP4073558B2 (en) 1998-10-14 1998-10-14 Method for producing sintered boron nitride

Publications (2)

Publication Number Publication Date
JP2000119068A true JP2000119068A (en) 2000-04-25
JP4073558B2 JP4073558B2 (en) 2008-04-09

Family

ID=17774412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29186398A Expired - Fee Related JP4073558B2 (en) 1998-10-14 1998-10-14 Method for producing sintered boron nitride

Country Status (1)

Country Link
JP (1) JP4073558B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007176788A (en) * 2005-11-29 2007-07-12 Gako Imai Composition for porous ceramic, porous ceramic using the same and method for manufacturing the same
CN111825465A (en) * 2020-06-01 2020-10-27 福州派尔盛陶瓷有限公司 Preparation method of high-purity boron nitride for sintering aluminum nitride substrate
WO2022210555A1 (en) * 2021-03-31 2022-10-06 デンカ株式会社 Setter for ceramic firing
WO2023190525A1 (en) * 2022-03-31 2023-10-05 デンカ株式会社 Sintered boron nitride object, production method therefor, setter, and vessel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104071760B (en) * 2014-07-08 2016-02-03 河北工业大学 The preparation method of the bar-shaped hexagonal boron nitride stupalith of a kind of porous

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007176788A (en) * 2005-11-29 2007-07-12 Gako Imai Composition for porous ceramic, porous ceramic using the same and method for manufacturing the same
JP4540656B2 (en) * 2005-11-29 2010-09-08 雅興 今井 Composition for porous ceramics, porous ceramics using the same, and method for producing the same
CN111825465A (en) * 2020-06-01 2020-10-27 福州派尔盛陶瓷有限公司 Preparation method of high-purity boron nitride for sintering aluminum nitride substrate
CN111825465B (en) * 2020-06-01 2022-11-22 福州派尔盛陶瓷有限公司 Preparation method of high-purity boron nitride for sintering aluminum nitride substrate
WO2022210555A1 (en) * 2021-03-31 2022-10-06 デンカ株式会社 Setter for ceramic firing
JPWO2022210555A1 (en) * 2021-03-31 2022-10-06
JP7333486B2 (en) 2021-03-31 2023-08-24 デンカ株式会社 Setter for firing ceramics
WO2023190525A1 (en) * 2022-03-31 2023-10-05 デンカ株式会社 Sintered boron nitride object, production method therefor, setter, and vessel
JP7378690B1 (en) 2022-03-31 2023-11-13 デンカ株式会社 Boron nitride sintered body, its manufacturing method, setter, and container

Also Published As

Publication number Publication date
JP4073558B2 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
JP3581879B2 (en) Alumina porous body and method for producing the same
JP4987238B2 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and aluminum nitride sintered body manufacturing method
CN109694253B (en) Method for improving thermal conductivity of normal pressure sintered silicon nitride ceramic by carbon doping
JP4219325B2 (en) Method for producing porous titanium material article
JP3214890B2 (en) Aluminum nitride sintered body, method for producing the same, and firing jig using the same
EP1197253B1 (en) Method for producing a silicon nitride filter
JP2002068838A (en) Plasma resistant member and method for manufacturing the same
JP2008201670A (en) Method of manufacturing non-oxide ceramic sintered compact
JP2000119068A (en) Degreasing/burning implement for aluminum nitride molded form
JP6421525B2 (en) Method for producing thermal spray molded body
JP2000103689A (en) Alumina sintered compact, its production and plasma- resistant member
WO2015025951A1 (en) Porous ceramic and method for producing same
JP2001192274A (en) Setter for debindering/sintering and manufacturing process for the same
JP2002220282A (en) Aluminum nitride sintered compact and method of manufacture
JP2005170728A (en) Yttrium oxide (y2o3) sintered compact and its producing method
JP4458692B2 (en) Composite material
JP4382919B2 (en) Method for producing silicon-impregnated silicon carbide ceramic member
JP4743973B2 (en) Silicon carbide members for firing electronic components
JP2543408B2 (en) Ceramic heat insulating member and manufacturing method thereof
JP3901338B2 (en) BN-AlN laminate and use thereof
JPH0920565A (en) Degreasing of formed inorganic powder
JP2024053480A (en) Method for producing sintered silicon nitride
JP2000103678A (en) Production of sintered aluminum nitride
JPH10297971A (en) Production of sheet-like silicon carbide sintered compact
JPH0840765A (en) Production of sintered alumina

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees