JP4539342B2 - 解析装置、顕微鏡、および、解析プログラム - Google Patents

解析装置、顕微鏡、および、解析プログラム Download PDF

Info

Publication number
JP4539342B2
JP4539342B2 JP2005011834A JP2005011834A JP4539342B2 JP 4539342 B2 JP4539342 B2 JP 4539342B2 JP 2005011834 A JP2005011834 A JP 2005011834A JP 2005011834 A JP2005011834 A JP 2005011834A JP 4539342 B2 JP4539342 B2 JP 4539342B2
Authority
JP
Japan
Prior art keywords
data
spectrum data
spectrum
spectral
determination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005011834A
Other languages
English (en)
Other versions
JP2006200987A (ja
Inventor
陽子 福田
一郎 佐瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005011834A priority Critical patent/JP4539342B2/ja
Publication of JP2006200987A publication Critical patent/JP2006200987A/ja
Application granted granted Critical
Publication of JP4539342B2 publication Critical patent/JP4539342B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Microscoopes, Condenser (AREA)

Description

本発明は、スペクトルマッチング機能を備えた解析装置、顕微鏡、および、解析プログラムに関する。
標本の画像における特定スペクトルの空間分布を調べるために、スペクトルマッチング機能を備えた解析装置が提案されている(例えば非特許文献1を参照)。この装置は、予め記憶している特定スペクトルのデータと標本の画像の各ピクセル(画像取得をする領域であるスキャン領域を予め決めた解像度で分割したときの最小単位)のスペクトルデータとのマッチング度を調べて、マッチング度の高いピクセルの空間分布を特定スペクトルの空間分布と考えるものである。解析対象の標本は、病理サンプルや鑑識サンプルなどの固定標本である。例えば病理サンプルの場合、予め記憶している特定スペクトルのデータとは、異常(または正常)な細胞組織の典型的なスペクトルのデータである。これを用いることで、病理サンプルにおける異常(または正常)な細胞組織の空間分布を調べることができる。
「BIO−PARISS イメージング分光器 カタログ」、Light Form 社
しかしながら、上記の解析装置では、経時変化する標本において特定スペクトルの空間分布が変化していく様子を調べることは想定していない。経時変化する標本の場合、単に予め記憶している特定スペクトルのデータを用いても良好な解析を行えるとは限らなかった。経時変化する標本としては、例えば医薬品の開発過程のスクリーニングで様々な反応を示す生体細胞などが考えられる。
本発明の目的は、経時変化する標本のスペクトル解析を良好に行うことができる解析装置、顕微鏡、および、解析プログラムを提供することにある。
本発明の解析装置は、経時変化する標本の画像データを構成する最小単位である各ピクセルのスペクトルデータを前記経時変化に伴って複数取得する取得手段と、前記複数のスペクトルデータのうち、1以上の前記スペクトルデータを用いて、マッチング検索用の基準スペクトルデータを決定する決定手段と、前記基準スペクトルデータを用いて、各々の前記スペクトルデータに対するマッチング検索を行う検索手段とを備えたものである。
また、前記決定手段は、前記経時変化が収束した段階における前記1以上のスペクトルデータに基づいて、前記基準スペクトルデータを決定するものである。
また、前記画像データに注目エリアを設定する設定手段を備え、前記決定手段は、前記注目エリアにおける前記1以上のスペクトルデータに基づいて、前記基準スペクトルデータを決定するものである。
また、本発明の顕微鏡は、上述した解析装置と、前記スペクトルデータを生成して前記取得手段に出力する生成手段と、前記生成手段が1つの前記画像データにおける全ての前記スペクトルデータの生成を終了したときに、今回の画像データの前記スペクトルデータと前回の画像データの前記スペクトルデータとを比較し、前記経時変化が収束したか否かを判定する判定手段と、前記判定手段による判定の結果、前記経時変化が収束したときに、前記生成手段による前記スペクトルデータの生成を終了させる制御手段とを備えたものである。
また、前記判定手段は、前記画像データに判定エリアを設定して、該判定エリアにおける今回の画像データの前記スペクトルデータと前回の画像データの前記スペクトルデータとを比較し、前記経時変化が収束したか否かを判定するものである。
また、本発明の解析プログラムは、経時変化する標本の画像データを構成する最小単位である各ピクセルのスペクトルデータを前記経時変化に伴って複数取得する取得手順と、前記複数のスペクトルデータのうち、1以上の前記スペクトルデータを用いて、マッチング検索用の基準スペクトルデータを決定する決定手順と、前記基準スペクトルデータを用いて、各々の前記スペクトルデータに対するマッチング検索を行う検索手順とをコンピュータに実行させるためのものである。
本発明によれば、経時変化する標本のスペクトル解析を良好に行うことができる。
以下、図面を用いて本発明の実施形態を詳細に説明する。
(第1実施形態)
ここでは、標本の共焦点観察を例に説明する。
本実施形態の顕微鏡10は、図1に示す通り、共焦点顕微鏡部(11〜20)と、スペクトルディテクタ部(21〜25)と、コントローラ部(26〜28)とで構成されている。
共焦点顕微鏡部(11〜20)は、標本10Aを支持するステージ11と、レーザ光源12と、光ファイバ13と、コリメートレンズ14と、ダイクロイックミラー15と、XYスキャナ16と、対物レンズ17と、結像レンズ18と、ピンホール板19と、光ファイバ20とで構成されている。レーザ光源12からのレーザ光は、光ファイバ13とコリメートレンズ14とダイクロイックミラー15とXYスキャナ16と対物レンズ17とを介して標本10Aの1点に入射し、その中の蛍光物質(例えば蛍光蛋白質)を励起する。標本10Aから発生した蛍光は、対物レンズ17とXYスキャナ16とダイクロイックミラー15と結像レンズ18とピンホール板19と光ファイバ20とを介して、スペクトルディテクタ部(21〜25)に導かれる。
スペクトルディテクタ部(21〜25)は、コリメートレンズ21と、グレーティング22と、集光レンズ23と、検出器24と、光信号サンプリング回路25とで構成される。グレーティング22は3種類あり、それぞれ格子数が異なっている。検出器24は、例えば32個の光電子増倍管(PMT)4Aを一次元アレイ状に配列したものである。上記の光ファイバ20からの蛍光は、コリメートレンズ21とグレーティング22とを介してスペクトル分解され、波長の異なる各チャンネル光(光信号)となる。各チャンネル光は、検出器24の各PMT4Aに入射して光強度に応じた電気信号に変換され、光信号サンプリング回路25を介して順にコントローラ部(26〜28)へ出力される。
このときの出力信号は、標本10Aの1点(レーザ光の入射点)から発生した蛍光に基づくものであり、この蛍光をスペクトル分解して得られる各チャンネル光の波長と光強度との関係を表している(以下「スペクトルデータ」という)。1つのスペクトルデータは、標本10Aの1点(レーザ光の入射点)に対応し、換言すると、標本10Aの画像(画像を取得する領域のスキャン領域のデータであるフレーム)の1ピクセルに対応する。
コントローラ部(26〜28)は、画像処理回路26と、CPUなどの制御回路27と、XYスキャナ駆動回路28とで構成される。画像処理回路26には、表示装置を備えたコンピュータ29が接続されている。画像処理回路26は、上記のスペクトルディテクタ部(21〜25)から出力されたスペクトルデータを取得して不図示のメモリに格納する。そして、スペクトルマッチング機能を備えた解析装置として、後述の処理(図4)を実行する。制御回路27は、XYスキャナ駆動回路28を介して共焦点顕微鏡部(11〜20)のXYスキャナ16を制御し、レーザ光によって標本10Aを2次元的に走査する。
このとき、標本10Aの各点(レーザ光の各入射点)から発生した蛍光は、順に、スペクトルディテクタ部(21〜25)に導かれ、そこでスペクトルデータに変換され、コントローラ部(26〜28)の画像処理回路26に出力される。レーザ光によって標本10Aの全域を走査することで、標本10Aの画像(フレーム)の全ピクセルのスペクトルデータをピクセルごとに生成して画像処理回路26に出力することができる。なお、共焦点顕微鏡部(11〜20)とスペクトルディテクタ部(21〜25)とは、総じて、請求項の「生成手段」に対応する。
本実施形態の顕微鏡10では、制御回路27が、XYスキャナ駆動回路28を介して共焦点顕微鏡部(11〜20)のXYスキャナ16を制御し、スペクトルディテクタ部(21〜25)の光信号サンプリング回路25を制御して、標本10Aの1フレームにおける全ピクセルのスペクトルデータを順に生成させる。さらに、画像処理回路26を制御し、各スペクトルデータをメモリに記憶させる。つまり、画像処理回路26にスペクトルデータを取得させる。そして、1フレームにおける全てのスペクトルデータの生成/取得処理は、予め設定した時間間隔で繰り返し行われる。
本実施形態の顕微鏡10における観察対象の標本10Aは、経時変化する標本である。ここでは、生体細胞(DNA)に蛍光性蛋白質の遺伝子が導入されたものを標本10Aとする。蛍光性蛋白質には、Green Fluorescence Protein(以下「GFP」)を用いる。GFPの遺伝子(変化を促す物質)の導入は、上記したスペクトルデータの生成/取得処理を始める前(または生成/取得処理を繰り返す間の任意のタイミング)で、1回だけ行われる。
GFPの遺伝子を導入すると、標本10Aでは、GFPの遺伝子がアミノ酸配列を経て蛋白質を作り出し(GFPの発現)、これが3次元構造化したときに蛍光物質として励起光に反応する、という経時変化を示すことになる。
GFPの遺伝子を導入する前後において、複数のフレームの1ピクセルのスペクトルデータの変化を図示すると、例えば図2(a)〜(e)のようになる。GFPの遺伝子を導入する前は(図2(a))、生体細胞の自家蛍光のスペクトル成分が主体的である。そして、GFPの遺伝子の導入後は、GFPの発現に起因するスペクトル成分が現れ(図2(b))、時間の経過と共にGFPのスペクトル成分が次第に増加し(図2(c))、GFPの発現が成熟するとスペクトル形状は変化しなくなる(図2(d),(e))。
このため、上記したスペクトルデータの生成/取得処理は、標本10AにおけるGFPの発現が成熟したとき(つまり標本10Aの経時変化が収束したとき)まで繰り返せば十分である。スペクトルデータの生成/取得処理の繰り返しを終了させるタイミングは、例えば、スペクトルデータの生成/取得処理の繰り返し回数を予め設定しておき、その回数に達した時点で終了させればよい。または、図2(a)〜(e)のようなスペクトル形状をコンピュータ29の表示装置などに表示させておき、目視判断により終了させてもよい。
また、図3(a)〜(e)のような標本10Aの蛍光画像を表示させておき、目視判断により終了させてもよい。蛍光画像の各ピクセルの値は、メモリ内の各スペクトルデータの積分値(つまり蛍光強度)に相当する。図3(a)〜(e)のそれぞれは、標本10Aの経時変化のうち図2(a)〜(e)と同じ段階のものである。全ての蛍光画像には細胞31と核32が現れ、時間の経過と共にGFPの発現領域33が拡大する様子が分かる。標本10Aの時間変化が収束すると(図3(d),(e))、細胞31の全域が発現領域33になる。
さらに、上記のような目視判断による終了に限らず、後述の図8のような処理を行って効率よく自動終了させてもよい。
何れかの方法によりスペクトルデータの生成/取得処理の繰り返しを終了させるまでの間に、画像処理回路26は、スペクトルディテクタ部(21〜25)の光信号サンプリング回路25から、標本10Aの経時変化(GFPの発現過程)を表す多数のフレームについて、そのスペクトルデータ(図2(a)〜(e))を各ピクセルごとに取得したことになる。メモリ内では、各スペクトルデータがフレーム番号(観測時間)の情報とフレーム内での位置座標(ピクセル番号)の情報とに関連づけて記憶される。
次に、上記のような経時変化を示す標本10Aの各フレームにおいて、特定スペクトル(ここではGFPのスペクトル成分(図2(b)〜(e)参照))の空間分布が変化していく様子を調べる際の処理(図4)を説明する。この解析処理は、画像処理回路26が行う。画像処理回路26には、特定スペクトルの空間分布の経時変化を調べるために必要な手順を記載した解析プログラムが予め格納されている。画像処理回路26は、その解析プログラムを参照しながら解析処理を実行する(請求項の「解析装置」に対応)。
まず(図4のステップS1)、メモリ内の多数のスペクトルデータ(経時観測データ)のうち、標本10Aの経時変化が収束した段階(最終フレーム)における1以上のスペクトルデータに基づいて、マッチング検索用の基準スペクトルデータを自動的に決定する。
この決定処理は、最終フレームの全スペクトルデータの中からGFPのスペクトル成分が顕著なスペクトルデータ(例えば図2(e))を1つ選択することにより行ってもよいし、GFPのスペクトル成分が顕著な複数のスペクトルデータ(ピクセル番号の異なるもの)を選択して平均化することにより行ってもよい。さらに、最終フレームとして2つのフレームを選択し、フレーム番号の異なる複数のスペクトルデータを平均化してもよい。
