JP4537242B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP4537242B2
JP4537242B2 JP2005097106A JP2005097106A JP4537242B2 JP 4537242 B2 JP4537242 B2 JP 4537242B2 JP 2005097106 A JP2005097106 A JP 2005097106A JP 2005097106 A JP2005097106 A JP 2005097106A JP 4537242 B2 JP4537242 B2 JP 4537242B2
Authority
JP
Japan
Prior art keywords
gas
oil
liquid separator
compressor
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005097106A
Other languages
Japanese (ja)
Other versions
JP2006275440A (en
Inventor
隆 池田
浩光 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005097106A priority Critical patent/JP4537242B2/en
Publication of JP2006275440A publication Critical patent/JP2006275440A/en
Application granted granted Critical
Publication of JP4537242B2 publication Critical patent/JP4537242B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Description

本発明は、冷凍装置に係り、さらに詳しくは、圧縮機への油戻し機構を備えた冷凍装置に関するものである。   The present invention relates to a refrigeration apparatus, and more particularly to a refrigeration apparatus including an oil return mechanism for a compressor.

従来の冷凍装置に、複数台の室外ユニットと複数台の室内ユニットとを備え、圧縮機構から流出する油上り量と圧縮機構に戻る油戻り量との差に対応した係数が圧縮機構の容量に基いて複数種類設定され、圧縮機構の運転容量に対応して係数を加算し、係数を加算した加算値が所定値になると、潤滑油の油戻し運転を実行し、さらに、室内電動膨張弁の開度が制限されると、係数を大きな特殊値に設定する運転を行うようにしたものがある(例えば、特許文献1参照)。   A conventional refrigeration system is provided with a plurality of outdoor units and a plurality of indoor units, and the coefficient corresponding to the difference between the amount of oil rising from the compression mechanism and the amount of oil returning to the compression mechanism is the capacity of the compression mechanism. A plurality of types are set based on this, and a coefficient is added corresponding to the operating capacity of the compression mechanism, and when the added value obtained by adding the coefficient reaches a predetermined value, an oil return operation of the lubricating oil is executed. When the opening degree is limited, there is one that performs an operation of setting a coefficient to a large special value (for example, see Patent Document 1).

特開平8−200852号公報(第2−3頁、図2)JP-A-8-200902 (page 2-3, FIG. 2)

特許文献1においては、室内ユニットを制御できる冷凍装置の油戻し運転を行う場合、室外ユニットと室内ユニットの運転状況によって、室外ユニットと室内ユニットの運転容量を変化させている。このような場合、室内ユニットから室外ユニットへ油を戻す場合は有効であるが、室外ユニットにおいて、低圧の油タンクから圧縮機への返油機構を備えているユニットでは、低圧の油タンクから圧縮機へ確実に返油することができないという問題があった。   In Patent Document 1, when the oil return operation of the refrigeration apparatus that can control the indoor unit is performed, the operation capacities of the outdoor unit and the indoor unit are changed depending on the operation status of the outdoor unit and the indoor unit. In such a case, it is effective to return the oil from the indoor unit to the outdoor unit. However, in the unit having an oil return mechanism from the low pressure oil tank to the compressor in the outdoor unit, the oil is compressed from the low pressure oil tank. There was a problem that oil could not be reliably returned to the machine.

また、上記のような油戻し運転では、室外ユニットと室内ユニットの運転容量を変化させるため、特に、室内ユニットの運転容量を変化させることによる一時的な能力不足が発生するという問題があった。
さらに、室外ユニットと室内ユニットの運転制御が独立している冷凍装置においては、上記のように室外ユニットと室内ユニットが互いの運転状況を判別できないため、最適な油戻し運転を行うことができなかった。
Further, in the oil return operation as described above, since the operation capacities of the outdoor unit and the indoor unit are changed, there is a problem that a temporary shortage of capacity occurs particularly by changing the operation capacities of the indoor units.
Furthermore, in the refrigeration system in which the operation control of the outdoor unit and the indoor unit is independent, the outdoor unit and the indoor unit cannot distinguish each other's operation status as described above, and therefore an optimal oil return operation cannot be performed. It was.

本発明は、上記の課題を解決するためになされたもので、蒸発器の能力を変化させることなく、油タンクから圧縮機へ油を供給することのできる信頼性の高い冷凍装置を提供することを目的としたものである。   The present invention has been made to solve the above problems, and provides a highly reliable refrigeration apparatus capable of supplying oil from an oil tank to a compressor without changing the capacity of an evaporator. It is aimed at.

本発明に係る冷凍装置は、インバータ電源によって駆動される圧縮機、凝縮器、受液器、膨張機構、蒸発器、気液分離器、油タンク、該油タンクと前記圧縮機との間に低圧圧力センサが設けられた主冷媒回路と、前記油タンクから圧縮機に返油する返油機構とを有し、流量制御弁を有し一端が前記受液器と膨張機構との間に接続され、他端が前記蒸発器と気液分離器との間に接続された液冷媒バイパス回路と、前記受液器と前記膨張機構の間に設置され、前記液冷媒バイパス回路を流れる液冷媒を熱交換する二重管式熱交換器と、を設け、バイパスされた液冷媒が前記二重管式熱交換器内において蒸発し、ガス化してしまうような開度に調整されている前記流量制御弁の開度を、前記圧縮機の回転数と低圧圧力が所定の基準値以下となり、その状態が所定時間経過したときにアップし、前記気液分離器に液冷媒を流入させ前記気液分離器の油面を所定の高さに達するようにするものである。 The refrigeration apparatus according to the present invention includes a compressor, a condenser, a liquid receiver, an expansion mechanism, an evaporator, a gas-liquid separator, an oil tank, an oil tank, and a low pressure between the oil tank and the compressor. It has a main refrigerant circuit provided with a pressure sensor and an oil return mechanism that returns oil from the oil tank to the compressor, has a flow control valve, and one end is connected between the liquid receiver and the expansion mechanism. A liquid refrigerant bypass circuit having the other end connected between the evaporator and the gas-liquid separator, and a liquid refrigerant that is installed between the liquid receiver and the expansion mechanism and that heats the liquid refrigerant flowing through the liquid refrigerant bypass circuit. A double-pipe heat exchanger to be exchanged, and the flow rate control valve adjusted to such an opening that the bypassed liquid refrigerant evaporates and gasifies in the double-pipe heat exchanger When the rotation speed of the compressor and the low pressure are below a predetermined reference value, Up when the state has passed a predetermined time, and is to the liquid refrigerant to flow into the gas-liquid separator reaches the oil level of the gas-liquid separator at a predetermined height.

本発明によれば、蒸発器へ流れる冷媒は、過冷媒度が増加するため、膨張機構の前でのフラッシュガスの発生を防止できるので、蒸発器の能力が向上し信頼性の高い冷凍装置を提供することができる。 According to the present invention, the refrigerant flowing into the evaporator has an increased degree of super refrigerant, so that the generation of flash gas in front of the expansion mechanism can be prevented, so that the ability of the evaporator is improved and a highly reliable refrigeration apparatus is provided. Can be provided.

[実施の形態1]
図1は本発明の実施の形態1に係る冷凍装置の冷媒回路の説明図である。
本実施に係る冷媒回路は、インバータ電源によって駆動される圧縮機1、凝縮器2、受液器3、膨張機構4、蒸発器5、気液分離器6及び気液分離器6と圧縮機1との間に低圧圧力センサ8が順次接続された主冷媒回路15と、圧縮機1と気液分離器6との間に設けられた返油機構7と、開閉弁10を有し、一端が圧縮機1と凝縮器2との間に接続され、他端が蒸発器5と気液分離器6との間に接続されたガス冷媒バイパス回路9とからなっている。なお、本発明においては、冷媒としてHFC冷媒を使用している(以下の実施の形態においても同様である)。
[Embodiment 1]
FIG. 1 is an explanatory diagram of a refrigerant circuit of a refrigeration apparatus according to Embodiment 1 of the present invention.
The refrigerant circuit according to this embodiment includes a compressor 1, a condenser 2, a liquid receiver 3, an expansion mechanism 4, an evaporator 5, a gas-liquid separator 6, a gas-liquid separator 6, and a compressor 1 driven by an inverter power source. The main refrigerant circuit 15 to which the low pressure sensor 8 is sequentially connected, the oil return mechanism 7 provided between the compressor 1 and the gas-liquid separator 6, and the on-off valve 10, one end of which is The gas refrigerant bypass circuit 9 is connected between the compressor 1 and the condenser 2 and the other end is connected between the evaporator 5 and the gas-liquid separator 6. In the present invention, an HFC refrigerant is used as the refrigerant (the same applies to the following embodiments).

図2は返油機構7の説明図である。気液分離器6は内部に油17が入れられて油タンクの機能を備えており、その下部と圧縮機1の下部とは返油配管16により連結されている。また、一端が圧縮機1の上部に接続され、他端がほぼJ字状に折曲げられて気液分離器6内に配設された主冷媒回路15の一部を構成する配管15aには、低圧圧力センサ8が設けられており、この低圧圧力センサ8によって検知された圧力は、冷凍装置の運転を制御する制御部(図示せず)によって、冷媒に応じた温度値に変換されるようになっている。
そして、圧縮機1を運転すると、気液分離器6内の圧力P1と、圧縮機1内の圧力P2との間に圧力差PS(P1>P2)が発生し、その圧力差PS=(P1−P2)によって、気液分離器6内の油17が圧縮機1内へ移動する。
FIG. 2 is an explanatory view of the oil return mechanism 7. The gas-liquid separator 6 is provided with oil 17 therein and has an oil tank function. The lower part of the gas-liquid separator 6 and the lower part of the compressor 1 are connected by an oil return pipe 16. A pipe 15a constituting one part of the main refrigerant circuit 15 disposed in the gas-liquid separator 6 with one end connected to the upper portion of the compressor 1 and the other end bent in a substantially J shape The low pressure sensor 8 is provided, and the pressure detected by the low pressure sensor 8 is converted into a temperature value corresponding to the refrigerant by a control unit (not shown) that controls the operation of the refrigeration apparatus. It has become.
When operating the compressor 1, the pressure P 1 of the gas-liquid separator 6, the pressure difference P S (P 1> P 2) is generated between the pressure P 2 of the compressor 1, the pressure Due to the difference P S = (P 1 −P 2 ), the oil 17 in the gas-liquid separator 6 moves into the compressor 1.

図3(a)は圧縮機1のインバータによる運転周波数と、低圧飽和温度ETに対応した返油機構7の返油特性の一例を示す線図である。前述のように、気液分離器6内の油17が圧縮機1へ移動するためには、気液分離器6内の圧力P1と圧縮機1内の圧力P2との間に圧力差PSが必要であるが、この圧力差PSは、圧縮機1の運転周波数が低いほど、また、低圧飽和温度ETが低いほど、小さくなる。つまり、主冷媒回路15を流れる冷媒の流量が小さいほど、油17の移動を行うための十分な圧力差PSを確保できなくなる領域があることを示している。 FIG. 3A is a diagram showing an example of the oil return characteristics of the oil return mechanism 7 corresponding to the operating frequency by the inverter of the compressor 1 and the low pressure saturation temperature ET. As described above, in order to oil 17 in the gas-liquid separator 6 is moved to the compressor 1, the pressure difference between the pressure P 2 of the pressure P 1 in the compressor 1 of the gas-liquid separator 6 P S but is required, the pressure differential P S is, the lower the operation frequency of the compressor 1, also, the lower the low-pressure saturation temperature ET, small. In other words, it shows that the main as the flow rate of the refrigerant flowing in the refrigerant circuit 15 is small, there is a region can not ensure a sufficient pressure differential P S for moving the oil 17.

図4は本実施の形態に係る冷凍装置の運転制御の一例を説明するためのフローチャートである。
先ず、圧縮機1の運転周波数がある周波数、例えば50Hz以下で、低圧圧力センサ8が検知した低圧飽和温度が、例えば−20℃以下の運転であるかどうかを識別する(ステップS−1)。そして、運転がある時間、例えば積算3時間以上になると(ステップS−2)、ガス冷媒バイパス回路9の開閉弁10を開放する(ステップS−3)。これにより、圧縮機1の吐出ガスがガス冷媒バイパス回路9を介して吸入側に流れ込むので、圧縮機1に吸込む冷媒量が増加し、低圧飽和温度が上昇する。
FIG. 4 is a flowchart for explaining an example of operation control of the refrigeration apparatus according to the present embodiment.
First, it is determined whether or not the operation frequency of the compressor 1 is an operation at a certain frequency, for example, 50 Hz or less, and the low-pressure saturation temperature detected by the low-pressure sensor 8 is, for example, -20 ° C. or less (step S-1). When the operation is continued for a certain time, for example, 3 hours or more (step S-2), the on-off valve 10 of the gas refrigerant bypass circuit 9 is opened (step S-3). Thereby, since the discharge gas of the compressor 1 flows into the suction side via the gas refrigerant bypass circuit 9, the amount of refrigerant sucked into the compressor 1 increases and the low-pressure saturation temperature rises.

ついで、圧縮機1の運転周波数を増加させ(ステップS−4)、ガス冷媒バイパス回路9の開閉弁10が開く前の低圧飽和温度になるようにして開閉弁10を閉じれば(ステップS−5)、蒸発器5に流れる冷媒量及び低温飽和温度はそのままで、気液分離器6に流れる冷媒量を増加させることができる。よって、気液分離器6から圧縮機1へ返油を行うための圧力差PSを十分確保することができるので、圧縮機1への返油を行うことができる。つまり、図3(b)に示すように、返油できない領域で運転していたAの状態から、返油できる領域の運転Bに移動させるのである。 Next, the operating frequency of the compressor 1 is increased (step S-4), and the on-off valve 10 is closed so as to reach the low pressure saturation temperature before the on-off valve 10 of the gas refrigerant bypass circuit 9 is opened (step S-5). ) The amount of refrigerant flowing to the gas-liquid separator 6 can be increased while the amount of refrigerant flowing to the evaporator 5 and the low temperature saturation temperature remain unchanged. Therefore, since the pressure difference P S for performing oil return from the gas-liquid separator 6 to the compressor 1 can be sufficiently secured, it is possible to perform the oil return to the compressor 1. That is, as shown in FIG. 3 (b), the state of A that was operating in the region where oil cannot be returned is moved to operation B in the region where oil can be returned.

このようなガス冷媒バイパス回路9の開閉弁10を開いたのちの運転時間を、例えば、60Hz以上の運転を積算8分、又は70Hz以上の運転を積算1分、あるいはガス冷媒バイパス回路9の開閉弁10を開いてから15分経過の如く、圧縮機1を運転する周波数に応じてあらかじめ設定しておくことにより、バイパス回路9の開閉弁10を開く返油運転を最適に行うことができる。
よって、蒸発器5の能力不足を生じることがなく、油タンク機能を備えた気液分離器6から圧縮機1へ確実に返油することのできる信頼性の高い冷凍装置を得ることができる。
For example, the operation time after opening the on-off valve 10 of the gas refrigerant bypass circuit 9 is, for example, an operation of 60 Hz or more is integrated for 8 minutes, or an operation of 70 Hz or more is integrated for 1 minute, or the gas refrigerant bypass circuit 9 is opened or closed. By setting in advance according to the frequency at which the compressor 1 is operated as 15 minutes have elapsed since the valve 10 was opened, the oil return operation for opening the on-off valve 10 of the bypass circuit 9 can be optimally performed.
Therefore, it is possible to obtain a highly reliable refrigeration apparatus capable of reliably returning oil from the gas-liquid separator 6 having an oil tank function to the compressor 1 without causing a shortage of the capacity of the evaporator 5.

[実施の形態2]
図5は本発明の実施の形態2に係る冷凍装置の冷媒回路の説明図、図6は図5の返油機構の説明図である。なお、実施の形態1と同じ部分にはこれと同じ符号を付し、説明を省略する。
図5において、11は受液器3と膨張機構4との間の室部ユニット20の主冷媒回路15に設けられた二重管式熱交換器、12は一端が二重管式熱交換器11と膨張機構4との間に接続され、二重管式熱交換器11を経て他端が蒸発器5と気液分離器6との間に接続された液冷媒バイパス回路で、液冷媒の流量を制御する流量制御弁13が設けられている。また、気液分離器6内に配設された配管15aのJ字状折曲げ部には、油戻し穴18が設けられている。
[Embodiment 2]
FIG. 5 is an explanatory diagram of the refrigerant circuit of the refrigeration apparatus according to Embodiment 2 of the present invention, and FIG. 6 is an explanatory diagram of the oil return mechanism of FIG. The same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
In FIG. 5, 11 is a double-pipe heat exchanger provided in the main refrigerant circuit 15 of the chamber unit 20 between the liquid receiver 3 and the expansion mechanism 4, and 12 is a double-pipe heat exchanger at one end. 11 and the expansion mechanism 4, and a liquid refrigerant bypass circuit in which the other end is connected between the evaporator 5 and the gas-liquid separator 6 through the double pipe heat exchanger 11. A flow control valve 13 for controlling the flow rate is provided. An oil return hole 18 is provided in a J-shaped bent portion of the pipe 15 a disposed in the gas-liquid separator 6.

上記のように構成した冷媒回路において、通常の運転時においては、液冷媒バイパス回路12に設けた流量制御弁13は、バイパスされた液冷媒が二重管式熱交換器11内において蒸発し、ガス化してしまうように開度が調整されているため、液冷媒バイパス回路12から気液分離器6のある低圧側へは、ガス冷媒のみが流れるようになっている。また、蒸発器5へ流れる冷媒は、上記の制御により過冷媒度が増加するため、膨張機構4の前でのフラッシュガスの発生を防止することができるので信頼性が向上し、蒸発器5の能力をアップすることができる。   In the refrigerant circuit configured as described above, during normal operation, the flow rate control valve 13 provided in the liquid refrigerant bypass circuit 12 evaporates the bypassed liquid refrigerant in the double-pipe heat exchanger 11, Since the opening degree is adjusted so as to gasify, only the gas refrigerant flows from the liquid refrigerant bypass circuit 12 to the low pressure side where the gas-liquid separator 6 is located. In addition, the refrigerant flowing to the evaporator 5 increases in the degree of super refrigerant due to the above control, so that the generation of flash gas in front of the expansion mechanism 4 can be prevented, so that the reliability is improved and the evaporator 5 You can improve your ability.

本実施の形態においても、返油機構7の作用は実施の形態1の場合と同様である。そして、気液分離器6内には、その油面が油戻し穴18の下方になるような量の油17があらかじめ封入されており、通常運転の場合には、前述のように、気液分離器6内の圧力P1と圧縮機1内の圧力P2との圧力差PS=P1−P2によって、気液分離器6内の油17が返油配管16から圧縮機1へ移動するため、気液分離器6内の油17が油戻し穴18から圧縮機1へ移動することはない。 Also in the present embodiment, the operation of the oil return mechanism 7 is the same as that in the first embodiment. In the gas-liquid separator 6, an amount of oil 17 whose oil level is below the oil return hole 18 is sealed in advance, and in normal operation, as described above, the gas-liquid separator Due to the pressure difference P S = P 1 −P 2 between the pressure P 1 in the separator 6 and the pressure P 2 in the compressor 1, the oil 17 in the gas-liquid separator 6 is transferred from the oil return pipe 16 to the compressor 1. Therefore, the oil 17 in the gas-liquid separator 6 does not move from the oil return hole 18 to the compressor 1.

図7は本実施の形態に係る冷媒回路の運転制御の一例を説明するためのフローチャートである。
先ず、圧縮機1の運転周波数がある周波数(例えば、50Hz以下)で、低圧圧力センサ8が検知する低圧飽和温度がある温度(例えば、−20℃以下)であるかどうかを識別する(ステップS−11)。そして、その運転がある時間(例えば、積算3時間以上)経過すると(ステップS−12)、液冷媒バイパス回路12の流量制御弁13の開度をアップし(ステップS−13)、2重管式熱交換器11で蒸発されない液冷媒が気液分離器6に流れ込むようにする。
FIG. 7 is a flowchart for explaining an example of operation control of the refrigerant circuit according to the present embodiment.
First, it is identified whether or not the operating frequency of the compressor 1 is a certain frequency (for example, 50 Hz or less) and the low-pressure saturation temperature detected by the low-pressure sensor 8 is a certain temperature (for example, −20 ° C. or less) (step S). -11). When a certain time (for example, 3 hours or more) has elapsed (step S-12), the opening degree of the flow control valve 13 of the liquid refrigerant bypass circuit 12 is increased (step S-13), and the double pipe The liquid refrigerant that is not evaporated by the heat exchanger 11 flows into the gas-liquid separator 6.

このとき、圧縮機1の運転周波数を増加させ、蒸発器5への冷媒流量と低圧飽和温度を流量制御弁13の開度を変化させる前後と同じようにして、蒸発器5の能力が低下しないようにする。
この場合、気液分離器6に流入した液冷媒は油17と混合する。そして、気液分離器6内の油面が逐次上昇して返油穴18の高さに達すると、返油穴18から冷媒と油17が連通配管15aを通って圧縮機1へ流れ込み、結果として圧縮機1へ油17を移動させることができる。
At this time, the operating frequency of the compressor 1 is increased, the refrigerant flow rate to the evaporator 5 and the low-pressure saturation temperature are made the same as before and after the opening degree of the flow control valve 13 is changed, and the ability of the evaporator 5 is not lowered. Like that.
In this case, the liquid refrigerant flowing into the gas-liquid separator 6 is mixed with the oil 17. Then, when the oil level in the gas-liquid separator 6 rises sequentially and reaches the height of the oil return hole 18, the refrigerant and the oil 17 flow into the compressor 1 from the oil return hole 18 through the communication pipe 15a. As a result, the oil 17 can be moved to the compressor 1.

しかしながら、このような液冷媒をバイパスする運転を長時間継続すると、圧縮機1へ液冷媒が多量に流れ込んで油濃度が低下し、圧縮機1の故障につながるおそれがある。そのため、液冷媒をバイパスさせる時間を、気液分離器6内の油面が一時的に油戻し穴18の高さまで上昇する時間、例えば10分程度とし(ステップS−14)、この時間を経過したときは流量制御弁13の開度を元に戻すようにすれば(ステップS−15)、最適の油戻し運転を行うことができる。
これにより、蒸発器5が能力不足を生ずることがなく、気液分離器6から圧縮機1へ確実に返油できるので、信頼性の高い冷凍装置を得ることができる。
However, if the operation of bypassing the liquid refrigerant is continued for a long time, a large amount of the liquid refrigerant flows into the compressor 1 to reduce the oil concentration, which may lead to a failure of the compressor 1. Therefore, the time for bypassing the liquid refrigerant is set to a time for which the oil level in the gas-liquid separator 6 temporarily rises to the height of the oil return hole 18, for example, about 10 minutes (step S-14). If the opening degree of the flow control valve 13 is returned to the original value (step S-15), the optimum oil return operation can be performed.
Thereby, since the evaporator 5 does not cause a shortage of capacity and oil can be reliably returned from the gas-liquid separator 6 to the compressor 1, a highly reliable refrigeration apparatus can be obtained.

[実施の形態3]
図8は本発明の実施の形態3に係る冷凍装置の冷媒回路の説明図、図9は図8の返油機構の説明図である。なお、実施の形態1、2と同じ部分にはこれと同じ符号を付し、説明を省略する。
本実施の形態は、実施の形態1若しくは2、又は図8に示すように、ガス冷媒バイパス回路9と液冷媒バイパス回路12の両者を含む冷媒回路において、返油機構7の油タンクを兼ねた気液分離器6の油の取出し口6aを、圧縮機1への返油配管16の最も高い位置よりさらに高い位置に設けたものである。
[Embodiment 3]
FIG. 8 is an explanatory diagram of the refrigerant circuit of the refrigeration apparatus according to Embodiment 3 of the present invention, and FIG. 9 is an explanatory diagram of the oil return mechanism of FIG. The same parts as those in the first and second embodiments are denoted by the same reference numerals, and description thereof is omitted.
In the refrigerant circuit including both the gas refrigerant bypass circuit 9 and the liquid refrigerant bypass circuit 12, the present embodiment also serves as the oil tank of the oil return mechanism 7, as shown in the first or second embodiment or FIG. The oil outlet 6 a of the gas-liquid separator 6 is provided at a position higher than the highest position of the oil return pipe 16 to the compressor 1.

前述のように、気液分離器6内の油17は、気液分離器6内の圧力P1と、圧縮機1内の圧力P2との圧力差PS=P1−P2によって圧縮機1へ移動するが、本実施の形態はこれに加えて、気液分離器6の油取出し口6aが圧縮機1への返油配管16の最も高い位置よりさらに高い位置に設けたので、上記の圧力差PSに気液分離器6の油17の位置エネルギーが加わるため、圧縮機1が運転するすべての領域において、気液分離機6内の油17を圧縮機1へ供給することができる。 As described above, the oil 17 in the gas-liquid separator 6, the compression pressure P 1 of the gas-liquid separator 6, the pressure difference P S = P 1 -P 2 and pressure P 2 of the compressor 1 In this embodiment, in addition to this, since the oil outlet 6a of the gas-liquid separator 6 is provided at a position higher than the highest position of the oil return pipe 16 to the compressor 1, since the above pressure difference P S is the potential energy of the gas-liquid separator 6 of the oil 17 applied in all areas where the compressor 1 is operated, to supply the oil 17 in the gas-liquid separator 6 to the compressor 1 Can do.

本実施の形態によれば、油戻しのための特別な運転制御による室内ユニット31の能力不足を生ずることがなく、気液分離器6から圧縮機1へ確実に返油することができるので、信頼性の高い冷凍装置を得ることができる。なお、本実施の形態は、後述の実施の形態4の油タンク19にも実施することができる。   According to the present embodiment, it is possible to reliably return oil from the gas-liquid separator 6 to the compressor 1 without causing insufficient capacity of the indoor unit 31 due to special operation control for oil return. A highly reliable refrigeration apparatus can be obtained. The present embodiment can also be implemented in an oil tank 19 according to a fourth embodiment described later.

[実施の形態4]
図10は本発明の実施の形態4に係る冷凍装置の冷媒回路の説明図である。なお、実施の形態3(図8)と同じ部分にはこれと同じ符号を付し、説明を省略する。
実施の形態1〜3では、気液分離器6に油17を入れて油タンクを兼ねた場合を示したが、本実施の形態は、気液分離器6とは別に油タンク19を設け、圧縮機1と蒸発器5との間に、気液分離器6と油タンク19を直列に接続したものである。
[Embodiment 4]
FIG. 10 is an explanatory diagram of the refrigerant circuit of the refrigeration apparatus according to Embodiment 4 of the present invention. The same parts as those in the third embodiment (FIG. 8) are denoted by the same reference numerals, and description thereof is omitted.
In the first to third embodiments, the case where the oil 17 is added to the gas-liquid separator 6 and also serves as the oil tank is shown. However, in the present embodiment, the oil tank 19 is provided separately from the gas-liquid separator 6, A gas-liquid separator 6 and an oil tank 19 are connected in series between the compressor 1 and the evaporator 5.

蒸発器5に接続された主冷媒回路15の他端には気液分離器6が接続されており、一端が気液分離器6内に配設された配管15aの他端と、低圧圧力センサ8を有し、一端が圧縮機1に接続された配管15bの他端が、それぞれ油が入れられた油タンク19内に開口しており、油タンク19の下部と圧縮機1の下部との間には、返油機構7を構成する返油配管16が接続されている。   A gas-liquid separator 6 is connected to the other end of the main refrigerant circuit 15 connected to the evaporator 5, one end of the pipe 15 a disposed in the gas-liquid separator 6, and a low-pressure sensor. 8, and the other end of the pipe 15 b, one end of which is connected to the compressor 1, is opened in an oil tank 19 in which oil is put, and the lower part of the oil tank 19 and the lower part of the compressor 1 are An oil return pipe 16 constituting the oil return mechanism 7 is connected between them.

本実施の形態においても、油タンク19内の圧力P1と、圧縮機1内の圧力P2との圧力差PS=P1−P2によって、油タンク19内の油が圧縮機1に移動する作用は、実施の形態1〜3の場合と同様であって、図3で説明したように、圧縮機1の運転状態に応じて油タンク19から圧縮機1へ返油できなくなる領域があることも同じである。また、実施の形態1又は2のフローチャート(図4、図7)で説明したように、圧縮機1の運転状態に応じてガス冷媒バイパス回路9の開閉弁10又は液冷媒バイパス回路12の流量制御弁13を制御することにより、油タンク19から圧縮機1へ返油を行うことができる。 Also in the present embodiment, the oil in the oil tank 19 is supplied to the compressor 1 by the pressure difference P S = P 1 −P 2 between the pressure P 1 in the oil tank 19 and the pressure P 2 in the compressor 1. The moving action is the same as in the first to third embodiments. As described with reference to FIG. 3, there is a region where oil cannot be returned from the oil tank 19 to the compressor 1 according to the operating state of the compressor 1. The same is true. Further, as described in the flowcharts of FIGS. 1 and 2 (FIGS. 4 and 7), the flow rate control of the on-off valve 10 of the gas refrigerant bypass circuit 9 or the liquid refrigerant bypass circuit 12 according to the operating state of the compressor 1. By controlling the valve 13, oil can be returned from the oil tank 19 to the compressor 1.

本実施の形態を説明する図10は、実施の形態3に係る冷媒回路とほぼ同様の冷媒回路が示してあるが、実施の形態1、2においても、本実施の形態と同様に、気液分離器6と油タンク19とを分離することができる。   FIG. 10 illustrating the present embodiment shows a refrigerant circuit that is substantially the same as the refrigerant circuit according to the third embodiment. However, in the first and second embodiments, as in the present embodiment, the gas-liquid The separator 6 and the oil tank 19 can be separated.

本発明の実施の形態1に係る冷凍装置の冷媒回路の説明図である。It is explanatory drawing of the refrigerant circuit of the freezing apparatus which concerns on Embodiment 1 of this invention. 図1の返油機構の説明図である。It is explanatory drawing of the oil return mechanism of FIG. 圧縮機の運転周波数と低圧飽和温度に対応した返油特性の一例を示す線図である。It is a diagram which shows an example of the oil return characteristic corresponding to the operating frequency and low-pressure saturation temperature of a compressor. 実施の形態1の冷凍装置の運転の一例を説明するためのフローチャートである。3 is a flowchart for explaining an example of the operation of the refrigeration apparatus of the first embodiment. 本発明の実施の形態2に係る冷凍装置の冷媒回路の説明図である。It is explanatory drawing of the refrigerant circuit of the freezing apparatus which concerns on Embodiment 2 of this invention. 図5の返油機構の説明図である。It is explanatory drawing of the oil return mechanism of FIG. 実施の形態2の冷凍装置の運転の一例を説明するためのフローチャートである。6 is a flowchart for explaining an example of operation of the refrigeration apparatus of Embodiment 2. 本発明の実施の形態3の冷凍装置の冷媒回路の説明図である。It is explanatory drawing of the refrigerant circuit of the freezing apparatus of Embodiment 3 of this invention. 図8の返油機構の説明図である。It is explanatory drawing of the oil return mechanism of FIG. 本発明の実施の形態4の冷凍装置の冷媒回路の説明図である。It is explanatory drawing of the refrigerant circuit of the freezing apparatus of Embodiment 4 of this invention.

符号の説明Explanation of symbols

1 圧縮機、2 凝縮器、3 受液器、4 膨張機構、5 蒸発器、6 気液分離器、6a 油の取出し口、7 返油機構、8 低圧圧力センサ、9 ガス冷媒バイパス回路、10 開閉弁、11 二重管熱交換器、12 液冷媒バイパス回路、13 流量制御弁、15 主冷媒回路、15a,15b 配管、16 返油配管、17 油、18 油戻し穴、19 油タンク。
DESCRIPTION OF SYMBOLS 1 Compressor, 2 Condenser, 3 Receiver, 4 Expansion mechanism, 5 Evaporator, 6 Gas-liquid separator, 6a Oil take-out port, 7 Oil return mechanism, 8 Low pressure sensor, 9 Gas refrigerant bypass circuit, 10 Open / close valve, 11 double pipe heat exchanger, 12 liquid refrigerant bypass circuit, 13 flow control valve, 15 main refrigerant circuit, 15a, 15b piping, 16 oil return piping, 17 oil, 18 oil return hole, 19 oil tank.

Claims (7)

インバータ電源によって駆動される圧縮機、凝縮器、受液器、膨張機構、蒸発器、気液分離器、油タンク、該油タンクと前記圧縮機との間に低圧圧力センサが設けられた主冷媒回路と、前記油タンクから圧縮機に返油する返油機構とを有し、
流量制御弁を有し一端が前記受液器と膨張機構との間に接続され、他端が前記蒸発器と気液分離器との間に接続された液冷媒バイパス回路と、
前記受液器と前記膨張機構の間に設置され、前記液冷媒バイパス回路を流れる液冷媒を熱交換する二重管式熱交換器と、を設け、
バイパスされた液冷媒が前記二重管式熱交換器内において蒸発し、ガス化してしまうような開度に調整されている前記流量制御弁の開度を、前記圧縮機の回転数と低圧圧力が所定の基準値以下となり、その状態が所定時間経過したときにアップし、
前記気液分離器に液冷媒を流入させ前記気液分離器の油面を所定の高さに達するようにする
ことを特徴とする冷凍装置。
Compressor, condenser, receiver, expansion mechanism, evaporator, gas-liquid separator, oil tank, and main refrigerant provided with a low-pressure sensor between the oil tank and the compressor driven by an inverter power supply A circuit and an oil return mechanism for returning oil from the oil tank to the compressor;
A liquid refrigerant bypass circuit having a flow control valve, one end connected between the receiver and the expansion mechanism, and the other end connected between the evaporator and the gas-liquid separator;
A double-pipe heat exchanger installed between the liquid receiver and the expansion mechanism for exchanging heat of the liquid refrigerant flowing through the liquid refrigerant bypass circuit;
The opening of the flow control valve, which is adjusted to such an opening that the liquid refrigerant bypassed evaporates and gasifies in the double-tube heat exchanger, and the rotation speed of the compressor and the low pressure Will be up when the time is less than the predetermined reference value and the state has elapsed for a predetermined time,
A refrigeration apparatus characterized in that a liquid refrigerant is introduced into the gas-liquid separator so that the oil level of the gas-liquid separator reaches a predetermined height .
液冷媒をバイパスさせる時間を、
前記気液分離器内の油面が一時的に前記気液分離器内に配設された配管の油戻し穴の高さまで上昇する時間としている
ことを特徴とする請求項1記載の冷凍装置。
The time to bypass the liquid refrigerant
2. The refrigeration apparatus according to claim 1 , wherein the oil level in the gas-liquid separator is temporarily set to a height of an oil return hole of a pipe disposed in the gas-liquid separator .
前記気液分離器内の油面が一時的に前記油戻し穴の高さまで上昇した後に、
前記流量制御弁の開度を元に戻すようにする
ことを特徴とする請求項2記載の冷凍装置。
After the oil level in the gas-liquid separator temporarily rises to the height of the oil return hole,
3. The refrigeration apparatus according to claim 2, wherein the opening degree of the flow control valve is restored .
開閉弁を有し一端が前記圧縮機と凝縮器との間に接続され、他端が前記蒸発器と気液分離器との間に接続されたガス冷媒バイパス回路を設けた
ことを特徴とする請求項1〜3のいずれかに記載の冷凍装置。
A gas refrigerant bypass circuit having an on-off valve and having one end connected between the compressor and a condenser and the other end connected between the evaporator and a gas-liquid separator is provided. The refrigeration apparatus according to any one of claims 1 to 3 .
前記油タンクを省略し、前記気液分離器に油タンク機能を備えた
ことを特徴とする請求項1〜4のいずれかに記載の冷凍装置。
The refrigeration apparatus according to any one of claims 1 to 4, wherein the oil tank is omitted and the gas-liquid separator is provided with an oil tank function.
冷媒として、HFC冷媒を用いた
ことを特徴とする請求項1〜5のいずれかに記載の冷凍装置。
The refrigeration apparatus according to claim 1, wherein an HFC refrigerant is used as the refrigerant.
前記油タンク又は油タンク機能を備えた気液分離器の油取出し口を、圧縮機への返油配管の最も高い位置よりさらに高い位置に設けた
ことを特徴とする請求項1〜6のいずれかに記載の冷凍装置。
The oil outlet of the gas-liquid separator having the oil tank or the oil tank function is provided at a position higher than the highest position of the oil return pipe to the compressor. The refrigeration apparatus according to crab.
JP2005097106A 2005-03-30 2005-03-30 Refrigeration equipment Expired - Fee Related JP4537242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005097106A JP4537242B2 (en) 2005-03-30 2005-03-30 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005097106A JP4537242B2 (en) 2005-03-30 2005-03-30 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2006275440A JP2006275440A (en) 2006-10-12
JP4537242B2 true JP4537242B2 (en) 2010-09-01

Family

ID=37210384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005097106A Expired - Fee Related JP4537242B2 (en) 2005-03-30 2005-03-30 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4537242B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127531A (en) * 2008-11-27 2010-06-10 Mitsubishi Electric Corp Refrigeration air conditioner
JP2012102895A (en) * 2010-11-08 2012-05-31 Panasonic Corp Refrigerating cycle device and water heating/cooling device
JP5816789B2 (en) * 2011-06-17 2015-11-18 パナソニックIpマネジメント株式会社 Refrigeration cycle apparatus and hot water heating apparatus including the same
JP5819000B2 (en) * 2012-09-21 2015-11-18 三菱電機株式会社 Refrigeration equipment
CN102865690B (en) * 2012-09-26 2015-09-23 美意(浙江)空调设备有限公司 Water cooling unit
WO2017098655A1 (en) * 2015-12-11 2017-06-15 三菱電機株式会社 Refrigeration cycle device
JP6833065B2 (en) * 2017-11-29 2021-02-24 三菱電機株式会社 Refrigeration equipment and outdoor unit
JP7268424B2 (en) * 2019-03-19 2023-05-08 富士電機株式会社 Scroll steam expansion system
WO2020202519A1 (en) * 2019-04-04 2020-10-08 三菱電機株式会社 Refrigeration cycle device
KR20220031623A (en) * 2019-06-17 2022-03-11 존슨 컨트롤즈 타이코 아이피 홀딩스 엘엘피 Lubrication systems for compressors

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220057U (en) * 1988-07-25 1990-02-09
JPH0296564U (en) * 1989-01-20 1990-08-01
JPH0331659A (en) * 1989-06-29 1991-02-12 Mitsubishi Electric Corp Air conditioner
JPH085204A (en) * 1994-06-16 1996-01-12 Mitsubishi Heavy Ind Ltd Refrigerating cycle equipment
JP2001082815A (en) * 1999-09-14 2001-03-30 Mitsubishi Electric Corp Refrigeration airconditioning cycle device
JP2002139261A (en) * 2000-11-01 2002-05-17 Mitsubishi Electric Corp Refrigeration cycle apparatus
JP2003262418A (en) * 2002-03-06 2003-09-19 Mitsubishi Electric Corp Refrigerating air conditioner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220057U (en) * 1988-07-25 1990-02-09
JPH0296564U (en) * 1989-01-20 1990-08-01
JPH0331659A (en) * 1989-06-29 1991-02-12 Mitsubishi Electric Corp Air conditioner
JPH085204A (en) * 1994-06-16 1996-01-12 Mitsubishi Heavy Ind Ltd Refrigerating cycle equipment
JP2001082815A (en) * 1999-09-14 2001-03-30 Mitsubishi Electric Corp Refrigeration airconditioning cycle device
JP2002139261A (en) * 2000-11-01 2002-05-17 Mitsubishi Electric Corp Refrigeration cycle apparatus
JP2003262418A (en) * 2002-03-06 2003-09-19 Mitsubishi Electric Corp Refrigerating air conditioner

Also Published As

Publication number Publication date
JP2006275440A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
JP4537242B2 (en) Refrigeration equipment
JP6935720B2 (en) Refrigeration equipment
JP4931848B2 (en) Heat pump type outdoor unit for hot water supply
JP4394709B2 (en) Apparatus and method for preventing accumulation of liquid refrigerant in air conditioner
EP2015004B1 (en) Air conditioner
JPWO2006085557A1 (en) Refrigeration cycle equipment
JP2006078087A (en) Refrigeration unit
JP2007285675A (en) Refrigerating appliance
JP5783783B2 (en) Heat source side unit and refrigeration cycle apparatus
JP2011047545A (en) Operation control method of multi-chamber type air conditioner
JP2006300374A (en) Air conditioner
WO2007118293A3 (en) Flow rate control system in refrigeration circuits, method for controlling a refrigeration system and a refrigeration system
JP2008241065A (en) Refrigerating device and oil returning method of refrigerating device
JP2007101127A (en) Air conditioner
JP4245044B2 (en) Refrigeration equipment
JP3750520B2 (en) Refrigeration equipment
JP4039193B2 (en) Control method of multi-room air conditioner
JP2005214575A (en) Refrigerator
JP2000249385A (en) Freezer
JP2003074998A (en) Refrigeration cycle unit
JP2010019439A (en) Refrigerating cycle device and operation method of refrigerating cycle device
JP2005274039A (en) Air-conditioner with defrosting function
JP4082040B2 (en) Refrigeration equipment
JP2010139122A (en) Air conditioner
JP6003616B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100617

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4537242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees