JPH0840765A - Production of sintered alumina - Google Patents

Production of sintered alumina

Info

Publication number
JPH0840765A
JPH0840765A JP6201475A JP20147594A JPH0840765A JP H0840765 A JPH0840765 A JP H0840765A JP 6201475 A JP6201475 A JP 6201475A JP 20147594 A JP20147594 A JP 20147594A JP H0840765 A JPH0840765 A JP H0840765A
Authority
JP
Japan
Prior art keywords
alumina
heat treatment
sintered body
primary
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6201475A
Other languages
Japanese (ja)
Other versions
JP3077877B2 (en
Inventor
Koichi Imura
浩一 井村
Shunzo Shimai
駿蔵 島井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP06201475A priority Critical patent/JP3077877B2/en
Publication of JPH0840765A publication Critical patent/JPH0840765A/en
Application granted granted Critical
Publication of JP3077877B2 publication Critical patent/JP3077877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce a high-purity and high-density alumina ceramic excellent in uniformity and useful especially for a member of a semiconductor production apparatus. CONSTITUTION:This is a method for production of sintered alumina. This production method is composed of (1) a molding process for molding a powdery alumina raw material, (2) a primary calcination process for calcining the resultant alumina molding prepared by the molding process while removing the organic binder therefrom without reducing the open pores, (3) a heat treatment process for heat treating the obtained primary calcined material in an atmosphere of a hydrogen chloride-containing gas and (4) a sintering process for sintering it by further firing it after the heat treatment process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアルミナ焼結体に関し、
詳しくは、半導体製造装置用部材や金属蒸気レーザー用
等の高純度、高密度、高均質性が要求される部材に適し
た高純度、高密度及び均質性に優れるアルミナ焼結体の
製造方法に関する。
TECHNICAL FIELD The present invention relates to an alumina sintered body,
More specifically, the present invention relates to a method for producing an alumina sintered body excellent in high purity, high density and homogeneity, which is suitable for a member for semiconductor manufacturing equipment, a metal vapor laser, etc., which is required to have high purity, high density and high homogeneity. .

【0002】[0002]

【従来の技術】アルミナ焼結体は、機械的強度、耐熱
性、耐薬品性等優れた特性を有し、各種用途に多用され
ている。しかし、その原料及び製造工程からのアルカリ
金属、アルカリ土類金属等の不純物を含有し、使用が制
限されることがある。例えば、近年、進展の著しい半導
体製造装置においては、セラミックスの耐熱性、化学的
安定性、高弾性率、電気的特性等を利用して各種部材に
セラミックスが多用されている。例えば、テフロン等の
耐熱性合成樹脂や金属では支障が生じ易いエッチング装
置、アッシング装置、CVD等プラズマに直接曝される
ような苛酷な条件や、搬送用フォークやチャック等の直
接ウエハーと接触する部所で使用されている。半導体ウ
エーハが各種汚染から厳しく管理されてることは周知で
あり、製造装置部材からの汚染もまた厳しく制限する必
要がある。部材を構成するセラミックス中のアルカリ金
属等の不純物も汚染源となるため、ppm以下にするこ
とが望まれている。
2. Description of the Related Art Alumina sintered bodies have excellent properties such as mechanical strength, heat resistance and chemical resistance, and are widely used for various purposes. However, it may contain impurities such as alkali metals and alkaline earth metals from its raw material and manufacturing process, and its use may be restricted. For example, in semiconductor manufacturing apparatuses, which have made remarkable progress in recent years, ceramics are widely used for various members by utilizing the heat resistance, chemical stability, high elastic modulus, electrical characteristics, etc. of ceramics. For example, a heat-resistant synthetic resin such as Teflon or a metal that is likely to cause troubles, such as an etching device, an ashing device, or CVD, which is exposed to plasma directly, or a portion such as a transfer fork or chuck that directly contacts the wafer. Used in place. It is well known that semiconductor wafers are strictly controlled from various types of contamination, and it is also necessary to strictly limit the contamination from the manufacturing equipment members. Impurities such as alkali metals in the ceramics forming the member are also sources of contamination, so it is desired that the content be ppm or less.

【0003】従来、アルミナ焼結体は、例えば、アルミ
ナ原料粉末の解砕、造粒、成形、脱バインダー及び焼結
等の一連の工程によって製造されている。高純度なアル
ミナ焼結体を得ようとする場合は、上記各工程での不純
物の混入をできるだけ防止しているが、第1には原料粉
末の純度を厳しくチェックすることにある。即ち、焼結
体の純度は、結局のところ、基本的に原料粉末の純度に
負うところが大きく、高純度アルミナセラミックスの製
造は、通常、できる限り高純度なアルミナ粉末を用いて
行われる。高純度アルミナ原料粉末は、バイヤー法、ド
ーソナイト法、アンモニウムミョウバン熱分解法、火花
放電法、エチレンクロルヒドリン法、有機金属加水分解
法等によって製造され、また、原料粉末に含有される不
純物元素の含有比率は上記製法により異なる。しかし、
上記製法により得られる高純度アルミナ原料粉末の純度
は、一般的に、フォー(4)ナインといわれる純度9
9.99重量%程度か、更に高純度のものでもファイブ
(5)ナイン程度であり、Fe、Si、アルカリ金属、
アルカリ土類金属類の酸化物等の不純物が数ppm以上
含有されることは避けられない。更に、アルミナ焼結体
を得るための成形の際に添加される成形バインダーの有
機物中にも、通常、アルカリ金属等不純物が含まれてお
り、アルミナ焼結体中の不純物は製造工程を経るにつれ
不純物含量が次第に増加するともいえる。
Conventionally, an alumina sintered body is manufactured by a series of steps such as crushing, granulating, molding, debinding and sintering of alumina raw material powder. In order to obtain a high-purity alumina sintered body, impurities are prevented from being mixed in each of the above steps as much as possible. First, the purity of the raw material powder is strictly checked. That is, after all, the purity of the sintered body basically depends largely on the purity of the raw material powder, and the production of high-purity alumina ceramics is usually carried out using the highest-purity alumina powder possible. High-purity alumina raw material powder is produced by the Bayer method, dawsonite method, ammonium alum pyrolysis method, spark discharge method, ethylene chlorohydrin method, organometallic hydrolysis method, etc. The content ratio varies depending on the above manufacturing method. But,
The purity of the high-purity alumina raw material powder obtained by the above-mentioned production method is generally 9 (Pho) (4) nine.
About 9.99% by weight, or even higher purity of about 5 (5) nine, Fe, Si, alkali metal,
It is unavoidable that impurities such as oxides of alkaline earth metals are contained in several ppm or more. Further, the organic material of the molding binder added during the molding for obtaining the alumina sintered body usually contains impurities such as alkali metal, and the impurities in the alumina sintered body are more likely to pass through the manufacturing process. It can be said that the impurity content gradually increases.

【0004】[0004]

【発明が解決しようとする課題】上記のように従来の高
純度アルミナ焼結体は、高純度原料アルミナを用い、且
つ、製造各工程において不純物混入に細心の注意を払い
回避しても、不純物混入を完全に防止することは不可能
である。従って、従来法により得られるアルミナ焼結体
は、高純度のものでも不純物がそれぞれ数ppmから数
10ppm程度含有され、ppm以下の高純度が要求さ
れる半導体製造装置用部材に用いることは難しく、石英
やSiC系材料が専ら使用されている。また、金属蒸気
レーザー管用として従来から用いられているアルミナセ
ラミックスは、1500〜1600℃の高温で長時間使
用されることから、高温での変形速度が遅いことが望ま
れる。この変形に対する特性、即ちクリープ特性は、セ
ラミックスに含まれる不純物に左右され、高純度であれ
ばあるほど好ましい。更に、アルミナセラミックス中に
含まれている不純物が蒸発して、レーザー管内雰囲気を
汚染しレーザー出力を低下させることになる。上記した
ように金属蒸気レーザー管用アルミナセラミックスにお
いては、半導体製造装置用レベルの高純度は要求されな
いが、各不純物の含有量を10ppm程度までに高純度
化されたアルミナ焼結体が望まれている。更に、従来の
焼結体においては、成形時の原料粉末の挙動及び気孔分
布の不均一や、焼成時の気孔の挙動及び新たな気孔の発
生等により、密度が均一でなく、焼結体全体が均質とな
らず、それにより製品が欠陥を有することになり、ま
た、内部的な存在では欠陥を生じるまでにはならない場
合でも、製品加工においてそれらの部分が表出すること
があり問題となっていた。
As described above, the conventional high-purity alumina sintered body uses the high-purity raw material alumina, and even if careful attention is paid to the inclusion of impurities in each manufacturing process, the impurities are not removed. It is impossible to completely prevent contamination. Therefore, even if the alumina sintered body obtained by the conventional method has high purity, it contains impurities of several ppm to several tens of ppm, and it is difficult to use it for a semiconductor manufacturing apparatus member requiring high purity of ppm or less, Quartz and SiC-based materials are used exclusively. Further, since the alumina ceramics conventionally used for metal vapor laser tubes are used at a high temperature of 1500 to 1600 ° C. for a long time, it is desired that the deformation rate at a high temperature is slow. The characteristic against this deformation, that is, the creep characteristic depends on the impurities contained in the ceramics, and the higher the purity, the better. Further, the impurities contained in the alumina ceramics are vaporized to contaminate the atmosphere inside the laser tube and reduce the laser output. As described above, alumina ceramics for metal vapor laser tubes are not required to have a high level of purity for semiconductor manufacturing equipment, but an alumina sintered body that is highly purified to a content of each impurity of about 10 ppm is desired. . Furthermore, in the conventional sintered body, the density of the sintered body is not uniform due to the non-uniformity of the behavior of the raw material powder during forming and the distribution of pores, the behavior of the pores during firing and the generation of new pores. Are not homogeneous, which results in defects in the product, and even when internal presence does not lead to defects, these parts may be exposed during product processing, which is a problem. Was there.