GFPのスペクトル成分が顕著なスペクトルデータ(例えば図2(e))の選択は、例えば、図3(e)に示す最終フレームの蛍光画像から周知の画像認識処理によって細胞31のエリアを特定し、このエリア内から行えばよい。図3(e)のように標本10Aの時間変化が収束した段階では、細胞31の全域がGFPの発現領域33になるため、何れのスペクトルデータを選択しても、GFPのスペクトル成分が顕著なスペクトルデータと考えられる。細胞31のエリア内の複数のスペクトルデータを選択して平均化してもよい。
また、外部からの指示に基づいてフレームの中に図5のような注目エリア34を設定し、この注目エリア34からGFPのスペクトル成分が顕著な1以上のスペクトルデータ(例えば図2(e))を選択してもよい。この場合にも、スペクトルデータの選択数が複数ある場合には、平均化処理を行うことが好ましい。注目エリア34の設定は、例えば、顕微鏡10の観察者がコンピュータ29の表示装置の蛍光画像(図5)を見ながら行うことができる。
画像処理回路26は、図4のステップS1において、GFPのスペクトル成分が顕著な1以上のスペクトルデータ(例えば図2(e))を選択し、必要に応じて平均化処理を行うことにより、マッチング検索用の基準スペクトルデータを決定すると、次のステップS2の処理に進む。ステップS2では、マッチング検索の対象となる1つのフレームを選択する。この選択は例えば観測時間の早い方から順に行えばよい。
次に(ステップS3)、ステップS1で決定した基準スペクトルデータを用いて、ステップS2で選択した1フレームの各ピクセルのスペクトルデータに対するマッチング検索を行う。このマッチング検索は、基準スペクトルデータと各スペクトルデータとのマッチング度(例えば差分)を求める演算処理であり、全ピクセルについて繰り返し行われる。
マッチング検索の前に、各データのスムージング処理や正規化処理などを行うことが好ましい。なお、スムージング処理は上記したスペクトルデータの生成/取得処理の際に行ってもよいし、ステップS1で基準スペクトルデータを決定する際に行ってもよい。この場合、ステップS3のマッチング検索の前には各データの正規化処理を行うことになる。
また、スペクトルデータの波長軸および/または強度軸において、マッチング検索を行う範囲を設定し、その範囲内に限定してマッチング検索を行ってもよい。このように検索範囲を限定することで、検索時間を短縮できる。
ステップS3のマッチング検索の結果、予め定めた閾値よりマッチング度の高い(つまり差分の小さい)ピクセルでは、そのスペクトルデータが基準スペクトルデータと略同一の形状を成すと考えられる。すなわち、マッチング度の高いピクセルは、GFPのスペクトル成分が顕著なスペクトルデータ(例えば図2(e))を有し、GFPの発現部位と考えられる。
次に(ステップS4)、画像処理回路26は、現在の対象フレームにおいてマッチング度の高いピクセルの空間分布を画像データ化して、コンピュータ29の表示装置に表示させる。このとき、マッチング度の高いピクセルに例えば周囲とは異なる色を付けることで、GFPのスペクトル成分(特定スペクトル)の空間分布を視覚化できる。さらに、各ピクセルの明るさを、各スペクトルデータの積分値(つまり蛍光強度)に応じて調整することもできる。
次に(ステップS5)、メモリ内の全てのフレームについてステップS2〜S4の処理を終了したか否かを判断して、未処理のフレームが残っている場合には(ステップS5がNo)、ステップS2〜S4の処理を繰り返す。そして、全てのフレームが処理済になると(ステップS5がYes)、図4の解析処理を終了する。
上記した解析処理(図4)の間、コンピュータ29の表示装置には、図6(a)〜(d)に示す通り、GFPのスペクトル成分(GFPの発現部位35)の空間分布がフレームごとに表示され、更新されていく。そして、時間経過と共にGFPの発現部位35が拡大する様子(空間分布の変化)を観察することにより、標本10Aの経時変化が収束していく様子(GFPの発現が成熟していく様子)を評価することができる。
また、上記した解析処理(図4)の後で、コンピュータ29の表示装置に、各フレームの空間分布をタイル(tile)表示し、同時に比較しながら観察できるようにしてもよい。さらに、図7のようなアニメーション表示を行ってもよい。これは、時間軸(t)のバー36のスライドに連動して表示内容が変更するような方法である。アニメーション表示により、GFPの発現過程における空間分布の変化を経時的に観察することができる。
本実施形態の顕微鏡10では、解析処理(図4)のステップS1で、画像処理回路26のメモリ内の経時観測データ(多数のスペクトルデータ)から基準スペクトルデータを決定し、その後のマッチング検索を行うため、経時変化する標本10Aのスペクトル解析を良好に行うことができる。標本10Aの経時変化の最終形は標本ごとに異なるため、個々の標本10Aの経時観測データから、個々の標本10Aに最適な基準スペクトルデータを決定することで、標本10Aのスペクトル解析の精度が向上する。
さらに、本実施形態の顕微鏡10では、マッチング検索用の基準スペクトルデータを予め記憶させる必要がない。つまり、基準スペクトルデータを予め記憶させなくても標本10Aのスペクトル解析を良好に行える。このため、標本10Aの経時変化の最終形が未知の場合でも、標本10Aの経時観測データを取得して基準スペクトルデータを決定することで、同様のスペクトル解析を良好に行える。
ここで、経時変化する標本10Aの別の例として、ドナー(例えばCEP)とアクセプタ(YEP)が存在する試薬に所定の刺激物を導入したものがある。刺激物の導入によってドナーとアクセプタが結合し、ドナーからアクセプタへエネルギーが移動する(つまりFRET)。この過程で、ドナーの蛍光スペクトルは減衰し、反対に、アクセプタの蛍光スペクトルは増加する。このような場合でも、標本10Aの経時観測データを取得して、アクセプタへのエネルギー移動(FRET)が成熟した段階でのスペクトルデータから基準スペクトルデータを決定することで、FRETのスペクトル解析を良好に行える。
また、本実施形態の顕微鏡10では、標本10Aの共焦点観察によって各スペクトルデータを生成/取得するため、標本10Aの厚み方向のノイズ成分を確実に低減することができる。したがって、標本10Aの正確なスペクトル解析が可能となる。ただし、共焦点観察ではなく、2次元撮像素子を用いて標本10Aの画像を一括で取り込み、各ピクセルのスペクトルデータを生成する場合にも、本発明を適用できる。
(第2実施形態)
ここでは、標本10Aの経時変化が収束した段階(例えばGFPの発現やFRETが成熟した段階)で、上記したスペクトルデータの生成/取得処理の繰り返しを効率よく自動終了させる処理(図8)について説明する。自動終了の処理(図8)は、顕微鏡10の制御回路27が行う。
まず、ステップS6では、XYスキャナ駆動回路28を介して共焦点顕微鏡部(11〜20)のXYスキャナ16を制御し、スペクトルディテクタ部(21〜25)の光信号サンプリング回路25を制御し、画像処理回路26を制御して、1フレームにおけるスペクトルデータの生成/取得処理を行う。そして、1つのフレームにおける全てのスペクトルデータの生成を終了したときに、次のステップS7に進む。
ステップS7では今回のフレームのスペクトルデータと前回のフレームのスペクトルデータとを比較する。この比較処理にはマッチング検索が用いられる。そして、次のステップS8において、2つのスペクトルデータのマッチング度(例えば差分)を予め定めた閾値と大小比較し、マッチング度の方が小さい(つまり差分が大きい)場合には、2つのスペクトルデータが非同一であるため(ステップS8がNo)、ステップS6の処理に戻る。2つのスペクトルデータが非同一とは、標本10Aの経時変化が収束していないことを意味する。
図8の処理では、2つのスペクトルデータが同一と判定される(ステップS8がYesとなる)まで、ステップS6,S7の処理を繰り返し、各フレームにおけるスペクトルデータの生成/取得処理の結果を画像処理回路26のメモリに蓄積していく。そして、2つのスペクトルデータのマッチング度が閾値より大きくなると、2つのスペクトルデータが同一であり(ステップS6がYes)、標本10Aの経時変化が収束したため、図8の処理を終了する。
このように、第2実施形態では、スペクトルデータの生成/取得処理(ステップS6)をフレーム単位で繰り返しながら、標本10Aの経時変化が収束したか否かを判定し(ステップS7,S8)、この判定の結果、経時変化が収束したときに、スペクトルデータの生成/取得処理の繰り返しを終了する。したがって、スペクトルデータの生成/取得処理を効率よく自動終了させることができ、標本10Aの経時観測からスペクトル解析(図4)までの一連の処理を連続的に効率よく行うことができる。スペクトル解析における基準スペクトルデータの決定には、自動終了させたときの最終フレームのスペクトルデータを用いることが好ましい。
なお、図8のステップS7において、今回のフレームのスペクトルデータと前回のフレームのスペクトルデータとを比較する際には、外部からの指示に基づいてフレームの中に図9のような判定エリア37を設定し、この判定エリア37から比較対象のスペクトルデータを選択すればよい。そして、今回のフレームの判定エリア37から選択したスペクトルデータと、前回のフレームの判定エリア37から選択したスペクトルデータとを、マッチング検索によって比較することになる。
このとき、判定エリア37における全スペクトルデータを平均化して、平均化された今回と前回のスペクトルデータを比較すればよい。また、判定エリア37における各ピクセルごとに今回と前回のスペクトルデータ(ピクセル番号が同じものどうし)を比較して、同一と判定されたピクセル数(または判定エリア37の全ピクセル数に対する割合)が所定値より大きい場合に、今回と前回のスペクトルデータが同一であると判定してもよい。後者の場合、標本10Aのスペクトル解析(図4)における基準スペクトルデータの決定には、同一と判定されたピクセルのスペクトルデータの平均を用いることが好ましい。
判定エリア37の設定は、例えば、顕微鏡10の観察者がコンピュータ29の表示装置の蛍光画像(図9)を見ながら行うことができる。このように、フレームに判定エリア37を設定することで、標本10Aの経時変化が収束したか否かの判定処理(ステップS7,S8)を効率よく行うことができる。
また、判定エリア37の設定は、標本10Aの経時変化の途中(例えばGFPの発現やFRETが現れた段階)で行ってもよい。この場合、図8のステップS6の処理後に、判定エリア37が設定されたか否かの判断を行い、未設定の場合にはステップS7,S8の処理を省略してステップS6の処理を繰り返し、判定エリア37が設定された後、ステップS7,S8の処理を行うようにすることが好ましい。
さらに、ステップS8では、今回のフレームのスペクトルデータと前回のフレームのスペクトルデータとが同一と判定されたときに、直ぐに、標本10Aの経時変化が収束したと判定して、スペクトルデータの生成/取得処理の繰り返しを終了させても構わないが、「同一」との判定結果が複数回(予め定めた回数だけ)連続して得られるまで待つようにしてもよい。このようにすることで、経時変化の収束をより確実に認識でき、自動終了の処理(図8)を安定化できる。
また、標本10Aの経時変化が収束したと判定された後、直ぐに、スペクトルデータの生成/取得処理の繰り返しを終了させても構わないが、さらに複数回(予め定めた回数だけ)スペクトルデータの生成/取得処理を追加した後、その繰り返しを終了させてもよい。この追加処理で得られた各スペクトルデータは、標本10Aの経時変化が確実に収束したときのものである。したがって、標本10Aのスペクトル解析(図4)における基準スペクトルデータの決定には、追加処理で得られた1以上のスペクトルデータを用いることが好ましい。
(変形例)
なお、上記した実施形態では、標本10Aの経時変化が収束した段階(例えばGFPの発現やFRETが成熟した段階)でのスペクトルデータから基準スペクトルデータを決定する場合について説明したが、本発明はこれに限らない。標本10Aの経時変化の初期や途中の段階でのスペクトルデータから基準スペクトルデータを決定することもできる。つまり、画像処理回路26のメモリ内の1以上のスペクトルデータ(経時観測データ)に基づいて基準スペクトルデータを決定する場合に、本発明を適用できる。基準スペクトルデータの決め方に応じて、様々なスペクトル解析を行うことができる。
さらに、上記した実施形態では、画像処理回路26を顕微鏡10の内部に組み込む場合を例に説明したが、本発明はこれに限定されない。スペクトルディテクタ部(21〜25)から出力されるスペクトルデータを外部のコンピュータに取り込み、コンピュータ上のソフトウエアで図4と同様の解析処理を行う場合にも、本発明を適用できる。この場合、外部のコンピュータには、記録媒体(CD-ROMなど)に記録された解析プログラムをインストールすれば良い。または、インターネットを介してダウンロードされた解析プログラムをインストールしても良い。
また、スペクトルマッチング機能を備えた解析装置(図4の解析処理を行う装置)が、スペクトルディテクタ部(21〜25)から切り離されている場合にも、本発明を適用できる。この場合、スペクトルディテクタ部(21〜25)から出力されるスペクトルデータはデータベースに蓄積される。そして、解析装置は、所定のタイミングでデータベースからスペクトルデータを取得して、図4と同様の解析処理を実行することになる。
本実施形態の顕微鏡10のシステム構成図である。 標本10AにGFPの遺伝子を導入する前後におけるスペクトルデータの変化を示す図である。 標本10Aの蛍光画像の変化を示す図である。 画像処理回路26におけるスペクトル解析の処理手順を示すフローチャートである。 基準スペクトルデータを決定する際の注目エリア34を説明する図である。 標本10AにおけるGFPのスペクトル成分(GFPの発現部位35)の空間分布の表示例を示す図である。 アニメーション表示を説明する図である。 スペクトルデータの生成/取得処理の繰り返しを自動終了させる処理の手順を示すフローチャートである。 標本10Aの経時変化が収束したか否かを判定する際の判定エリア37を説明する図である。
符号の説明
10 顕微鏡
11 ステージ
12 レーザ光源
14,21 コリメートレンズ
15 ダイクロイックミラー
16 XYスキャナ
17 対物レンズ
18 結像レンズ
19 ピンホール板
22 グレーティング
23 集光レンズ
24 検出器
4A 光電子増倍管(PMT)
25 光信号サンプリング回路
26 画像処理回路
27 制御回路
28 XYスキャナ駆動回路
29 コンピュータ
31 細胞
32 核
33 発現領域
34 注目エリア
37 判定エリア

Claims (6)

  1. 経時変化する標本の画像データを構成する最小単位である各ピクセルのスペクトルデータを前記経時変化に伴って複数取得する取得手段と、
    前記複数のスペクトルデータのうち、1以上の前記スペクトルデータを用いて、マッチング検索用の基準スペクトルデータを決定する決定手段と、
    前記基準スペクトルデータを用いて、各々の前記スペクトルデータに対するマッチング検索を行う検索手段とを備えた
    ことを特徴とする解析装置。
  2. 請求項1に記載の解析装置において、
    前記決定手段は、前記経時変化が収束した段階における前記1以上のスペクトルデータに基づいて、前記基準スペクトルデータを決定する
    ことを特徴とする解析装置。
  3. 請求項1に記載の解析装置において、
    前記画像データに注目エリアを設定する設定手段を備え、
    前記決定手段は、前記注目エリアにおける前記1以上のスペクトルデータに基づいて、前記基準スペクトルデータを決定する
    ことを特徴とする解析装置。
  4. 請求項1から請求項3の何れか1項に記載の解析装置と、
    前記スペクトルデータを生成して前記取得手段に出力する生成手段と、
    前記生成手段が1つの前記画像データにおける全ての前記スペクトルデータの生成を終了したときに、今回の画像データの前記スペクトルデータと前回の画像データの前記スペクトルデータとを比較し、前記経時変化が収束したか否かを判定する判定手段と、
    前記判定手段による判定の結果、前記経時変化が収束したときに、前記生成手段による前記スペクトルデータの生成を終了させる制御手段とを備えた
    ことを特徴とする顕微鏡。
  5. 請求項4に記載の顕微鏡において、
    前記判定手段は、前記画像データに判定エリアを設定して、該判定エリアにおける今回の画像データの前記スペクトルデータと前回の画像データの前記スペクトルデータとを比較し、前記経時変化が収束したか否かを判定する
    ことを特徴とする顕微鏡。
  6. 経時変化する標本の画像データを構成する最小単位である各ピクセルのスペクトルデータを前記経時変化に伴って複数取得する取得手順と、
    前記複数のスペクトルデータのうち、1以上の前記スペクトルデータを用いて、マッチング検索用の基準スペクトルデータを決定する決定手順と、
    前記基準スペクトルデータを用いて、各々の前記スペクトルデータに対するマッチング検索を行う検索手順と
    をコンピュータに実行させるための解析プログラム。
JP2005011834A 2005-01-19 2005-01-19 解析装置、顕微鏡、および、解析プログラム Active JP4539342B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005011834A JP4539342B2 (ja) 2005-01-19 2005-01-19 解析装置、顕微鏡、および、解析プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005011834A JP4539342B2 (ja) 2005-01-19 2005-01-19 解析装置、顕微鏡、および、解析プログラム

Publications (2)

Publication Number Publication Date
JP2006200987A JP2006200987A (ja) 2006-08-03
JP4539342B2 true JP4539342B2 (ja) 2010-09-08

Family

ID=36959130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005011834A Active JP4539342B2 (ja) 2005-01-19 2005-01-19 解析装置、顕微鏡、および、解析プログラム

Country Status (1)

Country Link
JP (1) JP4539342B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5151171B2 (ja) * 2007-02-06 2013-02-27 株式会社ニコン 顕微鏡画像処理システムおよび顕微鏡画像処理方法
JP2008298432A (ja) * 2007-05-29 2008-12-11 Enzan Kobo:Kk トンネル壁面変位の表示方法およびそのプログラム
WO2011106323A2 (en) * 2010-02-23 2011-09-01 The Board Of Trustees Of The University Of Illinois Photobleaching and intermittency localization microscopy
JP5541972B2 (ja) * 2010-06-09 2014-07-09 オリンパス株式会社 走査型共焦点顕微鏡
JP5869239B2 (ja) 2011-06-21 2016-02-24 浜松ホトニクス株式会社 光測定装置、光測定方法、及び光測定プログラム
WO2012176783A1 (ja) * 2011-06-21 2012-12-27 浜松ホトニクス株式会社 光測定装置、光測定方法、及び光測定プログラム
JP6053272B2 (ja) * 2011-10-19 2016-12-27 オリンパス株式会社 顕微鏡装置
CN113380165B (zh) * 2021-06-10 2024-01-09 Oppo广东移动通信有限公司 显示装置的检测方法及装置、系统、存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08506419A (ja) * 1993-02-01 1996-07-09 アスルンド,ニルス・エル・デー 多数の蛍光色素の定量像化のための装置
JP2003185581A (ja) * 2001-10-16 2003-07-03 Carl Zeiss Jena Gmbh 試料の検査方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11108868A (ja) * 1997-10-06 1999-04-23 Dainippon Printing Co Ltd 熱分析制御型ラマン分光測定方法および装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08506419A (ja) * 1993-02-01 1996-07-09 アスルンド,ニルス・エル・デー 多数の蛍光色素の定量像化のための装置
JP2003185581A (ja) * 2001-10-16 2003-07-03 Carl Zeiss Jena Gmbh 試料の検査方法

Also Published As

Publication number Publication date
JP2006200987A (ja) 2006-08-03

Similar Documents

Publication Publication Date Title
JP4539342B2 (ja) 解析装置、顕微鏡、および、解析プログラム
JP5489469B2 (ja) 蛍光信号解析装置および蛍光信号解析方法
JP4826586B2 (ja) スペクトル画像処理方法、コンピュータ実行可能なスペクトル画像処理プログラム、スペクトルイメージングシステム
JP4872914B2 (ja) スペクトル画像処理方法、スペクトル画像処理プログラム、及びスペクトルイメージングシステム
JP5935147B2 (ja) 顕微鏡システム、顕微鏡法、及び記憶媒体
US9383570B2 (en) Image analysis method and image analysis apparatus
JP2019520574A (ja) ハイパースペクトルイメージング方法および装置
US11573412B2 (en) High-resolution scanning microscopy with discrimination between at least two wave-length ranges
US10753871B2 (en) Information processing device, image acquisition system, information processing method, and image information acquisition method
JP4964568B2 (ja) 蛍光検出装置、蛍光検出方法および蛍光検出プログラム
US20110043619A1 (en) Resolution-Enhanced Luminescence Microscopy
JPWO2015181872A1 (ja) 光学分析装置
JP4827335B2 (ja) 走査型レーザ顕微鏡
JP5940288B2 (ja) 画像処理装置、顕微鏡システム、画像処理方法、及び画像処理プログラム
US20230092749A1 (en) High throughput snapshot spectral encoding device for fluorescence spectral microscopy
CN117546007A (zh) 信息处理装置、生物样本观察系统及图像生成方法
JP2006275771A (ja) 細胞画像解析装置
JP4529587B2 (ja) 分光装置及びスペクトルレーザ顕微鏡
US7158294B2 (en) Laser scanning confocal microscope apparatus, image recording method, and recording medium
JP4855139B2 (ja) 顕微鏡装置および細胞観察方法
WO2022249583A1 (ja) 情報処理装置、生体試料観察システム及び画像生成方法
JP2022122181A (ja) 補正パラメータ設定方法及びデータ補正方法
De Mey et al. Fast 4D microscopy
JP2007304381A (ja) 共焦点画像信号取得方法および装置ならびにサンプリング動作状態取得装置
JP4339746B2 (ja) 蛍光検出装置の励起光照射タイミングの決定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100614

R150 Certificate of patent or registration of utility model

Ref document number: 4539342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250