JP4538579B2 - Manufacturing method of semiconductor joining member - Google Patents

Manufacturing method of semiconductor joining member Download PDF

Info

Publication number
JP4538579B2
JP4538579B2 JP2005517370A JP2005517370A JP4538579B2 JP 4538579 B2 JP4538579 B2 JP 4538579B2 JP 2005517370 A JP2005517370 A JP 2005517370A JP 2005517370 A JP2005517370 A JP 2005517370A JP 4538579 B2 JP4538579 B2 JP 4538579B2
Authority
JP
Japan
Prior art keywords
hydrogen
joining
semiconductor
members
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005517370A
Other languages
Japanese (ja)
Other versions
JPWO2005073149A1 (en
Inventor
俊克 三木
卓也 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaguchi Technology Licensing Organization Ltd
Original Assignee
Yamaguchi Technology Licensing Organization Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaguchi Technology Licensing Organization Ltd filed Critical Yamaguchi Technology Licensing Organization Ltd
Publication of JPWO2005073149A1 publication Critical patent/JPWO2005073149A1/en
Application granted granted Critical
Publication of JP4538579B2 publication Critical patent/JP4538579B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/341Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/346Titania or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/403Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/408Noble metals, e.g. palladium, platina or silver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Description

【技術分野】
【0001】
本発明は、半導体接合部材の製造方法に関する。より詳しくは、半導体と金属、または半導体の複数の部材を接合して半導体接合部材を製造する方法、例えば、基板上への電子部品の実装等、異なる部材間を接合した複合体である半導体接合部材の製造方法に関する。
【背景技術】
【0002】
従来、固体材料の接合は、接合しようとする2つの部材を直接接合する場合には、溶接やロウ付け、半田付け等の液相接合、乃至は拡散接合やアンカー接合、超音波接合等の固相接合によって行われている。又、2つの部材の間に中間材を設ける間接的な接合方法としては、上記の直接接合を利用する方法の他、有機の接着剤や無機接着剤による方法がある。
【0003】
かかる従来技術に共通しては、当然のことではあるが、それぞれ好適に接合し得る部材の組合せに制限があり、多種多様な多くの部材間に対して容易に適用し得るものではないという問題がある。例えば、両部材間で分子又は原子或いは結晶構造が入り乱れて、両部材の固溶体が形成され界面が不明確となる拡散接合は、接合強度が大きく、界面での剥離が生じ難い接合方法ではあるが、接合される両部材を構成する物質間の拡散性の難易が問題となり、拡散し難い部材間の接合は困難となる。又、両者が同種の部材であっても必ずしも相互に拡散し易いとはいえず、場合によっては、両者の焼結温度程度までの加熱が必要となる等、多くの部材間に対して容易に適用し得る技術ではない。
【0004】
例えば又、部材表面を粗化し、両部材を強圧接してその粗面に他方の部材を押し込むアンカー効果で接合するアンカー接合にあっては、少なくとも一方の接合部材はその接合面の粗化を容易に行うことができ、他方の接合部材は比較的展性を有するという特定の関係を必須とする等の問題があり、多くの部材間に対して容易に適用し得るものではなく、更に加工条件の僅かな相違により、剥離し易くなり、製品安定性に欠けるという問題もある。例えば又、接着剤を用いる粘着接合にあっては、好適な接着剤の有無が問題であり、特に金属部材や高結晶性部材に対して有効な接着剤は、殆ど存在しないのが現状である。
【0005】
ロウ付け法や半田付け法は、接合部材を製造するに際し、接合部の高精度な加工処理が不要であり比較的高い接合強度が得られることから、広く採用されてきた接合方法であるが、接合材を必要とするなどの問題がある。即ち、セラミックスは、電気絶縁性や高温での強度、耐摩耗性等に優れた特性を有する材料であり、このようなセラミック部材と加工性に優れた金属部材を組合せて複合化することにより、セラミックスの優れた特性を活かした電子部品や構造部品の構成部材として好適な複合体が製造されており、その複合化に際し、特にはロウ付け法と半田付け法が広く採用されてきており、かかる従来技術としては、例えば、特許文献1、特許文献2が挙げられる。
【0006】
特許文献1には、窒化アルミニウム部材と金属部材とを接合するためのロウ材として、窒化アルミニウムとの反応性を有する活性金属、例えば、チタン、ジルコニウム、ハフニウム、又はその水素化物の粉末を所定の割合で含んでなる金属粉末ロウ材が開示され、窒化アルミニウム部材と金属部材との接合方法として、そのロウ材を少なくとも一方の部材の接合面に、例えば、スクリーン印刷、ロールコート、吹き付け、転写等の方法により塗布した後、これらを貼り合わせ、次いで加熱して接合する方法が開示されている。特には、水素化チタンを用いることにより、接合工程前に酸化されて活性を失うことがなくなり、接合工程の加熱処理で活性な金属チタンとなるため、好適な接合状態が得られることが示されている。
【0007】
特許文献2には、白金とマンガンとからなりマンガンの含有量が所定範囲内である活性金属ロウ材を用い、セラミックス側の接合面にスプレー塗布やペースト塗布して焼成する方法などにより水素化チタンを被覆した後、セラミック部材と金属部材とを接合する方法が開示され、接合時に水素化チタンが分解して生じる水素がロウ材中のマンガンを還元しセラミックスに対する活性を向上させ、又、分解後のチタンはセラミックスに対する活性金属として作用することが示されている。
【0008】
然しながら、これらのセラミックス部材と金属部材を接合する従来技術は、ロウ材などの接合材を必要とする液相接合法であって、接合材の塗布やその残渣除去の工程を要するなど煩雑な接合方法であり、又、その接合材の溶融温度との関係において好適に接合し得る部材間の組合せが制限され、更には、製造した製品の使用温度は、当然ながら、その接合温度より大幅に低く制限される。とりわけ、半導体部材等を接合するに際しては、接合時に液相になった接合材の金属が半導体部材等の内部に拡散し易く、半導体部材等の性能劣化をもたらすなどの問題もあった。
【0009】
なお、特許文献1と特許文献2は、両部材の接合に係り、活性金属の水素化物を用い、接合時にそれが分解して生じる水素は還元剤として作用させ、分解後の活性金属はセラミックスに対する活性金属として作用せしめることにより、好適な結合を得ようとするものではあるが、両部材の接合は、上述のように、ロウ材により行うものであって、又、ロウ材を溶融して液相接合する技術である。
【0010】
この活性金属の水素化物の他、両部材の接合に係り、水素吸蔵性材料を用いた従来技術が開示されているので、以下、この従来技術について説明する。先ず、特許文献3には、銅、錫、鉛、ニッケル等の酸化皮膜を形成しやすい金属の半田付けに際して、この水素吸蔵性を有する金属部材に水素を吸蔵させておき、半田付け時の熱により水素を放出させ、その還元作用を利用して酸化皮膜を破壊し半田付けを確実に行う方法が開示されている。又、その実施例中、この方法における金属部材への水素吸蔵方法として、金属部材を陰極とした陰極電解水素吸蔵法(以下、「陰極電解法」と略称することがある)による水素吸蔵が例示されている。この従来技術は、接合時に、水素を吸蔵させた水素吸蔵性部材を加熱することによって吸蔵水素を放出させるものであるが、その放出水素を金属部材表面の酸化皮膜の除去に利用しようとするものであって、両部材の接合は、上述のように、半田材を用いた半田付けで行う技術であり、又、半田材を溶融して液相接合する技術である。即ち、この従来技術は、特許文献1や特許文献2と同様の問題を有する。
【0011】
特許文献4には、異種のアルミニウム合金部材をレーザースポット溶接で強固に一体接合することを目的に、水素吸蔵性金属、例えば、Ni、Mo、Fe、Cr、Nb、Ti、Zr、V等を主要成分とする合金の粉末を接合面にショットブラスト加工して、接合部材の内部に水素吸収層を生成し、溶接の加熱時、雰囲気中の水分がマグネシウムやアルミニウムと反応することにより生成する水素をその水素吸収層に吸収させることにより、溶融アルミニウム合金の凝固速度の感受性を制御する技術が開示されている。この従来技術は、水素吸蔵性金属を、溶接時に発生する水素を吸蔵させるために利用しようとするものであって、両部材の接合は、上述のように、レーザースポット溶接を用いて行う技術であり、又、両部材を溶融して液相接合する技術である。溶接を用いるこの従来技術は、その両部材の溶融温度との関係において好適に接合し得る部材間の組合せが制限され、又、両部材を溶融して接合させるため、半導体部材等の接合には適さず、基板上への電子部品の実装や配線、電極とリード線の接合等、微細な電子部品や構造部品の構成部材の製造にも適さない。
【0012】
なお、水素吸蔵性金属を、接合の分離を容易にし、再利用の可能性を拡大させ、複合体の廃棄・処理の負担を軽減させるために利用しようとする技術が開示されている。例えば、特許文献5には、接合しようとする部材と部材との間に、水素により脆化する材料、例えば、水素との反応により膨張し粉化又は剥離を生じる材料、特には水素吸蔵性合金からなる中間材を、例えば、薄板状又は薄膜状に配し、この中間材を介して部材同士を、例えば、半田付け、アンカー接合、超音波接合、接着、表面活性化による常温接合法などにより接合する分離可能な接合構造物が開示され、分離に際しては、この水素吸蔵性合金からなる中間材に水素を吸収させる分離方法が開示されている。
【0013】
同様に又、特許文献6には、半田材料中に水素吸蔵性金属、特には、実質的に水素を吸蔵していない状態にある水素吸蔵性金属の粉末を混合分散した接合材料が開示され、その接合材料を用いた半田付けにより電子部品の基板への実装接合等を行い、分離に際しては、この水素吸蔵性金属粉末に水素を吸蔵(又は放出)させ、これによって生じる膨張(又は収縮)により分離する方法が示されている。
【0014】
この特許文献5と特許文献6に開示された従来技術は、上述のように、水素吸蔵性金属を、接合の分離を容易にし、再利用の可能性を拡大させ、複合体の廃棄・処理の負担を軽減させるために利用しようとする技術であって、部材間の接合に際しては、半田付けなど別の接合技術を必要とするものである。即ち、接合を好適に行うことができる新たな方法を提供するものではない。
【特許文献1】
特開2000−281460号公報
【特許文献2】
特開2003−342083号公報
【特許文献3】
特開平05−069122号公報
【特許文献4】
特開2001−198686号公報
【特許文献5】
特開平10−261866号公報
【特許文献6】
特開2001−334383号公報
【発明の開示】
【発明が解決しようとする課題】
【0015】
本発明は、複数の部材を接合してなる接合部材に係る上述した状況に鑑みなされたもので、多種多様な多くの部材間の組合せの接合、特には、従来技術で接合が容易でなかった半導体と金属部材の接合、金属部材を中に挟んで両側面に半導体部材を配した所謂サンドイッチ構造の3層接合、に対して容易に適用し得る、特には、接合しようとする部材の他に接合の目的のみで用いるいわゆる接着剤を要さず容易に適用し得る、半導体接合部材の製造方法及びその接合部材を提供することを目的とする。
【課題を解決するための手段】
【0016】
上記の目的を達成するための手段として、次のような構成の半導体接合部材の製造方法を提供する。
即ち、請求項1の発明は、少なくとも一方の部材が半導体であり、該半導体部材と金属類又は半導体部材とが接合された半導体接合部材の製造方法であって、接合しようとする両部材の少なくとも一方の部材が、陰極電解水素吸蔵法により、少なくとも表層部に水素を吸蔵させた水素吸蔵性部材であるそれぞれの部材を、その水素吸蔵性部材面が界面を構成するよう圧接し、圧接しながら該水素吸蔵部材から、水素が放出される温度以上、700℃以下で且つ界面に液相を生ずる温度より低い温度で加熱することを特徴とする半導体接合部材の製造方法である。
【0017】
請求項の発明は、請求項1の製造方法において、前記水素を吸蔵した水素吸蔵性部材は、両面表層部が水素を吸蔵した水素吸蔵部材の薄片であり、その両面にそれぞれ金属類又は半導体部材を圧接し、圧接しながら加熱することによって三層構造とすることを特徴とする半導体接合部材の製造方法である。
【0018】
請求項3の発明は、半導体部材と金属類とが接合された半導体接合部材の製造方法であって、接合しようとする両部材の少なくとも一方の部材が、陰極電解水素吸蔵法により、少なくとも表層部に水素を吸蔵させた水素吸蔵性部材であるそれぞれの部材を、その水素吸蔵性部材面が界面を構成するよう圧接し、圧接しながら該水素吸蔵部材から、水素が放出される温度以上、700℃以下で且つ界面に液相を生ずる温度より低い温度で加熱することを特徴とする請求項1又は2記載の半導体接合部材の製造方法である。
【0019】
請求項の発明は、前記金属類が、Cu、Ag、Al、Ti、Ni及び銀蝋の中から選ばれる少なくとも一種の金属類である請求項1乃至請求項3のうちいずれか1項に記載の半導体接合部材の製造方法である。
【0021】
本発明は、以下、詳細に説明するように、接合しようとする両部材の少なくとも一方の部材の少なくとも表層部が水素を吸蔵した水素吸蔵性部材を用い、この水素吸蔵性部材を両部材接合の接合材として機能せしめることにより、従来技術で接合が容易でなかった部材同士の接合、すなわち半導体部材と金属部材の接合、金属部材を中に挟んで両側面に、半導体部材及び金属部材を配した所謂サンドイッチ構造の3層接合、に対して容易に適用し得る、半導体接合部材の製造方法を提供することができる効果がある。
【発明を実施するための最良の形態】
【0022】
以下、本発明の好ましい実施の形態について説明する。なお、本発明でいう水素を吸蔵させる表層部とは、部材の接合面の表面、及び/又は、その接合面近傍の部材内部(以下、「近傍層」ということがある)を意味する。又、本発明でいう水素を吸蔵させる水素吸蔵性部材とは、水素吸蔵性を有する金属や合金などからなる均質な部材に限らず、例えば、水素吸蔵性を有さない部材に水素吸蔵性を有する金属をドープし、その接合面近傍の部材内部に水素吸蔵層を生成して、これを水素吸蔵させる水素吸蔵性部材とした形態など、種々の形態を含み意味する。
【0023】
本発明の半導体接合部材の製造方法は、上述のように、接合しようとする両部材の少なくとも一方の部材の少なくとも表層部が水素を吸蔵した水素吸蔵性部材であるそれぞれの部材を、その水素吸蔵面が両部材の界面を構成するように圧接し、圧接しながら、該水素吸蔵性部材から水素が放出される温度以上、700℃以下でかつ界面に液相が生じない温度で加熱することによってその吸蔵水素を放出せしめる方法であって、この水素吸蔵性部材を両部材接合の接合材として機能せしめることに最大の特徴がある。従って、本発明は又、特には接合しようとする部材の他に、特殊な接合材やフラックス等、即ち、接合の目的のみで用いる接着剤等を用いることもなく実施できるという特徴を有する。
【0024】
本発明の作用機構は定かではないが、圧接しながら加熱することによって、水素をその水素吸蔵性部材から放出せしめ、水素吸蔵性部材に活性元素の発生を促すか、又は少なくともその接合面の表面又はその近傍層を活性化すると共に、接合相手部材の接合面に対して、発生期の活性な水素として作用せしめ、その接合面の表面及び近傍層を還元活性化することにより、結晶構造を乱し、或いは原子の移動を容易にして、両部材界面における原子やイオンの拡散を惹起せしめるか、或いは両者間に化学結合を結成させるか、少なくとも水素結合等の原子間インタラクションを形成させることにより、種々の部材の組合せにおいてそれを接合することができるものと考えられる
【0025】
かかる実施の形態でも明らかなように、本発明でいう水素吸蔵は、それを液相が生じる温度より低い温度で加熱し吸蔵水素を放出せしめ得るものである限り、反応、吸着、吸収など、如何なるメカニズムで生じるものであっても良い。例えば、化学量論的にある種の化合物として表示できる水素化物として水素吸蔵する形態、或いは、所謂「水素吸蔵合金」のように、水素化合物として定義できず、もとになる材料の結晶格子が膨張して水素吸蔵する形態など、種々の形態で実施することができる。
【0026】
例えば、水素化金属として水素吸蔵する形態で実施した場合、水素化金属は、ある温度以上で急激に脱水素化を始め、今まで水素化していた金属はフリーエナジーの高い状態、即ち、活性の高い状態で取り残され、接合界面に脱水素化した金属を主成分とする反応層が形成されて、容易に近傍にある元素と化合して安定な合金相を生成し、これによって強固な接合がもたらされる。この脱水素化を始める温度は、合金自体の融点より遥かに低い温度であって、この特徴を利用して、液相接合と比較し取扱いが容易で製造プロセスが簡素な、固相接合を行うことができる。
【0027】
以上のような実施の形態により、本発明の半導体接合部材の製造方法は、その少なくとも一方の部材は半導体であり、他方は金属類又は半導体部材であって、接合しようとする両部材の少なくとも一方を水素吸蔵した水素吸蔵性部材として、その水素吸蔵面が両部材の界面を構成するように圧接しながら加熱するという、極めて簡素な製造プロセスによって、更には固相接合法により、特には接合しようとする部材の他に、特殊な接合材やフラックス等、即ち、接合の目的のみで用いる接着剤等を用いることもなく、容易に適用することができる。
【0028】
以下、本発明の好ましい実施の形態について更に詳細に説明する。
【0029】
先ず、接合しようとする部材間の組合せについて説明する。即ち、少なくとも一方の部材が半導体であって、他方の部材は金属類で又は半導体であり、両部材のうち、少なくとも一方の部材の少なくとも表層部が水素を吸蔵した水素吸蔵性部材である組合せであって、少なくとも一方の部材が、少なくとも表層部、特には接合面の表層部が水素を吸蔵した水素吸蔵性部材からなる部材であれば、他方は、水素を吸蔵した水素吸蔵性部材であっても、水素吸蔵性部材でなくても良い。即ち、水素を吸蔵した水素吸蔵性部材同士の接合、水素を吸蔵した水素吸蔵性部材と水素吸蔵性を有するが水素を吸蔵していない部材との接合、水素を吸蔵した水素吸蔵性部材と水素吸蔵性を有さない部材との接合、いずれの形態としても実施することができる。
【0030】
又、単に2つの部材を接合し得るだけでなく、3部材以上を多層に積層し一体に接合する形態として実施することもできる。即ち、部材の形状は、何ら本発明を限定するものではなく、例えば、板状、或いは薄片状も可能であって、両面表層部が水素を吸蔵した板状或いは薄片状の水素吸蔵性部材を用い、その両面にそれぞれ別部材を圧接し、これを一体に接合する形態として実施することもできる。例えば、従来は接合が容易でなかった、金属部材を中に挟んで両側面に金属部材又は半導体部材を配した所謂サンドイッチ構造の3層接合部材の一体接合が可能となる。更には、この水素吸蔵性部材と別部材とを交互に積層するなどして、4層以上の多層接合部材を製造することもできる。
【0031】
次に、本発明で接合できる部材、即ち、本発明の接合部材を構成し得る部材について説明する。本発明で接合できる部材は、極めて多種類の材質にわたり、例えばCu、Al、Sn、Zn、Ag、Au、Ni、Ti、Zr、Fe、Cr、Nb、Mo、SUS、青銅、黄銅、銀蝋、金蝋等の金属類及びBaTiO、BiTe、CoSb、CoSbYb等、及びこれらに各種金属をドープした半導体などが挙げられる。
お、水素吸蔵性部材としては、水素吸蔵性を有する金属や合金、例えば、La−Mg、La−Pb、La−Sm、La−Ni等のランタナイド系合金、Ce−Ni等のセリウム系合金、Fe−Ni等の鉄系合金を用いるのが好ましい。
【0032】
部材の形状は、特に限定されず、接合しようとする部材が互いに圧接し得る形状であればよく、従って、平板部材同士の接合物、例えば、半導体積層物等の製品の製造に適するが、更に、基板上への電子部品の実装や配線、電極とリード線の接合、その他多くの半導体接合部材の製造に応用することが可能である。
【0033】
次に、水素吸蔵性を有する部材に水素吸蔵させて形成する水素吸蔵層の形態について説明する。即ち、本発明にあっては、接合しようとする両部材の少なくとも一方の部材が、少なくとも表層部、特には接合面の表層部が水素を吸蔵した水素吸蔵性部材からなることを必須の要件とする。従って、水素を吸蔵している部材は、接合面の表層部にのみ水素を吸蔵した形態であっても、全面にわたり表層部に水素を吸蔵した形態でも、或いは、部材内部の深部にまで水素を吸蔵した形態であってもよい。
【0034】
但し、一般には、水素を吸蔵した金属は脆化し易く場合によっては粉化する傾向があるため、水素吸蔵性金属部材にあっては、例えば、表層部に多くの水素を吸蔵し、深部に向けて少なく、金属としての強度を保持し易くした板や箔の部材を用いるのが好ましい形態となる。即ち、水素吸蔵性金属部材にあっては、必要最小限の範囲に限って水素を吸蔵させる形態として実施するのが好ましい。
【0035】
なお、水素吸蔵層の厚みは、接合しようとする部材の組合せ等によって適宜決定すべきものであって、本発明を何ら限定するものではないが、通常、少なくとも数百オングストローム、一般には、数十ミクロン、或いはそれ以上の厚さが好適である。
【0036】
次に水素吸蔵性を有する部材に水素を吸蔵させる形態について説明する。なお、この水素を吸蔵させる方法は、本発明の課題が達成される限りにおいて、発明を限定するものではなく、例えば、陰極電解法、0.01〜50MPaの水素圧下に室温乃至100℃処理する高圧水素化法、或いは、水素プラズマ照射法など従来技術使用可能なものであるが、部材が導体である場合には、通常、陰極電解法が好適に採用される。
【0037】
部材が導体である場合、この水素吸蔵は、特には、その水素吸蔵性導体部材を陰極として用いる陰極電解法により、水の電解を行わせることによって、容易に行うことができる。即ち、陰極電解水素吸蔵法は、周知の如く、水素吸蔵すべき部材を陰極として用い、電解質水溶液中で、水の電解電圧以上、適宜選択される電圧を印加して水を電解する方法であって、電解時に、発生期の水素は極めて短時間で陰極表面に吸着し、その後徐々に拡散して陰極内部に広がっていくので、電解時間により、陰極への水素の吸蔵深度及び吸蔵量をコントロールすることができ、本発明に好適に使用し得る方法である。
【0038】
この陰極電解水素吸蔵法は、金属類に限らず、ZnOやBaTiOなどの半導体に金属をドープしたもの、その他の半導体部材等であれば、同様に処理することができる。
【0039】
具体的には、発明を限定するものではないが、電圧印加は、水の電解電圧以上、例えば、水素の平衡電位と過電圧を考慮して、一般に数十ボルト程度で、電解質溶液のpHに応じて適宜選択される電圧を印加する。このとき電流密度は余り大きくすると、水素ガスの発生が促進され、エネルギー的に無駄になるばかりでなく、陰極への水素の吸収が抑制されるので、一般には、平方センチメートル当り、数ミリアンペア乃至1アンペア程度、特には、数十ミリアンペア乃至数百ミリアンペア程度とするのが好ましい。
【0040】
電解処理する時間は、通常、水素吸蔵性導体部材が、Cu、Fe、Ni、Ag、Ti、Al、Nb、Mo等の金属、及びこれらを主成分とする合金、La−Mg、La−Pb、La−Sm、La−Ni等のランタナイド系合金、Ce−Ni等のセリウム系合金、Fe−Ni等の鉄系合金、金蝋、銀蝋等、水素を吸収しやすい金属類の場合には、一般に数分乃至数時間で目的を達することができる。特に、水素拡散性の高い肉厚の薄い部材を用いる場合には、必要最小限の範囲に限って水素を吸蔵させるために、短時間処理すべきである。又、ZnO、BaTiOなどの半導体に遷移金属をドープした半導体等については、例えば0.5〜5時間の如く、比較的長時間処理するのが好結果をもたらす。なお、これらの陰極電解水素吸蔵処理にあっては、一般に電気量として10−4〜10−2ファラデー/cm程度の処理で十分目的を達することができる。
【0041】
次に、圧接しながら加熱するプロセス条件について説明する。本発明における部材の接合にあっては、接合しようとするそれぞれの部材を、その水素吸蔵面が両部材の界面を構成するように圧接し、圧接しながら、水素吸蔵性部材から水素が放出される温度以上であり、700℃以下でかつ該界面に液相を生じない温度に加熱する。この場合の圧接圧力は、接合しようとする両部材が密着し得る圧力であればよく、通常、0.01〜100MPa程度で十分である。
【0042】
なお、一般に両部材の界面の均一な密着性を得るために、比較的展性の大きい、例えば、アルミニウム、銅、鉛、亜鉛、金、銀、銀蝋、金蝋等は比較的弱い圧力、例えば0.01〜1MPa程度でよいが、錫、鉄、ニッケル、チタン、モリブデン、ステンレス鋼等にあっては、比較的高圧、例えば1〜10MPa程度で圧接することによって、界面に生ずる歪みや凹凸を矯正し、均一な密接を得ることができる。
【0043】
水素吸蔵性部材から水素を放出させるための加熱温度は、使用する部材について示差熱吸収測定その他の手法で予め確認することができ、これを確認し実施するのが好ましいが、一般には、100〜700℃程度で十分である。なお、加熱は窒素等の不活性ガス雰囲気、又は減圧下、若しくは真空下で行うのが好ましい形態である。
【0044】
次に、本発明の接合部材の実施の形態について説明する。即ち、本発明の接合部材は、上述した製造方法によって製造した複合体であって、上述の如く金属類と半導体部材を接合した2層接合部材、金属部材を中に挟んで両側面に半導体部材を配した所謂サンドイッチ構造の3層接合部材、更には、金属部材とセラミックス部材等を交互に積層して接合した多層接合部材など、多種多様な組合せの接合に対し、容易に適用し実施することができる。
【0045】
又、本発明の接合部材は、上述の如く、その接合部に、実質的にその複数の部材を構成する元素を除き、ロウ材やフラックスなど、当該接合の目的のみで用いたフラックス、接着剤等の介在物を有さない形態として実施することができる。即ち、本発明の接合部材は、実質的に、接合されたそれぞれの部材の元素のみを有し、且つ、少なくともその接合面近傍に水素吸蔵性を有する物質からなる水素吸蔵層を有する形態として実施することができる。
【0046】
なお、かかる本発明の接合部材は又、上述した特許文献5、特許文献6などと同様にして、この水素吸蔵性を有する物質からなる水素吸蔵層を利用して、分離に際しては、例えば、この水素吸蔵層に対する水素の吸収と脱離を繰り返させることにより、接合の分離を容易にし、再利用の可能性を拡大させ、本発明の接合部材の廃棄・処理の負担を軽減させることができる。
【0047】
本発明の接合部材は又、その製造方法からも明らかなように、接合して製造する際の接合温度よりはるかに高い使用温度まで、即ち、概ね接合させた部材の耐熱温度まで使用可能であるという特徴を有する。
【0048】
以上のような実施の形態により、本発明は、接合しようとする両部材の少なくとも一方の部材の少なくとも表層部が水素を吸蔵した水素吸蔵性部材を用い、この水素吸蔵性部材を両部材接合の接合材として機能せしめることにより、特には、従来技術で接合が容易でなかった半導体部材同士の接合、半導体部材と金属部材の接合、金属部材を中に挟んで両側面に半導体部材を配した所謂サンドイッチ構造の3層接合、に対して容易に適用し得る、特には、接合しようとする部材の他に接合の目的のみで用いる介在物を要さず容易に適用し得る、接合部材の製造方法及びその接合部材を提供することができる。
【実施例】
【0049】
以下、実施例により本発明を更に具体的に説明する。先ず、表1に示す諸条件により、接合を行った実施例について説明する。接合部材の構成は、表1に示すように、半導体部材A、水素吸蔵部材、部材Bとからなり、「部材B」欄中「−」は、部材Bを用いていないケースを意味し、この場合、半導体部材Aと水素吸蔵部材との2層接合を行ったことを意味する。その他は、水素吸蔵部材を中に挟んで、その両側面に部材Aと部材Bとを配したサンドイッチ構造の3層接合を行ったものである。
【0050】
【表1】

Figure 0004538579
【0051】
水素吸蔵部材は、10mm×10mmの薄片であって、その厚みは表1に示す通りである。この水素吸蔵部材に対し、又は、Run No.11では部材Aと部材Bに対し、一部のケース(表1中、「水素吸蔵条件」欄中「−」のケース)を除き、水素吸蔵部材を陰極とし白金を陽極として、1規定の硫酸水溶液中、表1に示す電解条件(表1中の「水素吸蔵条件」)で水素吸蔵化処理を行った。
【0052】
ち、表1中、Run No.1からRun No.16までは、水素を吸蔵させたケースであって、本発明の実施例であり、Run No.17からRun No.18までは、水素を吸蔵させないケースであって、比較例である。なお、表1の「部材A」欄、「部材B」欄中の「(H)」は、水素を吸蔵させた部材であることを意味する。
【0053】
接合は、かかる接合部材構成において、ホットプレスを用い、部材A/水素吸蔵部材/部材Bの如く積層し、0.01から100MPaとなるように圧接しながら表1に示す温度で加熱し水素を放出させて、その所定温度に到達後、即座に急冷する加熱処理によって行った。即ち、本実施例は、加熱した温度に保持する工程を設けず実施したものであって、本発明は、かかる簡便な方法によっても接合することができる。なお、これらの接合処理は、常圧の窒素雰囲気下、但し、Run No.らRun No.は減圧下、で行ったものである。
【0054】
以上のようにして製造した接合部材に対し、接合性の判定として、その接合体の一方の全面(概ね1cm)に、一方向側から引き剥がし可能なようにして、粘着テープ(商品名:セロテープ)を貼り付け、その粘着テープを急激に引き剥がしたとき、部材接合界面で少なくとも一部剥離したものは正常な接合がなされていないものとして「×」、部材接合界面で全く剥離せずに粘着テープが引き剥がされたものは正常な接合がなされたものとして「○」、とする測定を行った。その結果を、表1に合わせて示している。
【0055】
その結果は、表1に示したように、本発明の実施例、その全てが正常な接合がなされていたのに対し、比較例である、Run No.17からRun No.18までは、その全てで正常な接合がなされていない。
【0056】
上の実施例は、本発明が、従来技術で接合が容易でなかった部材同士の接合、すなわち半導体部材と金属部材の接合、金属部材を中に挟んで両側面に金属部材又はセラミックス部材或いは半導体部材を配したサンドイッチ構造の3層接合などに対して、容易に適用し得ることを実証したものである。 【Technical field】
[0001]
  The present inventionsemiconductorThe present invention relates to a method for manufacturing a joining member. More detailsWith semiconductormetal,OrSemiconductorthe body'sJoin multiple memberssemiconductorMethod for manufacturing a joining member, egBaseReality of electronic components on boardDressIt is a composite that joins different memberssemiconductorThe present invention relates to a method for manufacturing a joining member.
[Background]
[0002]
  Conventionally, solid materials are joined by directly joining two members to be joined together, such as liquid phase joining such as welding, brazing and soldering, or diffusion joining, anchor joining, and ultrasonic joining. It is done by phase bonding. As an indirect joining method in which an intermediate material is provided between two members, there is a method using an organic adhesive or an inorganic adhesive in addition to the method using the direct joining described above.
[0003]
  In common with such prior art, it is a matter of course that there is a limit to the combination of members that can be suitably joined to each other, and it cannot be easily applied to many different members. There is. For example, diffusion bonding in which molecules, atoms, or crystal structures are mixed between both members and a solid solution of both members is formed and the interface is unclear is a bonding method in which the bonding strength is large and peeling at the interface hardly occurs. The difficulty of diffusibility between substances constituting both members to be joined becomes a problem, and joining between members that are difficult to diffuse becomes difficult. Also, even if both are the same type of member, it cannot always be said that they diffuse easily, and depending on the case, heating up to about the sintering temperature of both is necessary. It is not an applicable technology.
[0004]
  For example, in the case of anchor joining in which the member surface is roughened and both members are strongly pressed and the other member is joined to the rough surface by an anchor effect, at least one of the joining members can easily roughen the joint surface. The other joining member has a problem that a specific relationship that it is relatively malleable is essential, and is not easily applicable to many members. Due to the slight difference, there is also a problem that it is easy to peel off and lacks in product stability. For example, in adhesive bonding using an adhesive, the presence or absence of a suitable adhesive is a problem, and there are almost no effective adhesives particularly for metal members and highly crystalline members. .
[0005]
  Brazing and soldering methodsIsWhen manufacturing a joint member, it is a widely used joining method because it does not require high-precision processing of the joint and a relatively high joint strength can be obtained. There is. That is, ceramics is a material having excellent properties such as electrical insulation, strength at high temperatures, wear resistance, etc., and by combining such ceramic members and metal members excellent in workability, Composites suitable as components for electronic parts and structural parts that make use of the superior characteristics of ceramics have been manufactured, and in particular, brazing and soldering methods have been widely adopted for such composites. Examples of conventional techniques include Patent Document 1 and Patent Document 2.
[0006]
  In Patent Document 1, as a brazing material for joining an aluminum nitride member and a metal member, a powder of an active metal having reactivity with aluminum nitride, for example, titanium, zirconium, hafnium, or a hydride thereof is given. A metal powder brazing material comprising a proportion is disclosed. As a method of joining an aluminum nitride member and a metal member, the brazing material is applied to the joining surface of at least one member, for example, screen printing, roll coating, spraying, transfer, etc. A method is disclosed in which, after coating by this method, these are bonded together and then heated to join. In particular, by using titanium hydride, it is not oxidized and loses its activity before the bonding process, and it becomes active titanium metal by heat treatment in the bonding process, so that a suitable bonding state can be obtained. ing.
[0007]
  In Patent Document 2, titanium hydride is obtained by a method in which an active metal brazing material composed of platinum and manganese and having a manganese content within a predetermined range is used, and spraying or pasting is applied to a ceramic-side joining surface and firing. A method of joining a ceramic member and a metal member after coating is disclosed, and hydrogen generated by decomposition of titanium hydride at the time of joining reduces manganese in the brazing material to improve activity on the ceramic, and after decomposition Titanium has been shown to act as an active metal for ceramics.
[0008]
  However, the conventional technique for joining these ceramic members and metal members is a liquid phase joining method that requires a joining material such as a brazing material, and requires complicated coating such as a step of applying the joining material and removing its residue. The combination of members that can be suitably bonded in relation to the melting temperature of the bonding material is limited, and the use temperature of the manufactured product is naturally much lower than the bonding temperature. Limited.Above allWhen joining the semiconductor member, etc., there has been a problem that the metal of the joining material that has become a liquid phase at the time of joining easily diffuses into the semiconductor member and the like, resulting in performance deterioration of the semiconductor member and the like.
[0009]
  Patent Document 1 and Patent Document 2 relate to the joining of both members, and use an active metal hydride, hydrogen generated by decomposition of the active metal acts as a reducing agent at the time of joining, and the active metal after decomposition is applied to ceramics. Although it is intended to obtain a suitable bond by acting as an active metal, the joining of both members is performed with a brazing material as described above, and the brazing material is melted to form a liquid. This is a technology for phase joining.
[0010]
  In addition to this active metal hydride, a prior art using a hydrogen storage material has been disclosed in connection with the joining of both members, so this prior art will be described below. First, in Patent Document 3, when soldering a metal that easily forms an oxide film such as copper, tin, lead, nickel, etc., hydrogen is occluded in the metal member having the hydrogen occlusion property, and heat at the time of soldering is disclosed. A method is disclosed in which hydrogen is released by the above-described method and the oxide film is destroyed using the reduction action to ensure soldering. Further, in the examples, as a method for storing hydrogen in a metal member in this method, hydrogen storage by a cathode electrolytic hydrogen storage method using a metal member as a cathode (hereinafter sometimes abbreviated as “cathode electrolysis method”) is exemplified. Has been. This prior art is to release the stored hydrogen by heating the hydrogen storage member that has stored hydrogen during bonding, and the released hydrogen is used to remove the oxide film on the surface of the metal member. As described above, the joining of both members is a technique that is performed by soldering using a solder material, and is a technique that melts the solder material and performs liquid phase joining. That is, this conventional technique has the same problems as Patent Document 1 and Patent Document 2.
[0011]
  In Patent Document 4, hydrogen storage metals such as Ni, Mo, Fe, Cr, Nb, Ti, Zr, and V are used for the purpose of firmly joining different kinds of aluminum alloy members together by laser spot welding. Hydrogen produced by shot blasting the alloy powder as the main component on the joint surface to form a hydrogen absorption layer inside the joint member, and when moisture in the atmosphere reacts with magnesium and aluminum during welding heating A technique for controlling the sensitivity of the solidification rate of a molten aluminum alloy by absorbing the hydrogen in its hydrogen absorption layer is disclosed. This conventional technique intends to use a hydrogen storage metal to store hydrogen generated during welding, and the joining of both members is performed using laser spot welding as described above. There is also a technology for melting both members and performing liquid phase bonding. In this conventional technique using welding, the combination of members that can be suitably joined is limited in relation to the melting temperature of both members, and both members are melted and joined. It is not suitable, and it is not suitable for manufacturing components of fine electronic parts and structural parts, such as mounting and wiring of electronic parts on a substrate, and joining of electrodes and lead wires.
[0012]
  It is to be noted that a technique has been disclosed in which a hydrogen storage metal is used for facilitating separation of bonding, increasing the possibility of reuse, and reducing the burden of disposal / treatment of the composite. For example, Patent Document 5 discloses a material that becomes brittle by hydrogen between members to be joined, for example, a material that expands by reaction with hydrogen and causes pulverization or delamination, particularly a hydrogen storage alloy. An intermediate material made of, for example, is arranged in a thin plate shape or a thin film shape, and members are joined to each other through the intermediate material by, for example, soldering, anchor bonding, ultrasonic bonding, adhesion, room temperature bonding method by surface activation, etc. A separable joining structure to be joined is disclosed, and a separation method in which hydrogen is absorbed by the intermediate material made of the hydrogen storage alloy is disclosed.
[0013]
  Similarly, Patent Document 6 discloses a bonding material obtained by mixing and dispersing a hydrogen-occlusion metal, particularly a hydrogen-occlusion metal powder in a state of not substantially occluding hydrogen in the solder material, The electronic component is mounted and bonded to the substrate by soldering using the bonding material, and at the time of separation, hydrogen is occluded (or released) in the hydrogen-occlusion metal powder, and the resulting expansion (or contraction) A method of separation is shown.
[0014]
  As described above, the prior art disclosed in Patent Document 5 and Patent Document 6 facilitates separation of the hydrogen-absorbing metal, expands the possibility of reuse, and discards / treats the composite. This technique is intended to reduce the burden, and requires another joining technique such as soldering when joining the members. That is, it does not provide a new method capable of suitably performing bonding.
[Patent Document 1]
JP 2000-281460 A
[Patent Document 2]
JP 2003-342083 A
[Patent Document 3]
Japanese Patent Laid-Open No. 05-069122
[Patent Document 4]
JP 2001-198686 A
[Patent Document 5]
Japanese Patent Laid-Open No. 10-261866
[Patent Document 6]
