JP4538216B2 - A polyimide precursor, a polyimide precursor manufacturing method, a polyimide precursor organic solvent solution manufacturing method, a cast film manufacturing method, and a polyimide film manufacturing method. - Google Patents

A polyimide precursor, a polyimide precursor manufacturing method, a polyimide precursor organic solvent solution manufacturing method, a cast film manufacturing method, and a polyimide film manufacturing method. Download PDF

Info

Publication number
JP4538216B2
JP4538216B2 JP2003383835A JP2003383835A JP4538216B2 JP 4538216 B2 JP4538216 B2 JP 4538216B2 JP 2003383835 A JP2003383835 A JP 2003383835A JP 2003383835 A JP2003383835 A JP 2003383835A JP 4538216 B2 JP4538216 B2 JP 4538216B2
Authority
JP
Japan
Prior art keywords
polyimide precursor
polyimide
film
polymerization
trans
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003383835A
Other languages
Japanese (ja)
Other versions
JP2005146072A (en
Inventor
匡俊 長谷川
淳一 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemical and Information Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemical and Information Device Corp filed Critical Sony Chemical and Information Device Corp
Priority to JP2003383835A priority Critical patent/JP4538216B2/en
Priority to PCT/JP2004/006414 priority patent/WO2005047367A1/en
Publication of JP2005146072A publication Critical patent/JP2005146072A/en
Application granted granted Critical
Publication of JP4538216B2 publication Critical patent/JP4538216B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

本発明は低誘電率、低線熱膨張係数、高ガラス転移温度、高透明性、十分な強靭さ且つ製膜加工性を併せ持つ実用上有益なポリイミド膜と溶液貯蔵安定性に優れたその前駆体の製造方法に関する。   The present invention provides a practically useful polyimide film having a low dielectric constant, a low linear thermal expansion coefficient, a high glass transition temperature, a high transparency, a sufficient toughness and a film forming processability, and a precursor having excellent solution storage stability. It relates to the manufacturing method.

一般にポリイミドは、無水ピロメリット酸などの芳香族テトラカルボン酸二無水物とジアミノジフェニルエーテル等の芳香族ジアミンとをジメチルアセトアミド等の非プロトン性極性溶媒中で等モル反応させ容易に得られる高重合度のポリイミド前駆体を、膜などに成形し加熱硬化して得られる。   Generally, polyimide has a high degree of polymerization that can be easily obtained by equimolar reaction of aromatic tetracarboxylic dianhydride such as pyromellitic anhydride and aromatic diamine such as diaminodiphenyl ether in an aprotic polar solvent such as dimethylacetamide. The polyimide precursor is formed into a film and cured by heating.

このような全芳香族ポリイミドは優れた耐熱性、耐薬品性、耐放射線性、電気絶縁性、機械的性質などの性質を併せ持つことから、フレキシブルプリント配線回路用基板、テープオートメーションボンディング用基材、半導体素子の保護膜、集積回路の層間絶縁膜等、様々な電子デバイスに現在広く利用されている。   Such wholly aromatic polyimides have excellent heat resistance, chemical resistance, radiation resistance, electrical insulation, mechanical properties, etc., so flexible printed circuit boards, tape automation bonding substrates, Currently, it is widely used in various electronic devices such as protective films for semiconductor elements and interlayer insulating films for integrated circuits.

最近では特にマイクロプロセッサーの演算速度の高速化やクロック信号の立ち上がり時間の短縮化が情報処理・通信分野で重要な課題になってきているが、そのためには層間絶縁膜として使用するポリイミド膜の誘電率を下げることが必要となる。   Recently, increasing the calculation speed of the microprocessor and shortening the rise time of the clock signal have become important issues in the information processing and communication fields. For this purpose, the dielectric of the polyimide film used as the interlayer insulating film is used. It is necessary to lower the rate.

ポリイミドの誘電率を下げるためにはポリイミド構造中へのフッ素基の導入が有効である(例えば、非特許文献1を参照。)。また、2,2-ビス(3,4-カルボキシフェニル)ヘキサフルオロプロパン酸二無水物と2,2'-ビス(トリフルオロメチル)ベンジジンから得られるフッ素化ポリイミド膜は平均屈折率から見積もられた誘電率が2.8と非常に低い値を示す(例えば、非特許文献2を参照。)。   In order to lower the dielectric constant of polyimide, introduction of a fluorine group into the polyimide structure is effective (for example, see Non-Patent Document 1). The fluorinated polyimide film obtained from 2,2-bis (3,4-carboxyphenyl) hexafluoropropanoic dianhydride and 2,2'-bis (trifluoromethyl) benzidine is estimated from the average refractive index. Further, the dielectric constant is 2.8, which is a very low value (see Non-Patent Document 2, for example).

また芳香族単位を脂環族単位に置き換えてπ電子を減少することにより、分子内共役および電荷移動錯体形成を妨害すること(例えば、非特許文献3を参照。)も低誘電率化に有効である。   In addition, intermolecular conjugation and charge transfer complex formation can be prevented by replacing aromatic units with alicyclic units to reduce π electrons (see Non-Patent Document 3, for example). It is.

1,2,3,4−シクロブタンテトラカルボン酸二無水物と4,4'-メチレンビス(シクロヘキシルアミン)から得られる非芳香族ポリイミド膜は平均屈折率から見積もられた誘電率が2.6と非常に低い値を示すことも公知である(例えば、非特許文献4を参照。)。   A non-aromatic polyimide film obtained from 1,2,3,4-cyclobutanetetracarboxylic dianhydride and 4,4'-methylenebis (cyclohexylamine) has a dielectric constant estimated from the average refractive index of 2.6. It is also known to show very low values (see, for example, Non-Patent Document 4).

一方、ポリイミド膜を層間絶縁膜として銅などの金属基板と積層する場合、それぞれの線熱膨張係数のミスマッチにより残留応力が発生し、カーリング、膜の剥離、割れ等の重大な問題を引き起こすことが知られている。   On the other hand, when a polyimide film is laminated with a metal substrate such as copper as an interlayer insulating film, residual stress is generated due to mismatch of the respective linear thermal expansion coefficients, which may cause serious problems such as curling, film peeling and cracking. Are known.

この問題を回避するためにはポリイミド膜の線熱膨張係数を金属基板のそれに近づけること即ちポリイミドの低熱膨張化が必要となる。現在知られているポリイミドの殆どは40〜90ppm/Kの線熱膨張係数を持ち、銅基板の18ppm/Kに比べてはるかに高い。最近では電子回路の高密度化に伴い、配線基板の多層化の必要性が高まってきているが、多層基板における残留応力はデバイスの信頼性を著しく低下させる。   In order to avoid this problem, it is necessary to make the linear thermal expansion coefficient of the polyimide film close to that of the metal substrate, that is, to lower the thermal expansion of the polyimide. Most of the currently known polyimides have a linear thermal expansion coefficient of 40 to 90 ppm / K, much higher than the 18 ppm / K for copper substrates. Recently, with the increase in the density of electronic circuits, the necessity of multilayer wiring boards has increased, but the residual stress in the multilayer board significantly reduces device reliability.

ポリイミドの低熱膨張係数発現には一般に、その主鎖構造が直線的でしかも内部回転が束縛され剛直であることが必要条件であることが知られている(例えば、非特許文献5を参照。)。   In general, it is known that a low thermal expansion coefficient expression of polyimide is a necessary condition that the main chain structure is linear and the internal rotation is constrained and rigid (see, for example, Non-Patent Document 5). .

現在実用的な低熱膨張ポリイミド材料としては3,3',4,4'-ビフェニルテトラカルボン酸二無水物とパラフェニレンジアミンから形成されるポリイミドが最もよく知られている。このポリイミド膜は膜厚や作製条件にもよるが、5〜10 ppm/Kと非常に低い線熱膨張係数を示すことが知られている(例えば、非特許文献6を参照。)。
しかしながら、低誘電率と低熱膨張係数を同時に有し、かつハンダ耐熱性を保持しているポリイミドを得ることは分子設計上容易ではない。ポリイミド以外の低誘電率高分子材料や無機材料も検討されているが、誘電率、線熱膨張係数、耐熱性および靭性の点で要求特性が十分に満たされていないのが現状である。
Currently, polyimides formed from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and paraphenylenediamine are best known as practical low thermal expansion polyimide materials. This polyimide film is known to exhibit a very low linear thermal expansion coefficient of 5 to 10 ppm / K, although it depends on the film thickness and production conditions (see, for example, Non-Patent Document 6).
However, it is not easy in terms of molecular design to obtain a polyimide having both a low dielectric constant and a low thermal expansion coefficient and having solder heat resistance. Low dielectric constant polymer materials and inorganic materials other than polyimide are also being studied, but at present the required properties are not sufficiently satisfied in terms of dielectric constant, linear thermal expansion coefficient, heat resistance and toughness.

一般にポリイミド構造中へのフッ素基の導入は分子間相互作用を弱め、低熱膨張化の要因であるイミド化時の自発的分子配向を妨害する傾向をもたらす。更にコスト面でも不利である。前述のように2,2-ビス(3,4-カルボキシフェニル)ヘキサフルオロプロパン酸二無水物と2,2'-ビス(トリフルオロメチル)ベンジジンから得られる代表的なフッ素化ポリイミド膜は前述のように低誘電率を示すが、線熱膨張係数は64ppm/Kと非常に高く、低熱膨張特性を示さない(例えば、非特許文献2を参照。)。   In general, introduction of a fluorine group into a polyimide structure weakens intermolecular interaction, and tends to hinder spontaneous molecular orientation during imidization, which is a factor of low thermal expansion. It is also disadvantageous in terms of cost. As mentioned above, a typical fluorinated polyimide film obtained from 2,2-bis (3,4-carboxyphenyl) hexafluoropropanoic dianhydride and 2,2′-bis (trifluoromethyl) benzidine is Thus, although the dielectric constant is low, the coefficient of linear thermal expansion is as high as 64 ppm / K and does not show low thermal expansion characteristics (see, for example, Non-Patent Document 2).

また脂環式構造単位の導入もポリイミド主鎖骨格の直線性および剛直性を低下させ、線熱膨張係数の増大を引き起こすという問題がある。例えば下記化学式(3)に示す4,4'-メチレンビス(シクロヘキシルアミン)の如き屈曲性の高い脂環式ジアミンを用いた場合、各種酸二無水物と容易に重合が進行し、高重合度のポリイミド前駆体を生成するが、閉環反応により得られるポリイミド膜は低熱膨張特性を示さない。   Also, the introduction of the alicyclic structural unit has a problem that the linearity and rigidity of the polyimide main chain skeleton are lowered and the linear thermal expansion coefficient is increased. For example, when a highly flexible alicyclic diamine such as 4,4′-methylenebis (cyclohexylamine) represented by the following chemical formula (3) is used, the polymerization proceeds easily with various acid dianhydrides, and the degree of polymerization is high. Although a polyimide precursor is produced, the polyimide film obtained by the ring closure reaction does not exhibit low thermal expansion characteristics.

Figure 0004538216
Figure 0004538216

前述のように1,2,3,4−シクロブタンテトラカルボン酸二無水物と4,4'-メチレンビス(シクロヘキシルアミン)から得られるポリイミド膜は低誘電率を示すが、線熱膨張係数は70ppm/Kと非常に高く、低熱膨張特性を示さない。   As described above, a polyimide film obtained from 1,2,3,4-cyclobutanetetracarboxylic dianhydride and 4,4′-methylenebis (cyclohexylamine) exhibits a low dielectric constant, but its linear thermal expansion coefficient is 70 ppm / K is very high and does not show low thermal expansion characteristics.

これまで様々な脂肪族ジアミンを用いたポリイミドが報告されているが、25ppm/Kより低い線熱膨張係数を示す半脂肪族ポリイミド膜はこれまで報告例が全くない。これは脂環式ジアミンから生成するポリイミドでは主鎖骨格の直線性および剛直性の低下を免れないことを意味している。   So far, polyimides using various aliphatic diamines have been reported, but no semi-aliphatic polyimide film showing a linear thermal expansion coefficient lower than 25 ppm / K has been reported so far. This means that a polyimide produced from an alicyclic diamine cannot avoid deterioration of linearity and rigidity of the main chain skeleton.

直線性および剛直性を保持している唯一の脂環式ジアミンとしてトランス-1,4-ジアミノシクロヘキサンがあげられる(例えば、特許文献1を参照)。   The only alicyclic diamine that retains linearity and rigidity is trans-1,4-diaminocyclohexane (see, for example, Patent Document 1).