【0005】本発明は、上記したようなアルミナ焼結体
の製造方法において、原料粉末精製及び製造工程におけ
る不純物混入防止等の細心処置を行いながらも、最終的
には不純物のある程度の混入を許容せざるを得ないとい
う現状を鑑み、従来と同等の原料粉末と各工程における
不純物混入防止処置を適用し、且つ、従来法で得られる
より高純度で、且つ、均質性に優れるアルミナ焼結体を
得ることを目的に鋭意検討した。また、一般に、アルミ
ナ原料粉末の価格は、精製度合、即ち、純度に比例して
高価格となり、高純度な原料を用いた場合はそれに応じ
て製品価格が高騰する。そのため、比較的低純度の原料
粉末を用いて、不純物含量の低い製品、特に、アルミナ
粉末原料の鉄含有量が数百ppmでも、製品中では数p
pmにすることができれば、その経済的、工業的効果が
著しい。本発明は、このことも考え併せ、原料純度を所
定以上とすることなく従来と同等の高純度なアルミナ焼
結体を得る方法を開発することをも目的とする。更に、
高純度に加え、高密度、高均質性のアルミナ焼結体を得
ることを目的とする。
According to the present invention, in the method for producing an alumina sintered body as described above, the fine powder of the raw material and the careful treatment such as the prevention of the mixing of impurities in the manufacturing process are carried out, while finally allowing the mixing of some impurities. In view of the fact that it is unavoidable, an alumina sintered body that applies the same raw material powder as that in the past and measures to prevent the inclusion of impurities in each step, and is of higher purity and superior in homogeneity obtained by the conventional method Earnestly studied for the purpose of obtaining. Further, generally, the price of the alumina raw material powder becomes high in proportion to the degree of refining, that is, the purity, and when a high-purity raw material is used, the product price rises accordingly. Therefore, using a relatively low-purity raw material powder, a product with low impurity content, in particular, even if the iron content of the alumina powder raw material is several hundreds of ppm, a few p
If it can be made pm, its economic and industrial effects are remarkable. In view of this, the present invention also aims to develop a method of obtaining a high-purity alumina sintered body which is equivalent to the conventional one, without making the raw material purity higher than a predetermined level. Furthermore,
The purpose is to obtain a high-density, high-homogeneity alumina sintered body in addition to high purity.

【0006】発明者らは、上記目的達成のため、純化処
理工程を積極的に組み込むことを検討した。石英ガラス
やシリコン含浸SiCセラミックスを純化する方法とし
て、塩化水素ガスによる処理が既に公知であるが、この
場合の純化工程は、原料粉末の高純度化処理として工程
の初期に、あるいは製品の純化処理として製造工程の最
終段階に組み込まれていた。また、炭素材料について
は、塩素ガスによってアルカリ金属等を除去し、高純度
化する技術が旧来より行われている。しかし、従来、ア
ルミナセラミックスに限らず、一般的に、工業的に製造
されている酸化物セラミックス、例えば、ジルコニア、
マグネシア、スピネル等の製造工程中において純化処理
工程を組み込んだものはなく、焼結体製造における工程
増加は、上記したように却って不純物を増加させること
になるため、工程の省略の可能性を図っていた。発明者
らは、従来の酸化物セラミックスの製造法とは発想を逆
転させ、アルミナセラミックスの製造の中間工程とし
て、所定の焼成処理と共に積極的に純化工程を組み込む
ことにより、半導体製造装置部材や金属蒸気レーザー管
に適用可能な高純度で、且つ、高密度で均質なアルミナ
焼結体が得られることを見出し、本発明に到った。
In order to achieve the above-mentioned object, the inventors have studied to positively incorporate a purification treatment step. As a method for purifying quartz glass or silicon-impregnated SiC ceramics, treatment with hydrogen chloride gas is already known, but the purification step in this case is a high-purification treatment of raw material powder at the beginning of the process or a purification treatment of a product. Was incorporated into the final stage of the manufacturing process. In addition, for carbon materials, a technique of removing alkali metals and the like with chlorine gas to make them highly purified has been used for a long time. However, conventionally, not only alumina ceramics, but generally, industrially produced oxide ceramics, for example, zirconia,
There is no one that incorporates a purification treatment step in the manufacturing process of magnesia, spinel, etc., and increasing the number of steps in the production of sintered compacts rather increases impurities, as described above, so it is possible to omit the step. Was there. The inventors have reversed the idea from the conventional method for producing oxide ceramics, and by actively incorporating a purification step together with a predetermined firing process as an intermediate step in the production of alumina ceramics, semiconductor manufacturing equipment members and metal The present inventors have found that a high-purity, high-density, and homogeneous alumina sintered body applicable to a vapor laser tube can be obtained, and arrived at the present invention.

【0007】[0007]

【課題を解決するための手段】本発明によれば、アルミ
ナ焼結体の製造方法であって、(1)アルミナ原料粉末
を用いて成形する成形工程、(2)成形工程で得られた
アルミナ成形体から有機バインダーを除去し、且つ、開
気孔を残存させつつ焼成する一次焼成工程、(3)一次
焼成体を塩化水素ガス含有雰囲気下で熱処理する熱処理
工程、及び、(4)熱処理工程後、更に焼成して焼結す
る焼結工程からなることを特徴とするアルミナ焼結体の
製造方法が提供される。
According to the present invention, there is provided a method for producing an alumina sintered body, comprising: (1) a molding step of molding using alumina raw material powder; and (2) an alumina obtained in the molding step. After the organic binder is removed from the molded body and the firing is performed while leaving open pores, (3) a heat treatment step of heat treating the primary fired body in a hydrogen chloride gas-containing atmosphere, and (4) after the heat treatment step Further, there is provided a method for producing an alumina sintered body, which comprises a sintering step of further firing and sintering.

【0008】本発明の上記アルミナ焼結体の製造方法に
おいて、アルミナ原料粉末としてサブミクロン微粉を用
い、800〜1000℃で一次焼成するのが好ましい。
また、アルミナ原料粉末がミクロン微粉である場合は、
1000〜1200℃で一次焼成するのが好ましい。更
に、上記塩化水素ガス熱処理工程を、700〜1400
℃で行うのが好ましい。
In the method for producing an alumina sintered body according to the present invention, it is preferable to use submicron fine powder as the alumina raw material powder and perform primary firing at 800 to 1000 ° C.
If the alumina raw material powder is micron fine powder,
It is preferable to perform the primary firing at 1000 to 1200 ° C. Furthermore, the hydrogen chloride gas heat treatment step is performed at 700 to 1400.
It is preferable to carry out at ° C.