JP 2001-334383 A
DISCLOSURE OF THE INVENTION
[Problems to be solved by the invention]
[0015]
  The present invention has been made in view of the above-described situation relating to a joining member formed by joining a plurality of members, and joining a variety of combinations among many members, in particular, joining is not easy with the prior art.semiconductorAnd metal parts, both sides with metal parts in betweenHalfIt can be easily applied to so-called sandwich-structured three-layer joints in which conductor members are arranged. In particular, it is used only for the purpose of joining in addition to the members to be joined.So-called adhesiveCan be applied easily without requiringsemiconductorIt aims at providing the manufacturing method of a joining member, and its joining member.
[Means for Solving the Problems]
[0016]
  As means for achieving the above object, a method of manufacturing a semiconductor joining member having the following configuration is provided.
  That is, the invention of claim 1 is a method of manufacturing a semiconductor joining member in which at least one member is a semiconductor and the semiconductor member and a metal or a semiconductor member are joined, and at least of both members to be joined. One memberHowever, by cathodic electrolytic hydrogen storage method,The temperature at which hydrogen is released from the hydrogen occlusion member while pressing each member that is a hydrogen occlusion member having at least the surface layer occluded with hydrogen so that the surface of the hydrogen occlusion member forms an interface. As mentioned above, it is a manufacturing method of the semiconductor joining member characterized by heating at 700 degrees C or less and lower temperature than the temperature which produces a liquid phase in an interface.
[0017]
  Claim2The invention of claim1'sIn the manufacturing method,The hydrogen-occlusion member that occludes hydrogen is a thin piece of a hydrogen-occlusion member in which the surface layers on both sides occlude hydrogen, and a metal or semiconductor member is pressed against both surfaces of the hydrogen-occlusion member and heated while being pressed. A method for manufacturing a semiconductor bonding member, wherein:
[0018]
  Invention of Claim 3 is a manufacturing method of the semiconductor joining member by which the semiconductor member and metals were joined, Comprising: At least one member of both the members to be joinedHowever, by cathodic electrolytic hydrogen storage method,The temperature at which hydrogen is released from the hydrogen occlusion member while pressing each member that is a hydrogen occlusion member having at least the surface layer occluded with hydrogen so that the surface of the hydrogen occlusion member forms an interface. The method for manufacturing a semiconductor bonding member according to claim 1, wherein the heating is performed at a temperature lower than 700 ° C. and lower than a temperature at which a liquid phase is generated at the interface.
[0019]
  Claim4The invention of4. The semiconductor bonding member according to claim 1, wherein the metal is at least one metal selected from Cu, Ag, Al, Ti, Ni, and silver wax. 5. It is a manufacturing method.
[0021]
  As described in detail below, the present invention uses a hydrogen storage member in which at least a surface layer of at least one member of both members to be bonded has occluded hydrogen, and this hydrogen storage member is used for joining both members. By functioning as a bonding materialSubordinateJoining of members that were not easy to join with conventional technology, that is,Semiconductor materialIt can be easily applied to the joining of metal members, the so-called sandwich structure three-layer joining in which the semiconductor member and the metal member are arranged on both sides with the metal member sandwiched therebetween,semiconductorThere exists an effect which can provide the manufacturing method of a joining member.
BEST MODE FOR CARRYING OUT THE INVENTION
[0022]
  Hereinafter, preferred embodiments of the present invention will be described. In the present invention, the surface layer portion for storing hydrogen means the surface of the joint surface of the member and / or the inside of the member near the joint surface (hereinafter also referred to as “neighboring layer”). Further, the hydrogen storage member for storing hydrogen as referred to in the present invention is not limited to a homogeneous member made of a metal or alloy having hydrogen storage properties,WaterVarious forms such as a hydrogen storage member in which a member having no hydrogen storage property is doped with a metal having a hydrogen storage property, a hydrogen storage layer is formed inside the member in the vicinity of the joint surface, and this is stored as hydrogen. It includes the form of
[0023]
  Of the present inventionsemiconductorAs described above, the manufacturing method of the joining member is such that at least the surface layer of at least one of the two members to be joined is a hydrogen occlusion member in which hydrogen is occluded, and the hydrogen occlusion surface is both members. Welding so as to constitute the interface ofAt a temperature not lower than the temperature at which hydrogen is released from the hydrogen storage member and not higher than 700 ° C. and at which no liquid phase is generated at the interface.It is a method of releasing the stored hydrogen by heating, and has the greatest feature in making this hydrogen storage member function as a bonding material for bonding both members. Therefore, the present invention is also used only for the purpose of joining, in particular, in addition to the members to be joined, special joining materials, fluxes, etc.Adhesive etc.It has the characteristic that it can implement without using.
[0024]
  Although the mechanism of action of the present invention is not clear,By heating with pressure welding, hydrogen is released from the hydrogen storage member and promotes the generation of active elements in the hydrogen storage member, or at least activates the surface of the bonding surface or the vicinity thereof, and bonding By acting as active hydrogen in the nascent stage on the bonding surface of the mating member and reducing and activating the surface of the bonding surface and the nearby layer, the crystal structure is disturbed or the movement of atoms is facilitated, Joining in various member combinations by inducing the diffusion of atoms and ions at the interface between the two members, or by forming a chemical bond between them or at least forming an interatomic interaction such as a hydrogen bond. CanConceivable.
[0025]
  As is clear from this embodiment, the hydrogen storage referred to in the present invention isAt temperatures below the temperature at which the liquid phase occursHeat to release stored hydrogenobtainAs long as it is a thing, it may arise by what kind of mechanism, such as reaction, adsorption | suction, absorption. For example, a form of hydrogen storage as a hydride that can be expressed as a certain compound stoichiometrically or a so-called “hydrogen storage alloy” cannot be defined as a hydrogen compound, and the crystal lattice of the original material is The present invention can be implemented in various forms such as a form in which hydrogen is expanded and occluded.
[0026]
  For example, when implemented in the form of occluding hydrogen as a metal hydride, the metal hydride begins to dehydrogenate rapidly above a certain temperature, and the metal that has been hydrogenated until now has a high free energy state, i.e., active. A reaction layer mainly composed of dehydrogenated metal that is left in a high state is formed at the bonding interface, and easily combines with nearby elements to generate a stable alloy phase. Brought about. The temperature at which this dehydrogenation starts is much lower than the melting point of the alloy itself, and this feature is used to perform solid phase bonding that is easier to handle and simpler in manufacturing process than liquid phase bonding. be able to.
[0027]
  According to the embodiment as described above, the present inventionsemiconductorThe manufacturing method of the joining member is as follows:At least one member is a semiconductor, and the other is a metal or a semiconductor member,As a hydrogen storage member in which at least one of the two members to be bonded is stored with hydrogen, it is heated by an extremely simple manufacturing process in which the hydrogen storage surface is heated so as to form an interface between the two members. In particular, in addition to the members to be joined by the phase joining method, special joining materials and fluxes, that is, used only for the purpose of joining.Adhesive etc.It can be applied easily without using.
[0028]
  Hereinafter, preferred embodiments of the present invention will be described in more detail.
[0029]
  First, a combination between members to be joined will be described. That is,At least one member is a semiconductor and the other member is a metal or a semiconductor;Both partsOut ofAnd a combination in which at least one surface layer of at least one member is a hydrogen storage member that occludes hydrogen, and at least one member has at least a surface layer portion, particularly a hydrogen storage property in which the surface layer portion of the bonding surface occludes hydrogen. As long as it is a member made of a member, the other may be a hydrogen occluding member that occludes hydrogen or may not be a hydrogen occluding member. That is, bonding between hydrogen storage members storing hydrogen, bonding between a hydrogen storage member storing hydrogen and a member having hydrogen storage but not storing hydrogen, hydrogen storage member storing hydrogen and hydrogen It can be implemented as any form of joining with a member that does not have occlusion.
[0030]
  Further, not only two members can be joined, but also a mode in which three or more members are laminated in a multilayer and can be integrally joined. That is, the shape of the member does not limit the present invention at all. For example, a plate shape or a flaky shape is possible, and a double-sided surface layer portion occludes a plate-like or flaky hydrogen storage member. It can also be implemented as a form in which different members are pressed against both surfaces and joined together. For example, metal members or metal members on both sides of a metal member sandwiched in the middle, which were not easily joined in the past.HalfA so-called sandwich-structured three-layer joining member in which a conductor member is arranged can be integrally joined. Furthermore, it is possible to manufacture a multi-layer joined member having four or more layers by alternately stacking the hydrogen storage member and another member.
[0031]
  Next, members that can be joined in the present invention, that is, members that can constitute the joined member of the present invention will be described. The members that can be joined in the present invention cover a wide variety of materials, such as Cu, Al, Sn, Zn, Ag, Au, Ni, Ti, Zr, Fe, Cr, Nb, Mo, SUS, bronze, brass, silver wax. , Metal such as gold waxas well asBaTiO3, Bi2Te3, CoSb, CoSbYb, etc., and semiconductors doped with various metalsBodyWhoThe
  NaWaterAs the element occluding member, a metal or alloy having hydrogen occluding property, for example, lanthanide alloys such as La—Mg, La—Pb, La—Sm, La—Ni, cerium alloys such as Ce—Ni, Fe— Use iron-based alloys such as NiIs preferred.
[0032]
  The shape of the member is not particularly limited as long as the members to be joined can be press-contacted with each other.HalfConductor laminationThingsSuitable for the manufacture of products, but also mounting of electronic components on the board, wiring, joining of electrodes and leads, and many otherssemiconductorIt is possible to apply to manufacture of a joining member.
[0033]
  Next, the form of the hydrogen storage layer formed by storing hydrogen in a member having hydrogen storage properties will be described. That is, in the present invention, at least one of the two members to be joined comprises at least a surface layer portion, particularly a hydrogen storage member in which the surface layer portion of the joint surface occludes hydrogen.RukoAre essential requirements. Therefore, the member storing hydrogen may be in a form in which hydrogen is stored only in the surface layer portion of the joint surface, in a form in which hydrogen is stored in the surface layer portion over the entire surface, or in a deep portion inside the member. Occluded form may be sufficient.
[0034]
  However, in generalThe waterSince the metal that has occluded element tends to become brittle and tends to be pulverized in some cases, for example, in the case of a hydrogen occlusion metal member, a large amount of hydrogen is occluded in the surface layer part, and less in the deep part. It is preferable to use a plate or foil member that makes it easy to maintain the strength. That is, the hydrogen storage metal member is preferably implemented as a mode for storing hydrogen only within the minimum necessary range.
[0035]
  The thickness of the hydrogen storage layer should be appropriately determined depending on the combination of the members to be joined, and does not limit the present invention. However, it is usually at least several hundred angstroms, generally several tens of microns. Or a thickness greater than that is preferred.
[0036]
  Next, a mode in which hydrogen is occluded in a member having hydrogen occlusion properties will be described. The method for occluding hydrogen does not limit the invention as long as the object of the present invention is achieved. For example, the cathode electrolysis method is performed at room temperature to 100 ° C. under a hydrogen pressure of 0.01 to 50 MPa. Conventional technologies such as high-pressure hydrogenation or hydrogen plasma irradiationAlsousePossibleIs somethingBut,When the member is a conductor, the cathodic electrolysis method is usually preferredIs done.
[0037]
  In the case where the member is a conductor, this hydrogen occlusion can be easily performed by electrolyzing water, in particular, by a cathodic electrolysis method using the hydrogen occlusion conductor member as a cathode. That is, as is well known, the cathodic electrolytic hydrogen storage method uses hydrogen.TheThis is a method of electrolyzing water by using a member to be occluded as a cathode and applying a voltage appropriately selected above the electrolysis voltage of water in an aqueous electrolyte solution. Since it is adsorbed on the cathode surface, and then gradually diffuses and spreads inside the cathode, the depth and amount of hydrogen occluded in the cathode can be controlled by the electrolysis time, and can be suitably used in the present invention. It is.
[0038]
  This cathode electrolytic hydrogen storage method is limited to metalsZnO and BaTiO3Such assemiconductorAny other metal member or other semiconductor member can be processed in the same manner.
[0039]
  Specifically, although the invention is not limited, the voltage application is higher than the electrolysis voltage of water, for example, generally about several tens of volts in consideration of the equilibrium potential and overvoltage of hydrogen, and depends on the pH of the electrolyte solution. Apply the appropriate voltage. If the current density is too large at this time, the generation of hydrogen gas is promoted and energy is not only wasted, but also the absorption of hydrogen into the cathode is suppressed, so generally several milliamperes to 1 ampere per square centimeter. In particular, it is preferable to set it to about several tens of milliamperes to several hundred milliamperes.
[0040]
  The time for the electrolytic treatment is usually that the hydrogen-occlusion conductor member is made of a metal such as Cu, Fe, Ni, Ag, Ti, Al, Nb, Mo, and an alloy containing these as a main component, La-Mg, La-Pb. In the case of metals that easily absorb hydrogen, such as lanthanide alloys such as La-Sm, La-Ni, cerium alloys such as Ce-Ni, iron alloys such as Fe-Ni, gold wax, silver wax, etc. In general, the goal can be achieved in minutes to hours. In particular, when a thin member having high hydrogen diffusibility is used, it should be treated for a short time in order to occlude hydrogen within the minimum necessary range. ZnO, BaTiO3Such assemiconductorFor semiconductors or the like doped with transition metal, treatment for a relatively long time, such as 0.5 to 5 hours, gives good results. In these cathodic electrolytic hydrogen storage treatments, in general, the quantity of electricity is 10-4-10-2Faraday / cm2The purpose can be sufficiently achieved by the degree of processing.
[0041]
  Next, process conditions for heating while pressing will be described. In the joining of the members in the present invention, each member to be joined is pressed so that the hydrogen storage surface forms an interface between the two members, and hydrogen is released from the hydrogen storage member while pressing. Over temperatureIt is 700 ° C. or lower and does not produce a liquid phase at the interface.Heat to temperature. The press contact pressure in this case may be a pressure at which both members to be joined can be brought into close contact with each other.100About MPa is sufficient.
[0042]
  In general, in order to obtain uniform adhesion at the interface between both members, relatively high malleability, for example, aluminum, copper, lead, zinc, gold, silver, silver wax, gold wax, etc. are relatively weak pressure, For example, about 0.01 to 1 MPa may be used, but in the case of tin, iron, nickel, titanium, molybdenum, stainless steel, etc., distortion or unevenness generated at the interface by being pressed at a relatively high pressure, for example, about 1 to 10 MPa. Can be obtained and uniform contact can be obtained.
[0043]
  The heating temperature for releasing hydrogen from the hydrogen storage member can be confirmed in advance by differential heat absorption measurement or other methods for the member to be used, and it is preferable to confirm and carry out this, but generally 100 to A temperature of about 700 ° C is sufficient. Note that heating is preferably performed in an atmosphere of an inert gas such as nitrogen, a reduced pressure, or a vacuum.
[0044]
  Next, an embodiment of the joining member of the present invention will be described. That is, the joining member of the present invention is a composite produced by the production method described above, andGoldGenus andSemiconductor materialTwo-layer bonded member with bonded metal parts, both side surfaces with a metal member sandwiched in betweenHalfA wide variety of so-called sandwich-structured three-layer joint members with conductor members, and multilayer joint members in which metal members and ceramic members are alternately laminated and joinedGroupIt can be easily applied and carried out for joint joining.
[0045]
  Further, as described above, the joining member of the present invention was used only for the purpose of joining, such as brazing material and flux, except for the elements that substantially constitute the plurality of members at the joining portion.Flux, adhesive, etc.It can implement as a form which does not have an inclusion. That is, the joining member of the present invention is implemented as a form having substantially only the elements of each joined member and having a hydrogen storage layer made of a substance having a hydrogen storage property at least in the vicinity of the joining surface. can do.
[0046]
  In addition, such a joining member of the present invention can also be separated by using, for example, this hydrogen storage layer made of a substance having a hydrogen storage property in the same manner as in Patent Document 5 and Patent Document 6 described above. By repeating the absorption and desorption of hydrogen with respect to the hydrogen storage layer, it is possible to facilitate separation of the junction, increase the possibility of reuse, and reduce the burden of disposal / treatment of the joining member of the present invention.
[0047]
  The joining member of the present invention can also be used up to a use temperature much higher than the joining temperature at the time of joining and manufacturing, that is, up to the heat resistance temperature of the joined member, as is apparent from the manufacturing method. It has the characteristics.
[0048]
  According to the embodiment as described above, the present invention uses a hydrogen storage member in which at least the surface layer of at least one member of both members to be bonded has occluded hydrogen, and this hydrogen storage member is joined to both members. By functioning as a bonding materialSpecialWas not easy to join with the prior artsemiconductorJoining of members,semiconductorBonding of member and metal member, both sides with metal member in betweenHalfIt can be easily applied to a so-called sandwich-structured three-layer joint in which conductor members are arranged, and in particular, it can be easily applied without requiring inclusions for the purpose of joining in addition to the members to be joined. The manufacturing method of a joining member and its joining member can be provided.
【Example】
[0049]
  Hereinafter, the present invention will be described more specifically with reference to examples. First, according to the conditions shown in Table 1.ContactThe example which performed the combination is described. The structure of the joining member is as shown in Table 1,semiconductorIt consists of a member A, a hydrogen storage member, and a member B, and “−” in the “member B” column means a case where the member B is not used.semiconductorIt means that the two-layer joining of the member A and the hydrogen storage member was performed. The other is a three-layer joint having a sandwich structure in which a member A and a member B are arranged on both sides of the hydrogen storage member.
[0050]
[Table 1]
Figure 0004538579
[0051]
  The hydrogen storage member is a thin piece of 10 mm × 10 mm, and its thickness is as shown in Table 1. For this hydrogen storage member or Run No. 11, with respect to member A and member B, except for some cases (in the “hydrogen storage conditions” column in Table 1, “-” cases), the hydrogen storage member is the cathode, platinum is the anode, and 1 normal sulfuric acid is used. Perform hydrogen storage treatment in aqueous solution under the electrolysis conditions shown in Table 1 ("hydrogen storage conditions" in Table 1).It was.
[0052]
  ImmediatelyIn Table 1, Run No. 1 to Run No.16Up to this point, the hydrogen storage case is an example of the present invention.17To Run No.18Up to this is a case in which hydrogen is not occluded, which is a comparative example. In Table 1, “(H)” in the “Member A” column and the “Member B” column means a member that occludes hydrogen.
[0053]
  In such a joining member configuration, the joining is performed using a hot press and laminated like member A / hydrogen storage member / member B.FromTo be 100 MPaPressureThe temperatures shown in Table 1In degreesHeatedRelease hydrogenThen, after reaching the predetermined temperature, it was carried out by a heat treatment that immediately quenches. In other words, the present embodiment was carried out without providing the step of maintaining the heated temperature, and the present invention can be joined also by such a simple method. Note that these bonding treatments were performed under a normal pressure nitrogen atmosphere, except that Run No.6Run No. et al.9Is performed under reduced pressure.
[0054]
  For the joining member manufactured as described above, as a judgment of the joining property, one whole surface of the joined body (approximately 1 cm)2), The adhesive tape (product name: cello tape) is applied so that it can be peeled off from one side, and when the adhesive tape is peeled off suddenly, it is normal that at least a part of the adhesive is peeled off The measurement was made as “X” as not being properly joined, and “◯” as being normally joined when the adhesive tape was peeled off without peeling at the member joining interface. The results are also shown in Table 1.
[0055]
  The results are shown in Table 1.Is, All of which were normally joined, whereas a comparative example, Run No.17To Run No.18Until then, all of them are not properly joined.
[0056]
  Less thanThe above embodiments are examples of the present invention.ButJoining of members that were not easy to join with the conventional technologyIe,semiconductorIt has been proved that it can be easily applied to the joining of a member and a metal member, the sandwich structure with a metal member sandwiched between the metal member, ceramic member or semiconductor member on both sides. AhThe