しかしながら目的とする要求特性、即ち低誘電率と低熱膨張特性を同時に満たすために直線性の高い酸二無水物とトランス-1,4-ジアミノシクロヘキサンからポリイミド前駆体を重合しようとすると合成上の重大問題に直面する。   However, synthesis of polyimide precursors from highly linear acid dianhydride and trans-1,4-diaminocyclohexane to simultaneously satisfy the desired requirements, i.e., low dielectric constant and low thermal expansion properties, is critical for synthesis. Face a problem.

即ち公知の芳香族ジアミンの場合とは大きく異なり脂肪族ジアミンではその高い塩基性に起因して、重合反応初期段階に生成した低分子量のアミド酸との間で塩形成が起こる。   That is, unlike the case of known aromatic diamines, salt formation occurs between aliphatic diamines and low molecular weight amic acids generated in the initial stage of the polymerization reaction due to their high basicity.

4,4'-メチレンビス(シクロヘキシルアミン)の如き屈曲性の脂環式ジアミンを使用するならば、形成される塩はわずかではあるので、重合溶媒に溶解し、単に長時間攪拌するだけで公知の方法で容易に重合反応を進行させることができる。   If a flexible alicyclic diamine such as 4,4'-methylenebis (cyclohexylamine) is used, the amount of salt formed is so small that it can be dissolved in a polymerization solvent and simply stirred for a long time. The polymerization reaction can be easily advanced by the method.

これに対し、トランス-1,4-ジアミノシクロヘキサンを使用した場合は形成される塩が非常に強固で重合溶媒に対する溶解度は殆どゼロであり、重合反応は完全に妨害される場合が多い。
上記要求特性を満たすためには剛直な構造を有する脂環式酸二無水物が好ましいが、これまで知られている脂環式酸二無水物自身数が限られている。
On the other hand, when trans-1,4-diaminocyclohexane is used, the formed salt is very strong and the solubility in the polymerization solvent is almost zero, and the polymerization reaction is often completely hindered.
In order to satisfy the above required characteristics, alicyclic dianhydrides having a rigid structure are preferred, but the number of alicyclic dianhydrides known so far is limited.

以上に述べた分子設計の観点から、脂環式酸二無水物として1,2,3,4−シクロブタンテトラカルボン酸二無水物、脂環式ジアミンとしてトランス1,4-ジアミノシクロヘキサンとを組み合わせて合成され、後述する単位構造式(2)で表される全脂環式ポリイミドが上記の要求特性を全て達成することが期待される。またこの系はフッ素を含まない点でコスト面でも有利である。   From the viewpoint of the molecular design described above, 1,2,3,4-cyclobutanetetracarboxylic dianhydride is combined as alicyclic dianhydride, and trans 1,4-diaminocyclohexane is combined as alicyclic diamine. The fully alicyclic polyimide synthesized and represented by the unit structural formula (2) described later is expected to achieve all of the above required characteristics. This system is advantageous in terms of cost because it does not contain fluorine.

しかしながらこの系においてはポリイミド前駆体を製造する段階で重大な問題に直面する。即ち前述のように強固な塩の形成により重合反応が完全に妨げられる。この問題点がこれまでこの系の報告例が全くなかった主な理由である。   However, in this system, a serious problem is encountered at the stage of producing the polyimide precursor. That is, the polymerization reaction is completely hindered by the formation of a strong salt as described above. This problem is the main reason that there have been no reports of this system so far.

また、重合反応初期での塩形成後、重合反応混合物を適切な温度で短時間加熱することにより、高重合度のポリイミド前駆体が得られる場合が知られている(例えば、特許文献2及び非特許文献7を参照。)。
しかしながら1,2,3,4−シクロブタンテトラカルボン酸二無水物とトランス1,4-ジアミノシクロヘキサンとの重合反応系では形成される塩が強固であり如何なる温度条件でも塩は溶解しないためこの方法を適用することは困難である。
In addition, it is known that a polyimide precursor having a high degree of polymerization can be obtained by heating the polymerization reaction mixture at an appropriate temperature for a short time after salt formation at the initial stage of the polymerization reaction (for example, Patent Document 2 and Non-Patent Document 2). (See Patent Document 7).
However, in the polymerization reaction system of 1,2,3,4-cyclobutanetetracarboxylic dianhydride and trans 1,4-diaminocyclohexane, the salt formed is strong and the salt does not dissolve at any temperature condition. It is difficult to apply.

脂肪族ジアミンを用いる際の塩形成を回避する方法として第一に界面重合法が開示されている。(例えば、非特許文献8を参照。)
例えば、1,2,3,4−シクロブタンテトラカルボン酸二無水物とアルコールを反応させてテトラカルボン酸のジエステルとし、次いでこれを塩素化して油層に溶解し、これとアルカリ水溶液に溶解した脂肪族ジアミンとを油/水界面で重合させてポリアミド酸のアルキルエステルを得るものである。
An interfacial polymerization method is first disclosed as a method for avoiding salt formation when using an aliphatic diamine. (For example, refer nonpatent literature 8.)
For example, 1,2,3,4-cyclobutanetetracarboxylic dianhydride and alcohol are reacted to form a tetracarboxylic acid diester, which is then chlorinated and dissolved in an oil layer, and this is dissolved in an alkaline aqueous solution. A diamine is polymerized at the oil / water interface to obtain an alkyl ester of polyamic acid.

しかしこの重合方法では製造工程は煩雑でしかも高重合度のポリイミド前駆体を得ることは困難であるばかりかバッチごとの分子量のばらつきも大きくなる。更に界面重合法では塩素が発生するので電子材料用途としては好ましくない。   However, in this polymerization method, the production process is complicated, and it is difficult to obtain a polyimide precursor having a high degree of polymerization, and the variation in molecular weight from batch to batch also increases. Furthermore, interfacial polymerization generates chlorine, which is not preferable for use as an electronic material.

また、第二の方法としては、シリル化ジアミンをポリイミド合成に用いる方法が知られている(例えば、特許文献3、4を参照。)。しかしながら、この方法ではジアミンをハロゲン含有シリル化剤でシリル化した後、シリル化ジアミンを精製する必要があったり、また、製造されるポリイミド前駆体も低誘電率と、低熱膨張特性という2つの要求特性を同時に満たすものではなかった。   As a second method, a method using a silylated diamine for polyimide synthesis is known (see, for example, Patent Documents 3 and 4). However, in this method, it is necessary to purify the silylated diamine after silylating the diamine with a halogen-containing silylating agent, and the polyimide precursor to be produced also has two requirements of low dielectric constant and low thermal expansion characteristics. It did not satisfy the characteristics at the same time.

前述のようなポリイミド膜の特性制御やポリイミド前駆体製造上の問題点の他にも成膜工程上の重大な問題もいくつか残されている。
その一つにはポリイミド前駆体溶液の貯蔵安定性の問題である。公知の方法により酸二無水物とジアミンから合成された一般のポリイミド前駆体はポリアミド酸であるが、その溶液を貯蔵中に重合反応の逆反応により、重量平均分子量の低下が起こることが知られている。これによる溶液粘度の経時変化はスピンコート等による成膜工程時の膜厚制御の点で重大な問題である。
In addition to the aforementioned problems in controlling the characteristics of the polyimide film and the production of the polyimide precursor, some serious problems remain in the film forming process.
One of the problems is the storage stability of the polyimide precursor solution. A general polyimide precursor synthesized from acid dianhydride and diamine by a known method is polyamic acid, but it is known that the weight average molecular weight decreases due to the reverse reaction of the polymerization reaction during storage of the solution. ing. This change in the viscosity of the solution over time is a serious problem in terms of film thickness control during the film forming process such as spin coating.

ポリアミド酸溶液の粘度を安定化するには低温での貯蔵あるいは溶液を加熱して故意的に分子量低下を起こさせ、以後の溶液粘度変化を抑制する方法がとられている。特に後者の粘度変化回避策ではポリイミド膜が脆弱になる恐れがある。   In order to stabilize the viscosity of the polyamic acid solution, a method in which the molecular weight is intentionally lowered by storage at a low temperature or by heating the solution to suppress subsequent changes in the viscosity of the solution is employed. In particular, in the latter measure for avoiding the viscosity change, the polyimide film may be fragile.

また低熱膨張化を目論んで直線的で剛直なポリイミド系を選択すると、その前駆体においても主鎖骨格が比較的剛直であり、前駆体溶液を貯蔵中にゲル化や液晶形成等不均一化がしばしば起こり、良質なポリイミド膜の製造が困難になる場合がある。そのような場合リチウムクロライドの如き塩類を添加すると貯蔵安定性が高くなるが、電子材料用途として好ましくなく、塩類の使用は避けるべきである。   In addition, when a linear and rigid polyimide system is selected with the aim of reducing thermal expansion, the main chain skeleton is relatively rigid even in the precursor, and gelation and liquid crystal formation are not uniform during storage of the precursor solution. It often occurs and it may be difficult to produce a good quality polyimide film. In such a case, the addition of a salt such as lithium chloride increases the storage stability, but it is not preferable for use as an electronic material, and the use of a salt should be avoided.

またそのような剛直な系では殆どの場合製膜工程上で更に深刻な問題が発生する。即ちポリイミド前駆体膜をキャスト後、熱イミド化工程中に膜の割れが発生する。これは剛直な系ではポリマー鎖同士の絡み合いの程度が低いため元々膜の靭性が乏しいことに加えて、ポリアミド酸の熱イミド化中に重合反応の逆反応が特に200℃付近を通過する際に若干起こり、分子量低下を伴って更に膜靭性が低下し、イミド化反応時の膜収縮に耐え切れなくなって起こるものである。   Further, in such a rigid system, in most cases, a more serious problem occurs in the film forming process. That is, after the polyimide precursor film is cast, the film is cracked during the thermal imidization process. This is because, in a rigid system, the degree of entanglement between polymer chains is low, so the toughness of the film is inherently poor, and the reverse reaction of the polymerization reaction during the thermal imidation of polyamic acid passes particularly around 200 ° C. It occurs somewhat, and the film toughness is further lowered with a decrease in molecular weight, and the film contraction cannot be tolerated during the imidization reaction.

また、1,2,3,4−シクロブタンカルボン酸無水物と、1,4−シクロヘキサンジアミンとを反応させてポリイミド前駆体を製造する方法が知られている(例えば、特許文献5を参照。)。しかしながら、一般に1,4−シクロヘキサンジアミンはシス型、トランス型が混在しており、シス型1,4−シクロヘキサンジアミンはその折れ曲がり構造によりポリイミド膜の熱膨張係数を増大させてしまう。
「マクロモルキュールス(Macromolecules)」、(米国)、アメリカンケミカルソサエティー(Aemrican Chemical society)、1991年、24号、p5001 「ハイパフォーマンスポリマーズ(High Performance Polymers)」、(英国)、インスチュートオブフィジックス(Institute of Physics)、2003年、15巻、p47 「マクロモルキュールス(Macromolecules)」、(米国)、アメリカンケミカルソサエティー(Aemrican Chemical society) 、1999年、32号、p 4933 「リアクティブアンドファンクショナルポリマーズ(Reactive & Functional Polymers)」、(オランダ)、エルゼビア・サイエンス(Elsevier Science)、1996年、30巻、p61 「ポリマー(Polymer)」、(オランダ)、エルゼビア・サイエンス(Elsevier Science)、1987年、28巻、p2282 「マクロモルキュールス(Macromolecules)」、(米国)、アメリカンケミカルソサエティー(Aemrican Chemical society)、 1996年、29号、p 7897 「ハイパフォーマンスポリマーズ(High Performance Polymers)」、(英国)、インスチュートオブフィジックス(Institute of Physics)、2001年、13巻、 S93 「ハイパフォーマンスポリマーズ(High Performance Polymers)」、(英国)、インスチュートオブフィジックス(Institute of Physics)、1998年、10巻、p11 特開2002−161136号公報 特開2002−323766号公報 特開2001−72768号公報 特開昭64−63070号公報 特開平2−294330号公報
In addition, a method for producing a polyimide precursor by reacting 1,2,3,4-cyclobutanecarboxylic anhydride and 1,4-cyclohexanediamine is known (for example, see Patent Document 5). . However, in general, 1,4-cyclohexanediamine is a mixture of cis type and trans type, and cis type 1,4-cyclohexanediamine increases the thermal expansion coefficient of the polyimide film due to its bent structure.
“Macromolecules” (USA), Aemrican Chemical Society, 1991, No. 24, p5001 “High Performance Polymers” (UK), Institute of Physics, 2003, Volume 15, p47 "Macromolecules" (USA), Aemrican Chemical Society, 1999, 32, p 4933 "Reactive & Functional Polymers", (Netherlands), Elsevier Science, 1996, 30 volumes, p61 “Polymer” (Netherlands), Elsevier Science, 1987, 28, p2282. “Macromolecules” (USA), Aemrican Chemical Society, 1996, 29, p 7897 “High Performance Polymers” (UK), Institute of Physics, 2001, vol. 13, S93 “High Performance Polymers” (UK), Institute of Physics, 1998, 10 volumes, p11 JP 2002-161136 A JP 2002-323766 A JP 2001-72768 A JP-A-64-63070 JP-A-2-294330

本発明は低誘電率、低線熱膨張係数、高ガラス転移温度、高透明性、十分な強靭さ且つ製膜加工性を併せ持つ実用上有益なポリイミド膜と、溶液貯蔵安定性に優れたその前駆体の製造方法を提供するものである。   The present invention provides a practically useful polyimide film having a low dielectric constant, a low linear thermal expansion coefficient, a high glass transition temperature, a high transparency, a sufficient toughness and a film forming processability, and a precursor having excellent solution storage stability. A method for producing a body is provided.

以上の問題を鑑み、本発明者等が鋭意研究を積み重ねた結果、選択されたシリル化剤を用いて適切なシリル化率範囲でシリル化したトランス1,4-ジアミノシクロヘキサンと、該トランス1,4-ジアミノシクロヘキサンと等モルの1,2,3,4-シクロブタンテトラカルボン酸二無水物とを限定された有機溶媒中で重合反応行わせることにより、貯蔵安定性に優れ、高重合度の全脂環式ポリイミド前駆体溶液を得ることに成功した。   In view of the above problems, the inventors of the present invention have made extensive studies, and as a result, trans 1,4-diaminocyclohexane silylated with a selected silylating agent within an appropriate silylation rate range, and the trans 1, By carrying out a polymerization reaction of 4-diaminocyclohexane and equimolar 1,2,3,4-cyclobutanetetracarboxylic dianhydride in a limited organic solvent, it has excellent storage stability and has a high degree of polymerization. We succeeded in obtaining an alicyclic polyimide precursor solution.

さらにそのキャスト膜を限定された条件下でイミド化反応させて製造した全脂環式ポリイミド膜は上記の要求特性を全て達成できることを見出し、本発明を完成するに至った。   Furthermore, the present inventors have found that an all-alicyclic polyimide film produced by imidizing the cast film under limited conditions can achieve all of the above required characteristics, and has completed the present invention.

図1はジアミンモノマーである1,4-ジアミノシクロヘキサンの立体構造の例を示す図であり、単位構造式(2)に示すポリイミド膜が低熱膨張特性を発現するためには、1,4-ジアミノシクロヘキサンの2つのアミノ基が共にエクアトリアル配置、即ち、図1に示すように1,4-ジアミノシクロヘキサンの立体構造がトランス型である必要がある。   FIG. 1 is a diagram showing an example of the steric structure of 1,4-diaminocyclohexane, which is a diamine monomer. In order for the polyimide film shown in the unit structural formula (2) to exhibit low thermal expansion characteristics, 1,4-diamino The two amino groups of cyclohexane are both in an equatorial configuration, that is, the steric structure of 1,4-diaminocyclohexane needs to be in the trans form as shown in FIG.

モノマーの段階でのトランス配置はポリイミド前駆体およびポリイミド骨格中でも保持されている。重合時にシス型1,4-ジアミノシクロヘキサンを使用することはその折曲がり構造に起因してポリイミド膜の線熱膨張係数の急激な増大を引き起こす恐れがある。   The trans configuration at the monomer stage is maintained even in the polyimide precursor and the polyimide skeleton. The use of cis-type 1,4-diaminocyclohexane during polymerization may cause a rapid increase in the linear thermal expansion coefficient of the polyimide film due to its bent structure.

特公昭51-48198号公報に開示されているように、パラフェニレンジアミンを水添して得られる1,4-ジアミノシクロヘキサンは通常、シス/トランス混合物として得られるが、これをそのまま重合に供した場合は公知の反応条件でも問題なく重合が進行する。   As disclosed in Japanese Patent Publication No. 51-48198, 1,4-diaminocyclohexane obtained by hydrogenating paraphenylenediamine is usually obtained as a cis / trans mixture, but this was directly subjected to polymerization. In this case, the polymerization proceeds without problems even under known reaction conditions.

また、ジアミン成分にトランス1,4-ジアミノシクロヘキサン単独ではなく他の屈曲性脂肪族ジアミンと共重合するとやはり公知の反応条件でも問題なく重合が進行する。しかしながらトランス1,4-ジアミノシクロヘキサン単独でなく、上記のような混合物を使用することは、得られるポリイミド膜の線熱膨張係数の急激な増加およびガラス温度の低下を招く恐れがあり避けるべきである。   Further, when the diamine component is copolymerized with other flexible aliphatic diamine instead of trans 1,4-diaminocyclohexane alone, the polymerization proceeds without problems even under known reaction conditions. However, the use of a mixture such as the above rather than trans 1,4-diaminocyclohexane alone may cause a rapid increase in the linear thermal expansion coefficient of the resulting polyimide film and a decrease in the glass temperature, and should be avoided. .

図2は酸二無水物モノマーである1,2,3,4-シクロブタンテトラカルボン酸二無水物の立体配置の例を示しており、1,2,3,4-シクロブタンテトラカルボン酸二無水物は図2に示すanti型立体配置のものが特に望ましい。syn型1,2,3,4-シクロブタンテトラカルボン酸二無水物の使用はその折れ曲がり構造に起因して線熱膨張係数の増大を招く恐れがある。   FIG. 2 shows an example of the configuration of 1,2,3,4-cyclobutanetetracarboxylic dianhydride, which is an acid dianhydride monomer, and shows 1,2,3,4-cyclobutanetetracarboxylic dianhydride. Is particularly desirable in the anti-type configuration shown in FIG. The use of syn-type 1,2,3,4-cyclobutanetetracarboxylic dianhydride may lead to an increase in linear thermal expansion coefficient due to its bent structure.

係る知見に基づいてなされた請求項1記載の発明は、トランス1,4-ジアミノシクロヘキサンと、シリル化剤とを反応させて中間生成物を生成した後、前記中間生成物と1,2,3,4−シクロブタンテトラカルボン酸二無水物とを反応させ、繰り返し構造単位が下記単位構造式(1)で表される全脂環式ポリイミド前駆体を製造するポリイミド前駆体の製造方法である。   The invention according to claim 1 made on the basis of such knowledge, after reacting trans 1,4-diaminocyclohexane with a silylating agent to produce an intermediate product, said intermediate product and 1,2,3 , 4-cyclobutanetetracarboxylic dianhydride to produce a fully alicyclic polyimide precursor having a repeating structural unit represented by the following unit structural formula (1).

Figure 0004538216
Figure 0004538216

(上記単位構造式(1)中、RはH又はシリル基であって、前記ポリイミド前駆体は、1つの単位構造式中の置換基Rのうちいずれか一方又は両方がシリル基である単位構造を少なくとも1つ有する)
請求項2記載の発明は、請求項1記載のポリイミド前駆体の製造方法であって、前記シリル化剤は、化学構造中に塩素原子を有しなポリイミド前駆体の製造方法である。
請求項3記載の発明は、請求項2記載のポリイミド前駆体の製造方法であって、前記シリル化剤としてN,O-ビス(トリメチルシリル)トリフルオロアセトアミドとN,O-ビス(トリメチルシリル)アセトアミドのいずれか一方又は両方を用いるポリイミド前駆体の製造方法である。
請求項4記載の発明は、前記単位構造式(1)中のRはH又はSi(CH3)3基であり、前記トランス1,4-ジアミノシクロヘキサンと、シリル化剤とを所定割合で反応させる請求項1乃至請求項3のいずれか1項記載のポリイミド前駆体の製造方法であって、化学構造全体に含有されるRのうち、Si(CH3)3基からなるRの数をA、HからなるRの数をBとすると、下記数式(1)で表されるシリル化率が0.4以上0.9以下になる割り合いで、前記シリル化剤と前記トランス1,4-ジアミノシクロヘキサンとを反応させるポリイミド前駆体の製造方法である。
シリル化率=A/(A+B)……数式(1)
請求項5記載の発明は、トランス1,4-ジアミノシクロヘキサンと、シリル化剤とを重合溶媒中で反応させて中間生成物を生成した後、前記重合溶媒中に1,2,3,4−シクロブタンテトラカルボン酸二無水物を添加し、前記中間生成物と、前記1,2,3,4−シクロブタンテトラカルボン酸二無水物とを反応させ、ポリイミド前駆体が前記重合溶媒中に分散又は溶解されたポリイミド前駆体有機溶媒溶液を製造するポリイミド前駆体有機溶媒溶液の製造方法である。
請求項6記載の発明は、請求項5記載のポリイミド前駆体有機溶媒溶液を塗布対象物に塗布し、キャスト膜を形成した後、前記キャスト膜中のポリイミド前駆体をイミド化するポリイミド膜の製造方法であって、前記重合溶媒に、前記トランス1,4-ジアミノシクロヘキサンと、前記シリル化剤と、前記1,2,3,4−シクロブタンテトラカルボン酸二無水物と、前記中間生成物に対して親和性が高い高沸点溶媒を含有させ、前記重合溶媒と親和性が高く、かつ前記重合溶媒よりも沸点が低い洗浄液を前記キャスト膜に接触させ、前記キャスト膜を洗浄した後、前記イミド化を行うポリイミド膜の製造方法である。
請求項7記載の発明は、請求項6記載のポリイミド膜の製造方法であって、前記高沸点溶媒としてヘキサメチルホスホルアミドを用い、前記洗浄液としてアルコールを用いるポリイミド膜の製造方法である。
請求項8記載の発明は、請求項1乃至請求項3のいずれか1項記載のポリイミド前駆体の製造方法によって製造され、繰り返し構造単位が上記単位構造式(1)で表され、上記単位構造式(1)中の置換基RはHまたはSi(CH3)3基である全脂環式ポリイミド前駆体であって、1つの単位構造式中の置換基Rのうち、いずれか一方又は両方がSi(CH3)3基である単位構造を少なくとも一つ有し、かつ、ヘキサメチルホスホルアミドとN,N-ジメチルアセトアミドの体積比3:1の混合溶媒を溶媒として30℃で測定したときの固有粘度が1.0dl/g以上であるポリイミド前駆体である。
請求項9記載の発明は、請求項8記載のポリイミド前駆体であって、上記単位構造式(1)中の各1,4-シクロヘキサン残基の立体構造がトランス配置であることを特徴とするポリイミド前駆体である。
請求項10記載の発明は、請求項8又は請求項9のいずれか1項記載のポリイミド前駆体であって、全化学構造中、Si(CH3)3基からなる置換基Rの合計数をA、水素からなる置換基Rの合計数をBとすると、下記数式(1)で表されるポリイミド前駆体のシリル化率が0.4以上0.9以下の範囲であるポリイミド前駆体である。
シリル化率=A/(A+B)……数式(1)
請求項11記載の発明は、繰り返し構造単位がトランス1,4-ジアミノシクロヘキサンと、1,2,3,4−シクロブタンテトラカルボン酸二無水物とから形成される下記単位構造式(2)で表され、下記単位構造式(2)中の各1,4-シクロヘキサン残基の立体構造がトランス配置であることを特徴とするポリイミドである。
(In the unit structural formula (1), R is H or a silyl group, and the polyimide precursor is a unit structure in which one or both of substituents R in one unit structural formula are silyl groups. At least one)
According to a second aspect of the invention, a process for the preparation of the polyimide precursor according to claim 1, wherein the silylating agent is a process for the preparation of a chlorine atom such had a polyimide precursor in the chemical structure.
According to a third aspect of the invention, there is provided a method for producing a polyimide precursor according to claim 2, N as before carboxymethyl Lil agent, O- bis (trimethylsilyl) trifluoroacetamide and N, O- bis (trimethylsilyl) This is a method for producing a polyimide precursor using one or both of acetamide.
According to a fourth aspect of the invention, R in the unit structural formula (1 ) is H or Si (CH 3 ) 3 group, and the trans 1,4-diaminocyclohexane and the silylating agent are reacted at a predetermined ratio. The method for producing a polyimide precursor according to any one of claims 1 to 3, wherein the number of Rs composed of Si (CH 3 ) 3 groups among R contained in the entire chemical structure is defined as A. , When the number of Rs consisting of H is B, the silylating agent and the trans 1,4- It is a manufacturing method of the polyimide precursor made to react with diaminocyclohexane.
Silylation rate = A / (A + B) (1)
In the invention according to claim 5, after trans 1,4-diaminocyclohexane and a silylating agent are reacted in a polymerization solvent to produce an intermediate product, 1,2,3,4- Cyclobutanetetracarboxylic dianhydride is added, the intermediate product is reacted with the 1,2,3,4-cyclobutanetetracarboxylic dianhydride, and the polyimide precursor is dispersed or dissolved in the polymerization solvent. It is a manufacturing method of the polyimide precursor organic solvent solution which manufactures the made polyimide precursor organic solvent solution.
The invention according to claim 6 is the production of a polyimide film in which the polyimide precursor organic solvent solution according to claim 5 is applied to a coating object to form a cast film, and then the polyimide precursor in the cast film is imidized. The polymerization solvent includes the trans 1,4-diaminocyclohexane, the silylating agent, the 1,2,3,4-cyclobutanetetracarboxylic dianhydride, and the intermediate product. A high-boiling solvent having a high affinity and having a high affinity with the polymerization solvent and having a boiling point lower than that of the polymerization solvent in contact with the cast film, washing the cast film, and then imidizing This is a method for manufacturing a polyimide film.
A seventh aspect of the invention is a method for manufacturing a polyimide film according to the sixth aspect, wherein hexamethylphosphoramide is used as the high boiling point solvent and alcohol is used as the cleaning liquid.
Invention of Claim 8 is manufactured by the manufacturing method of the polyimide precursor of any one of Claim 1 thru | or 3, A repeating structural unit is represented by the said unit structural formula (1), The said unit structure The substituent R in the formula (1) is a fully alicyclic polyimide precursor which is H or Si (CH 3 ) 3 group, and one or both of the substituents R in one unit structural formula Measured at 30 ° C. using a mixed solvent of hexamethylphosphoramide and N, N-dimethylacetamide in a volume ratio of 3: 1 having at least one unit structure in which is a Si (CH 3 ) 3 group . Is a polyimide precursor having an intrinsic viscosity of 1.0 dl / g or more.
The invention according to claim 9 is the polyimide precursor according to claim 8, wherein the steric structure of each 1,4-cyclohexane residue in the unit structural formula (1) is in a trans configuration. It is a polyimide precursor.
The invention according to claim 10 is the polyimide precursor according to any one of claim 8 or claim 9, wherein the total number of substituents R consisting of Si (CH 3 ) 3 groups in the entire chemical structure is calculated. When the total number of substituents R composed of A and hydrogen is B, the silylation rate of the polyimide precursor represented by the following formula (1) is a polyimide precursor in the range of 0.4 to 0.9. .
Silylation rate = A / (A + B) (1)
The invention according to claim 11 is represented by the following unit structural formula (2) in which the repeating structural unit is formed from trans 1,4-diaminocyclohexane and 1,2,3,4-cyclobutanetetracarboxylic dianhydride. The polyimide is characterized in that the steric structure of each 1,4-cyclohexane residue in the following unit structural formula (2) is in a trans configuration.

Figure 0004538216
Figure 0004538216

請求項12記載の発明は、請求項11項記載のポリイミドを主成分とするポリイミド膜である。   A twelfth aspect of the present invention is a polyimide film mainly comprising the polyimide according to the eleventh aspect.

尚、本発明でポリイミド前駆体のシリル化率とは、1構造単位中だけに含まれるSi(CH3)3基と水素の数から求められるものではなく、ポリイミド前駆体分子全体に含まれるSi(CH3)3基からなる置換基Rの数と、水素からなる置換基Rの数から求められるものである。 In the present invention, the silylation rate of the polyimide precursor is not determined from the number of Si (CH 3 ) 3 groups and hydrogen contained only in one structural unit, but is included in the entire polyimide precursor molecule. It is obtained from the number of substituents R consisting of (CH 3 ) 3 groups and the number of substituents R consisting of hydrogen.

本発明によれば、低誘電率、低線熱膨張係数、高ガラス転移温度、高透明性、十分な強靭さ、成膜加工性を併せ持つポリイミド膜を製造することができる。また、本発明の製造方法によれば、重合溶媒に対する分散性が高いポリイミド前駆体が得られ、そのようなポリイミド前駆体の有機溶媒溶液は溶液貯蔵安定性に優れている。   According to the present invention, a polyimide film having both a low dielectric constant, a low linear thermal expansion coefficient, a high glass transition temperature, a high transparency, a sufficient toughness, and a film forming processability can be produced. Moreover, according to the production method of the present invention, a polyimide precursor having high dispersibility in a polymerization solvent is obtained, and an organic solvent solution of such a polyimide precursor is excellent in solution storage stability.

以下に本発明を詳細に説明する。
前述のように、1,2,3,4-シクロブタンテトラカルボン酸二無水物とトランス1,4-ジアミノシクロヘキサンとの重合系では反応初期に強固な塩が形成され、如何なる溶媒、温度条件によっても重合を進行せしめることが困難である。そこで塩形成を回避すべくシリル化法を用いることでポリイミド前駆体製造に関する問題の解決に至った。
The present invention is described in detail below.
As described above, in the polymerization system of 1,2,3,4-cyclobutanetetracarboxylic dianhydride and trans 1,4-diaminocyclohexane, a strong salt is formed at the initial stage of the reaction, and it depends on the solvent and temperature conditions. It is difficult to allow the polymerization to proceed. Therefore, the use of a silylation method to avoid salt formation has led to the solution of problems relating to the production of polyimide precursors.

先ずトランス1,4-ジアミノシクロヘキサンを重合溶媒に溶解し、そこへ適切量のN,O-ビス(トリメチルシリル)トリフルオロアセトアミドあるいはN,O-ビス(トリメチルシリル)アセトアミドを滴下してシリル化を行う。その後シリル化ジアミンを単離せずに、そのままその溶液に等モルの1,2,3,4-シクロブタンテトラカルボン酸二無水物粉末を徐々に加えて室温で数時間攪拌し、粘稠で透明な均一溶液を得る。   First, trans 1,4-diaminocyclohexane is dissolved in a polymerization solvent, and an appropriate amount of N, O-bis (trimethylsilyl) trifluoroacetamide or N, O-bis (trimethylsilyl) acetamide is added dropwise thereto for silylation. After that, without isolating the silylated diamine, equimolar 1,2,3,4-cyclobutanetetracarboxylic dianhydride powder was gradually added to the solution as it was, and stirred at room temperature for several hours. A homogeneous solution is obtained.

トランス1,4-ジアミノシクロヘキサンは、シリル化、又はカルボン酸二無水物との反応の前にn-ヘキサンにより再結晶を繰り返して着色成分を完全に除去してから用いることが好ましい。さもなければ得られるポリイミド膜の着色を引き起こす恐れがある。   Trans 1,4-diaminocyclohexane is preferably used after silylation or recrystallization with n-hexane before the reaction with carboxylic dianhydride to completely remove the coloring component. Otherwise, the resulting polyimide film may be colored.

一般に知られているシリル化法としては、第49回高分子討論会予稿集, p1917 (2000年)に開示されているものがあり、このシリル化法ではシリル化剤として代表的なトリメチルシリルクロライドを用いてトリエチルアミンのような塩化水素受容剤の存在化、脂肪族ジアミンをシリル化したのち、蒸留によってこれを単離・精製して酸二無水物との重合反応に供するものである。   As a generally known silylation method, there is a method disclosed in the 49th Polymer Symposium Proceedings, p. 1917 (2000). In this silylation method, a representative trimethylsilyl chloride is used as a silylating agent. It is used in the presence of a hydrogen chloride acceptor such as triethylamine, and after silylation of an aliphatic diamine, it is isolated and purified by distillation and subjected to a polymerization reaction with an acid dianhydride.

ここでトリメチルシリルクロライドと脂肪族ジアミンとの反応により発生する塩化水素は受容剤としてのトリエチルアミンだけでなく重合反応成分としての脂肪族ジアミンにも一部付加し、塩酸塩を形成する。脂肪族ジアミンの塩酸塩は重合反応性を失うばかりか溶解度の低下によって沈澱してしまうため、シリル化ジアミンを単離せずにこの反応溶液に引き続き酸二無水物を添加して重合をおこなうことはモルバランスが崩れているため不可能である。   Here, hydrogen chloride generated by the reaction of trimethylsilyl chloride and an aliphatic diamine partially adds to not only triethylamine as an acceptor but also an aliphatic diamine as a polymerization reaction component to form a hydrochloride. Since aliphatic diamine hydrochloride loses polymerization reactivity and precipitates due to a decrease in solubility, it is not possible to polymerize by adding acid dianhydride to this reaction solution without isolating silylated diamine. It is impossible because the molar balance is broken.

一般にシリル化ジアミンの単離・精製工程が必要なのはこのためである。またシリル化ジアミンは空気中の僅かな水分と容易に反応して分解するため、場合によってはグローブボックス等の設備が必要となり単離・生成工程時が煩雑になる。   This is why a silylated diamine isolation / purification step is generally required. In addition, silylated diamine easily decomposes by reacting with a slight amount of moisture in the air, and in some cases, equipment such as a glove box is required, which complicates the isolation / generation process.

しかしながら本発明におけるポリイミド前駆体の製造工程はこのようなシリル化ジアミンの単離・精製工程を一切含まない。シリル化剤として化学構造中にハロゲン原子を有しない非ハロゲン化シリル化剤を用いると、脂環式ジアミンをシリル化するときに副生成物として塩化水素のようなハロゲン化水素が発生しない。   However, the production process of the polyimide precursor in the present invention does not include any such isolation / purification process of silylated diamine. When a non-halogenated silylating agent having no halogen atom in the chemical structure is used as the silylating agent, hydrogen halide such as hydrogen chloride is not generated as a by-product when the alicyclic diamine is silylated.

例えば、非ハロゲン化シリル化剤としてN,O-ビス(トリメチルシリル)トリフルオロアセトアミド又はN,O-ビス(トリメチルシリル)アセトアミドのいずれか一方又は両方を用いると、脂環式ジアミンがシリル化剤と反応してシリル化した後、副生成物として発生するのは重合反応に無害なアセトアミド類のみであり、副生成物として塩化水素を発生することはないため、そこへ引き続き酸二無水物を添加してもモルバランスは保持されているためである。なお、副生成物としてのアセトアミド類は、ポリイミド前駆体を製造した後、該ポリイミド前駆体を熱イミド化反応時に溶媒と共に揮発するため全く問題がない。   For example, when one or both of N, O-bis (trimethylsilyl) trifluoroacetamide and N, O-bis (trimethylsilyl) acetamide is used as the non-halogenated silylating agent, the alicyclic diamine reacts with the silylating agent. After the silylation, only acetamides that are harmless to the polymerization reaction are generated as by-products, and hydrogen chloride is not generated as a by-product. Therefore, acid dianhydride is continuously added thereto. This is because the molar balance is maintained. In addition, since the acetamide as a by-product produces a polyimide precursor and volatilizes this polyimide precursor with a solvent at the time of a thermal imidation reaction, there is no problem at all.

また、脂環式ジアミンがシリル化されるときに塩化水素が発生しないから、本発明では3級アミンのような中和剤を使用せずにすむ。従って、形成されるポリイミド膜中に塩類が残留しない。   Further, since hydrogen chloride is not generated when the alicyclic diamine is silylated, in the present invention, it is not necessary to use a neutralizing agent such as a tertiary amine. Therefore, no salts remain in the formed polyimide film.

単位構造式(1)で表される全脂環式ポリイミド前駆体系では重合反応の成功の鍵は、シリル化率Xの制御である。脂環式ジアミンのシリル化率xと、ポリイミド前駆体のシリル化率Xはシリル化剤の添加量を調節することで制御可能である。   In the all-alicyclic polyimide precursor system represented by the unit structural formula (1), the key to the success of the polymerization reaction is the control of the silylation rate X. The silylation rate x of the alicyclic diamine and the silylation rate X of the polyimide precursor can be controlled by adjusting the addition amount of the silylating agent.

脂環式ジアミンとシリル化剤とを反応させると、脂環式ジアミンのアミノ基の水素がシリル基(Si(CH3)3基)に置換される。重合溶媒中で生成され全中間生成物のアミノ基のうち、シリル基で置換されたアミノ基の数をa、シリル基で置換されていないアミノ基の数をbとすると、中間生成物のシリル化率x(全中間生成物の平均シリル化率)は下記数式(2)で表される。 When the alicyclic diamine and the silylating agent are reacted, the hydrogen of the amino group of the alicyclic diamine is replaced with a silyl group (Si (CH 3 ) 3 group). Of the amino groups of all intermediate products generated in the polymerization solvent, a is the number of amino groups substituted with silyl groups, and b is the number of amino groups not substituted with silyl groups. The conversion rate x (average silylation rate of all intermediate products) is represented by the following mathematical formula (2).

x=a/(a+b)……数式(2)
1個の脂環式ジアミンは1個のカルボン酸二無水物と反応して1個の構造単位を形成するので、重合溶媒に中間生成物と等モル以上のカルボン酸二無水物を添加し、中間生成物を全てカルボン酸二無水物と反応させた場合には、重合溶媒中で生成されるポリイミド前駆体のシリル化率Xは中間生成物のシリル化率xと等しくなる。
x = a / (a + b) (2)
Since one alicyclic diamine reacts with one carboxylic dianhydride to form one structural unit, an intermediate product and an equimolar amount or more of carboxylic dianhydride are added to the polymerization solvent, When all of the intermediate product is reacted with carboxylic dianhydride, the silylation rate X of the polyimide precursor produced in the polymerization solvent becomes equal to the silylation rate x of the intermediate product.

中間生成物のシリル化率は重合溶媒に添加する脂環式ジアミンとシリル化剤の量で調整することができる。脂環式ジアミンは化学構造中に2個のアミノ基を有するので、シリル化剤が1モル当たりs個のシリル基を有するとすると、cモルの脂環式ジアミンを用いて、シリル化率Xの中間生成物とポリイミド前駆体を得るためには、2c・X/sモルのシリル化剤を脂環式ジアミンと反応させればよい。   The silylation rate of the intermediate product can be adjusted by the amount of alicyclic diamine and silylating agent added to the polymerization solvent. Since the alicyclic diamine has two amino groups in the chemical structure, assuming that the silylating agent has s silyl groups per mole, the silylation rate X is determined using c moles of the alicyclic diamine. In order to obtain an intermediate product and a polyimide precursor, 2c · X / s mol of silylating agent may be reacted with an alicyclic diamine.

例えば、シリル化剤としてN,O-ビス(トリメチルシリル)トリフルオロアセトアミドやN,O-ビス(トリメチルシリル)アセトアミドのように1分子中に2個のシリル基を有するものを用い、中間生成物及びポリイミド前駆体のシリル化率を0.4以上0.9以下にするためには、それらシリル化剤を0.4cモル以上0.9cモル以下添加すればよい。   For example, as a silylating agent, one having two silyl groups in one molecule such as N, O-bis (trimethylsilyl) trifluoroacetamide or N, O-bis (trimethylsilyl) acetamide is used as an intermediate product and polyimide. In order to set the silylation rate of the precursor to 0.4 to 0.9, these silylating agents may be added to 0.4 cmol or more and 0.9 cmol or less.

中間生成物のシリル化率Xは0.4以上0.9以下の範囲であることが好ましく、シリル化率がこの範囲であれば、中間生成物とカルボン酸二無水物とを反応させた後に透明で粘稠な均一な重合溶液が得られる。   The silylation rate X of the intermediate product is preferably in the range of 0.4 to 0.9, and if the silylation rate is within this range, the intermediate product is reacted with the carboxylic dianhydride to be transparent and viscous. A uniform polymerization solution can be obtained.

Xが0.4未満であると、カルボン酸二無水物との重合時に塩形成が起こり、重合が進行しない。またXが0.9を超える場合は均一な重合溶液が得られず、高重合度のポリイミド前駆体を得ることは困難である。これはシリル化率が非常に高い場合、ポリイミド前駆体鎖同士の水素結合により、ポリイミド前駆体の重合溶媒に対する溶解度が極端に低下して、重合反応が十分進む前にポリイミド前駆体が一部沈澱してしまうためである。   When X is less than 0.4, salt formation occurs during polymerization with carboxylic dianhydride, and polymerization does not proceed. If X exceeds 0.9, a uniform polymerization solution cannot be obtained, and it is difficult to obtain a polyimide precursor having a high degree of polymerization. This is because when the silylation rate is very high, due to hydrogen bonding between the polyimide precursor chains, the solubility of the polyimide precursor in the polymerization solvent is extremely reduced, and the polyimide precursor partially precipitates before the polymerization reaction proceeds sufficiently It is because it will do.

Xが0.4以上0.9以下の範囲ではポリイミド前駆体は適度にカルボキシ基を保有することになり、これが重合溶媒と強く溶媒和して、生成するポリマーの溶解度を高める結果になっている。これまで一般にシリル化はポリイミド前駆体の溶解度を飛躍的に高めるとされていたが、本発明においてはむしろポリイミド前駆体のシリル化率を0.4以上0.9以下に制御することで重合に関する問題の解決に至った。   When X is in the range of 0.4 or more and 0.9 or less, the polyimide precursor appropriately retains a carboxy group, which strongly solvates with the polymerization solvent, resulting in an increase in the solubility of the resulting polymer. Until now, silylation was generally considered to dramatically increase the solubility of the polyimide precursor. However, in the present invention, it is rather related to polymerization by controlling the silylation rate of the polyimide precursor to 0.4 to 0.9. The problem was solved.

また本発明においては重合溶媒の選択が極めて重要である。重合溶媒としてはヘキサメチルホスホルアミド単独、あるいはヘキサメチルホスホルアミドとN,N-ジメチルアセトアミドの混合溶媒やヘキサメチルホスホルアミドとN-メチル-2-ピロリドンの混合溶媒が好ましい。重合溶媒が適切でないと、脂環式ジアミンとテトラカルボン二酸無水物、又は中間生成物とテトラカルボン酸二無水物との重合時の塩形成により重合が全く進まないか、一部重合反応が起っても沈澱、ゲル化などにより均一な重合溶液が得られず成膜ができなくなる恐れがある。   In the present invention, selection of a polymerization solvent is extremely important. As the polymerization solvent, hexamethylphosphoramide alone, a mixed solvent of hexamethylphosphoramide and N, N-dimethylacetamide, or a mixed solvent of hexamethylphosphoramide and N-methyl-2-pyrrolidone is preferable. If the polymerization solvent is not appropriate, the polymerization may not proceed at all due to salt formation during polymerization of the alicyclic diamine and tetracarboxylic dianhydride, or the intermediate product and tetracarboxylic dianhydride, or a partial polymerization reaction may occur. Even if it occurs, there is a possibility that a uniform polymerization solution cannot be obtained due to precipitation, gelation, etc., and film formation cannot be performed.

ポリアミド等の重合の際しばしば添加される高分子溶解促進剤即ちリチウムブロマイドやリチウムクロライドの如き金属塩類は、本発明に係る重合系では一切使用する必要がない。これらの金属塩類はポリイミド膜中に金属イオンが痕跡量でも残留すると、電子デバイスとしての信頼性を著しく低下させるため用いられるべきではない。   Polymer dissolution accelerators, that is, metal salts such as lithium bromide and lithium chloride, which are often added during polymerization of polyamide or the like, do not need to be used in the polymerization system according to the present invention. These metal salts should not be used because if the metal ions remain in the polyimide film even in a trace amount, the reliability as an electronic device is remarkably lowered.

上述した数式(1)で表されるシリル化率Xが0.4以上0.9以下の範囲外では前述のように重合が進行しないが、これに対する上記の塩類の溶解促進効果は殆ど見られず、塩類添加だけで重合反応性を改善することはできない。   The polymerization does not proceed as described above when the silylation rate X represented by the above formula (1) is outside the range of 0.4 or more and 0.9 or less. However, the effect of promoting the dissolution of the above salts is hardly observed, and the addition of the salts is not observed. Only the polymerization reactivity cannot be improved.

得られたポリイミド膜中には必要に応じて酸化防止剤、フィラー、シランカップリング剤、感光剤、光重合開始剤および増感剤等の添加物が混合されていても差し支えない。   In the obtained polyimide film, additives such as an antioxidant, a filler, a silane coupling agent, a photosensitizer, a photopolymerization initiator, and a sensitizer may be mixed as necessary.

塗布対象物である基板上に塗布されたポリイミド前駆体溶液は、強制循環式熱風乾燥器中あるいは真空乾燥器中40℃以上120℃以下範囲で乾燥され、塗布膜(キャスト膜)となる。   The polyimide precursor solution applied onto the substrate that is the object to be applied is dried in a forced circulation hot air dryer or a vacuum dryer in the range of 40 ° C. to 120 ° C. to form a coating film (cast film).

この際40℃未満では乾燥に長時間を要するばかりか、膜中に多量の溶媒が残留し、イミド化時に溶媒の急激な蒸発により気泡が発生しやすく、良質なポリイミド膜を得るのに好ましくない。また120℃を超える高温での乾燥ではキャスト膜が脆弱になる傾向があり、強靭なポリイミド膜を得るのに好ましくない。   At this time, if it is less than 40 ° C., it takes a long time to dry, a large amount of solvent remains in the film, and bubbles are likely to be generated due to rapid evaporation of the solvent during imidation, which is not preferable for obtaining a good quality polyimide film. . Also, drying at a high temperature exceeding 120 ° C. tends to make the cast film brittle, which is not preferable for obtaining a tough polyimide film.

公知の方法ではポリイミド膜は基板上のキャスト膜をそのまま200℃以上400℃以下の温度に加熱することでキャスト膜中のポリイミド前駆体をイミド化して製造されるが、本発明に係る上記単位構造式(1)で表されるポリイミド前駆体のキャスト膜では公知の方法に従って熱イミド化すると、窒素雰囲気中あるいは真空中にかかわらず膜は激しく断裂および黒色化して、ポリイミド膜を製造することが困難になる。これは溶媒として使用したヘキサメチルホスホルアミドが非常に揮発しにくいため、イミド化時に膜中に滞留しやすく、ヘキサメチルホスホルアミド自身の熱分解や、ポリイミド前駆体と何らかの反応が引き起こされためと考えられる。   In the known method, the polyimide film is produced by imidizing the polyimide precursor in the cast film by heating the cast film on the substrate as it is to a temperature of 200 ° C. or more and 400 ° C. or less. The unit structure according to the present invention When the polyimide precursor cast film represented by formula (1) is thermally imidized according to a known method, the film is severely torn and blackened in a nitrogen atmosphere or in a vacuum, making it difficult to produce a polyimide film. become. This is because the hexamethylphosphoramide used as a solvent is very difficult to volatilize, so it tends to stay in the film during imidization, causing thermal decomposition of the hexamethylphosphoramide itself and some reaction with the polyimide precursor. it is conceivable that.

ポリイミド前駆体のキャスト膜を水中に浸漬することで、ヘキサメチルホスホルアミド等の水溶性残留溶媒をほぼ完全に抽出・除去することは可能である。しかしながら、水中への浸漬は基板と膜との間の接着力の低下を招き、剥れの原因となるばかりか、膜の激しい収縮をも引き起こす。この大きな膜収縮はイミド化時にポリイミド膜の割れを誘発し、基板上へのポリイミド膜の形成を困難にする。   By immersing the cast film of the polyimide precursor in water, it is possible to almost completely extract and remove the water-soluble residual solvent such as hexamethylphosphoramide. However, immersion in water causes a decrease in the adhesion between the substrate and the film, causing not only peeling but also severe contraction of the film. This large film shrinkage induces cracking of the polyimide film during imidization, making it difficult to form the polyimide film on the substrate.

鋭意研究の結果、メタノール等のアルコール類からなる洗浄液へキャスト膜を浸漬し、該洗浄液をキャスト膜に接触させて洗浄を行うと、膜の収縮や基板からの剥れを抑制し、同時にヘキサメチルホスホルアミド等の残留溶媒をほぼ完全に抽出・除去を可能にすることを見出し、製膜時の問題解決に至った。   As a result of diligent research, when the cast film is immersed in a cleaning liquid composed of alcohols such as methanol, and the cleaning liquid is brought into contact with the cast film for cleaning, film shrinkage and peeling from the substrate are suppressed, and at the same time hexamethyl It was found that residual solvents such as phosphoramide can be extracted and removed almost completely, and the problem in film formation was solved.

洗浄液を構成するアルコールはメタノールに限定されるものではなく、エタノール、ブタノール、プロパノール等を用いることもできる。また、これらのアルコールは単独で用いてもよいし、2種類以上を混合して用いてもよい。   The alcohol constituting the cleaning liquid is not limited to methanol, and ethanol, butanol, propanol or the like can also be used. Moreover, these alcohols may be used independently and may be used in mixture of 2 or more types.

このようにして基板上に形成されたポリイミド前駆体膜(キャスト膜)を減圧下(大気圧よりも圧力が低い条件)で200℃以上400℃以下、好ましくは300℃以上350℃以下の温度で熱処理することで強靭なポリイミド膜が得られる。   The polyimide precursor film (cast film) formed on the substrate in this way is at a temperature of 200 ° C. or higher and 400 ° C. or lower, preferably 300 ° C. or higher and 350 ° C. or lower, under reduced pressure (under a pressure lower than atmospheric pressure). A tough polyimide film can be obtained by heat treatment.

キャスト膜を加熱するときの温度が300℃未満ではイミド化が完結しない場合があり、350℃を超える場合ではポリイミド膜の着色が起る。キャスト膜中のポリイミド前駆体をイミド化する工程は熱処理に限定されるものではなく、イミド化反応はポリイミド前駆体の膜を無水酢酸と三級アミン等の混合物等の脱水試薬と反応させて化学的に行うこともできる。   If the temperature at which the cast film is heated is less than 300 ° C., imidation may not be completed, and if it exceeds 350 ° C., the polyimide film will be colored. The process of imidizing the polyimide precursor in the cast film is not limited to heat treatment, and the imidation reaction is performed by reacting the polyimide precursor film with a dehydrating reagent such as a mixture of acetic anhydride and tertiary amine. Can also be done.

本発明に係るポリイミドは全脂環構造を有するため、脂環構造を全く含まない全芳香族ポリイミドに比べると長期熱安定性に劣るが、ガラス転移温度、窒素中での熱分解温度が共に400℃以上であり、ハンダ耐熱性の如き短期耐熱性は充分高く、上記産業分野への応用には全く問題がない。   Since the polyimide according to the present invention has a wholly alicyclic structure, it is inferior in long-term thermal stability compared to wholly aromatic polyimides that do not contain any alicyclic structure, but both the glass transition temperature and the thermal decomposition temperature in nitrogen are 400. It is higher than ℃, and short-term heat resistance such as solder heat resistance is sufficiently high, and there is no problem in application to the industrial field.

また、上記単位構造式(2)で表される本発明のポリイミドは1MHzでの誘電率が2.7以下と低いだけではなく、線熱膨張係数が25ppm以下と低く、また高透明性と靭性をも兼ね備えている。   The polyimide of the present invention represented by the unit structural formula (2) not only has a low dielectric constant of 2.7 or less at 1 MHz, but also has a low coefficient of linear thermal expansion of 25 ppm or less, and high transparency and toughness. Have both.

以下に本発明を実施例により具体的に説明するが、本発明はこれに限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto.

<実施例1>
よく乾燥した攪拌機付密閉反応容器中に再結晶・精製済みのトランス-1,4-ジアミノシクロヘキサン5.710g(0.05モル)を入れ、十分に脱水したヘキサメチルホスホルアミドとN,N-ジメチルアセトアミドの混合溶媒(体積比3:1)からなる重合溶媒150mLに溶解した後、シリル化剤としてシリンジにてN,O-ビス(トリメチルシリル)トリフルオロアセトアミド7.0mL(0.025モル)をゆっくりと滴下し、室温で1時間攪拌してシリル化(シリル化率X=0.5)を行った。
<Example 1>
Put recrystallized and purified trans-1,4-diaminocyclohexane (5.710 g, 0.05 mol) in a well-dried sealed reaction vessel equipped with a stirrer and thoroughly dehydrated hexamethylphosphoramide and N, N-dimethylacetamide. After dissolving in 150 mL of a polymerization solvent composed of a mixed solvent (volume ratio 3: 1), 7.0 mL (0.025 mol) of N, O-bis (trimethylsilyl) trifluoroacetamide was slowly added dropwise as a silylating agent with a syringe at room temperature. The mixture was stirred for 1 hour to effect silylation (silylation rate X = 0.5).

この溶液に1,2,3,4-シクロブタンテトラカルボン酸二無水物粉末9.806g(0.05モル)を徐々に加え室温で24時間撹拌した。得られたポリイミド前駆体溶液は室温で2週間放置しても沈澱、ゲル化は全く起こらず、また粘度変化も殆どない極めて高い溶液貯蔵安定を示した。重合時と同じ溶媒中、30℃で測定した固有粘度は4.3dL/gと高く、極めて高重合体のポリイミド前駆体が得られたことがわかる。   To this solution, 9.806 g (0.05 mol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride powder was gradually added and stirred at room temperature for 24 hours. The obtained polyimide precursor solution showed very high solution storage stability with no precipitation or gelation even when left for 2 weeks at room temperature and almost no change in viscosity. Intrinsic viscosity measured at 30 ° C. in the same solvent as at the time of polymerization was as high as 4.3 dL / g, indicating that an extremely high polymer polyimide precursor was obtained.

このポリイミド前駆体溶液を塗布対象物であるガラス基板に塗布し、60℃、2〜4時間で乾燥して得たポリイミド前駆体膜(キャスト膜)を、洗浄液であるメタノールに4〜24時間浸漬して残留溶媒を完全に除去した。
これを基板上で減圧下340℃、3時間で加熱してイミド化を行い膜厚10μmの透明で強靭な全脂環式ポリイミド膜を得た。
A polyimide precursor film (cast film) obtained by applying this polyimide precursor solution to a glass substrate that is a coating object and drying at 60 ° C. for 2 to 4 hours is immersed in methanol as a cleaning solution for 4 to 24 hours. The residual solvent was completely removed.
This was imidized by heating on a substrate under reduced pressure at 340 ° C. for 3 hours to obtain a transparent and tough fully alicyclic polyimide film having a thickness of 10 μm.

膜物性は、誘電率=1.1×平均屈折率の2乗より見積もられた誘電率2.65(1MHzに対応)、線熱膨張係数25ppm/K(100℃〜200℃の間の平均値)、およびガラス転移温度は423℃、カットオフ波長240nm、窒素雰囲気中の5%重量減少温度(昇温速度10℃/min)437℃、空気中で398℃であり、目的とする特性を全て満足することができた。合成したポリイミド前駆体膜およびポリイミド膜の赤外線吸収スペクトルを図3、図4にそれぞれ示し、ポリイミド前駆体膜およびポリイミド膜のピークテーブルを下記表1、表2に記載する。
尚、図3、4中の縦軸は透過率(%)をそれぞれ示し、横軸は波数(cm-1)をそれぞれ示している。
The film properties are as follows: dielectric constant = 1.1 × dielectric constant 2.65 estimated from the square of the average refractive index (corresponding to 1 MHz), linear thermal expansion coefficient 25 ppm / K (average value between 100 ° C. and 200 ° C.), and Glass transition temperature is 423 ° C, cutoff wavelength is 240nm, 5% weight loss temperature in nitrogen atmosphere (temperature increase rate 10 ° C / min) is 437 ° C, and 398 ° C in air. I was able to. Infrared absorption spectra of the synthesized polyimide precursor film and polyimide film are shown in FIG. 3 and FIG. 4, respectively. Peak tables of the polyimide precursor film and polyimide film are shown in Tables 1 and 2 below.
3 and 4, the vertical axis represents the transmittance (%), and the horizontal axis represents the wave number (cm −1 ).

Figure 0004538216
Figure 0004538216

Figure 0004538216
Figure 0004538216

尚、上記表1、2中、波数の単位はcm-1であり、透過率の単位は%である。
<比較例1>
よく乾燥した攪拌機付密閉反応容器中に再結晶・精製済みのトランス-1,4-ジアミノシクロヘキサン5.710g(0.05モル)を入れ、十分に脱水したN,N-ジメチルアセトアミドからなる重合溶媒150mLに溶解した。ジアミンのシリル化を行わないで1,2,3,4-シクロブタンテトラカルボン酸二無水物粉末9.806g(0.05モル)を徐々に加え室温で撹拌した。しかし、重合初期に強固な塩が形成され、室温で数週間〜1ヶ月間攪拌を継続しても、重合が全く進行しなかった。
In Tables 1 and 2, the unit of wave number is cm −1 and the unit of transmittance is%.
<Comparative Example 1>
Put recrystallized / purified trans-1,4-diaminocyclohexane (5.710 g, 0.05 mol) in a well-dried closed reaction vessel with a stirrer, and dissolve in 150 mL of a fully dehydrated polymerization solvent consisting of N, N-dimethylacetamide. did. Without performing silylation of diamine, 9.806 g (0.05 mol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride powder was gradually added and stirred at room temperature. However, a strong salt was formed at the initial stage of polymerization, and polymerization did not proceed at all even when stirring was continued for several weeks to one month at room temperature.

重合溶媒としてN,N-ジメチルアセトアミドの他にN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホオキシド、γ-ブチロラクトン、ジグライム、m−クレゾール、ヘキサメチルホスホルアミド、ヘキサメチルホスホルアミド/N,N-ジメチルアセトアミド混合溶媒、ヘキサメチルホスホルアミド/N-メチル-2-ピロリドン混合溶媒、テトラヒドロフラン/メタノール混合溶媒を用いて重合を試みたが、あらゆる溶媒系で全く重合は進行しなかった。   In addition to N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, dimethyl sulfoxide, γ-butyrolactone, diglyme, m -Polymerization using cresol, hexamethylphosphoramide, hexamethylphosphoramide / N, N-dimethylacetamide mixed solvent, hexamethylphosphoramide / N-methyl-2-pyrrolidone mixed solvent, tetrahydrofuran / methanol mixed solvent Attempts did not proceed at all in any solvent system.

またこれらの溶媒系で溶質濃度1〜15重量%の濃度範囲、室温〜150℃の温度範囲で重合反応を試みたが、同様に全く重合しなかった。更に、ピリジンやトリエチルアミンのような三級アミンあるいはリチウムクロライドのような無機塩類も用いたがこれらの添加効果は全く見られず重合は全く進行しなかった。   In these solvent systems, a polymerization reaction was attempted in a solute concentration range of 1 to 15% by weight and a temperature range of room temperature to 150 ° C., but no polymerization was performed in the same manner. Further, tertiary amines such as pyridine and triethylamine, or inorganic salts such as lithium chloride were used, but these addition effects were not seen at all and polymerization did not proceed at all.

(実施例2)
よく乾燥した攪拌機付密閉反応容器中に再結晶・精製済みのトランス-1,4-ジアミノシクロヘキサン5.710g(0.05モル)を入れ、十分に脱水したヘキサメチルホスホルアミドとN,N-ジメチルアセトアミドの混合溶媒(体積比3:1)からなる重合溶媒150mLに溶解した後、シリンジにてN,O-ビス(トリメチルシリル)トリフルオロアセトアミドからなるシリル化剤14.1mL(0.05モル)をゆっくりと滴下し、室温で1時間攪拌してシリル化(シリル化率X =1.0)を行った。
(Example 2)
Put recrystallized and purified trans-1,4-diaminocyclohexane (5.710 g, 0.05 mol) in a well-dried sealed reaction vessel equipped with a stirrer and thoroughly dehydrated hexamethylphosphoramide and N, N-dimethylacetamide. After dissolving in 150 mL of a polymerization solvent consisting of a mixed solvent (volume ratio 3: 1), 14.1 mL (0.05 mol) of a silylating agent consisting of N, O-bis (trimethylsilyl) trifluoroacetamide was slowly added dropwise with a syringe. The mixture was stirred at room temperature for 1 hour for silylation (silylation rate X = 1.0).

この溶液に1,2,3,4-シクロブタンテトラカルボン酸二無水物粉末9.806g(0.05モル)を徐々に加え室温で撹拌した。この方法では、ポリイミド前駆体有機溶媒溶液が得られたものの、その溶液中にはポリイミド前駆体の一部が沈殿し、数週間攪拌を継続しても均一な溶液は得られなかった。これはポリイミド前駆体中のカルボキシ基が全てシリル化されているため、溶媒和しにくく、ポリマー鎖間の水素結合により重合途中で一部沈澱したためである。シリル化率X =0.4よりも低い場合では重合初期に強固な塩が形成され、重合が進行しなかった。   To this solution, 9.806 g (0.05 mol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride powder was gradually added and stirred at room temperature. In this method, a polyimide precursor organic solvent solution was obtained, but a part of the polyimide precursor was precipitated in the solution, and a uniform solution was not obtained even if stirring was continued for several weeks. This is because all of the carboxy groups in the polyimide precursor are silylated, so that it is difficult to solvate and partially precipitates during polymerization due to hydrogen bonding between polymer chains. When the silylation rate X was lower than 0.4, a strong salt was formed at the initial stage of polymerization, and the polymerization did not proceed.

<実施例3>
よく乾燥した攪拌機付密閉反応容器中に再結晶・精製済みのトランス-1,4-ジアミノシクロヘキサン5.710g(0.05モル)を入れ、十分に脱水したN,N-ジメチルアセトアミドからなる重合溶媒150mLに溶解した後、シリンジにてN,O-ビス(トリメチルシリル)トリフルオロアセトアミドからなるシリル化剤7.0mL(0.025モル)をゆっくりと滴下し、室温で1時間攪拌してシリル化(シリル化率X =0.5)を行った。
<Example 3>
Put recrystallized / purified trans-1,4-diaminocyclohexane (5.710 g, 0.05 mol) in a well-dried closed reaction vessel with a stirrer, and dissolve in 150 mL of a fully dehydrated polymerization solvent consisting of N, N-dimethylacetamide. Then, 7.0 mL (0.025 mol) of a silylating agent consisting of N, O-bis (trimethylsilyl) trifluoroacetamide was slowly added dropwise with a syringe, and the mixture was stirred at room temperature for 1 hour for silylation (silylation rate X = 0.5). )

この溶液に1,2,3,4-シクロブタンテトラカルボン酸二無水物粉末9.806g(0.05モル)を徐々に加え室温で撹拌した。この方法では、ポリイミド前駆体有機溶媒溶液が得られたものの、その溶液中のポリイミド前駆体の一部が沈殿し、一ヶ月間攪拌を継続しても粘稠で均一な溶液は得られなかった。これは部分シリル化ポリイミド前駆体のN,N-ジメチルアセトアミドに対する溶解度が乏しく、重合途中で一部沈澱したためである。重合溶媒としてヘキサメチルホスホルアミドを含まない場合はリチウムクロライドの添加の有無にかかわらず如何なるシリル化率でも同様に、粘稠で均一な溶液は得られなかった。   To this solution, 9.806 g (0.05 mol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride powder was gradually added and stirred at room temperature. In this method, a polyimide precursor organic solvent solution was obtained, but a part of the polyimide precursor in the solution was precipitated, and a viscous and uniform solution was not obtained even if stirring was continued for one month. . This is because the partially silylated polyimide precursor has poor solubility in N, N-dimethylacetamide and partially precipitates during polymerization. When hexamethylphosphoramide was not included as a polymerization solvent, a viscous and uniform solution was not obtained at any silylation rate regardless of the addition of lithium chloride.

<実施例4>
実施例1で重合したポリイミド前駆体の溶液をガラス基板に塗布し、60℃、2時間で乾燥してポリイミド前駆体膜を得た。残留溶媒を除去する工程を経ずに、これを基板上で減圧下340℃、3時間で熱的にイミド化を行ったところ、ポリイミド膜が得られた。
<Example 4>
The polyimide precursor solution polymerized in Example 1 was applied to a glass substrate and dried at 60 ° C. for 2 hours to obtain a polyimide precursor film. Without undergoing the step of removing the residual solvent, this was thermally imidized on a substrate under reduced pressure at 340 ° C. for 3 hours to obtain a polyimide film.

しかしながら得られたポリイミド膜は部分的に黒色化しており、また膜の断裂も一部に見られた。これは溶媒として使用したヘキサメチルホスホルアミドが非常に揮発しにくいため、イミド化時に膜中に滞留しやすく、ヘキサメチルホスホルアミド自身の熱分解や、ポリイミド前駆体と何らかの反応が引き起こされためと考えられる。   However, the obtained polyimide film was partially blackened, and the film was partially broken. This is because the hexamethylphosphoramide used as a solvent is very difficult to volatilize, so it tends to stay in the film during imidization, causing thermal decomposition of the hexamethylphosphoramide itself and some reaction with the polyimide precursor. it is conceivable that.

(比較例2)
よく乾燥した攪拌機付密閉反応容器中に4,4'-メチレンビス(シクロヘキシルアミン)からなる脂環式アミン10.518g(0.05モル)を入れ、十分に脱水したN,N-ジメチルアセトアミドからなる重合溶媒200mLに溶解した後、1,2,3,4-シクロブタンテトラカルボン酸二無水物からなるカルボン酸二無水物の粉末9.806g(0.05モル)を徐々に加え室温で24時間撹拌した。この系では脂環式ジアミンのシリル化なしで公知の方法で容易に重合が進行した。
(Comparative Example 2)
A well-dried sealed reaction vessel with a stirrer is charged with 10.518 g (0.05 mol) of an alicyclic amine consisting of 4,4'-methylenebis (cyclohexylamine), and 200 mL of a fully dehydrated polymerization solvent consisting of N, N-dimethylacetamide Then, 9.806 g (0.05 mol) of carboxylic acid dianhydride powder consisting of 1,2,3,4-cyclobutanetetracarboxylic dianhydride was gradually added and stirred at room temperature for 24 hours. In this system, polymerization proceeded easily by a known method without silylation of alicyclic diamine.

基板上で減圧下300℃、1時間で熱的にイミド化して得られたポリイミド膜は誘電率=1.1×平均屈折率の2乗より見積もられた誘電率が2.6と低誘電率を示したが、線熱膨張係数が70ppm/Kと低熱膨張特性を示さなかった。これは用いた脂環式ジアミンの屈曲構造により熱イミド化時の自発的面内配向が阻害されたためである。   The polyimide film obtained by thermal imidization at 300 ° C. for 1 hour under reduced pressure on the substrate showed a low dielectric constant of 2.6, which was estimated from dielectric constant = 1.1 × average refractive index squared. However, the coefficient of linear thermal expansion was 70 ppm / K and did not show low thermal expansion characteristics. This is because the in-plane orientation during thermal imidization was inhibited by the bent structure of the alicyclic diamine used.

(比較例3)
よく乾燥した攪拌機付密閉反応容器中に1,4-ジアミノシクロヘキサン(トランス/シス混合物)からなる脂環式アミン5.710g(0.05モル)を入れ、十分に脱水したN,N-ジメチルアセトアミドからなる重合溶媒150mLに溶解した後、1,2,3,4-シクロブタンテトラカルボン酸二無水物からなるカルボン酸二無水物の粉末9.806g(0.05モル)を徐々に加え室温で24時間撹拌した。この系では脂環式ジアミンのシリル化なしで公知の方法で容易に重合が進行した。基板上で減圧下340℃、1時間で熱的にイミド化して得られたポリイミド膜は脆弱であったが誘電率=1.1×平均屈折率の2乗より見積もられた誘電率が2.6と低誘電率を示した。しかしながら線熱膨張係数が60ppm/Kと低熱膨張特性を示さなかった。これは用いた脂環式ジアミンに折曲がり構造のシス1,4-ジアミノシクロヘキサンが含まれていたため熱イミド化時の自発的面内配向が阻害されたためである。
(Comparative Example 3)
Polymerization consisting of N, N-dimethylacetamide fully dehydrated by placing 5.710 g (0.05 mol) of an alicyclic amine consisting of 1,4-diaminocyclohexane (trans / cis mixture) in a well-dried closed reaction vessel with a stirrer After dissolving in 150 mL of solvent, 9.806 g (0.05 mol) of carboxylic dianhydride powder consisting of 1,2,3,4-cyclobutanetetracarboxylic dianhydride was gradually added and stirred at room temperature for 24 hours. In this system, polymerization proceeded easily by a known method without silylation of alicyclic diamine. The polyimide film obtained by thermal imidization at 340 ° C. for 1 hour under reduced pressure on a substrate was fragile, but the dielectric constant estimated from the square of dielectric constant = 1.1 × average refractive index was as low as 2.6. The dielectric constant is shown. However, the coefficient of linear thermal expansion was 60ppm / K, showing no low thermal expansion characteristics. This is because the alicyclic diamine used contained a cis 1,4-diaminocyclohexane with a bent structure, which inhibited the spontaneous in-plane orientation during thermal imidization.

(比較例4)
よく乾燥した攪拌機付密閉反応容器中にパラフェニレンジアミンからなる芳香族ジアミン5.407g(0.05モル)を入れ、十分に脱水したN,N-ジメチルアセトアミドからなる重合溶媒200mLに溶解した後、3,3',4,4'-ビフェニルテトラカルボン酸二無水物からなるカルボン酸二無水物の粉末14.711g(0.05モル)を徐々に加え室温で3時間撹拌した。この系ではジアミンのシリル化なしで公知の方法で容易に重合が進行した。基板上で減圧下350℃、1時間で熱的にイミド化して得られたポリイミド膜では線熱膨張係数は6.0ppm/Kと低熱膨張特性を示したが、誘電率=1.1×平均屈折率の2乗より見積もられた誘電率が3.5と低誘電率を示さなかった。これは芳香族モノマーを用いたことが原因である。
(Comparative Example 4)
A well-dried sealed reaction vessel with a stirrer was charged with 5.407 g (0.05 mol) of aromatic diamine composed of paraphenylenediamine, dissolved in 200 mL of a fully dehydrated polymerization solvent composed of N, N-dimethylacetamide, and 3,3 14.711 g (0.05 mol) of carboxylic acid dianhydride powder consisting of ', 4,4'-biphenyltetracarboxylic dianhydride was gradually added and stirred at room temperature for 3 hours. In this system, polymerization proceeded easily by a known method without silylation of diamine. The polyimide film obtained by thermal imidization at 350 ° C for 1 hour under reduced pressure on the substrate showed a low thermal expansion characteristic of 6.0 ppm / K, but the dielectric constant = 1.1 × average refractive index. The dielectric constant estimated from the square of 3.5 was not as low as 3.5. This is due to the use of aromatic monomers.

1,4-ジアミノシクロヘキサンの立体構造を示す図Diagram showing the three-dimensional structure of 1,4-diaminocyclohexane 4,4'-メチレンビス(シクロヘキシルアミン)の分子構造を示す図Diagram showing the molecular structure of 4,4'-methylenebis (cyclohexylamine) 本発明の一例のポリイミド前駆体膜の赤外線吸収スペクトルを示す図The figure which shows the infrared absorption spectrum of the polyimide precursor film | membrane of an example of this invention 本発明の一例のポリイミド膜の赤外線吸収スペクトルを示す図The figure which shows the infrared absorption spectrum of the polyimide film of an example of this invention

Claims (12)

トランス1,4-ジアミノシクロヘキサンと、シリル化剤とを反応させて中間生成物を生成した後、前記中間生成物と1,2,3,4−シクロブタンテトラカルボン酸二無水物とを反応させ、繰り返し構造単位が下記単位構造式(1)で表される全脂環式ポリイミド前駆体を製造するポリイミド前駆体の製造方法。
Figure 0004538216
(上記単位構造式(1)中、RはH又はシリル基であって、前記ポリイミド前駆体は、1つの単位構造式中の置換基Rのうちいずれか一方又は両方がシリル基である単位構造を少なくとも1つ有する)
Trans 1,4-diaminocyclohexane and a silylating agent are reacted to form an intermediate product, and then the intermediate product is reacted with 1,2,3,4-cyclobutanetetracarboxylic dianhydride. The manufacturing method of the polyimide precursor which manufactures the all alicyclic polyimide precursor whose repeating structural unit is represented by the following unit structural formula (1).
Figure 0004538216
(In the unit structural formula (1), R is H or a silyl group, and the polyimide precursor is a unit structure in which one or both of substituents R in one unit structural formula are silyl groups. At least one)
前記シリル化剤は、化学構造中に塩素原子を有しな請求項1記載のポリイミド前駆体の製造方法。 The silylating agent, the production method of the polyimide precursor have claim 1, wherein a has a chlorine atom in its chemical structure. 記シリル化剤としてN,O-ビス(トリメチルシリル)トリフルオロアセトアミドとN,O-ビス(トリメチルシリル)アセトアミドのいずれか一方又は両方を用いる請求項2記載のポリイミド前駆体の製造方法。 N As before carboxymethyl Lil agent, O- bis (trimethylsilyl) trifluoroacetamide and N, O- bis (trimethylsilyl) any method for producing a polyimide precursor according to claim 2, wherein the use of one or both acetamide. 前記単位構造式(1)中のRはH又はSi(CH3)3基であり、前記トランス1,4-ジアミノシクロヘキサンと、シリル化剤とを所定割合で反応させる請求項1乃至請求項3のいずれか1項記載のポリイミド前駆体の製造方法であって、
化学構造全体に含有されるRのうち、Si(CH3)3基からなるRの数をA、HからなるRの数をBとすると、下記数式(1)で表されるシリル化率が0.4以上0.9以下になる割り合いで、前記シリル化剤と前記トランス1,4-ジアミノシクロヘキサンとを反応させるポリイミド前駆体の製造方法。
シリル化率=A/(A+B)……数式(1)
The R in the unit structural formula (1 ) is H or Si (CH 3 ) 3 group, and the trans 1,4-diaminocyclohexane and the silylating agent are reacted at a predetermined ratio. A method for producing a polyimide precursor according to any one of
Of the R contained in the entire chemical structure, if the number of Rs consisting of Si (CH 3 ) 3 groups is A and the number of Rs consisting of H is B, the silylation rate represented by the following formula (1) is A method for producing a polyimide precursor, wherein the silylating agent and the trans 1,4-diaminocyclohexane are reacted at a ratio of 0.4 to 0.9.
Silylation rate = A / (A + B) (1)
トランス1,4-ジアミノシクロヘキサンと、シリル化剤とを重合溶媒中で反応させて中間生成物を生成した後、前記重合溶媒中に1,2,3,4−シクロブタンテトラカルボン酸二無水物を添加し、前記中間生成物と、前記1,2,3,4−シクロブタンテトラカルボン酸二無水物とを反応させ、ポリイミド前駆体が前記重合溶媒中に分散又は溶解されたポリイミド前駆体有機溶媒溶液を製造するポリイミド前駆体有機溶媒溶液の製造方法。   Trans 1,4-diaminocyclohexane and a silylating agent are reacted in a polymerization solvent to form an intermediate product, and then 1,2,3,4-cyclobutanetetracarboxylic dianhydride is added to the polymerization solvent. Added, the intermediate product and the 1,2,3,4-cyclobutanetetracarboxylic dianhydride are reacted, and a polyimide precursor organic solvent solution in which a polyimide precursor is dispersed or dissolved in the polymerization solvent The manufacturing method of the polyimide precursor organic solvent solution which manufactures. 請求項5記載のポリイミド前駆体有機溶媒溶液を塗布対象物に塗布し、キャスト膜を形成した後、前記キャスト膜中のポリイミド前駆体をイミド化するポリイミド膜の製造方法であって、
前記重合溶媒に、前記トランス1,4-ジアミノシクロヘキサンと、前記シリル化剤と、前記1,2,3,4−シクロブタンテトラカルボン酸二無水物と、前記中間生成物に対して親和性が高い高沸点溶媒を含有させ、
前記重合溶媒と親和性が高く、かつ前記重合溶媒よりも沸点が低い洗浄液を前記キャスト膜に接触させ、前記キャスト膜を洗浄した後、前記イミド化を行うポリイミド膜の製造方法。
A polyimide precursor organic solvent solution according to claim 5 is applied to an object to be coated, and after forming a cast film, a polyimide film manufacturing method for imidizing a polyimide precursor in the cast film,
The polymerization solvent has high affinity for the trans 1,4-diaminocyclohexane, the silylating agent, the 1,2,3,4-cyclobutanetetracarboxylic dianhydride, and the intermediate product. Containing a high boiling solvent,
A method for producing a polyimide film, wherein the imidization is carried out after contacting the cast film with a cleaning liquid having a high affinity with the polymerization solvent and having a boiling point lower than that of the polymerization solvent, washing the cast film.
前記高沸点溶媒としてヘキサメチルホスホルアミドを用い、
前記洗浄液としてアルコールを用いる請求項6記載のポリイミド膜の製造方法。
Using hexamethylphosphoramide as the high boiling point solvent,
The method for producing a polyimide film according to claim 6, wherein alcohol is used as the cleaning liquid.
請求項1乃至請求項3のいずれか1項記載のポリイミド前駆体の製造方法によって製造され、繰り返し構造単位が上記単位構造式(1)で表され、上記単位構造式(1)中の置換基RはHまたはSi(CH3)3基である全脂環式ポリイミド前駆体であって、
1つの単位構造式中の置換基Rのうち、いずれか一方又は両方がSi(CH3)3基である単位構造を少なくとも一つ有し、かつ
ヘキサメチルホスホルアミドとN,N-ジメチルアセトアミドの体積比3:1の混合溶媒を溶媒として30℃で測定したときの固有粘度が1.0dl/g以上であるポリイミド前駆体。
It manufactures by the manufacturing method of the polyimide precursor of any one of Claim 1 thru | or 3, A repeating structural unit is represented by the said unit structural formula (1), and the substituent in the said unit structural formula (1) R is a fully cycloaliphatic polyimide precursor that is H or Si (CH 3 ) 3 group,
Among the substituents R in one unit structure having at least one unit structure is either or both the Si (CH 3) 3 group, and,
A polyimide precursor having an intrinsic viscosity of 1.0 dl / g or more when measured at 30 ° C. using a mixed solvent of hexamethylphosphoramide and N, N-dimethylacetamide in a volume ratio of 3: 1 as a solvent .
上記単位構造式(1)中の各1,4-シクロヘキサン残基の立体構造がトランス配置であることを特徴とする請求項8記載のポリイミド前駆体。   9. The polyimide precursor according to claim 8, wherein the steric structure of each 1,4-cyclohexane residue in the unit structural formula (1) is in a trans configuration. 全化学構造中、Si(CH3)3基からなる置換基Rの合計数をA、水素からなる置換基Rの合計数をBとすると、
下記数式(1)で表されるポリイミド前駆体のシリル化率が0.4以上0.9以下の範囲である請求項8又は請求項9のいずれか1項記載のポリイミド前駆体。
シリル化率=A/(A+B)……数式(1)
In the total chemical structure, when the total number of substituents R consisting of Si (CH 3 ) 3 groups is A and the total number of substituents R consisting of hydrogen is B,
The polyimide precursor according to any one of claims 8 and 9, wherein a silylation rate of the polyimide precursor represented by the following formula (1) is in a range of 0.4 to 0.9.
Silylation rate = A / (A + B) (1)
繰り返し構造単位がトランス1,4-ジアミノシクロヘキサンと、1,2,3,4−シクロブタンテトラカルボン酸二無水物とから形成される下記単位構造式(2)で表され、下記単位構造式(2)中の各1,4-シクロヘキサン残基の立体構造がトランス配置であることを特徴とするポリイミド。
Figure 0004538216
The repeating structural unit is represented by the following unit structural formula (2) formed from trans 1,4-diaminocyclohexane and 1,2,3,4-cyclobutanetetracarboxylic dianhydride. The polyimide in which the steric structure of each 1,4-cyclohexane residue is in the trans configuration.
Figure 0004538216
請求項11項記載のポリイミドを主成分とするポリイミド膜。   A polyimide film comprising the polyimide according to claim 11 as a main component.
JP2003383835A 2003-11-13 2003-11-13 A polyimide precursor, a polyimide precursor manufacturing method, a polyimide precursor organic solvent solution manufacturing method, a cast film manufacturing method, and a polyimide film manufacturing method. Expired - Lifetime JP4538216B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003383835A JP4538216B2 (en) 2003-11-13 2003-11-13 A polyimide precursor, a polyimide precursor manufacturing method, a polyimide precursor organic solvent solution manufacturing method, a cast film manufacturing method, and a polyimide film manufacturing method.
PCT/JP2004/006414 WO2005047367A1 (en) 2003-11-13 2004-05-06 Polyimide precursor, method for producing polyimide precursor, method for producing polyimide precursor solution in organic solvent, method for producing cast film, and method for producing polyimide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003383835A JP4538216B2 (en) 2003-11-13 2003-11-13 A polyimide precursor, a polyimide precursor manufacturing method, a polyimide precursor organic solvent solution manufacturing method, a cast film manufacturing method, and a polyimide film manufacturing method.

Publications (2)

Publication Number Publication Date
JP2005146072A JP2005146072A (en) 2005-06-09
JP4538216B2 true JP4538216B2 (en) 2010-09-08

Family

ID=34692440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003383835A Expired - Lifetime JP4538216B2 (en) 2003-11-13 2003-11-13 A polyimide precursor, a polyimide precursor manufacturing method, a polyimide precursor organic solvent solution manufacturing method, a cast film manufacturing method, and a polyimide film manufacturing method.

Country Status (1)

Country Link
JP (1) JP4538216B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4991943B2 (en) * 2010-02-26 2012-08-08 キヤノン株式会社 Optical member, polyimide, and manufacturing method thereof
JP5932222B2 (en) * 2011-01-19 2016-06-08 キヤノン株式会社 Optical member and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191129A (en) * 1986-09-02 1988-08-08 Canon Inc Ferroelectric liquid crystal element
JP2001072768A (en) * 1999-09-03 2001-03-21 Yoshiyuki Oishi Production of polyimide
JP2002161136A (en) * 2000-09-14 2002-06-04 Sony Chem Corp Polyimide precursor, method of producing the same, and photosensitive resin composition
JP2002167433A (en) * 2000-11-30 2002-06-11 Central Glass Co Ltd Polyimide and method for producing the same
JP2002327056A (en) * 2001-05-07 2002-11-15 Central Glass Co Ltd Polyimide and production method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63191129A (en) * 1986-09-02 1988-08-08 Canon Inc Ferroelectric liquid crystal element
JP2001072768A (en) * 1999-09-03 2001-03-21 Yoshiyuki Oishi Production of polyimide
JP2002161136A (en) * 2000-09-14 2002-06-04 Sony Chem Corp Polyimide precursor, method of producing the same, and photosensitive resin composition
JP2002167433A (en) * 2000-11-30 2002-06-11 Central Glass Co Ltd Polyimide and method for producing the same
JP2002327056A (en) * 2001-05-07 2002-11-15 Central Glass Co Ltd Polyimide and production method thereof

Also Published As

Publication number Publication date
JP2005146072A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
JP5971736B2 (en) POLYAMIC ACID POLYMER COMPOSITE AND METHOD FOR PRODUCING THE SAME {POLYAMICACIDPOLYMERCOMPOSITITEANDMETHODFORPRODUCINGSAME}
US4748228A (en) Process for producing organic silicon-terminated polyimide precursor and polyimide
KR102164314B1 (en) Polyimide film, and display device including the film
JPH10182820A (en) Polyimide precursor composition and polyimide film
JPH07324133A (en) Silicate group-containing polyimide
JP4815690B2 (en) Polyimide, polyimide precursor and method for producing them
KR20150025517A (en) Poly(amide-imide) copolymer, method of preparing poly(amide-imede) copolymer, and article including poly(amide-imide)copolymer
EP3106487B1 (en) Polyamide acid composition and polyimide composition
KR20200143295A (en) Polymer films and electronic devices
JP5244303B2 (en) Polyesterimide and method for producing the same
JP3859984B2 (en) Polyimide and method for producing the same
JP4627297B2 (en) Polyesterimide and its precursor with low linear thermal expansion coefficient
KR20190057924A (en) Polyimide film for display substrates
JPH0377228B2 (en)
JP4665373B2 (en) Polyimide film
JP3247697B2 (en) Low thermal expansion polyimide with improved elongation
JP4589471B2 (en) Polyimide precursor solution and production method thereof, coating film obtained therefrom and production method thereof
JP4538216B2 (en) A polyimide precursor, a polyimide precursor manufacturing method, a polyimide precursor organic solvent solution manufacturing method, a cast film manufacturing method, and a polyimide film manufacturing method.
JPS6323928A (en) Production of modified polyimide
JP4620946B2 (en) Method for producing polyimide precursor, method for producing polyimide precursor organic solvent solution, method for producing polyimide film, polyimide precursor, method for producing polyimide
JPS63264632A (en) Low-thermal expansion resin
WO2005047367A1 (en) Polyimide precursor, method for producing polyimide precursor, method for producing polyimide precursor solution in organic solvent, method for producing cast film, and method for producing polyimide film
JP4792204B2 (en) Polyimide having both high organic solvent solubility, high thermoplasticity, high toughness and high glass transition temperature, and method for producing the same
JP2843314B2 (en) Fluorine-containing polyimide optical material
KR102224986B1 (en) Diamine compound, polyimide precursor and polyimide film prepared by using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4538216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term