【0009】[0009]

【作用】本発明は上記のように構成され、セラミックス
焼成過程に純化工程を組み込むと同時に、サブミクロン
またはミクロンオーダーの原料粉末を成形して得られた
成形体を十分に連通する開気孔が残存する条件下で焼成
する。このことにより多孔成形体中に開気孔を連通状態
に保持して、純化処理の塩化水素ガスを焼結中の多孔成
形体内部まで速やかに到達させると共に、不純物との反
応生成物の塩化物の排出を容易とすることができ、焼結
体を高純度とすることができる。また、本発明のアルミ
ナ焼結体の製造方法においては、上記のように焼成過程
において開気孔を連通状態に保持するようにするため、
気孔や粒界等において、微粒子アルミナは純化工程の塩
化水素と反応して塩化アルミニウムとなると同時に、蒸
発し、その後、再び酸化され凝縮し、それに伴いアルミ
ナ粒子が次第に成長する等して、焼結体内部まで高密度
化して全体として均質となり、高密度の焼結体を得るこ
とができる。
The present invention is configured as described above, and at the same time as incorporating the purification step into the ceramics firing process, open pores that sufficiently communicate with the compact obtained by compacting the raw material powder of submicron or micron order remain. Bake under the conditions. This keeps open pores in the porous molded body in a communicating state, and allows the hydrogen chloride gas of the purification treatment to quickly reach the inside of the porous molded body during sintering, and the chloride of the reaction product with impurities The discharge can be facilitated, and the sintered body can have a high purity. Further, in the method for producing an alumina sintered body of the present invention, in order to maintain the open pores in a communicating state in the firing process as described above,
In the pores and grain boundaries, the fine particle alumina reacts with hydrogen chloride in the purification process to become aluminum chloride, and at the same time, evaporates, and then is oxidized again and condensed, and alumina particles gradually grow with it, and then sintered. It is possible to obtain a high-density sintered body by densifying the inside of the body and making the whole uniform.

【0010】以下、本発明について詳細に説明する。先
ず、本発明のアルミナ一次焼成体について説明する。即
ち、本発明において、一次焼成をするアルミナ成形体
は、従来と同様にアルミナ粉体を、スリップキャスティ
ングや一軸加圧成形、CIP(冷間静水圧成形)等のプ
レス成形等により成形する。成形方法は種々な方法があ
るが、特に制限されるものでなく、従来のセラミックス
の製造に一般的に用いられている方法を用いることがで
きる。得られた成形体は、次いで、乾燥、硬化、脱バイ
ンダー等の処理工程を必要に応じて施した後、一次焼成
する。本発明の一次焼成は、通常、大気中、十分に連通
する開気孔が残る条件下で行うものであり、具体的には
焼成温度を適宜コントロールして、開気孔を残存させる
ことができる。この場合、アルミナ原料粉末の粒子径や
成形体の成形方法等によって好適な一次焼成温度は異な
り、また、一次焼成の温度が低過ぎると、開気孔率は十
分高くなり不純物除去にとっては好適となるが、得られ
る一次焼成体において粉体間の結合が不十分で強度が低
く、搬送等の作業時に破損し易く実用的な取扱いが困難
である。一方、一次焼成温度が高過ぎると、焼結が進行
して一次焼成体の強度は十分高くなるが、焼結体の粒子
成長が同時進行して、開気孔状態でも成長した粒子内に
不純物が取り込まれ、後続の純化熱処理を行っても排出
が困難となる。従って、一次焼成温度は、各条件に応じ
て適宜選択して行わねばならない。例えば、焼結活性の
高いサブミクロンの微粉末を原料粉末として成形体は、
低い温度でも焼成体の強度が高くなり易く、高純化効果
を得るためには一次焼成温度は低く設定するのが好まし
い。通常、約800℃〜1000℃である。また、数ミ
クロン程度の粒径を持つ焼結活性の低いアルミナ粉末の
場合は、通常、約1000〜1200℃で焼成するのが
好ましい。
The present invention will be described in detail below. First, the alumina primary fired body of the present invention will be described. That is, in the present invention, the alumina compact to be primarily fired is formed by subjecting the alumina powder to slip casting, uniaxial pressure molding, press molding such as CIP (cold isostatic pressing), and the like as in the conventional case. There are various molding methods, but the method is not particularly limited, and a method generally used in conventional ceramics production can be used. The obtained molded body is then subjected to treatment steps such as drying, curing and binder removal as necessary, and then primary firing is performed. The primary firing of the present invention is generally carried out in the atmosphere under the condition that open pores that are sufficiently communicated with each other are left, and specifically, the firing temperature can be appropriately controlled to leave the open pores. In this case, the suitable primary firing temperature varies depending on the particle size of the alumina raw material powder, the molding method of the molded body, etc. Further, if the temperature of the primary firing is too low, the open porosity becomes sufficiently high, which is suitable for removing impurities. However, in the obtained primary fired body, the bond between the powders is insufficient and the strength is low, and the primary fired body is easily damaged during work such as transportation, and practical handling is difficult. On the other hand, if the primary firing temperature is too high, the sintering proceeds and the strength of the primary fired body becomes sufficiently high, but the grain growth of the sintered body proceeds at the same time, and impurities grow in the grown grains even in the open pore state. Even if it is taken in and subjected to the subsequent purification heat treatment, it becomes difficult to discharge it. Therefore, the primary firing temperature must be appropriately selected according to each condition. For example, a compact using submicron fine powder with high sintering activity as the raw material powder,
Even if the temperature is low, the strength of the fired body tends to be high, and it is preferable to set the primary firing temperature low in order to obtain a high purification effect. Usually, it is about 800 ° C to 1000 ° C. Further, in the case of alumina powder having a particle diameter of about several microns and low sintering activity, it is usually preferable to perform firing at about 1000 to 1200 ° C.

【0011】本発明においては、上記一次焼成して得ら
れた連通する開気孔が十分残存する一次焼結体を、次い
で塩化水素(HCl)ガス含有雰囲気下に熱処理して純
化処理する。この純化のための熱処理は、温度700℃
〜1400℃で行うことが望ましい。700℃未満の低
温度では、不純物元素の濃度が低下するまでに長時間が
必要となり実用的ではない。また、1400℃より高い
温度で熱処理した場合は、得られた一次焼成体を構成す
るアルミナの粒子が、前記したように塩化水素と反応し
て塩化アルミニウムとして蒸発した後、再びアルミナと
して凝縮成長するため、粒子径が大きくなり焼結活性を
失い、後続の焼結工程において十分緻密なセラミックス
ができなくなる。目的とするアルミナセラミックスが多
少気孔を含んでもよい場合には、1400℃より高温で
熱処理することができる。しかし、HC1ガス雰囲気下
の熱処理温度が1400℃より高いと、一次焼成体のア
ルミナ粒子が塩化アルミニウムとして飛散する量が急激
に増加し、粒子成長より純化装置内に凝縮堆積する量が
多くなるため一次焼成体が消耗し、工業的に好ましくな
い。従って、結局、熱処理温度は700〜1400℃が
好適である。
In the present invention, the primary sintered body obtained by the above-mentioned primary calcination and having a sufficient number of communicating open pores is then heat treated in an atmosphere containing hydrogen chloride (HCl) gas for purification treatment. The heat treatment for this purification is performed at a temperature of 700 ° C.
It is desirable to carry out at ˜1400 ° C. At a low temperature of less than 700 ° C., it takes a long time for the concentration of the impurity element to decrease, which is not practical. Further, when the heat treatment is performed at a temperature higher than 1400 ° C., the particles of alumina constituting the obtained primary fired body react with hydrogen chloride as described above to evaporate as aluminum chloride, and then again grow by condensation as alumina. Therefore, the particle size becomes large and the sintering activity is lost, so that a sufficiently dense ceramic cannot be formed in the subsequent sintering step. When the desired alumina ceramic may contain some pores, it can be heat-treated at a temperature higher than 1400 ° C. However, when the heat treatment temperature in the HC1 gas atmosphere is higher than 1400 ° C., the amount of alumina particles of the primary fired body scattered as aluminum chloride increases rapidly, and the amount of condensation and deposition in the purifier increases due to particle growth. The primary fired body is consumed, which is not industrially preferable. Therefore, after all, the heat treatment temperature is preferably 700 to 1400 ° C.

【0012】上記熱処理工程における処理時間は、処理
温度までの昇温時間及び処理後の冷却時間を含めて、工
業的に処理サイクルとしては長くても数日程度が適当で
ある。熱処理時間は、熱処理する一次焼成体の厚み及び
大きさや、熱処理炉の熱容量により適宜選択すればよい
が、一般的には、昇温または冷却に要する時間が数時間
から一日程度であり、所定温度での熱処理が数時間〜数
十時間、例えば1〜10時間とすることができる。
The processing time in the above heat treatment step, including the heating time up to the processing temperature and the cooling time after the processing, is industrially preferably several days at the longest as a processing cycle. The heat treatment time may be appropriately selected depending on the thickness and size of the primary fired body to be heat treated and the heat capacity of the heat treatment furnace, but generally, the time required for heating or cooling is several hours to about one day, The heat treatment at the temperature may be several hours to several tens hours, for example, 1 to 10 hours.

【0013】本発明の熱処理による純化において、不純
物減少は、下記のような推移によるものと推定される。
即ち、 (1)塩化水素ガス分子が連通する気孔を通って、不純
物元素のところまで拡散して到達する。この場合、被処
理物の肉厚、連通する気孔の大きさ、HC1濃度、温度
に依存するが、殆ど時間がかからないと考えられる。 (2)不純物元素が、一次焼成体のアルミナ微粒子内部
から表面へ固体拡散する。セラミックス一次焼成体を構
成するアルミナ微粒子表面の不純物が除去された後、内
部不純物の表面への拡散は、一次焼成体のアルミナ粒子
の大きさが律速となり、その粒子が小さいほど拡散距離
が短くなり短時間となる。アルミナ粒径が大きな場合
は、粒子に固溶している不純物の工業的な除去は、実質
的には不可能である。 (3)HClと不純物元素が反応し、塩化物となって蒸
発する。この場合、不純物元素とHClとの反応平衡定
数と生成塩化物の平衡蒸気圧が律速となる。
In the purification by heat treatment of the present invention, the impurity reduction is presumed to be due to the following transition.
That is, (1) The hydrogen chloride gas molecules diffuse and reach the impurity element through the pores communicating with each other. In this case, it depends on the thickness of the object to be treated, the size of the communicating pores, the concentration of HC1, and the temperature, but it is considered that it will take almost no time. (2) The impurity element diffuses solidly from the inside of the alumina fine particles of the primary fired body to the surface. After the impurities on the surface of the alumina fine particles constituting the ceramics primary fired body are removed, the diffusion of internal impurities to the surface is controlled by the size of the alumina particles in the primary fired body, and the smaller the particles, the shorter the diffusion distance. It will be a short time. When the particle size of alumina is large, industrial removal of impurities solid-dissolved in the particles is practically impossible. (3) HCl reacts with the impurity element to form chloride and evaporate. In this case, the reaction equilibrium constant of the impurity element and HCl and the equilibrium vapor pressure of the produced chloride are rate-determining.

【0014】(4)生成した塩化物が一次焼成体の連通
気孔を流通して一次焼成体外に流出する。例えば、一次
焼成体を構成するアルミナ粒子径が0.5μmであれ
ば、粒子間の連通気孔の径は約0.2μmである。一
方、純化ガスHClの蒸気圧を概略1気圧、熱処理温度
1000℃であるとき、気体分子が衝突する平均距離の
平均自由工程は約0.4μmとなり、上記気孔径0.2
μmより大きくなる。即ち、いわゆるクヌーセン拡散に
よって、反応生成物の塩化物が一次焼成体セラミックス
外に流出する。生成塩化物の一次焼結体からの流出速度
は、上記のように一次焼成体のアルミナ粒子径に依存
し、また、一次焼成体の肉厚にも関係するが、不純物が
一次焼成体の粒子表面に多い時の律速と考えられる。 (5)一次焼成体表面における不純物から生成した塩化
物蒸気を除去する。ppmオーダーの少量の不純物であ
れば、低流速でも除去が可能であるが、温度が高くなる
につれ除去速度が早くなる。発明者らの知見によれば7
00℃未満では十分でない。
(4) The produced chloride flows through the continuous ventilation holes of the primary fired body and flows out of the primary fired body. For example, if the diameter of the alumina particles forming the primary fired body is 0.5 μm, the diameter of the communication holes between the particles is about 0.2 μm. On the other hand, when the vapor pressure of the purified gas HCl is about 1 atm and the heat treatment temperature is 1000 ° C., the mean free path of the average distance of collision of gas molecules is about 0.4 μm, and the pore diameter is 0.2.
It becomes larger than μm. That is, the chloride of the reaction product flows out of the primary fired body ceramic by so-called Knudsen diffusion. The outflow rate of the produced chloride from the primary sintered body depends on the alumina particle diameter of the primary fired body as described above, and is also related to the wall thickness of the primary fired body, but impurities are particles of the primary fired body. It is considered to be the rate-determining factor when there are many on the surface. (5) The chloride vapor generated from impurities on the surface of the primary fired body is removed. A small amount of impurities on the order of ppm can be removed even at a low flow rate, but the removal rate becomes faster as the temperature rises. According to the knowledge of the inventors, 7
Temperatures below 00 ° C are not sufficient.

【0015】本発明の純化熱処理はHClガス含有雰囲
気下で行う。HClガス含有雰囲気は、塩化水素ガス単
独または塩化水素ガス及び希釈ガスの混合ガスを熱処理
炉へ供給するにより形成することができる。希釈ガスと
しては、ヘリウム、アルゴン、窒素等の不活性ガスを単
独もしくは2種以上混合して用いることができる。塩化
水素ガスと希釈ガスの比率は、熱処理による純化速度、
アルミナ一次焼成体の変質挙動及び処理経費から適宜設
定することができる。例えば、一次焼成体重量が1kg
のとき、1ppmの不純物重量は1mgであり、熱処理
純化に必要なHC1ガスも約1mg即ち約20ccで足
りる。従って、HClガスの含有率は、それに見合う量
の低含有量でよい。また、熱処理炉内のHClガスの濃
度が低いと、焼結体を構成するアルミナ粒子とHClの
反応速度が遅くなり、アルミナ消耗を防止する点からも
好ましい。
The purification heat treatment of the present invention is performed in an atmosphere containing HCl gas. The HCl gas-containing atmosphere can be formed by supplying hydrogen chloride gas alone or a mixed gas of hydrogen chloride gas and diluent gas to the heat treatment furnace. As the diluting gas, an inert gas such as helium, argon or nitrogen may be used alone or in combination of two or more. The ratio of hydrogen chloride gas and diluent gas is the rate of purification by heat treatment,
It can be appropriately set based on the alteration behavior of the alumina primary fired body and the processing cost. For example, the weight of the primary fired body is 1 kg
At that time, the impurity weight of 1 ppm is 1 mg, and the HC1 gas necessary for purification of the heat treatment is about 1 mg, that is, about 20 cc. Therefore, the content rate of the HCl gas may be a low content content corresponding thereto. Further, when the concentration of HCl gas in the heat treatment furnace is low, the reaction rate between the alumina particles constituting the sintered body and HCl becomes slow, which is preferable from the viewpoint of preventing alumina consumption.

【0016】また、HCl含有ガスの熱処理炉等反応室
への供給は、ガス流通方式、所定温度域とで循環させる
ガス循環方式、ガスを処理炉内に封入して所定時間熱処
理した後、排気し、更に、再度ガスを導入するバッチ式
ガス交換方式等のいずれの方式でもよい。ガス交換方式
において、反応容器の圧力を変動させる場合には、容器
を耐圧性にする必要がある。通常、流通方式が好まし
く、ガス交換方式では不純物と塩化水素が反応して生じ
る塩化物濃度が高くなり、不純物除去速度が遅くなるた
め好ましくないが、各種条件に応じて適宜選択すればよ
い。ガス流通方式におけるガス流速は、希釈ガス比率を
多くし全体の流速を高めることにより、一次焼成体表面
に拡散移動して表出してきた不純物塩化物を容易に下流
側に流去することができ好ましい。また、コスト面及び
ガスの冷却効果も考慮し、更に、熱処理炉の形状、容
積、被熱処理一次焼成体の形状等により、不純物とHC
lとで生成した塩化物の流去に必要最小限のガス流速を
適宜選択して設定することができる。
The HCl-containing gas is supplied to a reaction chamber such as a heat treatment furnace by a gas flow system, a gas circulation system in which the gas is circulated in a predetermined temperature range, a gas is enclosed in the processing furnace and heat-treated for a predetermined time, and then exhausted. However, any method such as a batch gas exchange method in which gas is introduced again may be used. In the gas exchange system, when changing the pressure of the reaction container, it is necessary to make the container pressure resistant. Generally, the flow system is preferable, and the gas exchange system is not preferable because the chloride concentration generated by the reaction between impurities and hydrogen chloride becomes high and the impurity removal rate becomes slow, but it may be appropriately selected according to various conditions. Regarding the gas flow rate in the gas flow system, by increasing the dilution gas ratio and increasing the overall flow rate, the impurity chloride that has diffused and moved to the surface of the primary fired body and is exposed can be easily removed to the downstream side. preferable. In addition, in consideration of the cost and the effect of cooling the gas, the impurities and HC may be different depending on the shape and volume of the heat treatment furnace, the shape of the heat-treated primary sintered body, and the like.
It is possible to appropriately select and set the minimum gas flow rate necessary for the removal of the chloride generated in the above-mentioned process.

【0017】本発明は、上記のように一次焼成体から不
純物を除去するため、HClガス含有雰囲気下で熱処理
する。この場合、アルミナセラミックスの焼結時に、異
常粒子成長防止剤としてよく知られているマグネシウム
イオン(Mg2+)が、同時に除去されることがあり、そ
のような場合は、熱処理後Mg2+を添加するのが好まし
い。Mg2+の添加は、好ましくは、熱処理した一次焼成
体をマグネシウム塩の水溶液に浸漬し、その後乾燥して
行うことができる。この方法は、Mg2+を必要量まで補
給することができ効果的である。焼結に要するマグネシ
ウム量は、最終焼結温度や他の不純物含有量等により変
化するが、一般に、最終的高温焼成の焼結において数1
0ppm以上は必要である。
In the present invention, in order to remove impurities from the primary fired body as described above, heat treatment is performed in an atmosphere containing HCl gas. In this case, magnesium ions (Mg 2+ ), which is well known as an abnormal grain growth inhibitor, may be removed at the same time during the sintering of alumina ceramics. In such a case, Mg 2+ may be removed after heat treatment. It is preferable to add it. The addition of Mg 2+ can be preferably carried out by immersing the heat-treated primary fired body in an aqueous solution of magnesium salt and then drying. This method is effective because it can replenish the required amount of Mg 2+ . The amount of magnesium required for sintering varies depending on the final sintering temperature, the content of other impurities, etc., but in general, it is several 1
0 ppm or more is necessary.

【0018】本発明は、上記のHClガス含有雰囲気下
の熱処理後、更に焼成してアルミナ焼結体とする。本発
明において、焼結工程の焼成方法は、特に制限されるも
のでないが、上記純化した一次焼成体をその後の本焼成
で汚染することは純化の意味がなく、本焼成での汚染
は、純化後の不純物含有量に対して十分小さくする必要
がある。この場合、水素雰囲気下や真空中の電気加熱焼
成は、汚染を少なくでき、且つ、高密度化でき、純化及
び均質化処理後の焼成方法として望ましい。また、雰囲
気置換率の大きいバーナーを用いる場合は、耐火物及び
雰囲気中汚染物を考慮すれば、空気中での焼成も可能で
ある。本発明の焼結工程における焼成は、特に従来の高
純度アルミナ焼結体の焼成と変わらず、通常、原料粉末
粒子や成形方法にもよるが、1600〜1850℃で行
うことができる。
In the present invention, after the heat treatment in the above-mentioned HCl gas-containing atmosphere, it is further fired to obtain an alumina sintered body. In the present invention, the firing method in the sintering step is not particularly limited, but contamination of the purified primary fired body in the subsequent main firing does not mean purification, and contamination in the main firing is purified. It is necessary to make the content of impurities sufficiently small. In this case, electric heating firing in a hydrogen atmosphere or in a vacuum is desirable as a firing method after purification and homogenization treatments because contamination can be reduced and density can be increased. Further, when a burner with a large atmosphere substitution rate is used, firing in air is also possible in consideration of refractory and contaminants in the atmosphere. The firing in the sintering step of the present invention is not particularly different from the firing of the conventional high-purity alumina sintered body, and can usually be performed at 1600 to 1850 ° C., although it depends on the raw material powder particles and the molding method.

【0019】本発明のアルミナ焼結体の製造方法におい
て、γ−アルミナが含有される場合、γ−アルミナはα
−アルミナに比し比表面積が大きく、例えばアルミナ原
料粉製造工程における焙焼雰囲気に存在する酸化鉄等の
不純物を選択的に吸着していることがある。この場合、
アルカリ金属、アルカリ土類金属系以外の不純物が含有
されることになるが、γ−アルミナを含むアルミナ原料
粉末を用いた成形体の一次焼成体を、純化のためにHC
1ガス含有雰囲気下で熱処理した場合には、γ−アルミ
ナがHC1に侵され易いことも相俟って、不純物除去が
急速に進行することになる。従って、不純物が同伴され
ること自体は好ましくないが、含有されることを積極的
に防止する必要性もない。
When γ-alumina is contained in the method for producing an alumina sintered body of the present invention, γ-alumina is α
-The specific surface area is larger than that of alumina, and for example, impurities such as iron oxide existing in the roasting atmosphere in the alumina raw material powder manufacturing process may be selectively adsorbed. in this case,
Although impurities other than alkali metal and alkaline earth metal-based impurities will be contained, the primary fired body of the formed body using alumina raw material powder containing γ-alumina is used for purification.
When heat treatment is performed in an atmosphere containing 1 gas, γ-alumina is likely to be attacked by HC1, which contributes to rapid removal of impurities. Therefore, the inclusion of impurities is not preferable, but it is not necessary to positively prevent the inclusion of impurities.

【0020】なお、アルミナ原料粉末に珪素が含まれる
場合、本発明の上記の純化処理、即ち、HC1含有ガス
雰囲気で熱処理しても珪素は除去されない。そのため、
不純物として珪素を含有し、アルミナ焼結体中の珪素の
存在が問題となる場合は、何らかの珪素除去処理を施す
必要がある。以上に説明したように、本発明は、従来と
同様なアルミナ焼結体の製造において、仮焼後の一次焼
結体を塩化水素ガス含有雰囲気下で熱処理を施すことに
より、アルカリ金属、アルカリ土類金属、酸化鉄等の不
純物を効率的に除去でき、その後、更に高温で焼成して
焼結させることにより、高緻密化し、均質性に優れる高
純度アルミナ焼結体を得ることができる。
When the alumina raw material powder contains silicon, the silicon is not removed even by the above-mentioned purification treatment of the present invention, that is, the heat treatment in the gas atmosphere containing HC1. for that reason,
When silicon is contained as an impurity and the presence of silicon in the alumina sintered body poses a problem, it is necessary to perform some sort of silicon removal treatment. As described above, the present invention, in the production of the same alumina sintered body as in the prior art, by subjecting the primary sintered body after calcination to heat treatment in an atmosphere containing hydrogen chloride gas, alkali metal, alkaline earth Impurities such as group metals and iron oxides can be efficiently removed, and thereafter, by firing at a higher temperature and sintering, it is possible to obtain a highly purified alumina sintered body that is highly densified and has excellent homogeneity.

【0021】[0021]

【実施例】以下、本発明を実施例に基づき更に詳細に説
明する。但し、本発明は下記実施例により制限されるも
のでない。なお、下記実施例において、一次焼成体の気
孔状態は水銀ポロシメータを用いて観測して、開孔に連
通するか否かを確認した。また、気孔率は水銀ポロシメ
ータ及びアルキメデス法を用いて測定した値に基づき算
出した。成形体、一次焼成体及び焼結体の不純物含有量
は、約0.5gの試料を粉砕しフレームレス原子吸光光
度計を用いて化学分析して求めた値である。また、焼結
体の相対密度はアルキメデス法を用いて測定した。
EXAMPLES The present invention will be described in more detail based on the following examples. However, the present invention is not limited to the following examples. In the following examples, the porosity state of the primary fired body was observed using a mercury porosimeter to confirm whether or not it communicated with the open pores. The porosity was calculated based on the values measured using the mercury porosimeter and Archimedes method. The impurity content of the molded body, the primary fired body, and the sintered body is a value obtained by crushing about 0.5 g of the sample and performing chemical analysis using a flameless atomic absorption spectrophotometer. The relative density of the sintered body was measured using the Archimedes method.

【0022】実施例1〜11及び比較例1(α−アルミ
ナ原料粉末) 住友化学(株)製の平均粒径0.4μmのα−アルミナ
原料粉末(商品名:AKP−20)100重量部、イオ
ン交換水80重量部、分散剤としてポリアクリル酸アン
モニウム0.2部、バインダーとして高純度ポリビニル
アルコール0.2重量部をポットミルにて一昼夜混合し
てスラリーを調製した。得られたスラリーを多孔質アル
ミナセラミックス板上に流した後、放置乾燥して成形体
を得た。得られた成形体を大気中で1000℃で2時間
焼成して一次焼成体を得た。一次焼成体の気孔状態を検
査した結果、気孔が連通することが確認できた。気孔率
は56%であった。また、一次焼成体中の不純物は、化
学分析により元素基準で鉄(Fe)10ppm、ナトリ
ウム(Na)6ppm、珪素(Si)10ppm含んで
いた。上記一次焼結体をフライス盤を用い、厚さが2m
mと8mmの2種類で、20×20(mm)の板状体に
加工した。加工形成した一次焼成坂状体を、表1に示し
た条件下で塩化水素ガス含有雰囲気で熱処理した。な
お、実施例6〜11の雰囲気ガスとして、窒素ガスとH
Clとを表1に示したN2 /HCl比率で混合したガス
を用いた。熱処理後、得られた純化処理した一次焼成体
を化学分析して不純物除去効果を確認した。その結果を
表1に示した。
Examples 1 to 11 and Comparative Example 1 (α-alumina raw material powder) 100 parts by weight of an α-alumina raw material powder (trade name: AKP-20) manufactured by Sumitomo Chemical Co., Ltd. and having an average particle size of 0.4 μm, A slurry was prepared by mixing 80 parts by weight of ion-exchanged water, 0.2 parts by weight of polyacrylic acid ammonium as a dispersant, and 0.2 parts by weight of high-purity polyvinyl alcohol as a binder in a pot mill overnight. The obtained slurry was poured onto a porous alumina ceramics plate and then left to dry to obtain a molded body. The obtained molded body was fired in the atmosphere at 1000 ° C. for 2 hours to obtain a primary fired body. As a result of inspecting the pore state of the primary fired body, it was confirmed that the pores communicate with each other. The porosity was 56%. Further, impurities in the primary fired body were found to contain 10 ppm of iron (Fe), 6 ppm of sodium (Na), and 10 ppm of silicon (Si) based on the elemental analysis by chemical analysis. Using a milling machine, the thickness of the primary sintered body is 2m.
Two types, m and 8 mm, were processed into a 20 × 20 (mm) plate-shaped body. The work-formed primary fired slope was heat-treated in an atmosphere containing hydrogen chloride gas under the conditions shown in Table 1. In addition, nitrogen gas and H were used as the atmosphere gas of Examples 6 to 11.
A gas mixed with Cl at the N 2 / HCl ratio shown in Table 1 was used. After the heat treatment, the purified primary fired body obtained was chemically analyzed to confirm the effect of removing impurities. The results are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】上記実施例及び比較例の結果から、純化処
理の塩化水素ガス含有雰囲気中での熱処理が700℃未
満の600℃では、HC1濃度を高くして時間をかけて
も純化が進行しないことが分かる。700℃以上では純
化が進行し、HC1濃度は低濃度でもまた流量が少なく
とも進行することが分かる。また1200℃では純化は
著しいが、同時にアルミナの減少も多いことが分かる。
アルミナに含まれるSiはHC1含有雰囲気の熱処理で
は除去されないことが分かる。
From the results of the above Examples and Comparative Examples, at 600 ° C., where the heat treatment in the hydrogen chloride gas-containing atmosphere of the purification treatment is less than 700 ° C., the purification does not proceed even if the HC1 concentration is increased and the time is increased. I understand. It can be seen that purification proceeds at 700 ° C. or higher, and the flow rate at least progresses even when the HC1 concentration is low. Further, it can be seen that at 1200 ° C., the purification is remarkable, but at the same time, the amount of alumina is greatly reduced.
It can be seen that Si contained in alumina is not removed by heat treatment in an atmosphere containing HC1.

【0025】実施例12〜20及び比較例2〜4 γ−アルミナを含むバイコウスキー社製の平均粒径0.
05μmの高純度アルミナ原料粉末(商品名:CR−3
0)100重量部、イオン交換水150重量部、分散剤
としてポリアクリル酸アンモニウム少量、バインダーと
してポリビニルアルコール1.5重量部をポットミルに
て一昼夜混合してスラリーを調製した。得られたスラリ
ーをスプレードライヤーを用いて造粒し、得られた造粒
粉をCIPを用い1トン/cm2 の圧力で、直径25m
m、長さ110mmの円柱に成形した。円柱成形体を大気
中1000℃で焼成して一次焼成体を得た。得られた一
次焼成体は、不純物としてFeを元素基準で8ppm含
有していた。また、気孔率61%で全ての気孔が開気孔
であった。一次焼成体を加工し、直径20mm、長さ10
0mmの円柱とした。加工後の一次焼成体を、塩化水素雰
囲気下で処理温度を表2に示したように変化させて熱処
理して純化し、均質化した。熱処理後の一次焼成体の鉄
含有量を測定した結果は3ppmであり、実施例12と
して表2に示した。次いで、Mgが100ppmになる
ようにマグネシウム塩水溶液を用いてMgイオンを含浸
し、水素雰囲気中1800℃で2時間焼成して焼結し
た。得られた各焼結体のFe濃度を化学分析により、ま
た、相対密度を測定した。その結果を表2に示した。な
お、比較例2として熱処理をすることなく焼結した焼結
体の結果も表2に示した。
Examples 12 to 20 and Comparative Examples 2 to 4 Average particle size of 0.10 made by Baikowski Co. containing γ-alumina.
05 μm high-purity alumina raw material powder (trade name: CR-3
0) 100 parts by weight, 150 parts by weight of ion-exchanged water, a small amount of ammonium polyacrylate as a dispersant, and 1.5 parts by weight of polyvinyl alcohol as a binder were mixed in a pot mill all day and night to prepare a slurry. The obtained slurry is granulated using a spray dryer, and the obtained granulated powder is used with CIP at a pressure of 1 ton / cm 2 and a diameter of 25 m.
It was molded into a cylinder with a length of m and a length of 110 mm. The columnar formed body was fired at 1000 ° C. in the atmosphere to obtain a primary fired body. The obtained primary fired body contained 8 ppm of Fe as an impurity on an elemental basis. Further, all the pores were open pores with a porosity of 61%. Processing the primary fired body, diameter 20mm, length 10
It was a 0 mm cylinder. The primary fired body after processing was subjected to heat treatment in a hydrogen chloride atmosphere while changing the treatment temperature as shown in Table 2 to be purified and homogenized. The result of measuring the iron content of the primary fired body after the heat treatment was 3 ppm, which is shown in Table 2 as Example 12. Then, Mg ions were impregnated with an aqueous solution of magnesium salt so that the Mg content was 100 ppm, followed by firing at 1800 ° C. for 2 hours in a hydrogen atmosphere and sintering. The Fe density of each of the obtained sintered bodies was measured by chemical analysis, and the relative density was measured. The results are shown in Table 2. Table 2 also shows the results of a sintered body that was sintered without heat treatment as Comparative Example 2.

【0026】[0026]

【表2】 [Table 2]

【0027】上記の実施例及び比較例の結果から、多孔
質の一次焼成体をHC1を含む雰囲気下で熱処理して純
化した後は、再び焼結のため焼成を経ても、熱処理後の
純化の効果が維持されていることが確認できた。また、
γ−アルミナを含むアルミナ粉末を原料にした場合は、
前記実施例1〜11のα−アルミナ原料のみの原料より
も純化効果が向上することが分かる。また、純化のため
の熱処理に伴い、熱処理温度が約900〜1100℃の
範囲で焼結体密度が向上するが、1200℃以上では逆
に焼結体相対密度が低下することが分かる。
From the results of the above Examples and Comparative Examples, after the porous primary fired body was heat treated in an atmosphere containing HC1 to be purified, even after firing for sintering again, the purification after heat treatment was performed. It was confirmed that the effect was maintained. Also,
When using alumina powder containing γ-alumina as a raw material,
It can be seen that the purification effect is improved as compared with the raw materials containing only the α-alumina raw material of Examples 1 to 11. Further, it can be seen that, along with the heat treatment for purification, the sintered body density improves in the heat treatment temperature range of about 900 to 1100 ° C., but conversely the sintered body relative density decreases at 1200 ° C. or higher.

【0028】実施例21〜32 表3に示した条件でHCl雰囲気下で熱処理した以外
は、実施例12と全く同様にして焼結体を得た。得られ
た各焼結体について蒸発減量を測定し、更に、各焼結体
を表面付近、中間部及び中心部に切断3分割し、各部分
のそれぞれの相対密度を測定して表3に示した。また、
前記比較例2で熱処理することなく得られた焼結体につ
いて、同様に3分割して各相対密度を測定し、その結果
を表3に示した。
Examples 21 to 32 Sintered bodies were obtained in exactly the same manner as in Example 12 except that the heat treatment was performed in the HCl atmosphere under the conditions shown in Table 3. The evaporation loss of each of the obtained sintered bodies was measured, and further, each sintered body was cut into three parts near the surface, the middle part and the central part, and the relative density of each part was measured and shown in Table 3. It was Also,
The relative density of each of the sintered bodies obtained in Comparative Example 2 without heat treatment was measured in the same manner, and the results are shown in Table 3.

【0029】これらの結果からも、一次焼成体をHCl
雰囲気下で700℃以上で熱処理することにより、最終
的に得られる焼結体の相対密度と均質性が向上し、高密
度化と均質化を達成できることが明らかである。また、
1100℃以上の高温でのHCl含有雰囲気下熱処理
は、焼結体の均質性は向上するが、前記実施例12〜2
0でも明らかな通り、密度が低下することが分かる。
Also from these results, the primary fired body was treated with HCl.
It is apparent that the heat treatment at 700 ° C. or higher in the atmosphere improves the relative density and homogeneity of the finally obtained sintered body, and can achieve densification and homogenization. Also,
Although heat treatment in an HCl-containing atmosphere at a high temperature of 1100 ° C. or higher improves the homogeneity of the sintered body, the above-mentioned Examples 12 to
As is clear even with 0, the density decreases.

【0030】[0030]

【表3】 [Table 3]

【0031】実施例33〜50及び比較例6〜7(低純
度原料) 住友化学(株)製の平均粒径1.0μmの易焼結アルミ
ナ粉末(商品名:AES−11E)100重量部に、ポ
リビニルアルコール2重量部、イオン交換水60重量部
を添加しスラリーを作製した。得られたスラリーをスプ
レードライヤーを用いて噴霧乾燥し、造粒粉を得た。造
粒粉をCIPを用いて1トン/cm2 の圧力で加圧成形
した後、旋盤加工して外径30mm、肉厚2mm、長さ
100mmの円管を製作した。この加工円管を1250
℃で2時間空気中で加熱し、バインダーを焼散して一次
焼成体を得た。得られた一次焼成体は気孔率60%で、
その気孔は連通していることが確認された。また、不純
物含有量を測定し比較例7として表4に示した。次い
で、一次焼成体を、窒素ガスとHClとを表4に示した
2 /HCl比率で混合したガス雰囲気下で表4に示し
た条件で熱処理を行った。得られた熱処理後の一次焼成
体について実施例1と同様に不純物含有量及び重量減少
量を測定した。その結果を表4に示した。
Examples 33 to 50 and Comparative Examples 6 to 7 (low-purity raw material) To 100 parts by weight of easily-sinterable alumina powder (trade name: AES-11E) manufactured by Sumitomo Chemical Co., Ltd. and having an average particle size of 1.0 μm. Then, 2 parts by weight of polyvinyl alcohol and 60 parts by weight of deionized water were added to prepare a slurry. The obtained slurry was spray-dried using a spray dryer to obtain granulated powder. The granulated powder was pressure-molded using CIP at a pressure of 1 ton / cm 2 , and was then lathe processed to produce a circular tube having an outer diameter of 30 mm, a wall thickness of 2 mm and a length of 100 mm. This processed circular tube is 1250
The binder was burned off by heating in air at 0 ° C. for 2 hours to obtain a primary fired body. The obtained primary fired body has a porosity of 60%,
It was confirmed that the pores were communicating. In addition, the content of impurities was measured and shown in Table 4 as Comparative Example 7. Next, the primary fired body was heat-treated under the conditions shown in Table 4 in a gas atmosphere in which nitrogen gas and HCl were mixed at the N 2 / HCl ratio shown in Table 4. The impurity content and the weight loss of the obtained primary fired body after the heat treatment were measured in the same manner as in Example 1. The results are shown in Table 4.

【0032】[0032]

【表4】 [Table 4]

【0033】上記実施例及び比較例の結果から、易焼結
低純度アルミナ原料粉末による一次焼成体は、高純度ア
ルミナ粉末の一次焼成体に比してより高温で初めて実質
的に純化することが分かる。従って、高温におけるアル
ミナ蒸発量との兼ね合いで、原料粉末の純度を選択する
必要がある。また、熱処理雰囲気中のHC1ガス濃度は
低くても純化に有効であり、含有HClガスが希薄雰囲
気下ではアルミナ蒸発が抑制され、低純度原料粉末を用
い、高温熱処理を要する場合に好適であることが分か
る。
From the results of the above-mentioned Examples and Comparative Examples, the primary calcined body made of the easily sintered low-purity alumina raw material powder can be substantially purified only at a higher temperature than the primary calcined body of the high-purity alumina powder. I understand. Therefore, it is necessary to select the purity of the raw material powder in consideration of the evaporation amount of alumina at high temperature. Further, even if the HC1 gas concentration in the heat treatment atmosphere is low, it is effective for purification, and alumina evaporation is suppressed in a dilute atmosphere containing HCl gas, and it is suitable when high-temperature heat treatment is required using a low-purity raw material powder. I understand.

【0034】実施例51〜62及び比較例8 実施例1で用いたアルミナ粉末100重量部、イオン交
換水80重量部、すべり剤としてポリエチレンオキサイ
ド1重量部、バインダーのポリビニルアルコールを2重
量部をポットミルにて一昼夜分散混合してスラリーを調
製した。得られたスラリーをスプレードライヤーを用い
て造粒し、得られた造粒粉をラバープレスを用い1トン
/cm2 の圧力で、直径60mm、長さ110mmの円柱に
成形した。円柱成形体を大気中1000℃で2時間焼成
して一次焼成体を得た。得られた一次焼成体の気孔は連
通し、気孔率50%であった。一次焼成体を加工し、直
径50mm、長さ100mmの円柱とした。加工後の一次焼
成体を、塩化水素雰囲気下で処理温度を表5に示したよ
うに変化させて熱処理して純化、均質化した。次いで、
Mgが100ppmになるようにマグネシウム塩水溶液
を用いてMgイオンを含浸し、水素雰囲気中1850℃
で2時間焼成して焼結した。得られた各焼結体を表面付
近、中間部及び中心部に切断3分割し、各部分のそれぞ
れの相対密度を測定して表5に示した。また、一次焼成
体を熱処理せずにマグネシウムイオン含浸、焼結して得
られた焼結体について、同様に3分割して各相対密度を
測定し、その結果を表5に示した。
Examples 51 to 62 and Comparative Example 8 100 parts by weight of the alumina powder used in Example 1, 80 parts by weight of deionized water, 1 part by weight of polyethylene oxide as a slip agent, and 2 parts by weight of polyvinyl alcohol as a binder were pot-milled. At that time, the mixture was dispersed for one day to prepare a slurry. The obtained slurry was granulated using a spray dryer, and the resulting granulated powder was molded into a cylinder having a diameter of 60 mm and a length of 110 mm at a pressure of 1 ton / cm 2 using a rubber press. The columnar formed body was fired in the atmosphere at 1000 ° C. for 2 hours to obtain a primary fired body. The porosity of the obtained primary fired body was continuous, and the porosity was 50%. The primary fired body was processed into a cylinder having a diameter of 50 mm and a length of 100 mm. The primary fired body after processing was subjected to heat treatment in a hydrogen chloride atmosphere while changing the treatment temperature as shown in Table 5, to be purified and homogenized. Then
Impregnate Mg ions with an aqueous solution of magnesium salt so that the Mg content will be 100 ppm, and in a hydrogen atmosphere at 1850 ° C
And baked for 2 hours to sinter. Each of the obtained sintered bodies was cut into three parts, near the surface, in the middle and in the center, and the relative density of each part was measured and shown in Table 5. Further, a sintered body obtained by impregnating and sintering magnesium ion without heat treatment of the primary fired body was similarly divided into three and the relative densities thereof were measured, and the results are shown in Table 5.

【0035】これらの結果から、α−アルミナのみの原
料粉末からなる一次焼成体も、HCl雰囲気下で700
℃以上で熱処理することにより、最終的に得られる焼結
体の相対密度と均質性が向上し、高密度化と均質化を達
成できることが明らかである。また、1100℃以上の
高温でのHCl含有雰囲気下熱処理は、焼結体の均質性
は向上するが、密度は低下することが分かる。
From these results, the primary fired body made of only the raw material powder of α-alumina was 700 times in the HCl atmosphere.
It is clear that the heat treatment at a temperature of not less than 0 ° C. improves the relative density and homogeneity of the finally obtained sintered body, and can achieve densification and homogenization. Further, it can be seen that heat treatment in an HCl-containing atmosphere at a high temperature of 1100 ° C. or higher improves the homogeneity of the sintered body but decreases the density.

【0036】[0036]

【表5】 [Table 5]

【0037】実施例63及び比較例9 実施例25及び比較例2で得られたアルミナ焼結体であ
るアルミナセラミックスの耐酸性を評価した。即ち、3
分割された各アルミナセラミックス片をダイヤモンドグ
ラインダーで加工した後、白金るつぼ中で1000℃に
保持したホウ酸ナトリウム溶融塩中に浸漬して、加工に
より形成されたダメージ槽を除去した。その後、ホウ酸
ナトリウムの溶融塩中から取り出し室温で放置して乾燥
した。乾燥後、セラミックス表面のホウ酸ナトリウム固
化物を温希塩酸中に浸漬して除去して、試料セラミック
ス片とした。上記のようにして作製した各試料セラミッ
クス片を、それぞれ30℃のフッ化水素酸中に所定時間
浸漬して溶出量を測定した。その結果を表6に示した。
Example 63 and Comparative Example 9 The acid resistance of the alumina ceramics, which is the alumina sintered body obtained in Example 25 and Comparative Example 2, was evaluated. That is, 3
Each of the divided alumina ceramic pieces was processed with a diamond grinder and then immersed in a molten sodium borate salt kept at 1000 ° C. in a platinum crucible to remove the damage tank formed by the processing. Then, it was taken out from the molten salt of sodium borate and left to dry at room temperature. After drying, the solidified product of sodium borate on the surface of the ceramic was immersed in warm dilute hydrochloric acid and removed to obtain a sample ceramic piece. Each sample ceramic piece produced as described above was immersed in hydrofluoric acid at 30 ° C. for a predetermined time, and the elution amount was measured. Table 6 shows the results.

【0038】[0038]

【表6】 [Table 6]

【0039】上記実施例及び比較例より明らかなよう
に、一次焼成体をHClガス含有雰囲気下で熱処理して
焼成し焼結して得たアルミナセラミックスが、熱処理す
ることなく焼結したセラミックスに比し、耐酸性の向上
が著しいことが分かる。
As is clear from the above-mentioned Examples and Comparative Examples, the alumina ceramics obtained by heat-treating the primary fired body in an atmosphere containing HCl gas and firing and sintering the same were compared with the ceramics sintered without heat treatment. However, it can be seen that the acid resistance is remarkably improved.

【0040】[0040]

【発明の効果】本発明のアルミナ焼結体の製造方法は、
簡便な純化操作を組み込むことにより、アルカリ金属等
の不純物含有量を低減し高純度化すると共に、全体とし
て緻密化され均質性に優れる高密度なアルミナ焼結体を
得ることができ、特に、汚染源の発生に厳しい半導体製
造装置用部材や、長時間高温に置かれる金属蒸気レーザ
ー管に好適なアルミナ質セラミックスを製造することが
でき、工業上極めて有用である。更に、本発明で製造さ
れるアルミナ質セラミックスは、緻密化され耐酸性にも
優れ、各種厳しい条件下で処理される装置等の部材料と
して汎用性に富み、工業性が高い。
The method for producing an alumina sintered body of the present invention comprises:
By incorporating a simple purification operation, it is possible to reduce the content of impurities such as alkali metals and to make it highly purified, and to obtain a high-density alumina sintered body that is densified as a whole and has excellent homogeneity. It is possible to manufacture aluminous ceramics suitable for a semiconductor manufacturing apparatus member that is strict in the generation of metal and a metal vapor laser tube that is exposed to a high temperature for a long time, which is extremely useful industrially. Furthermore, the alumina-based ceramics produced by the present invention is highly densified and has excellent acid resistance, and is versatile and highly industrial as a material for parts such as devices that are treated under various severe conditions.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 アルミナ焼結体の製造方法であって、
(1)アルミナ原料粉末を用いて成形する成形工程、
(2)成形工程で得られたアルミナ成形体から有機バイ
ンダーを除去し、且つ、開気孔を残存させつつ焼成する
一次焼成工程、(3)一次焼成体を塩化水素ガス含有雰
囲気下で熱処理する熱処理工程、及び、(4)熱処理工
程後、更に焼成して焼結する焼結工程からなることを特
徴とするアルミナ焼結体の製造方法。
1. A method of manufacturing an alumina sintered body, comprising:
(1) A molding step of molding using alumina raw material powder,
(2) A primary baking step of removing the organic binder from the alumina molded body obtained in the molding step and baking while leaving open pores, (3) a heat treatment of heat-treating the primary baked body in an atmosphere containing hydrogen chloride gas A method of manufacturing an alumina sintered body, which comprises a step, and (4) a heat treatment step, followed by a sintering step of further firing and sintering.
【請求項2】 前記アルミナ原料粉末がサブミクロン微
粉であり、前記一次焼成工程が800〜1000℃で焼
成する請求項1記載のアルミナ焼結体の製造方法。
2. The method for producing an alumina sintered body according to claim 1, wherein the alumina raw material powder is submicron fine powder, and the primary firing step is performed at 800 to 1000 ° C.
【請求項3】 前記アルミナ原料粉末がミクロン微粉で
あり、前記一次焼成工程が1000〜1200℃で焼成
する請求項1記載のアルミナ焼結体の製造方法。
3. The method for producing an alumina sintered body according to claim 1, wherein the alumina raw material powder is micronized fine powder, and the primary firing step is performed at 1000 to 1200 ° C.
【請求項4】 熱処理工程が、700〜1400℃で処
理する請求項1〜3記載のアルミナ焼結体の製造方法。
4. The method for producing an alumina sintered body according to claim 1, wherein the heat treatment step is performed at 700 to 1400 ° C.
JP06201475A 1994-08-03 1994-08-03 Method for producing alumina sintered body Expired - Fee Related JP3077877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06201475A JP3077877B2 (en) 1994-08-03 1994-08-03 Method for producing alumina sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06201475A JP3077877B2 (en) 1994-08-03 1994-08-03 Method for producing alumina sintered body

Publications (2)

Publication Number Publication Date
JPH0840765A true JPH0840765A (en) 1996-02-13
JP3077877B2 JP3077877B2 (en) 2000-08-21

Family

ID=16441700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06201475A Expired - Fee Related JP3077877B2 (en) 1994-08-03 1994-08-03 Method for producing alumina sintered body

Country Status (1)

Country Link
JP (1) JP3077877B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179147A (en) * 2003-12-22 2005-07-07 Matsushita Electric Works Ltd Ceramic substrate for mounting photoelectric conversion element
US9108887B2 (en) 2010-05-31 2015-08-18 Nishimura Porcelain Co., Ltd. Method for producing ceramic for heat-radiating members, ceramic for heat-radiating members, and solar cell module and LED light-emitting module using said ceramic

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104529402A (en) * 2014-12-20 2015-04-22 佛山铭乾科技有限公司 Ceramic bath tub

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179147A (en) * 2003-12-22 2005-07-07 Matsushita Electric Works Ltd Ceramic substrate for mounting photoelectric conversion element
JP4654577B2 (en) * 2003-12-22 2011-03-23 パナソニック電工株式会社 Ceramic substrate for mounting photoelectric conversion elements
US9108887B2 (en) 2010-05-31 2015-08-18 Nishimura Porcelain Co., Ltd. Method for producing ceramic for heat-radiating members, ceramic for heat-radiating members, and solar cell module and LED light-emitting module using said ceramic

Also Published As

Publication number Publication date
JP3077877B2 (en) 2000-08-21

Similar Documents

Publication Publication Date Title
US7932202B2 (en) Y2O3 sintered body and corrosion resistant member for semiconductor/liquid crystal producing apparatus
JP2000001362A (en) Corrosion resistant ceramic material
JP4987238B2 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and aluminum nitride sintered body manufacturing method
JP5466831B2 (en) Yttria sintered body and member for plasma process equipment
JP6651628B2 (en) High thermal conductivity silicon nitride sintered body and method for producing the same
JP4683783B2 (en) Method for manufacturing plasma-resistant member for semiconductor manufacturing apparatus
JP2001181042A (en) Corrosion-resistant ceramic member and method for producing the same
KR20230012573A (en) Ceramic sintered body containing magnesium aluminate spinel
US6699401B1 (en) Method for manufacturing Si-SiC member for semiconductor heat treatment
JP4493264B2 (en) Aluminum nitride ceramics, semiconductor manufacturing members and corrosion resistant members
JP4798693B2 (en) Yttria ceramic parts for plasma processing apparatus and method for manufacturing the same
JP2012206913A (en) Magnesium fluoride-sintered body, method for manufacturing the same, and member for semiconductor manufacturing apparatus
JP3093897B2 (en) High purity alumina ceramics and method for producing the same
JP3077877B2 (en) Method for producing alumina sintered body
JP3145518B2 (en) Surface high-purity ceramics and manufacturing method thereof
JP2001244246A (en) Focus ring
US8178459B2 (en) Corrosion-resistant member and method of manufacturing same
JP4651145B2 (en) Corrosion resistant ceramics
JP2001233676A (en) Plasma corrosion-resistant member and method for producing the same
JP2000247728A (en) Alumina ceramic sintered compact having excellent corrosion resistance
US20230373862A1 (en) Zirconia toughened alumina ceramic sintered bodies
KR20240010724A (en) Yttria-zirconia sintered ceramics for plasma-resistant materials
TW202404925A (en) Process for sintering large diameter yag layers substantially free of unreacted yttrium oxide and yttrium rich phases
JP2023056147A (en) Yttrium oxide sintered body and components for semiconductor manufacturing apparatus
CN116332647A (en) Plasma resistant rare earth oxide solid solution ceramics and method for manufacturing same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371