Claims (4)

少なくとも一方の部材が半導体であり、該半導体部材と金属類又は半導体部材とが接合された半導体接合部材の製造方法であって、接合しようとする両部材の少なくとも一方の部材が、陰極電解水素吸蔵法により、少なくとも表層部に水素を吸蔵させた水素吸蔵性部材であるそれぞれの部材を、その水素吸蔵性部材面が界面を構成するよう圧接し、圧接しながら該水素吸蔵部材から、水素が放出される温度以上、700℃以下で且つ界面に液相を生ずる温度より低い温度で加熱することを特徴とする半導体接合部材の製造方法。At least one member is a semiconductor, and the semiconductor member is produced by joining the semiconductor member and a metal or a semiconductor member, wherein at least one member of both members to be joined is cathodic electrolytic hydrogen occlusion According to the method, at least the surface of the hydrogen occlusion member that has occluded hydrogen is pressed against each other so that the surface of the hydrogen occlusion member forms an interface, and hydrogen is released from the hydrogen occlusion member while being pressed. A method for manufacturing a semiconductor bonding member, comprising heating at a temperature not lower than a temperature of 700 ° C. and lower than a temperature at which a liquid phase is generated at an interface. 前記水素を吸蔵した水素吸蔵性部材は、両面表層部が水素を吸蔵した水素吸蔵部材の薄片であり、その両面にそれぞれ金属類又は半導体部材を圧接し、圧接しながら加熱することによって三層構造とすることを特徴とする請求項1記載の半導体接合部材の製造方法。  The hydrogen-occlusion member that occludes hydrogen is a thin piece of a hydrogen-occlusion member in which the surface layers on both sides occlude hydrogen, and a metal or semiconductor member is pressed against both surfaces of the hydrogen-occlusion member and heated while being pressed. The method for manufacturing a semiconductor bonding member according to claim 1, wherein: 半導体部材と金属類とが接合された半導体接合部材の製造方法であって、接合しようとする両部材の少なくとも一方の部材が、陰極電解水素吸蔵法により、少なくとも表層部に水素を吸蔵させた水素吸蔵性部材であるそれぞれの部材を、その水素吸蔵性部材面が界面を構成するよう圧接し、圧接しながら該水素吸蔵部材から、水素が放出される温度以上、700℃以下で且つ界面に液相を生ずる温度より低い温度で加熱することを特徴とする請求項1又は2記載の半導体接合部材の製造方法。A method of manufacturing a semiconductor bonding member in which a semiconductor member and a metal are bonded, wherein at least one of the members to be bonded is hydrogen in which at least a surface layer portion stores hydrogen by a cathode electrolytic hydrogen storage method Each member that is an occluding member is pressed against the surface of the hydrogen occluding member so as to form an interface, and the pressure is higher than the temperature at which hydrogen is released from the hydrogen occluding member to 700 ° C. 3. The method of manufacturing a semiconductor bonding member according to claim 1, wherein heating is performed at a temperature lower than a temperature at which a phase is generated. 前記金属類が、Cu、Ag、Al、Ti、Ni及び銀蝋の中から選ばれる少なくとも一種の金属類である請求項1乃至請求項3のうちいずれか1項に記載の半導体接合部材の製造方法。  The said metal is at least 1 sort (s) of metals chosen from Cu, Ag, Al, Ti, Ni, and silver wax, The manufacturing of the semiconductor joining member of any one of Claims 1 thru | or 3 Method.
JP2005517370A 2004-01-29 2004-02-06 Manufacturing method of semiconductor joining member Expired - Fee Related JP4538579B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004021653 2004-01-29
JP2004021653 2004-01-29
PCT/JP2004/001303 WO2005073149A1 (en) 2004-01-29 2004-02-06 Process for producing joined member and produced joined member

Publications (2)

Publication Number Publication Date
JPWO2005073149A1 JPWO2005073149A1 (en) 2007-08-23
JP4538579B2 true JP4538579B2 (en) 2010-09-08

Family

ID=34823805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005517370A Expired - Fee Related JP4538579B2 (en) 2004-01-29 2004-02-06 Manufacturing method of semiconductor joining member

Country Status (2)

Country Link
JP (1) JP4538579B2 (en)
WO (1) WO2005073149A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256380A (en) * 1985-09-05 1987-03-12 株式会社東芝 Ceramic-metal joined member
JPS6278171A (en) * 1985-09-30 1987-04-10 京セラ株式会社 Method and structure of bonding ceramic body to metal member
JPH0569122A (en) * 1991-09-10 1993-03-23 Nagano Pref Gov Soldering method by hydrogencharg system
JPH06263552A (en) * 1993-03-16 1994-09-20 Ngk Insulators Ltd Structure for joining ceramic body
JPH06299272A (en) * 1993-02-22 1994-10-25 Mazda Motor Corp Composite hydrogen occluding metallic member and its production

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07153455A (en) * 1993-12-01 1995-06-16 Technova:Kk Composite material electrode and storage method for hydrogen or isotope thereof
FR2751640B1 (en) * 1996-07-23 1998-08-28 Commissariat Energie Atomique COMPOSITION AND METHOD FOR REACTIVE BRAZING OF CERAMIC MATERIALS CONTAINING ALUMINUM

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256380A (en) * 1985-09-05 1987-03-12 株式会社東芝 Ceramic-metal joined member
JPS6278171A (en) * 1985-09-30 1987-04-10 京セラ株式会社 Method and structure of bonding ceramic body to metal member
JPH0569122A (en) * 1991-09-10 1993-03-23 Nagano Pref Gov Soldering method by hydrogencharg system
JPH06299272A (en) * 1993-02-22 1994-10-25 Mazda Motor Corp Composite hydrogen occluding metallic member and its production
JPH06263552A (en) * 1993-03-16 1994-09-20 Ngk Insulators Ltd Structure for joining ceramic body

Also Published As

Publication number Publication date
WO2005073149A1 (en) 2005-08-11
JPWO2005073149A1 (en) 2007-08-23

Similar Documents

Publication Publication Date Title
JP6753869B2 (en) How to make composites
JPH0217509B2 (en)
JP2020527461A (en) Soldering material for active soldering and active soldering method
JP6443568B2 (en) Bonding material, bonding method and bonding structure using the same
WO2005095040A1 (en) Method of joining and joined body
JP2005288458A (en) Joined body, semiconductor device, joining method and method for producing semiconductor device
JP4579705B2 (en) Clad material and manufacturing method thereof
TW201020332A (en) Sputter target assembly having a low-temperature high-strength bond
KR20050089931A (en) Clad sheets and plates with the high bonding strength and good corrosion resistance for anti-corrosion and method of making the same
JP5004792B2 (en) Cu-Mo substrate and manufacturing method thereof
CN113894460A (en) Self-propagating brazing film and preparation method thereof
JP4538579B2 (en) Manufacturing method of semiconductor joining member
JP2016041434A (en) Method for manufacturing joined body, method for manufacturing substrate for power modules, and method for manufacturing substrate for power module with heat sink
JP2018111111A (en) Manufacturing method for metal junction body and semiconductor device
KR20170011901A (en) Manufacturing method of sheet with exothermic and amorphous characteristics by plating
WO2016167217A1 (en) Bonded body, substrate for power module with heat sink, heat sink, method for producing bonded body, method for producing substrate for power module with heat sink, and method for producing heat sink
JP2006120973A (en) Circuit board and manufacturing method thereof
JPH10194860A (en) Brazing filler metal
JP2002292474A (en) Method for bonding titanium material or titanium alloy material
JP2007260695A (en) Joining material, joining method, and joined body
JP2001225176A (en) Producing method for hip joined body of beryllium and copper alloy and hip joined body
JP6273971B2 (en) Manufacturing method of power module substrate with heat sink
JP2020510987A (en) Thermoelectric module
US11945054B2 (en) Method for producing a metal-ceramic substrate, solder system, and metal-ceramic substrate produced using such a method
JPS6334963A (en) Method of manufacturing ceramic substrate for semiconductor device and clad material therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

R150 Certificate of patent or registration of utility model

Ref document number: 4538579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees