JP2002139261A - Refrigeration cycle apparatus - Google Patents

Refrigeration cycle apparatus

Info

Publication number
JP2002139261A
JP2002139261A JP2000334433A JP2000334433A JP2002139261A JP 2002139261 A JP2002139261 A JP 2002139261A JP 2000334433 A JP2000334433 A JP 2000334433A JP 2000334433 A JP2000334433 A JP 2000334433A JP 2002139261 A JP2002139261 A JP 2002139261A
Authority
JP
Japan
Prior art keywords
refrigerant
oil
refrigerating machine
refrigeration cycle
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000334433A
Other languages
Japanese (ja)
Inventor
Kazuyuki Akiyama
和之 穐山
Shin Sekiya
慎 関屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000334433A priority Critical patent/JP2002139261A/en
Publication of JP2002139261A publication Critical patent/JP2002139261A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Lubricants (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the wear of slide parts such as bearings of a compressor provided in a refrigeration cycle using an HFC refrigerant, and reduce the sludge produced in mechanochemical reaction due to the wear, thereby improving the reliability. SOLUTION: The refrigeration cycle is composed of a compressor having an oil pan for holding a refrigeration oil in a container, a condenser for condensing a refrigerant discharged from the compressor, an expander for expanding the condensed refrigerant and an evaporator for evaporating the expanded refrigerant. As the refrigerant an HFC type one is used, and as the refrigeration machine oil an oil having a density inverting temperature at which the density of the oil exceeds the liquid density of the refrigerant, lower than a lower limit condensation temperature in operation of the refrigeration cycle is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空気調和機、冷蔵
庫、冷凍機等の冷凍空調装置など冷凍サイクルを構成
し、冷媒にHFC系冷媒を使用するものに係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating cycle such as a refrigerating air conditioner such as an air conditioner, a refrigerator and a refrigerating machine, and uses an HFC-based refrigerant as a refrigerant.

【0002】[0002]

【従来の技術】空気調和機、冷蔵庫、冷凍庫等冷凍サイ
クルを構成するものとしては、例えば、特開平10−1
03797号公報などがある。図14は従来の冷凍サイ
クルの一例を表した図である。図において、1は圧縮
機、2は第一熱交換器であり、冷房運転時の凝縮器であ
る。3aは膨張弁等の絞り機構、4は第二熱交換器であ
り、冷房運転時の蒸発器4であり、順次接続されて冷凍
サイクルを構成している。
2. Description of the Related Art A refrigeration cycle such as an air conditioner, a refrigerator and a freezer is disclosed in, for example, Japanese Patent Application Laid-Open No. 10-1.
No. 03797. FIG. 14 shows an example of a conventional refrigeration cycle. In the figure, 1 is a compressor, 2 is a first heat exchanger, and is a condenser during cooling operation. Reference numeral 3a denotes a throttle mechanism such as an expansion valve, and 4 denotes a second heat exchanger, which is an evaporator 4 for a cooling operation, and is connected in sequence to form a refrigeration cycle.

【0003】冷凍サイクルに用いられる冷媒には、近
年、地球環境に対する影響の小さいHFC冷媒、例え
ば、HFC32、HFC125、HFC134aの三種
混合冷媒、HFC125、HFC143a、HFC13
4aの三種混合冷媒、HFC32、HFC125の二種
混合冷媒、HFC134a単体冷媒等が用いられてい
る。冷凍機油10としては、HFC冷媒と相溶性のある
エステル油、エーテル油、又は、相溶性のないハードア
ルキルベンゼン油等が用いられている。
[0003] In recent years, refrigerants used in refrigeration cycles include HFC refrigerants having little influence on the global environment, for example, HFC32, HFC125, and HFC134a mixed refrigerants, HFC125, HFC143a, and HFC13.
A mixed refrigerant of 4a, a mixed refrigerant of HFC32 and HFC125, a simple refrigerant of HFC134a, and the like are used. As the refrigerating machine oil 10, an ester oil, an ether oil, or a hard alkylbenzene oil that is incompatible with the HFC refrigerant is used.

【0004】次に冷媒及び冷凍機油10の挙動を説明す
る。圧縮機1下部には、油溜め1aが設けられており、
相溶油を使用した場合は、冷媒が溶解した冷凍機油10
の混合液が油溜め1aに存在する。油溜め1aに溜まっ
ている冷凍機油10、又は冷凍機油10と冷媒の混合液
を、油ポンプ1bが吸い上げ、吸い上げられた冷凍機油
10、又は冷凍機油10と冷媒の混合液は、軸受等の摺
動部を潤滑した後、油溜め1aに返油される。
Next, the behavior of the refrigerant and the refrigerating machine oil 10 will be described. An oil sump 1a is provided at a lower part of the compressor 1,
If a compatible oil is used, the refrigerant oil 10
Is present in the oil reservoir 1a. The oil pump 1b sucks up the refrigerating machine oil 10 or the mixed solution of the refrigerating machine oil 10 and the refrigerant accumulated in the oil reservoir 1a, and the refrigerating machine oil 10 or the mixed liquid of the refrigerating machine oil 10 and the refrigerant is slid on bearings or the like. After lubricating the moving part, the oil is returned to the oil reservoir 1a.

【0005】この時に一部の冷凍機油10は、圧縮機構
部1c内で圧縮された冷媒とともに圧縮機吐出管1fか
ら冷凍サイクルに吐出される。これらの冷媒、及び冷凍
機油10は凝縮器2、膨張弁等の絞り機構3a、蒸発器
4を経て循環した後に圧縮機吸入管1gから再度圧縮機
1内に吸入される。この冷媒循環回路の途中に、レシー
バ6、アキュムレータ5等の余剰冷媒を溜める容器が存
在する場合、冷凍機油10は、前記レシーバ6や前記ア
キュムレータ5等の容器内に溜まり、容器内に設けられ
た返油機構の作用により、冷凍機油は冷凍サイクルへ返
油される。
At this time, a part of the refrigerating machine oil 10 is discharged from the compressor discharge pipe 1f to the refrigerating cycle together with the refrigerant compressed in the compression mechanism 1c. The refrigerant and the refrigerating machine oil 10 are circulated through the condenser 2, the expansion mechanism 3a such as an expansion valve, and the evaporator 4, and then sucked into the compressor 1 again from the compressor suction pipe 1g. If there is a container for storing excess refrigerant such as the receiver 6 and the accumulator 5 in the middle of the refrigerant circuit, the refrigerating machine oil 10 is stored in the container such as the receiver 6 and the accumulator 5 and provided in the container. By the operation of the oil return mechanism, the refrigerating machine oil is returned to the refrigeration cycle.

【0006】[0006]

【発明が解決しようとする課題】例えば、相溶油のエス
テル油とHFC系冷媒を組み合わせて使った従来の冷凍
サイクルにおいては、冷媒に塩素が含まれないため、冷
媒中に塩素が含まれるHCFC22(2003年以降環
境規制対象)と鉱油等の組み合わせに比べて潤滑性能が
低下し摺動部の摩耗は増加する。
For example, in a conventional refrigeration cycle using a combination of an ester oil as a compatible oil and an HFC-based refrigerant, the refrigerant does not contain chlorine. The lubricating performance is reduced and the wear of the sliding part is increased as compared with the combination of (eg, subject to environmental regulations after 2003) and mineral oil.

【0007】これは、HCFC22冷媒中に含まれる塩
素が、軸受等摺動部の境界潤滑下で摺動部の摩耗を抑制
する作用、即ち極圧効果をもつためである。従って、H
CFC系の冷媒を使用すれば摺動部の摩耗が抑制される
傾向にあるが、HCFC冷媒はオゾン層を破壊し、地球
環境に悪影響を与える。したがって、オゾン層を破壊し
ないHFC冷媒を使用する場合は、冷媒は極圧効果をも
たず単に冷凍機油を希釈して油粘度を低化させ潤滑性能
を低下させてしまうため、潤滑状態の厳しいロータリー
圧縮機のベーン部やローリングピストン間等の境界潤滑
下では、摩耗が増加して圧縮機故障の一因になってい
た。
[0007] This is because chlorine contained in the HCFC22 refrigerant has an action of suppressing wear of the sliding portion under boundary lubrication of the sliding portion such as a bearing, that is, an extreme pressure effect. Therefore, H
If a CFC-based refrigerant is used, the abrasion of the sliding portion tends to be suppressed, but the HCFC refrigerant destroys the ozone layer and adversely affects the global environment. Therefore, when using an HFC refrigerant that does not destroy the ozone layer, the refrigerant does not have an extreme pressure effect and simply dilutes the refrigerating machine oil to lower the oil viscosity and lower the lubrication performance. Under boundary lubrication such as between a vane portion and a rolling piston of a rotary compressor, abrasion has increased to cause a compressor failure.

【0008】また、HFC系冷媒と非相溶の冷凍機油と
の組み合わせで使用した場合には、条件によっては二相
に分離して液冷媒の層が冷凍機油の層の下方に位置する
ようになり、圧縮機などでは油ポンプが冷凍機油を吸入
することができず、液冷媒を吸入するようになり、液冷
媒により軸受けなどの摺動部を潤滑するようになるため
摺動部の摩耗が増加し、圧縮機故障の一因になってい
た。
When the HFC-based refrigerant is used in combination with an incompatible refrigerating machine oil, the liquid refrigerant may be separated into two phases depending on conditions so that the liquid refrigerant layer is positioned below the refrigerating machine oil layer. In a compressor or the like, the oil pump cannot suck the refrigerating machine oil, but starts to suck the liquid refrigerant, and the liquid refrigerant lubricates the sliding parts such as the bearings. Increased and contributed to compressor failure.

【0009】また、この摩耗によるメカノケミカル反応
によりスラッジが発生し、このスラッジがキャピラリー
チューブ等絞りの開口面積が一定である絞り機構を閉塞
させ、冷凍・空調装置に支障をきたしていた。また、こ
の絞り機構のスラッジによる閉塞を防止するため、高コ
ストの電子制御式膨張弁等を使用する必要があり、コス
トアップになっていた。
Further, sludge is generated due to the mechanochemical reaction due to the wear, and the sludge blocks a restricting mechanism such as a capillary tube having a fixed opening area of a restrictor, which hinders a refrigerating / air-conditioning apparatus. Also, in order to prevent the restriction mechanism from being blocked by sludge, it is necessary to use a high-cost electronically controlled expansion valve or the like, which has increased the cost.

【0010】本発明の目的は、信頼性の高い圧縮機や冷
凍・空調装置などの冷凍サイクル装置を得ることを目的
とする。また、キャピラリーチューブなどの絞り装置の
詰まりなどの無い信頼性の高い冷凍サイクル装置を得る
ことを目的とする。また、冷凍サイクルにHFC冷媒を
使用しても潤滑性能の低下しない冷凍サイクル装置を得
ることを目的とする。また、安価な冷凍サイクル装置を
得ることを目的とする。
An object of the present invention is to provide a refrigeration cycle device such as a compressor or a refrigeration / air-conditioning device with high reliability. It is another object of the present invention to obtain a highly reliable refrigeration cycle device without clogging of a throttle device such as a capillary tube. It is another object of the present invention to provide a refrigeration cycle apparatus in which lubrication performance does not decrease even when an HFC refrigerant is used in a refrigeration cycle. Another object is to obtain an inexpensive refrigeration cycle device.

【0011】[0011]

【課題を解決するための手段】本発明の第1の発明に係
る冷凍サイクル装置は、容器内部に油溜めを有し、油溜
めに冷凍機油を保有する圧縮機と、圧縮機から吐出され
た冷媒を凝縮する凝縮器と、凝縮された冷媒を膨張させ
る膨張装置と、膨張した冷媒を蒸発させる蒸発器とによ
って冷凍サイクルを構成するとともに、冷媒としてHF
C系冷媒を使用し、冷媒の液密度よりも冷凍機油の密度
の方が大きくなる密度逆転温度が冷凍サイクルで運転さ
れる凝縮温度の下限温度よりも低い温度の冷凍機油を使
用したものである。
According to a first aspect of the present invention, there is provided a refrigeration cycle apparatus comprising a compressor having an oil sump inside a container and having a refrigerating machine oil in the oil sump, and a compressor discharged from the compressor. A refrigeration cycle is constituted by a condenser for condensing the refrigerant, an expansion device for expanding the condensed refrigerant, and an evaporator for evaporating the expanded refrigerant.
A refrigerating machine oil that uses a C-based refrigerant and has a density reversal temperature at which the density of the refrigerating machine oil is larger than the liquid density of the refrigerant is lower than the lower limit temperature of the condensing temperature operated in the refrigerating cycle. .

【0012】本発明の第2の発明に係る冷凍サイクル装
置は、凝縮温度下限を30℃としたものである。
A refrigeration cycle apparatus according to a second aspect of the present invention has a lower limit of the condensing temperature of 30 ° C.

【0013】本発明の第3の発明に係る冷凍サイクル装
置は、密度逆転温度が30℃より小さい冷凍機油を使用
するようにしたものである。
A refrigeration cycle apparatus according to a third aspect of the present invention uses refrigeration oil having a density reversal temperature of less than 30 ° C.

【0014】本発明の第4の発明に係る冷凍サイクル装
置は、容器内部に油溜めを有し、油溜めに冷凍機油を保
有する圧縮機と、圧縮機から吐出された冷媒を凝縮する
凝縮器と、凝縮された冷媒を膨張させる膨張装置と、膨
張した冷媒を蒸発させる蒸発器とによって冷凍サイクル
を構成するとともに、冷媒としてHFC系冷媒を使用
し、冷媒の液密度よりも冷凍機油の密度の方が大きくな
る密度逆転温度が冷凍サイクルで運転される蒸発温度の
下限温度よりも低い温度の冷凍機油を使用したものであ
る。
A refrigeration cycle apparatus according to a fourth aspect of the present invention has a compressor having an oil sump in a container and holding refrigerating machine oil in the oil sump, and a condenser for condensing refrigerant discharged from the compressor. And an expansion device that expands the condensed refrigerant, and an evaporator that evaporates the expanded refrigerant constitutes a refrigeration cycle, uses an HFC-based refrigerant as the refrigerant, and has a higher density of the refrigerating machine oil than the liquid density of the refrigerant. The refrigerating machine oil has a higher density reversal temperature than the lower limit of the evaporation temperature operated in the refrigeration cycle.

【0015】本発明の第5の発明に係る冷凍サイクル装
置は、蒸発温度下限を−20℃としたものである。
In a refrigeration cycle apparatus according to a fifth aspect of the present invention, the lower limit of the evaporating temperature is -20.degree.

【0016】本発明の第6の発明に係る冷凍サイクル装
置は、密度逆転温度が−20℃より小さい冷凍機油を使
用するようにしたものである。
A refrigeration cycle apparatus according to a sixth aspect of the present invention uses a refrigerating machine oil having a density reversal temperature of less than -20 ° C.

【0017】本発明の第7の発明に係る冷凍サイクル装
置は、容器内部に油溜めを有し、油溜めに冷凍機油を保
有する圧縮機と、圧縮機から吐出された冷媒を凝縮する
凝縮器と、凝縮された冷媒を減圧させる絞り装置と、減
圧された冷媒を蒸発させる蒸発器とによって冷凍サイク
ルを構成するとともに、冷媒としてHFC系冷媒を使用
し、冷媒の液密度よりも冷凍機油の密度の方が大きくな
る密度逆転温度に対して圧縮機の油溜めの温度が高くな
るように圧縮機を運転させるようにしたものである。
A refrigeration cycle apparatus according to a seventh aspect of the present invention is a compressor having an oil sump inside the container and holding refrigerating machine oil in the oil sump, and a condenser for condensing the refrigerant discharged from the compressor. And a throttling device that decompresses the condensed refrigerant, and an evaporator that evaporates the depressurized refrigerant, constitutes a refrigeration cycle, uses an HFC-based refrigerant as the refrigerant, and has a higher density of the refrigerating machine oil than the liquid density of the refrigerant. The compressor is operated such that the temperature of the oil reservoir of the compressor becomes higher with respect to the density reversal temperature at which the temperature becomes larger.

【0018】本発明の第8の発明に係る冷凍サイクル装
置は、内部に冷凍機油を有する圧縮機の油溜めを加熱す
る加熱手段を設けたものである。
A refrigeration cycle apparatus according to an eighth aspect of the present invention is provided with a heating means for heating an oil reservoir of a compressor having refrigerating machine oil therein.

【0019】本発明の第9の発明に係る冷凍サイクル装
置は、圧縮機として高圧シェルタイプの圧縮機を使用し
たものである。
A refrigeration cycle apparatus according to a ninth aspect of the present invention uses a high-pressure shell type compressor as the compressor.

【0020】本発明の第10の発明に係る冷凍サイクル
装置は、圧縮機、凝縮器、高圧側絞り装置、レシーバ、
低圧側絞り装置、蒸発器とを順次接続して冷凍サイクル
を構成し、冷媒としてHFC系冷媒を使用し、冷媒の液
密度よりも冷凍機油の密度の方が大きくなる密度逆転温
度が凝縮器の凝縮温度下限以下である冷凍機油を使用し
たものである。
[0020] A refrigeration cycle apparatus according to a tenth aspect of the present invention includes a compressor, a condenser, a high-pressure side expansion device, a receiver,
A low-pressure side expansion device and an evaporator are sequentially connected to form a refrigeration cycle, an HFC-based refrigerant is used as a refrigerant, and the density reversal temperature at which the density of the refrigerating machine oil is larger than the liquid density of the refrigerant is higher than that of the condenser. This uses a refrigerating machine oil having a condensation temperature lower than the lower limit.

【0021】本発明の第11の発明に係る冷凍サイクル
装置は、冷媒としてHFC32を使用したものである。
A refrigeration cycle apparatus according to an eleventh aspect of the present invention uses HFC32 as a refrigerant.

【0022】本発明の第12の発明に係る冷凍サイクル
装置は、冷凍機油としてハードアルキルベンゼン系冷凍
機油あるいはエステル系冷凍機油あるいはエーテル系冷
凍機油を使用したものである。
The refrigeration cycle apparatus according to the twelfth aspect of the present invention uses a hard alkylbenzene-based refrigerating machine oil, an ester-based refrigerating machine oil, or an ether-based refrigerating machine oil as the refrigerating machine oil.

【0023】[0023]

【発明の実施の形態】実施の形態1.図1は、実施の形
態1を表す空気調和機、冷蔵庫、冷凍庫等の冷凍・空調
装置に組み込まれ冷凍サイクルを構成する冷凍サイクル
装置の一例を示す図である。図において、1は圧縮機、
8は四方弁、2は第一熱交換器であり、空調装置などの
場合では冷房時には凝縮器として作用し、暖房時には蒸
発器として作用する。3b、3cはキャピラリーチュー
ブなどの絞り機構、6はレシーバであり、余剰冷媒を溜
めることができる。4は第二熱交換器であり、空調装置
などの場合では冷房運転時(実線矢印)には蒸発器とし
て作用し、暖房運転時(点線矢印)には凝縮器として作
用する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a diagram illustrating an example of a refrigeration cycle device that is incorporated in a refrigeration / air-conditioning device such as an air conditioner, a refrigerator, a freezer, or the like and that forms a refrigeration cycle according to the first embodiment. In the figure, 1 is a compressor,
Reference numeral 8 denotes a four-way valve, and reference numeral 2 denotes a first heat exchanger. In the case of an air conditioner or the like, it acts as a condenser during cooling, and acts as an evaporator during heating. Reference numerals 3b and 3c denote a throttle mechanism such as a capillary tube, and 6 denotes a receiver, which can store excess refrigerant. Reference numeral 4 denotes a second heat exchanger, which acts as an evaporator during a cooling operation (solid arrow) in the case of an air conditioner or the like, and acts as a condenser during a heating operation (dotted arrow).

【0024】そして、空調装置などの場合で冷房運転時
には、図中に実線矢印で示したように圧縮機1、四方弁
8、第一熱交換器(凝縮器として作用する)2、絞り機
構3b、レシーバ6、絞り機構3c、第二熱交換器(蒸
発器として作用する)4を順次配管などで接続して閉じ
た冷凍サイクルを構成する。また、暖房運転時には、図
中に点線矢印で示したように圧縮機1、四方弁8、第二
熱交換器(凝縮器として作用する)4、絞り機構3c、
レシーバ6、絞り機構3b、第一熱交換器(蒸発器とし
て作用する)2を順次配管などで接続して閉じた冷凍サ
イクルを構成する。
During a cooling operation in an air conditioner or the like, the compressor 1, the four-way valve 8, the first heat exchanger (acting as a condenser) 2, and the throttle mechanism 3b as indicated by solid arrows in the drawing. , The receiver 6, the throttle mechanism 3c, and the second heat exchanger (acting as an evaporator) 4 are sequentially connected by pipes or the like to form a closed refrigeration cycle. During the heating operation, the compressor 1, the four-way valve 8, the second heat exchanger (acting as a condenser) 4, the throttle mechanism 3c,
The receiver 6, the throttle mechanism 3b, and the first heat exchanger (acting as an evaporator) 2 are sequentially connected by a pipe or the like to form a closed refrigeration cycle.

【0025】また、圧縮機1は、密閉容器1j内に設け
られた油溜め1a内に冷凍機油10が封入されている。
また、1cはスクロールやロータリ形などで冷媒を圧縮
する圧縮機構部、1bは油ポンプであり、クランク軸1
eに設けられている。1dはモータのロータ、1hはモ
ータのステータ、1mは吸入マフラー、1gは吸入管、
1fは吐出管である。
In the compressor 1, a refrigerating machine oil 10 is sealed in an oil reservoir 1a provided in a closed container 1j.
Reference numeral 1c denotes a compression mechanism for compressing the refrigerant in a scroll or rotary type, etc., and 1b denotes an oil pump.
e. 1d is a motor rotor, 1h is a motor stator, 1m is a suction muffler, 1g is a suction pipe,
1f is a discharge pipe.

【0026】ここで、相溶油を使用した場合は、冷媒が
溶解した冷凍機油10が油溜め1aに存在し、非相溶油
を使用した場合は、冷凍機油10のみ、又は冷凍機油1
0と液冷媒が分離した状態のものが油溜め1aに存在す
る。油溜め1aに溜まっている冷凍機油10、又は冷凍
機油10と冷媒の混合液を、油ポンプ1bが吸い上げ、
吸い上げられた冷凍機油10、又は冷凍機油10と冷媒
の混合液は、軸受等の摺動部を潤滑した後、油溜め1a
に返油される。
Here, when the compatible oil is used, the refrigerating machine oil 10 in which the refrigerant is dissolved is present in the oil reservoir 1a, and when the incompatible oil is used, only the refrigerating machine oil 10 or the refrigerating machine oil 1 is used.
A state in which 0 and the liquid refrigerant are separated exists in the oil reservoir 1a. The oil pump 1b draws up the refrigerating machine oil 10 or the mixed liquid of the refrigerating machine oil 10 and the refrigerant accumulated in the oil sump 1a,
The sucked refrigeration oil 10 or the mixed liquid of the refrigeration oil 10 and the refrigerant lubricates sliding parts such as bearings, and then the oil reservoir 1a
Returned to

【0027】この時に、一部の冷凍機油10は、冷房運
転時の場合は、圧縮機構部1c内で圧縮された冷媒とと
もに吐出管1fから冷凍サイクル内に吐出される。これ
らの冷媒、及び冷凍機油10は第一熱交換器(凝縮器)
2、絞り機構3b、レシーバ6、絞り機構3c、第二熱
交換器(蒸発器)4を経て循環した後に圧縮機吸入管1
gから再度圧縮機1内に吸入される。暖房運転時の場合
は、第二熱交換器(凝縮器)4、絞り機構3c、レシー
バ6、絞り機構3b、第一熱交換器(蒸発器)2を経て
循環した後に圧縮機吸入管1gから再度圧縮機1内に吸
入される。
At this time, during the cooling operation, a part of the refrigerating machine oil 10 is discharged from the discharge pipe 1f into the refrigerating cycle together with the refrigerant compressed in the compression mechanism 1c. These refrigerant and refrigerating machine oil 10 are used as a first heat exchanger (condenser).
2. Compressor suction pipe 1 after circulating through throttle mechanism 3b, receiver 6, throttle mechanism 3c, and second heat exchanger (evaporator) 4.
g is sucked into the compressor 1 again. In the case of the heating operation, after circulating through the second heat exchanger (condenser) 4, the throttle mechanism 3c, the receiver 6, the throttle mechanism 3b, and the first heat exchanger (evaporator) 2, from the compressor suction pipe 1g. It is sucked into the compressor 1 again.

【0028】冷凍サイクルに用いられる冷媒は、従来は
HCFC22が用いられているが、オゾン層を破壊する
など地球環境に悪影響を与えることから、本発明ではオ
ゾン層を破壊しないHFC系の冷媒を使用するようにし
ている。本実施の形態では冷媒としてHFC32単体冷
媒を使用している。なぜなら、HFC32冷媒を単体で
冷凍サイクルに使用すれば、同じ温度条件であれば、混
合冷媒を使用した場合に比べて圧力損失が小さく冷凍サ
イクルの性能が良くなるためである。
The refrigerant used in the refrigeration cycle has conventionally used HCFC22. However, since it has an adverse effect on the global environment such as destruction of the ozone layer, the present invention uses an HFC-based refrigerant which does not destroy the ozone layer. I am trying to do it. In the present embodiment, HFC32 simple refrigerant is used as the refrigerant. This is because, when the HFC32 refrigerant is used alone in the refrigeration cycle, the pressure loss is small and the performance of the refrigeration cycle is improved under the same temperature conditions as compared with the case where the mixed refrigerant is used.

【0029】通常、温度が低い状態では液冷媒の密度の
方が冷凍機油の密度よりも大きいが、温度が上昇してい
くと冷凍機油の密度の減少度合いに比べて液冷媒の密度
の減少度合いの方が大きいため、冷凍機油の密度の方が
液冷媒の密度よりも大きくなり密度が逆転する温度が存
在する。この密度が逆転する温度を以下密度逆転温度と
呼ぶことにする。
Normally, when the temperature is low, the density of the liquid refrigerant is higher than the density of the refrigerating machine oil. However, as the temperature increases, the density of the liquid refrigerant decreases more than the density of the refrigerating machine oil decreases. Therefore, there is a temperature at which the density of the refrigerating machine oil is higher than the density of the liquid refrigerant and the density is reversed. The temperature at which the density reverses is hereinafter referred to as the density reverse temperature.

【0030】ここで、冷凍サイクル装置においては、圧
縮機1の油溜め1aの温度は常に密度逆転温度以上の温
度で使用することが望ましい。冷凍機油の密度の方が液
冷媒の密度よりも大きい温度範囲で使用すれば、冷凍機
油と液冷媒が分離する場合でも、常に冷凍機油の方が下
方に位置するため、油ポンプ1bなどから冷凍機油のみ
を吸い上げ軸受け部などに濃度の高い冷凍機油を供給す
ることができるので、液冷媒を吸い込んで液冷媒を軸受
け部へ供給する場合にくらべて、潤滑性能が大きく向上
し、信頼性の高い圧縮機や冷凍サイクル装置が得られ
る。したがって、本発明では圧縮機1の油溜め1aの温
度が密度逆転温度以上の温度になるようにたとえば吸入
ガス温度を調整したりして冷凍サイクルを運転するよう
にしている。
Here, in the refrigeration cycle apparatus, it is desirable that the temperature of the oil reservoir 1a of the compressor 1 is always higher than the density inversion temperature. If the refrigerating machine oil is used in a temperature range greater than the liquid refrigerant density, the refrigerating machine oil is always located below even if the refrigerating machine oil and the liquid refrigerant are separated. High-concentration refrigeration oil can be supplied to bearings, etc. by sucking only machine oil, so lubrication performance is greatly improved and reliability is higher than when liquid refrigerant is sucked and liquid refrigerant is supplied to the bearings. A compressor and a refrigeration cycle device can be obtained. Therefore, in the present invention, the refrigeration cycle is operated by, for example, adjusting the intake gas temperature so that the temperature of the oil reservoir 1a of the compressor 1 becomes equal to or higher than the density reversal temperature.

【0031】また、使用する冷凍機油として、冷媒に対
して密度が図2の関係になるものを選定して使用するよ
うにすれば上記と同等の効果が得られる。図2は使用す
る冷媒と冷凍機油のそれぞれの温度に対する密度の関係
を表した図であり、横軸は温度を表し、縦軸は冷媒と冷
凍機油の密度を表している。本発明においては、図2に
示したように、冷凍サイクルで使用される凝縮温度の下
限温度よりも低い温度において液冷媒の密度よりも冷凍
機油の密度の方が大きくなるような冷凍機油を使用する
ようにしている。すなわち、冷凍機油の密度の方が液冷
媒の密度より大きくなる密度逆転温度が凝縮温度の下限
よりも小さい温度の冷凍機油を使用するようにしてい
る。図に示されている冷凍機油はポリオールエステル油
の一例であり、HFC32冷媒に対する密度逆転温度は
約21℃で凝縮温度の下限の30℃よりも低い温度であ
る。
The same effect as described above can be obtained by selecting and using a refrigerating machine oil having a density shown in FIG. 2 with respect to the refrigerant. FIG. 2 is a diagram showing the relationship between the respective densities of the used refrigerant and the refrigerating machine oil with respect to the temperatures. The horizontal axis represents the temperature, and the vertical axis represents the densities of the refrigerant and the refrigerating machine oil. In the present invention, as shown in FIG. 2, a refrigerating machine oil is used in which the density of the refrigerating machine oil is higher than the density of the liquid refrigerant at a temperature lower than the lower limit of the condensing temperature used in the refrigeration cycle. I am trying to do it. That is, the refrigerating machine oil having a density reversal temperature at which the density of the refrigerating machine oil is higher than the density of the liquid refrigerant is lower than the lower limit of the condensing temperature is used. The refrigerator oil shown in the figure is an example of a polyol ester oil, and the density reversal temperature for HFC32 refrigerant is about 21 ° C., which is lower than the lower limit of the condensing temperature of 30 ° C.

【0032】したがって、冷凍サイクル装置の運転範囲
内において、通常の運転状態では圧縮機1内の油溜めや
レシーバ6の温度は凝縮温度以上になるため、常に冷凍
機油の密度の方が液冷媒の密度よりも大きくなり、冷凍
機油と液冷媒が分離したとしても常に冷凍機油の方が下
方に位置するので、油ポンプ1bやレシーバ6の出口パ
イプ6bの先端6cから液冷媒を吸い込むことがなくな
り、軸受け部などに冷凍機油のみを供給できるようにな
り、信頼性の高い圧縮機および冷凍サイクル装置を得る
ことができる。
Therefore, within the operating range of the refrigeration cycle apparatus, the temperature of the oil sump in the compressor 1 and the temperature of the receiver 6 are higher than the condensing temperature in a normal operation state. The density is larger than the density, and even if the refrigerating machine oil and the liquid refrigerant are separated, the refrigerating machine oil is always located below, so that the liquid refrigerant is not sucked from the tip 6c of the outlet pipe 6b of the oil pump 1b or the receiver 6, Only the refrigerating machine oil can be supplied to the bearing and the like, and a highly reliable compressor and refrigerating cycle device can be obtained.

【0033】本実施の形態では、密度逆転温度が30℃
未満の冷凍機油を使用するようにしている。ここで、密
度逆転温度を30℃未満に設定したのは、通常、図3に
示すように一般的な冷凍サイクルの凝縮温度の下限が3
0℃であり、この凝縮温度の下限温度の30℃より低く
したかったためである。図3は、一般的な冷凍サイクル
装置の運転範囲を表す図であり、横軸は蒸発温度、縦軸
は凝縮温度を表している。図に示すように、通常の空調
装置などでは冷凍サイクルの運転範囲の凝縮温度の下限
は30℃に設定されている。
In this embodiment, the density inversion temperature is 30 ° C.
Try to use less than refrigeration oil. Here, the reason why the density reversal temperature is set to less than 30 ° C. is that the lower limit of the condensing temperature of a general refrigeration cycle is usually 3 as shown in FIG.
0 ° C., because it was desired to lower the lower limit of the condensing temperature to 30 ° C. FIG. 3 is a diagram illustrating an operation range of a general refrigeration cycle device, in which the horizontal axis represents the evaporation temperature and the vertical axis represents the condensation temperature. As shown in the figure, in a normal air conditioner or the like, the lower limit of the condensing temperature in the operation range of the refrigeration cycle is set to 30 ° C.

【0034】したがって、高圧シェル型の圧縮機の場合
には、密閉容器1j内は吐出圧力でしかも吐出温度にな
っており、油溜め1aの温度も凝縮温度以上となってい
る。したがって密度逆転温度を30℃未満に設定すれ
ば、油溜め1aの温度は凝縮温度下限である30℃以上
になるため、冷凍機油の密度の方が液冷媒の密度よりも
大きくなり、常に液冷媒よりも冷凍機油10の方が重く
なり下方に位置するため、油ポンプ1bからは濃度の高
い冷凍機油が吸い上げられ、軸受潤滑性が向上する。
Therefore, in the case of the high-pressure shell type compressor, the pressure inside the closed casing 1j is the discharge pressure and the discharge temperature, and the temperature of the oil reservoir 1a is also higher than the condensing temperature. Therefore, if the density reversal temperature is set to less than 30 ° C., the temperature of the oil reservoir 1a becomes 30 ° C. or more, which is the lower limit of the condensing temperature, so that the density of the refrigerating machine oil is higher than the density of the liquid refrigerant, and Since the refrigerating machine oil 10 is heavier than the refrigerating machine oil and is located below, the refrigerating machine oil having a high concentration is sucked up from the oil pump 1b, and the bearing lubricity is improved.

【0035】また、低圧シェル型圧縮機において、冷媒
が油溜め1aに寝込んだ状態での起動後十数分間、及
び、デフロスト運転等の過渡的運転以外の定常運転状態
では、油溜め1aの温度はほぼ30℃以上になるためで
ある。したがって、過渡的な運転以外の定常運転状態で
は、密度逆転温度を30℃未満に設定すれば、ほぼ常に
液冷媒よりも冷凍機油10の方が重く、油ポンプ1bか
らは濃度の高い冷凍機油が吸い上げられ、軸受潤滑性が
向上する。
Further, in the low-pressure shell type compressor, the temperature of the oil reservoir 1a is maintained for ten and several minutes after the start-up in a state where the refrigerant is laid in the oil reservoir 1a and in a normal operation state other than a transient operation such as a defrost operation. Is about 30 ° C. or more. Therefore, in a normal operation state other than the transient operation, if the density reversal temperature is set to less than 30 ° C., the refrigerating machine oil 10 is almost always heavier than the liquid refrigerant, and a high-concentration refrigerating machine oil is supplied from the oil pump 1b. It is sucked up and bearing lubricity is improved.

【0036】冷凍機油10は、例えば、ポリオールエス
テル油、ポリビニルエーテル油、ハードアルキルベンゼ
ン油等であり、30℃でHFC32液冷媒の密度よりも
大きな密度となるように調整されている。ここで、ハー
ドアルキルベンゼン油については、HFC32冷媒に対
して非相溶油である。また、ポリオールエステル油、ポ
リビニルエーテル油については、他のHFC冷媒に対し
ては相溶油となるが、HFC32冷媒に対しては相溶性
が低く、10〜20%程度は溶け合うが、非相溶油的に
液冷媒と冷凍機油が分離してそれぞれの層ができる。即
ち、一般的に使用される低コストのHFC冷媒用の冷凍
機油10は、HFC32単体冷媒を使用する場合はその
組み合わせにおいて、非相溶油的扱いをする必要が生じ
るので、本発明が有効となる。
The refrigerating machine oil 10 is, for example, a polyol ester oil, a polyvinyl ether oil, a hard alkylbenzene oil, or the like, and is adjusted to have a density larger than that of the HFC32 liquid refrigerant at 30 ° C. Here, the hard alkylbenzene oil is incompatible with the HFC32 refrigerant. Polyol ester oils and polyvinyl ether oils are compatible with other HFC refrigerants, but have low compatibility with HFC32 refrigerants. The liquid refrigerant and the refrigerating machine oil are separated from each other in oil form to form respective layers. In other words, the commonly used low-cost refrigerating machine oil 10 for HFC refrigerant requires that the HFC32 refrigerant be treated as an incompatible oil in a combination of the HFC32 single refrigerant, so that the present invention is effective. Become.

【0037】ここで、圧縮機1内部での冷媒及び冷凍機
油10の挙動を詳細に説明する。圧縮機が起動されると
圧縮機の負荷が大きくなり、モータ部や圧縮部での発熱
が大きくなるため、定常運転状態では油溜め1aの温度
は30℃を超える。この時に、油溜め1a内に液冷媒が
存在する場合、冷凍機油と液冷媒が分離するが、冷凍機
油密度の方が液冷媒の密度よりも大きいため、冷凍機油
層は液冷媒層の下に位置し、常に油ポンプ1bは高濃度
の冷凍機油を吸い上げる。液冷媒が存在しなければ、当
然冷凍機油のみが油ポンプ1bから吸い上げられる。
Here, the behavior of the refrigerant and the refrigerating machine oil 10 inside the compressor 1 will be described in detail. When the compressor is started, the load on the compressor increases, and the heat generated in the motor unit and the compression unit increases. Therefore, the temperature of the oil reservoir 1a exceeds 30 ° C. in a steady operation state. At this time, when the liquid refrigerant is present in the oil reservoir 1a, the refrigerant oil and the liquid refrigerant are separated. However, since the density of the refrigerant oil is higher than the density of the liquid refrigerant, the refrigerant oil layer is located below the liquid refrigerant layer. Located, the oil pump 1b always sucks high concentration refrigerating machine oil. If there is no liquid refrigerant, only the refrigerating machine oil is naturally drawn from the oil pump 1b.

【0038】従って、圧縮機の負荷が大きい状態の時に
は冷媒による希釈の少ない冷凍機油10で軸受等摺動部
が潤滑できるため、摺動部の摩耗が小さく、摺動部が焼
き付きにくい信頼性の高い圧縮機や冷凍サイクル装置を
得ることができる。また、摺動部の摩耗が小さいため、
摩耗によるメカノケミカル反応で発生するスラッジの発
生量も少なく、キャピラリーチューブ等絞り開度が一定
の絞り機構3b、3cへのスラッジの付着も少なくな
る。従って、キャピラリーチューブなどの絞り機構3
b、3cの閉塞が生じないため、絞り開度が一定のキャ
ピラリーチューブでも使用することができ、電子制御膨
張弁等の高コストな絞り機構を使用する必要が無く、低
コストで高信頼性の冷凍サイクル装置を得ることができ
る。
Therefore, when the load on the compressor is large, the sliding parts such as the bearings can be lubricated with the refrigerating machine oil 10 with little dilution by the refrigerant, so that the sliding parts are less worn and the sliding parts are less likely to seize. High compressor and refrigeration cycle equipment can be obtained. In addition, since the wear of the sliding part is small,
The amount of sludge generated by the mechanochemical reaction due to wear is small, and the amount of sludge attached to the throttle mechanisms 3b and 3c having a fixed throttle opening such as a capillary tube is also reduced. Therefore, a throttle mechanism 3 such as a capillary tube is used.
Since there is no blockage of b and 3c, it is possible to use even a capillary tube with a constant throttle opening, and it is not necessary to use a high-cost throttle mechanism such as an electronically controlled expansion valve, and it is low cost and highly reliable. A refrigeration cycle device can be obtained.

【0039】さらに、圧縮機1が高圧シェルタイプの場
合は、密閉容器1j内が高温の吐出ガス雰囲気であり起
動後すぐに油溜め1a内の温度が30℃を超えるため、
常に冷媒による希釈が少ない冷凍機油10で軸受等摺動
部が潤滑される。従って、低圧シェルタイプの圧縮機に
くらべて圧縮機1の軸受等の摺動部の信頼性が向上し、
信頼性の高い圧縮機や冷凍サイクル装置を得ることがで
きる。
Further, when the compressor 1 is of a high-pressure shell type, since the inside of the closed vessel 1j has a high-temperature discharge gas atmosphere and the temperature in the oil reservoir 1a exceeds 30 ° C. immediately after starting,
Sliding parts such as bearings are always lubricated with the refrigerating machine oil 10 that is less diluted by the refrigerant. Therefore, the reliability of sliding parts such as bearings of the compressor 1 is improved as compared with the low-pressure shell type compressor,
A highly reliable compressor and refrigeration cycle device can be obtained.

【0040】圧縮機1に高圧シェルタイプ圧縮機を用
い、冷媒にHFC32単体冷媒を使用し、冷凍機油10
に非相溶油であるハードアルキルベンゼン油を使用した
場合は、圧縮機1が運転中であれば、常に、圧縮機1内
は高温・高圧の吐出ガス雰囲気になっており、油溜め1
a内の冷凍機油10の温度は飽和温度よりも高い過熱状
態であり、油溜め1a内に液冷媒が存在しない過熱ガス
の状態になっている。このため、HFC32冷媒に完全
非相溶油であるハードアルキルベンゼン油を使用して
も、通常運転や過負荷運転時において、冷媒による希釈
が極めて少ない冷凍機油10で軸受等の摺動部が潤滑さ
れるので摺動部摩耗が小さく信頼性の高い圧縮機や冷凍
サイクル装置を得ることができる。
A high-pressure shell type compressor is used as the compressor 1, HFC32 simple refrigerant is used as the refrigerant, and the refrigerant oil 10 is used.
When hard alkylbenzene oil, which is an incompatible oil, is used, the compressor 1 is always in a high-temperature and high-pressure discharge gas atmosphere while the compressor 1 is in operation.
The temperature of the refrigerating machine oil 10 in a is in a superheated state higher than the saturation temperature, and is in a state of a superheated gas in which no liquid refrigerant exists in the oil reservoir 1a. Therefore, even when hard alkylbenzene oil, which is a completely incompatible oil, is used as the HFC32 refrigerant, sliding parts such as bearings are lubricated with the refrigerating machine oil 10 with extremely little dilution by the refrigerant during normal operation or overload operation. Therefore, a highly reliable compressor and refrigeration cycle device with small wear of the sliding portion can be obtained.

【0041】また、ポリオールエステル油の場合は、H
FC32単体冷媒に対して非相溶性に近い特性を示す
が、完全非相溶油ではなく、HFC32液冷媒中に10
〜20%程度は溶ける。したがって、圧縮機1が長期停
止して油溜め1a内に液冷媒が寝込んだ状態でも、寝込
んでいる液冷媒中に冷凍機油10が10〜20%程度溶
け込んでいる。
In the case of polyol ester oil, H
Although it shows characteristics almost incompatible with FC32 simple refrigerant, it is not completely incompatible oil but 10% in HFC32 liquid refrigerant.
About 20% melts. Therefore, even when the compressor 1 is stopped for a long period of time and the liquid refrigerant is laid in the oil reservoir 1a, the refrigeration oil 10 is dissolved in the laid liquid refrigerant by about 10 to 20%.

【0042】このため、液冷媒が寝込んだ状態での起動
すなわち寝込み起動時でも、軸受等の摺動部の潤滑状態
はハードアルキルベンゼン油を使用した場合よりも改善
される。また、通常運転時の軸受等の摺動部の潤滑状態
についても、ハードアルキルベンゼン油を使用した場合
と同様に冷媒希釈の少ない高濃度の冷凍機油10で潤滑
されるため良好である。従って、寝込み起動時の軸受等
の摺動部の信頼性がさらに高い圧縮機や冷凍サイクル装
置を得ることができる。
Therefore, even when the liquid refrigerant is started in a stagnation state, that is, at the time of the stagnation start, the lubrication state of a sliding portion such as a bearing is improved as compared with the case where hard alkylbenzene oil is used. Also, the lubricating state of the sliding parts such as bearings during normal operation is good because the lubricating oil is lubricated with the high-concentration refrigerating machine oil 10 with little refrigerant dilution, as in the case of using the hard alkylbenzene oil. Therefore, it is possible to obtain a compressor and a refrigeration cycle device in which the sliding parts such as the bearings at the time of the stagnation start-up have higher reliability.

【0043】また、、冷凍機油10にポリオールエステ
ル油の代わりに、ポリビニルエーテル油を用いた場合
も、HFC32液冷媒にポリオールエステル油と同程度
溶けこむ。従って、寝込み起動時や通常運転時もポリオ
ールエステル油と同等の摺動部の信頼性が得られる。ま
た、ポリオールエステル油は、冷媒回路中に含まれる微
量の水分と反応して加水分解劣化を起こしやすいが、ポ
リビニルエーテル油は、ポリオールエステル油よりも加
水分解を起こしにくいので、加水分解劣化物によるスラ
ッジ発生も少なく、キャピラリーチューブ等の絞り機構
を閉塞させる危険性の低い信頼性の高い圧縮機や冷凍サ
イクル装置が得られる。
Also, when polyvinyl ether oil is used for the refrigerating machine oil 10 in place of the polyol ester oil, the refrigerant oil dissolves in the HFC32 liquid refrigerant to the same extent as the polyol ester oil. Therefore, the reliability of the sliding portion equivalent to that of the polyol ester oil can be obtained even at the time of start-up or during normal operation. Further, polyol ester oil is liable to undergo hydrolysis degradation by reacting with a small amount of water contained in the refrigerant circuit, but polyvinyl ether oil is less susceptible to hydrolysis than polyol ester oil. A highly reliable compressor and refrigeration cycle device which generate little sludge and have a low risk of closing a throttle mechanism such as a capillary tube can be obtained.

【0044】ここで、冷凍サイクルを長期間運転停止さ
せておくと、圧縮機1の油溜め1aには、冷媒に対して
非相溶性的特性を持った冷凍機油10と液冷媒が分離し
て溜まる。この時に、冷凍機油10と液冷媒の温度が密
度逆転温度以上であれば、冷凍機油10の密度の方が液
冷媒の密度よりも大きいため、冷凍機油10が液冷媒よ
りも下方に位置するようになり、油ポンプ1bの吸い込
み口付近は冷凍機油10で満たされる。この状態で圧縮
機1が起動すると、モータのロータ1dやクランク軸1
e等で若干は油溜め1a内が攪拌されるが、油ポンプ1
bからは、冷媒希釈が小さく油濃度の大きい冷凍機油1
0のみが吸い上げられる。従って、冷媒が寝込んだ状態
での起動時においても軸受等摺動部の潤滑状態は極めて
良好となる。
Here, if the refrigerating cycle is stopped for a long time, the refrigerating machine oil 10 having incompatibility with the refrigerant and the liquid refrigerant are separated in the oil sump 1a of the compressor 1. Accumulate. At this time, if the temperature of the refrigeration oil 10 and the liquid refrigerant is equal to or higher than the density inversion temperature, the density of the refrigeration oil 10 is higher than the density of the liquid refrigerant, so that the refrigeration oil 10 is positioned below the liquid refrigerant. , And the vicinity of the suction port of the oil pump 1b is filled with the refrigerating machine oil 10. When the compressor 1 starts in this state, the rotor 1d of the motor and the crankshaft 1
e, the inside of the oil reservoir 1a is slightly stirred, but the oil pump 1
b shows that the refrigerating machine oil 1 has a small refrigerant dilution and a high oil concentration.
Only 0 is sucked up. Therefore, the lubrication state of the sliding parts such as the bearings is extremely good even when the refrigerant is started in a state where the refrigerant is laid down.

【0045】また、冷凍機油10と液冷媒が分離して油
溜め1aに溜まった状態にあるときのこれらの温度が、
密度逆転温度以下であれば、冷凍機油10の密度の方が
液冷媒の密度よりも小さいため、冷凍機油10が液冷媒
の上に位置し、油ポンプ1bの吸い込み口付近は、液冷
媒で満たされる。この状態で圧縮機1が起動すると、ロ
ータ1dやクランク軸1eにより油溜め1aが攪拌され
るため、液冷媒に冷凍機油10がエマルジョン的に混じ
ったものが油ポンプ1bから吸い上げられ、少量の冷凍
機油10により軸受等摺動部が潤滑される。
When the refrigerating machine oil 10 and the liquid refrigerant are separated and stored in the oil sump 1a, their temperatures are as follows:
If the temperature is equal to or lower than the density reversal temperature, since the density of the refrigerating machine oil 10 is smaller than the density of the liquid refrigerant, the refrigerating machine oil 10 is located above the liquid refrigerant and the vicinity of the suction port of the oil pump 1b is filled with the liquid refrigerant. It is. When the compressor 1 is started in this state, the oil reservoir 1a is agitated by the rotor 1d and the crankshaft 1e, so that the liquid refrigerant mixed with the refrigerating machine oil 10 as an emulsion is sucked up from the oil pump 1b, and a small amount of refrigeration is performed. The sliding parts such as bearings are lubricated by the machine oil 10.

【0046】但し、起動直後は圧縮機負荷が小さいの
で、軸受け負荷も小さく少量の冷凍機油しか混合されて
いなくても軸受にほとんどダメージを与えない。そして
1分程度経過すれば、圧縮機負荷が大きくなり、モータ
発熱や蒸発器温度上昇により、油溜め1aの温度が密度
逆転温度よりも高くなり、冷凍機油10の層が油溜め1
a下部に移動するため、高濃度の冷凍機油10による摺
動部潤滑が始まるので、軸受はほとんどダメージを受け
ない。
However, since the compressor load is small immediately after the start, the bearing load is small and even if a small amount of refrigerating machine oil is mixed, the bearing is hardly damaged. After about 1 minute, the load on the compressor increases, and the temperature of the oil reservoir 1a becomes higher than the density reversal temperature due to the heat generated by the motor and the temperature of the evaporator.
Since the lubrication of the sliding portion by the high concentration refrigerating machine oil 10 starts due to the movement to the lower part a, the bearing is hardly damaged.

【0047】従って、冷媒が油溜め1aに寝込んだ状態
での起動でも軸受等摺動部のダメージがほとんどない信
頼性の高い冷凍サイクルを得ることができる。さらに、
圧縮機1が密閉容器内が高圧圧力雰囲気である高圧シェ
ルタイプの圧縮機であれば、起動直後でもすぐに油溜め
1a温度が30℃を超えるため、起動後すぐに冷凍機油
10の密度と液冷媒の密度が逆転し、濃度の大きい冷凍
機油10で軸受等摺動部が潤滑される。従って、冷媒が
寝込んだ状態での起動時における軸受等摺動部の信頼性
がさらに向上する。
Therefore, a reliable refrigeration cycle with little damage to sliding parts such as bearings can be obtained even when the refrigerant is started in a state where the refrigerant is laid in the oil reservoir 1a. further,
If the compressor 1 is a high-pressure shell type compressor in which the inside of a closed vessel has a high-pressure atmosphere, the temperature of the oil reservoir 1a immediately exceeds 30 ° C. immediately after startup, so that the density and liquid The density of the refrigerant is reversed, and the sliding parts such as the bearings are lubricated with the refrigerating machine oil 10 having a high concentration. Therefore, the reliability of the sliding portion such as a bearing at the time of startup in a state where the refrigerant is laid down is further improved.

【0048】次に圧縮機1外の冷媒回路内での冷媒と冷
凍機油10の挙動を説明する。ほとんどの冷凍機油10
は、圧縮機1内で循環し外部へは吐出されないが、微量
の冷凍機油10は、圧縮機構部1cで圧縮された冷媒と
ともに圧縮機吐出管1fから冷凍サイクルに吐出され
る。これらの冷媒、及び冷凍機油10は凝縮器2、レシ
ーバ6、絞り機構3b、蒸発器4を循環した後に圧縮機
吸入管1gから再度圧縮機1内に吸入される。この冷媒
回路の途中に設けられた余剰冷媒を溜めるためのレシー
バ6では、循環している冷凍機油10が溜まり込む。
Next, the behavior of the refrigerant and the refrigerating machine oil 10 in the refrigerant circuit outside the compressor 1 will be described. Most refrigeration oil 10
Is circulated in the compressor 1 and is not discharged to the outside, but a small amount of the refrigerating machine oil 10 is discharged from the compressor discharge pipe 1f to the refrigerating cycle together with the refrigerant compressed by the compression mechanism 1c. After circulating through the condenser 2, the receiver 6, the throttle mechanism 3b, and the evaporator 4, the refrigerant and the refrigerating machine oil 10 are sucked into the compressor 1 again from the compressor suction pipe 1g. The circulating refrigeration oil 10 accumulates in the receiver 6 provided in the refrigerant circuit for storing the surplus refrigerant.

【0049】レシーバ6内には、この溜まった冷凍機油
10を冷媒回路に返油するための返油機構が設けられて
いる。ここで、レシーバ6の構造を図4に示す。図4は
レシーバの構造と冷凍機油の状態を表す図である。図に
おいて、6はレシーバであり、容器内に入口パイプ6a
と出口パイプ6bが設けられ、出口パイプ6bの先端6
cは、容器底面付近まで延びている。レシーバ6内は、
凝縮温度と蒸発温度の中間的な温度となっており、定常
運転時は凝縮温度の下限である30℃よりも高温となる
頻度が高い。従って、レシーバ6内では、密度逆転温度
(30℃未満)よりも高温となるため、冷凍機油10の
方が液冷媒よりもほぼ定常的に密度が大きくなり、図4
に示したように冷凍機油10の層が液冷媒の層の下方に
位置する。
An oil return mechanism for returning the accumulated refrigerating machine oil 10 to the refrigerant circuit is provided in the receiver 6. Here, the structure of the receiver 6 is shown in FIG. FIG. 4 is a diagram showing the structure of the receiver and the state of the refrigerating machine oil. In the figure, reference numeral 6 denotes a receiver, and an inlet pipe 6a is provided in the container.
And an outlet pipe 6b are provided.
c extends to near the bottom of the container. In the receiver 6,
The temperature is intermediate between the condensing temperature and the evaporating temperature, and frequently becomes higher than 30 ° C., which is the lower limit of the condensing temperature, during steady operation. Therefore, since the temperature inside the receiver 6 is higher than the density reversal temperature (less than 30 ° C.), the density of the refrigerating machine oil 10 is almost constantly higher than that of the liquid refrigerant.
As shown in (2), the layer of the refrigerating machine oil 10 is located below the layer of the liquid refrigerant.

【0050】ここで、レシーバ6の出口パイプ6bの先
端6cが容器底面付近に位置するように設けられている
ため、パイプの開口部はほぼ常に冷凍機油10に満たさ
れて、冷凍機油10が優先的にレシーバ6から排出され
るようになる。このため、冷凍機油10の返油効率が非
常に高くなり、圧縮機1内の冷凍機油10が枯渇するこ
とのない信頼性の高い冷凍サイクル装置が得られる。
Here, since the tip 6c of the outlet pipe 6b of the receiver 6 is provided near the bottom of the container, the opening of the pipe is almost always filled with the refrigeration oil 10, and the refrigeration oil 10 has priority. Then, it is discharged from the receiver 6. For this reason, the refrigerating efficiency of the refrigerating machine oil 10 becomes extremely high, and a highly reliable refrigerating cycle device in which the refrigerating machine oil 10 in the compressor 1 is not depleted can be obtained.

【0051】また、レシーバ6を高圧側で冷媒が二相状
態の部分、例えば凝縮器内部の完全に液化していない二
相部分や、図5に示したように凝縮器が2つ存在する場
合には2つの凝縮器の間に配置すると、レシーバ6の温
度はほぼ凝縮温度となる。図5は凝縮器が2つ存在する
場合の冷凍サイクルの構成を表した図である。図におい
て、図1と同等部分は同一の符号を付して説明は省略す
る。図においては、2a、2bは熱交換器であり、凝縮
器として作用している。また、6はレシーバである。運
転範囲内での凝縮温度の下限が30℃であり、レシーバ
6内は常に凝縮温度下限以上の温度となり密度逆転温度
よりもレシーバ6内の温度の方が高くなる。したがっ
て、冷凍機油10の層が液冷媒の層よりも常にレシーバ
6底部に溜まるようになり、更に返油効率が高くなる。
Further, when the receiver 6 is on the high pressure side where the refrigerant is in a two-phase state, for example, a two-phase part in which the refrigerant is not completely liquefied, or when there are two condensers as shown in FIG. , When placed between the two condensers, the temperature of the receiver 6 becomes approximately the condensation temperature. FIG. 5 is a diagram illustrating a configuration of a refrigeration cycle when two condensers are present. In the figure, parts that are the same as in FIG. 1 are given the same reference numerals, and descriptions thereof are omitted. In the figure, 2a and 2b are heat exchangers, which function as condensers. Reference numeral 6 denotes a receiver. The lower limit of the condensing temperature in the operating range is 30 ° C., and the temperature in the receiver 6 is always equal to or higher than the lower limit of the condensing temperature, and the temperature in the receiver 6 is higher than the density inversion temperature. Therefore, the layer of the refrigerating machine oil 10 always accumulates at the bottom of the receiver 6 more than the layer of the liquid refrigerant, and the oil return efficiency is further increased.

【0052】また、冷媒にHFC32単体冷媒以外のH
FC単体冷媒、又は、HFC混合冷媒、例えば、HFC
32、HFC125、HFC134aの三種混合冷媒、
HFC125、HFC143a、HFC134aの三種
混合冷媒、HFC32、HFC125の二種混合冷媒、
HFC134a単体冷媒等を用いても同様の効果が得ら
れる。
The refrigerant other than HFC32 simple refrigerant is H
FC simple refrigerant or HFC mixed refrigerant, for example, HFC
32, a mixed refrigerant of three types of HFC125 and HFC134a,
HFC125, HFC143a, HFC134a three-type mixed refrigerant, HFC32, HFC125 two-type mixed refrigerant,
The same effect can be obtained by using the HFC134a simple refrigerant or the like.

【0053】また、冷凍機油10としては非相溶油であ
るハードアルキルベンゼン油や相溶油的特性を示すポリ
オールエステル油、又は、ポリビニルエーテル油などで
もよい。ポリオールエステル油、又は、ポリビニルエー
テル油の場合は、HFC32単体冷媒以外のHFC単体
冷媒、又は、HFC混合冷媒に対しては、相溶油的特性
を示し、レシーバ6内において、冷凍機油10と液冷媒
の完全分離は生じないが、レシーバ6内の温度が密度逆
転温度以上であれば、濃度の偏った部分が存在するよう
になり、冷凍機油10の濃度の高い部分が、液冷媒濃度
の高い部分よりも下側に位置するようになる。
The refrigerating machine oil 10 may be a hard alkylbenzene oil which is an incompatible oil, a polyol ester oil having compatible oil properties, or a polyvinyl ether oil. In the case of a polyol ester oil or a polyvinyl ether oil, it shows compatible oil properties with respect to the HFC simple refrigerant other than the HFC32 simple refrigerant or the HFC mixed refrigerant. Although the complete separation of the refrigerant does not occur, if the temperature in the receiver 6 is equal to or higher than the density reversal temperature, there is a part with a concentrated concentration, and the part with a high concentration of the refrigerating machine oil 10 has a high concentration of the liquid refrigerant. It will be located below the part.

【0054】これは、レシーバ6内の温度が、密度逆転
温度よりもほぼ定常的に高くなり、冷凍機油10の密度
の方が、液冷媒の密度よりもほぼ定常的に大きくなるた
めである。この場合、冷凍機油10の濃度の大きい部分
がレシーバ6の底面付近に集まるため、底面付近に位置
するレシーバ出口パイプ6bの出口端6cの開口部から
は、冷凍機油10の濃度の大きい冷媒が冷凍サイクル内
に排出される。従って、冷凍機油10の返油効率が高く
なり圧縮機1内の冷凍機油10の枯渇が起きにくい信頼
性の高い冷凍サイクルが得られる。
This is because the temperature in the receiver 6 is almost constantly higher than the density reversal temperature, and the density of the refrigerating machine oil 10 is almost constantly higher than the density of the liquid refrigerant. In this case, since the portion where the concentration of the refrigerating machine oil 10 is high gathers near the bottom surface of the receiver 6, the refrigerant having the high concentration of the refrigerating machine oil 10 is refrigerated from the opening of the outlet end 6c of the receiver outlet pipe 6b located near the bottom surface. Exhausted in the cycle. Therefore, the refrigerating efficiency of the refrigerating machine oil 10 is increased, and a highly reliable refrigerating cycle in which the refrigerating machine oil 10 in the compressor 1 is hardly depleted can be obtained.

【0055】実施の形態2.図6は、本発明の実施の形
態2を表す冷凍サイクル装置の一例を示す図である。本
実施の形態では、実施の形態1に対し、圧縮機1の油溜
め1aを加熱する手段を設けたもので、実施の形態1と
同等の部分は同一の符号を付して説明は省略する。図6
において、7は圧縮機1の油溜め1aを加熱する加熱手
段である。加熱手段7は、クランクケースヒータなど圧
縮機1の外部より熱を供給するタイプのものや、ステー
タ1hの巻線に圧縮機1が起動しない程度の電流を流し
てステータ1hの巻線を発熱させる所謂拘束通電といわ
れる圧縮機1の内部を加熱する手段等があるが、これら
以外の加熱手段でもよい。
Embodiment 2 FIG. 6 is a diagram illustrating an example of a refrigeration cycle device according to Embodiment 2 of the present invention. In the present embodiment, a means for heating the oil reservoir 1a of the compressor 1 is provided in the first embodiment, and the same parts as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted. . FIG.
Is a heating means for heating the oil reservoir 1a of the compressor 1. The heating means 7 is of a type such as a crankcase heater that supplies heat from the outside of the compressor 1, or a current such that the compressor 1 does not start flowing through the windings of the stator 1 h to generate heat in the windings of the stator 1 h. Although there is a means for heating the inside of the compressor 1 called so-called constrained energization, other heating means may be used.

【0056】加熱手段により、油溜め1a内の冷媒・冷
凍機油10の温度を密度逆転温度以上まで高めるだけの
加熱能力を有すれば、どのような加熱手段を設けてもで
もよい。圧縮機1の油溜め1aを加熱するに際して、タ
イマーにより予め設定された時間(実験などにより密度
逆転温度以上まで高めることができる時間を予め把握し
て設定する)だけ加熱したり、また、圧縮機1の油溜め
1aに温度サーモなどを取りつけ、このサーモにより圧
縮機1の油溜め1aの温度が密度逆転温度以上になるよ
うに加熱したりすれば良い。
Any heating means may be provided as long as the heating means has a heating capacity enough to raise the temperature of the refrigerant / refrigerating oil 10 in the oil reservoir 1a to the density reversal temperature or higher. When the oil reservoir 1a of the compressor 1 is heated, the oil reservoir 1a is heated by a timer for a preset time (a time that can be raised to a density reversal temperature or more by an experiment or the like is set in advance) or the compressor is heated. A temperature thermostat or the like may be attached to the first oil sump 1a, and the thermostat may be used to heat the oil sump 1a of the compressor 1 so that the temperature becomes equal to or higher than the density inversion temperature.

【0057】ここで、加熱手段7によって、停止時や運
転時に圧縮機1の油溜め1aの温度を冷凍サイクルに使
用する冷媒と冷凍機油によって決まる密度逆転温度以上
まで加熱してやれば、非相溶油を使用した場合で圧縮機
停止時などに二相分離状態が発生しても、クランクケー
スヒータなどの簡単な構成でつねに冷凍機油の層が液冷
媒の層よりも下方に位置するようになるので、油ポンプ
1bから冷凍機油を吸入でき信頼性の高い圧縮機や冷凍
サイクル装置を得ることができる。
Here, if the temperature of the oil reservoir 1a of the compressor 1 is heated by the heating means 7 to a density reversal temperature determined by the refrigerant used in the refrigeration cycle and the refrigerating machine oil at the time of stop or operation, the incompatible oil If a two-phase separation state occurs when the compressor is stopped when using a compressor, the layer of refrigerating machine oil will always be located below the layer of liquid refrigerant with a simple configuration such as a crankcase heater. In addition, the compressor oil and the refrigeration cycle device which can suck the refrigerating machine oil from the oil pump 1b and have high reliability can be obtained.

【0058】実施の形態3.図7は、本発明の実施の形
態3を表す冷凍サイクル装置の一例を示す図である。本
実施の形態では、実施の形態1に対し、アキュムレータ
を設けたもので、実施の形態1と同等の部分は同一の符
号を付して説明は省略する。5はアキュムレータであ
り、冷凍サイクル内の圧縮機1の吸入側に設けられてい
る。
Embodiment 3 FIG. FIG. 7 is a diagram illustrating an example of a refrigeration cycle apparatus according to Embodiment 3 of the present invention. In the present embodiment, an accumulator is provided in the first embodiment, and the same parts as those in the first embodiment are denoted by the same reference numerals and description thereof will be omitted. An accumulator 5 is provided on the suction side of the compressor 1 in the refrigeration cycle.

【0059】パッケージエアコンやビル空調用エアコン
などのような冷媒量が大きく必要な冷凍サイクルを構成
する装置においては、実施の形態1で説明したレシーバ
6に加えてアキュムレータ5のような余剰冷媒を溜める
容器が設けられることがある。この場合、レシーバ6、
アキュムレータ5などの容器に冷媒と共に循環している
冷凍機油10も溜まり込むため、この容器から冷媒回路
(圧縮機1)へ油を返油するための返油機構が必要とな
る。
In an apparatus constituting a refrigeration cycle requiring a large amount of refrigerant, such as a package air conditioner or an air conditioner for building air conditioning, an excess refrigerant such as the accumulator 5 is stored in addition to the receiver 6 described in the first embodiment. Containers may be provided. In this case, the receiver 6,
Since the refrigerating machine oil 10 circulating together with the refrigerant also accumulates in a container such as the accumulator 5, an oil return mechanism for returning oil from this container to the refrigerant circuit (compressor 1) is required.

【0060】そして、この容器が、圧縮機吸入側に設け
られたアキュムレータ5の場合は、蒸発温度が低い運転
時に、アキュムレータ5内の液冷媒・冷凍機油10の温
度よりも冷凍機油10の臨界溶解温度の方が高くなり、
液冷媒と冷凍機油10が分離する場合が存在する。ここ
で図8及び図9は液冷媒と冷凍機油の温度に対する密度
変化を表した図である。図において、横軸は温度であ
り、縦軸は冷凍機油と液冷媒の密度を表している。図8
においては、たとえばHFC2種混合冷媒はR410A
(R125:50%、R32:50%)であり、HFC
3種混合冷媒はR407C(R134a:52%、R1
25:25%、R32:23%)である。また、冷凍機
油はたとえばポリオールエステル油であり、この場合の
密度逆転温度はR410Aに対しては43℃、R407
Cに対しては60℃となっており、凝縮温度下限の30
℃よりも高い。
When the container is the accumulator 5 provided on the compressor suction side, the critical melting of the refrigerating machine oil 10 becomes lower than the temperature of the liquid refrigerant / refrigerating machine oil 10 in the accumulator 5 during operation when the evaporation temperature is low. The temperature is higher,
There is a case where the liquid refrigerant and the refrigerating machine oil 10 are separated. Here, FIG. 8 and FIG. 9 are diagrams showing the density change with respect to the temperature of the liquid refrigerant and the refrigerating machine oil. In the figure, the horizontal axis represents the temperature, and the vertical axis represents the densities of the refrigerating machine oil and the liquid refrigerant. FIG.
In, for example, the HFC binary mixed refrigerant is R410A
(R125: 50%, R32: 50%) and HFC
R407C (R134a: 52%, R1
25: 25%, R32: 23%). The refrigerating machine oil is, for example, a polyol ester oil. In this case, the density reversal temperature is 43 ° C. for R410A and R407 for R410A.
C is 60 ° C, and the lower limit of the condensation temperature is 30 ° C.
Higher than ° C.

【0061】したがって、図8に示すように、アキュム
レータ5の運転温度範囲内においては冷凍機油10の密
度は液冷媒の密度よりも小さくなっており、非相溶油の
場合は図10のように冷凍機油10の層が液冷媒の層が
分離して冷凍機油10の層が液冷媒の層の上に位置する
ようになる。また、図10はアキュムレータ5内の液冷
媒と冷凍機油の状態を表した図である。図においては、
液冷媒の密度の方よりも冷凍機油の密度の方が小さく、
液冷媒の層の上に冷凍機油の層が位置している二相分離
状態を表している。図10の場合のように冷凍機油10
と液冷媒の完全な分離が起きなくても、図11に示すよ
うに、冷凍機油10の濃度の大きい層が密度差により液
冷媒濃度の大きい層の上に位置する状態が生じる場合が
存在する。図11はアキュムレータ5内の液冷媒と冷凍
機油の状態を表した図であり、図10、図11において
5はアキュムレータ、5aはアキュムレータ5内に溜ま
った冷凍機油を冷媒回路(圧縮機1)に返油するための
油戻し穴である。
Therefore, as shown in FIG. 8, within the operating temperature range of the accumulator 5, the density of the refrigerating machine oil 10 is smaller than the density of the liquid refrigerant, and in the case of incompatible oil, as shown in FIG. The layer of the refrigerating machine oil 10 is separated from the layer of the liquid refrigerant, and the layer of the refrigerating machine oil 10 is positioned above the layer of the liquid refrigerant. FIG. 10 is a diagram showing a state of the liquid refrigerant and the refrigerating machine oil in the accumulator 5. In the figure,
The density of the refrigerating machine oil is smaller than the density of the liquid refrigerant,
FIG. 3 shows a two-phase separation state in which a layer of refrigerating machine oil is located above a layer of liquid refrigerant. Refrigeration oil 10 as in the case of FIG.
Even when complete separation of the refrigerant oil and the liquid refrigerant does not occur, there may be a case where a layer having a high concentration of the refrigerating machine oil 10 is located above a layer having a high liquid refrigerant concentration due to a density difference as shown in FIG. . FIG. 11 is a diagram showing a state of the liquid refrigerant and the refrigerating machine oil in the accumulator 5, and in FIGS. 10 and 11, 5 is an accumulator, 5a is a refrigerating machine oil accumulated in the accumulator 5 in a refrigerant circuit (compressor 1). An oil return hole for returning oil.

【0062】したがって、図10に示したように、液冷
媒と冷凍機油10が分離している場合、溜まっている液
冷媒の量により油面位置(高さ)が変動するため、返油
用の油戻し穴5aの位置よりも冷凍機油の位置が上方に
ある場合は、油戻し穴5aから冷媒回路へ液冷媒のみが
送られ、圧縮機1の冷凍機油が不足することが発生して
いた。また、液冷媒と冷凍機油が分離していない図11
のような場合でも、液冷媒濃度の大きい部分に油戻し穴
5aが位置する状況になるため、返油されるのは大部分
が液冷媒であり、返油効率が悪かった。返油特性が悪い
場合は、圧縮機内の冷凍機油が枯渇し、圧縮機の軸受等
摺動部がダメージを受けることがあった。
Therefore, as shown in FIG. 10, when the liquid refrigerant and the refrigerating machine oil 10 are separated from each other, the oil level (height) varies depending on the amount of the accumulated liquid refrigerant. When the position of the refrigerating machine oil is higher than the position of the oil return hole 5a, only the liquid refrigerant is sent from the oil return hole 5a to the refrigerant circuit, and the refrigerating machine oil of the compressor 1 runs short. FIG. 11 shows that the liquid refrigerant and the refrigerating machine oil are not separated.
Even in such a case, the oil return hole 5a is located in a portion where the liquid refrigerant concentration is high, so that most of the oil is returned by the liquid refrigerant, and the oil return efficiency is poor. When the oil return characteristics are poor, the refrigerating machine oil in the compressor is depleted and sliding parts such as bearings of the compressor may be damaged.

【0063】また、非相溶油とHFC冷媒の組み合わせ
で使用する場合でも、非相溶油を用いても相溶油と同じ
で冷媒の極圧効果は得られないが、非相溶油だと冷媒の
溶け込みがほとんど無く冷媒による冷凍機油10の希釈
が生じないため、油粘度が低下せず境界潤滑下でも相溶
油に比べて潤滑は良好となり、スラッジ発生も少なくな
る。このため、相溶油よりも非相溶油の方がスラッジの
発生によるキャピラリーチューブ等の閉塞も生じにくい
ため、相溶油よりも非相溶油の方が潤滑性能が向上す
る。
When the immiscible oil and the HFC refrigerant are used in combination, even if the immiscible oil is used, the extreme pressure effect of the refrigerant cannot be obtained as in the case of the immiscible oil. Because the refrigerant hardly dissolves and the refrigerant does not dilute the refrigerating machine oil 10, the oil viscosity does not decrease and lubrication is better than that of the compatible oil even under boundary lubrication, and sludge generation is reduced. For this reason, the incompatible oil is less likely to block the capillary tube or the like due to the generation of sludge than the compatible oil, and thus the incompatible oil has better lubrication performance than the compatible oil.

【0064】また、例えば、図9に示したように、常温
では、冷凍機油10の比重が冷媒の比重よりも小さくな
る冷凍機油として、エステル油以外のハードアルキルベ
ンゼン油等の非相溶油を用いる場合は、圧縮機長期停止
時に圧縮機1内の油溜め1aに冷媒が寝込んだ場合は、
液冷媒と冷凍機油10が分離し、比重の大きい液冷媒の
層が冷凍機油10の層の下に位置し、圧縮機1内の下部
に位置する油ポンプ1b吸い込み口付近は、液冷媒で満
たされる。この状態で圧縮機1が起動されると、モータ
のロータ1d及びクランク軸1eにより油溜め1aが攪
拌され、液冷媒及び冷凍機油10がエマルジョン的に混
じったものが油ポンプ1bから吸い込まれ、この少量の
冷凍機油10で軸受等の摺動部が潤滑する必要があるた
めに軸受損傷の原因となっていた。
For example, as shown in FIG. 9, at room temperature, as the refrigerating machine oil in which the specific gravity of the refrigerating machine oil 10 becomes smaller than the specific gravity of the refrigerant, an incompatible oil such as a hard alkylbenzene oil other than the ester oil is used. In the case, when the refrigerant stagnates in the oil reservoir 1a in the compressor 1 when the compressor is stopped for a long time,
The liquid refrigerant and the refrigerating machine oil 10 are separated, and a layer of the liquid refrigerant having a large specific gravity is located below the layer of the refrigerating machine oil 10, and a portion near the suction port of the oil pump 1 b located at a lower part in the compressor 1 is filled with the liquid refrigerant. It is. When the compressor 1 is started in this state, the oil reservoir 1a is stirred by the rotor 1d and the crankshaft 1e of the motor, and a mixture of the liquid refrigerant and the refrigerating machine oil 10 in an emulsion form is sucked from the oil pump 1b. It is necessary to lubricate sliding parts such as bearings with a small amount of refrigerating machine oil 10, which causes bearing damage.

【0065】また、アキュムレータ5やレシーバ6等の
余剰冷媒を溜める容器が設けられている場合、この容器
には、冷媒と共に循環している冷凍機油10も一緒に溜
まり込む。従って、この容器から冷媒回路へ油を返油す
るために返油機構が必要となり、図10に示したように
油戻し穴5aを設けている。また容器内では、冷凍機油
が非相溶油である場合は、図10に示したように冷凍機
油と液冷媒が分離する。この時に、アキュムレータ5内
では、アキュムレータの使用される使用温度範囲内にお
いて常に冷凍機油の密度の方が液冷媒密度よりも小さい
ため(図9参照)、図10に示したように冷凍機油層が
液冷媒層の上に位置する状態になっている。
When a container such as the accumulator 5 and the receiver 6 for storing surplus refrigerant is provided, the refrigerating machine oil 10 circulating together with the refrigerant also accumulates in this container. Therefore, an oil return mechanism is required to return oil from this container to the refrigerant circuit, and an oil return hole 5a is provided as shown in FIG. Further, in the case where the refrigerating machine oil is an incompatible oil, the refrigerating machine oil and the liquid refrigerant are separated as shown in FIG. At this time, in the accumulator 5, since the density of the refrigerating machine oil is always smaller than the liquid refrigerant density within the operating temperature range in which the accumulator is used (see FIG. 9), as shown in FIG. The state is located above the liquid refrigerant layer.

【0066】また、凝縮器2と蒸発器4の間に設けられ
たレシーバ6内でもほとんど定常的に冷凍機油の密度が
小さくなるため、冷凍機油層が液冷媒層の上に位置す
る。この液冷媒の量は冷凍サイクルの運転条件により変
化するため、冷凍機油層の位置(高さ)も運転条件によ
り変化することになる。
In the receiver 6 provided between the condenser 2 and the evaporator 4, the density of the refrigerating machine oil almost constantly decreases, so that the refrigerating machine oil layer is located above the liquid refrigerant layer. Since the amount of the liquid refrigerant changes according to the operating conditions of the refrigeration cycle, the position (height) of the refrigeration oil layer also changes according to the operating conditions.

【0067】ここで、図10に容器としてアキュムレー
タ5を使う場合を示したが、図12にはレシーバ6を使
う場合の冷凍機油層、液冷媒層の位置関係を示してい
る。図12はレシーバ6内の冷凍機油と液冷媒の状態を
表した図であり、冷凍機油の層と液冷媒の層が分離して
いる状態を表している。図において、6aは入口パイ
プ、6bは出口パイプ、6cは出口パイプ先端である。
この容器から冷媒回路へ油を返油するために、図11に
示したように出口パイプ6bの先端6cを容器内の下端
近くまで設けている。
Here, FIG. 10 shows the case where the accumulator 5 is used as a container. FIG. 12 shows the positional relationship between the refrigerating machine oil layer and the liquid refrigerant layer when the receiver 6 is used. FIG. 12 is a diagram illustrating a state of the refrigerating machine oil and the liquid refrigerant in the receiver 6, and illustrates a state in which the layer of the refrigerating machine oil and the layer of the liquid refrigerant are separated. In the figure, 6a is an inlet pipe, 6b is an outlet pipe, and 6c is a tip of the outlet pipe.
In order to return oil from the container to the refrigerant circuit, the tip 6c of the outlet pipe 6b is provided near the lower end in the container as shown in FIG.

【0068】したがって、冷凍機油の層が液冷媒の層よ
りも下方に位置すれば先端6cからは冷凍機油を吸い込
むので問題ないが、冷凍機油が非相溶油である場合は、
図11に示したように冷凍機油と液冷媒が分離する。こ
の時に、レシーバ6内では、レシーバの使用される使用
温度範囲内においてほとんどの温度条件において冷凍機
油の密度の方が液冷媒密度よりも小さいため(図9参
照)、図11に示したように冷凍機油層が液冷媒層の上
に位置する状態になっている。
Therefore, if the refrigerating machine oil layer is positioned below the liquid refrigerant layer, the refrigerating machine oil is sucked from the tip 6c, so that there is no problem.
As shown in FIG. 11, the refrigerating machine oil and the liquid refrigerant are separated. At this time, in the receiver 6, the density of the refrigerating machine oil is smaller than the liquid refrigerant density under most of the temperature conditions within the operating temperature range in which the receiver is used (see FIG. 9), and as shown in FIG. The refrigerator oil layer is located above the liquid refrigerant layer.

【0069】アキュムレータ5あるいはレシーバ6のど
ちらの場合においても、本来常に冷凍機油層間に位置す
る必要のある油戻し穴5aや出口パイプ先端6cが、ア
キュムレータ5あるいはレシーバ6が使用される使用温
度範囲内ではほとんどの温度帯で液冷媒層中に位置して
いる。この場合は、液冷媒のみが圧縮機1に返送される
ので、返油効率は低下する。このような返油効率の低い
状態では、油溜め1a内の冷凍機油が枯渇し、軸受等摺
動部に損傷を与える可能性があった。
In either case of the accumulator 5 or the receiver 6, the oil return hole 5a and the outlet pipe tip 6c which should always be located between the refrigerating machine oil layers are within the operating temperature range in which the accumulator 5 or the receiver 6 is used. Is located in the liquid refrigerant layer in most temperature zones. In this case, since only the liquid refrigerant is returned to the compressor 1, the oil return efficiency is reduced. In such a state where the oil return efficiency is low, the refrigerating machine oil in the oil reservoir 1a is depleted, and there is a possibility that the sliding parts such as bearings may be damaged.

【0070】また、液冷媒層の変動により冷凍機油層の
高さ位置も変動するため油戻し穴5aや出口パイプ先端
6cの位置の決定が困難であり、返油機構の設計ができ
なかった。このため、非相溶油とHFC冷媒の組み合わ
せで使用する場合は、冷凍サイクルに必要な冷媒量が少
なくて済み冷凍機油10が滞留してしまうような余剰冷
媒を溜めるアキュムレータ5あるいはレシーバ6のよう
な容器を必要としないルームエアコンや冷蔵庫のみしか
用いられなかった。したがって、実施の形態2で説明し
たような加熱手段をアキュムレータ5やレシーバ6にも
設けることによって、図8や図9で説明したような問題
は解決できる。すなわち、アキュムレータ5やレシーバ
6に実施の形態1で説明したような加熱手段を設けて、
冷凍サイクルに使用する冷媒と冷凍機油に対する密度逆
転温度以上まで加熱して、常に冷凍機油の層が液冷媒の
層の下方に位置するようにすれば良い。
Since the height position of the refrigerating machine oil layer also fluctuates due to the fluctuation of the liquid refrigerant layer, it was difficult to determine the positions of the oil return hole 5a and the outlet pipe tip 6c, and the oil return mechanism could not be designed. For this reason, when the incompatible oil and the HFC refrigerant are used in combination, the amount of the refrigerant required for the refrigeration cycle is small and the refrigerating machine oil 10 accumulates the surplus refrigerant that accumulates like the accumulator 5 or the receiver 6. Only room air conditioners and refrigerators that do not require a simple container were used. Therefore, by providing the heating means as described in the second embodiment also in the accumulator 5 and the receiver 6, the problem described in FIGS. 8 and 9 can be solved. That is, by providing the accumulator 5 and the receiver 6 with the heating means as described in the first embodiment,
What is necessary is just to heat the refrigerant used for the refrigeration cycle and the refrigerating machine oil to the density reversal temperature or higher so that the refrigerating machine oil layer is always positioned below the liquid refrigerant layer.

【0071】ここで、加熱手段を設ける以外の対応方法
を図13を利用して説明する。図13は使用する冷媒と
冷凍機油のそれぞれの温度に対する密度の関係を表した
図であり、横軸は温度を表し、縦軸は冷媒と冷凍機油の
密度を表している。本発明においては、図13に示した
ように、冷凍サイクルで使用される蒸発温度の下限温度
よりも低い温度において液冷媒の密度よりも冷凍機油の
密度の方が大きくなるような冷凍機油を使用するように
している。すなわち、冷凍機油の密度の方が液冷媒の密
度より大きくなる密度逆転温度が蒸発温度の下限よりも
小さい温度の冷凍機油を使用するようにしている。
Here, a method other than providing the heating means will be described with reference to FIG. FIG. 13 is a diagram showing the relationship between the respective densities of the used refrigerant and the refrigerating machine oil with respect to the temperature. The horizontal axis represents the temperature, and the vertical axis represents the density of the refrigerant and the refrigerating machine oil. In the present invention, as shown in FIG. 13, a refrigerating machine oil is used in which the density of the refrigerating machine oil is higher than the density of the liquid refrigerant at a temperature lower than the lower limit temperature of the evaporation temperature used in the refrigerating cycle. I am trying to do it. That is, the refrigerating machine oil having a density reversal temperature at which the density of the refrigerating machine oil is higher than the density of the liquid refrigerant is lower than the lower limit of the evaporation temperature is used.

【0072】したがって、密度逆転温度が蒸発温度下限
よりも小さい冷凍機油を使用すれば、実施の形態2で説
明したようなクランクケースヒータなどの加熱手段7を
設けなくとも圧縮機1の油溜め1a内やアキュムレータ
5、レシーバ6内は常に冷凍機油10が液冷媒よりも下
方に位置するので、油濃度の大きい冷凍機油を軸受け部
に供給でき、簡単な構成で信頼性の高い圧縮機や冷凍サ
イクル装置が得られる。また、クランクケースヒータな
どの加熱手段を別途設けなくてもよいので、低コストで
加熱手段の取りつけ時間の短縮できる信頼性の高い圧縮
機や冷凍サイクル装置が得られる。
Therefore, if refrigerating machine oil having a density reversal temperature lower than the lower limit of the evaporation temperature is used, the oil reservoir 1a of the compressor 1 can be provided without providing the heating means 7 such as the crankcase heater described in the second embodiment. Since the refrigerating machine oil 10 is always located below the liquid refrigerant in the inside of the accumulator 5 and the receiver 6, the refrigerating machine oil having a high oil concentration can be supplied to the bearing portion, and a highly reliable compressor and refrigerating cycle with a simple configuration. A device is obtained. In addition, since it is not necessary to separately provide a heating means such as a crankcase heater, a highly reliable compressor and refrigeration cycle apparatus that can reduce the time required for mounting the heating means at low cost can be obtained.

【0073】本実施の形態では、密度逆転温度が−20
℃未満の冷凍機油を使用するようにしている。ここで、
密度逆転温度を−20℃未満に設定したのは、通常、図
3に示すように一般的な冷凍サイクルの蒸発温度の下限
が−20℃であり、この蒸発温度の下限温度の−20℃
より低くしたかったためである。図に示すように、通常
の空調装置などでは冷凍サイクルの運転範囲の蒸発温度
の下限は−20℃に設定されている。
In this embodiment, the density reversal temperature is −20.
Refrigerator oil below ℃ is used. here,
The density reversal temperature is set to less than -20 ° C because the lower limit of the evaporation temperature of a general refrigeration cycle is -20 ° C as shown in FIG. 3, and the lower limit of the evaporation temperature is -20 ° C.
Because I wanted to lower it. As shown in the figure, in a normal air conditioner or the like, the lower limit of the evaporation temperature in the operation range of the refrigeration cycle is set to -20 ° C.

【0074】したがって、高圧シェル型の圧縮機の場合
には、密閉容器1j内は吐出圧力でしかも吐出温度にな
っており、油溜め1aの温度も蒸発温度以上となってい
る。したがって密度逆転温度を−20℃未満に設定すれ
ば、油溜め1aの温度は蒸発温度下限である−20℃以
上になるため、冷凍機油の密度の方が液冷媒の密度より
も大きくなり、常に液冷媒よりも冷凍機油10の方が重
くなり下方に位置するため、油ポンプ1bからは濃度の
高い冷凍機油が吸い上げられ、軸受潤滑性が向上する。
Therefore, in the case of the high-pressure shell type compressor, the pressure inside the closed casing 1j is the discharge pressure and the discharge temperature, and the temperature of the oil reservoir 1a is higher than the evaporation temperature. Therefore, if the density reversal temperature is set to less than −20 ° C., the temperature of the oil reservoir 1a becomes equal to or higher than the lower limit of the evaporating temperature of −20 ° C., so that the density of the refrigerating machine oil is higher than the density of the liquid refrigerant, Since the refrigerating machine oil 10 is heavier than the liquid refrigerant and located below, the refrigerating machine oil having a high concentration is sucked up from the oil pump 1b, and the bearing lubricity is improved.

【0075】また、低圧シェル型圧縮機においても、冷
媒が油溜め1aに寝込んだ状態での起動及び、デフロス
ト運転等の過渡的運転を考慮しても、油溜め1aの温度
は蒸発温度の下限温度である−20℃以上になるためで
ある。したがって、密度逆転温度を蒸発温度下限温度で
ある−20℃よりも低い温度に設定すれば、過渡的な運
転状態や定常運転状態などほとんどの運転状態において
も、常に液冷媒よりも冷凍機油10の方が重く、油ポン
プ1bからは濃度の高い冷凍機油が吸い上げられ、軸受
潤滑性能の低下しない信頼性の高い圧縮機や冷凍サイク
ル装置が得られる。
Also in the low-pressure shell type compressor, the temperature of the oil reservoir 1a is not lower than the lower limit of the evaporation temperature, even when the refrigerant is laid in the oil reservoir 1a and the transient operation such as the defrost operation is considered. This is because the temperature becomes -20 ° C or more. Therefore, if the density reversal temperature is set to a temperature lower than the evaporation temperature lower limit temperature of −20 ° C., the refrigeration oil 10 will always be more liquefied than the liquid refrigerant even in most operation states such as a transient operation state and a steady operation state. It is heavier and the refrigerating machine oil having a high concentration is sucked up from the oil pump 1b, so that a highly reliable compressor or refrigeration cycle device in which the bearing lubrication performance does not decrease can be obtained.

【0076】[0076]

【発明の効果】本発明の第1の発明に係る冷凍サイクル
装置は、容器内部に油溜めを有し、油溜めに冷凍機油を
保有する圧縮機と、圧縮機から吐出された冷媒を凝縮す
る凝縮器と、凝縮された冷媒を膨張させる膨張装置と、
膨張した冷媒を蒸発させる蒸発器とによって冷凍サイク
ルを構成するとともに、冷媒としてHFC系冷媒を使用
し、冷媒の液密度よりも冷凍機油の密度の方が大きくな
る密度逆転温度が冷凍サイクルで運転される凝縮温度の
下限温度よりも低い温度の冷凍機油を使用したので、通
常の運転状態では圧縮機1内の油溜めやレシーバ6の温
度は凝縮温度以上になるため、油ポンプ1bやレシーバ
6の出口パイプ6bの先端6cから液冷媒を吸い込むこ
とがなくなり、信頼性の高い圧縮機および冷凍サイクル
装置を得ることができる。
The refrigeration cycle apparatus according to the first aspect of the present invention has a compressor having an oil sump inside the container and holding the refrigerating machine oil in the oil sump, and condensing the refrigerant discharged from the compressor. A condenser, an expansion device for expanding the condensed refrigerant,
A refrigerating cycle is constituted by an evaporator for evaporating the expanded refrigerant, and an HFC-based refrigerant is used as the refrigerant, and the density reversal temperature at which the density of the refrigerating machine oil is larger than the liquid density of the refrigerant is operated in the refrigeration cycle. Since the refrigerating machine oil having a temperature lower than the lower limit temperature of the condensing temperature is used, the oil sump in the compressor 1 and the temperature of the receiver 6 become equal to or higher than the condensing temperature in a normal operation state. Liquid refrigerant is not sucked from the tip 6c of the outlet pipe 6b, and a highly reliable compressor and refrigeration cycle device can be obtained.

【0077】本発明の第2の発明に係る冷凍サイクル装
置は、凝縮温度下限を30℃としたので、冷凍機油の密
度の方が液冷媒の密度よりも大きくなり、液冷媒よりも
冷凍機油10の方が重くなり下方に位置し、油ポンプか
らは濃度の高い冷凍機油が吸い上げられ、軸受潤滑性の
向上する信頼性の高い圧縮機および冷凍サイクル装置を
得ることができる。
In the refrigeration cycle apparatus according to the second aspect of the present invention, since the lower limit of the condensing temperature is set at 30 ° C., the density of the refrigerating machine oil is higher than that of the liquid refrigerant, and the refrigerating machine oil 10 has a higher density than the liquid refrigerant. Is heavier and located below, and a high concentration of refrigerating machine oil is sucked up from the oil pump, so that a highly reliable compressor and refrigeration cycle device with improved bearing lubrication can be obtained.

【0078】本発明の第3の発明に係る冷凍サイクル装
置は、密度逆転温度が30℃より小さい冷凍機油を使用
するようにしたので、ほぼ液冷媒よりも冷凍機油の方が
重く、油ポンプからは濃度の高い冷凍機油が吸い上げら
れ、軸受潤滑性が向上する信頼性の高い圧縮機および冷
凍サイクル装置を得ることができる。
In the refrigeration cycle apparatus according to the third aspect of the present invention, since the refrigerating machine oil having a density reversal temperature of less than 30 ° C. is used, the refrigerating machine oil is substantially heavier than the liquid refrigerant. A highly reliable compressor and refrigeration cycle device in which high-concentration refrigerating machine oil is sucked up and bearing lubricity is improved can be obtained.

【0079】本発明の第4の発明に係る冷凍サイクル装
置は、容器内部に油溜めを有し、油溜めに冷凍機油を保
有する圧縮機と、圧縮機から吐出された冷媒を凝縮する
凝縮器と、凝縮された冷媒を膨張させる膨張装置と、膨
張した冷媒を蒸発させる蒸発器とによって冷凍サイクル
を構成するとともに、冷媒としてHFC系冷媒を使用
し、冷媒の液密度よりも冷凍機油の密度の方が大きくな
る密度逆転温度が冷凍サイクルで運転される蒸発温度の
下限温度よりも低い温度の冷凍機油を使用したので、ク
ランクケースヒータなどの加熱手段7を設けなくとも圧
縮機の油溜め内やアキュムレータ、レシーバ内は常に冷
凍機油が液冷媒よりも下方に位置するようになり、油濃
度の大きい冷凍機油を軸受け部に供給でき、信頼性の高
い圧縮機や冷凍サイクル装置が得られる。
A refrigeration cycle apparatus according to a fourth aspect of the present invention has a compressor having an oil sump inside the container and holding refrigerating machine oil in the oil sump, and a condenser for condensing the refrigerant discharged from the compressor. And an expansion device that expands the condensed refrigerant, and an evaporator that evaporates the expanded refrigerant constitutes a refrigeration cycle, uses an HFC-based refrigerant as the refrigerant, and has a higher density of the refrigerating machine oil than the liquid density of the refrigerant. Refrigeration oil having a lower density reversal temperature than the lower limit of the evaporation temperature operated in the refrigeration cycle is used. Therefore, even if the heating means 7 such as a crankcase heater is not provided, the oil in the oil sump of the compressor can be obtained. In the accumulators and receivers, the refrigerating machine oil is always located below the liquid refrigerant, and can supply the refrigerating machine oil with a high oil concentration to the bearings. Le device is obtained.

【0080】本発明の第5の発明に係る冷凍サイクル装
置は、蒸発温度下限を−20℃としたので、過渡的な運
転状態や定常運転状態でも、常に液冷媒よりも冷凍機油
の方が重く、油ポンプからは濃度の高い冷凍機油が吸い
上げられ、軸受潤滑性能の低下しない信頼性の高い圧縮
機や冷凍サイクル装置が得られる。
In the refrigeration cycle apparatus according to the fifth aspect of the present invention, since the lower limit of the evaporation temperature is -20 ° C., the refrigerating machine oil is always heavier than the liquid refrigerant even in a transient operation state or a steady operation state. In addition, a high concentration of refrigerating machine oil is sucked from the oil pump, and a highly reliable compressor or refrigerating cycle device in which bearing lubrication performance does not decrease can be obtained.

【0081】本発明の第7の発明に係る冷凍サイクル装
置は、密度逆転温度が−20℃より小さい冷凍機油を使
用するようにしたので、過渡的な運転状態や定常運転状
態でも、常に液冷媒よりも冷凍機油の方が重く、油ポン
プからは濃度の高い冷凍機油が吸い上げられ、軸受潤滑
性能の低下しない信頼性の高い圧縮機や冷凍サイクル装
置が得られる。
The refrigeration cycle apparatus according to the seventh aspect of the present invention uses refrigeration oil having a density reversal temperature of less than -20 ° C., so that the liquid refrigerant is always kept in a transient operation state or a steady operation state. The refrigerating machine oil is heavier than the refrigerating machine oil, and the refrigerating machine oil having a high concentration is sucked up from the oil pump, so that a highly reliable compressor or refrigerating cycle device in which the bearing lubrication performance does not decrease can be obtained.

【0082】本発明の第7の発明に係る冷凍サイクル装
置は、容器内部に油溜めを有し、油溜めに冷凍機油を保
有する圧縮機と、圧縮機から吐出された冷媒を凝縮する
凝縮器と、凝縮された冷媒を減圧させる絞り装置と、減
圧された冷媒を蒸発させる蒸発器とによって冷凍サイク
ルを構成するとともに、冷媒としてHFC系冷媒を使用
し、冷媒の液密度よりも冷凍機油の密度の方が大きくな
る密度逆転温度に対して圧縮機の油溜めの温度が高くな
るように圧縮機を運転させるようにしたので、液冷媒を
吸い込んで液冷媒を軸受け部へ供給する場合にくらべ
て、潤滑性能が大きく向上し、圧縮機の軸受等摺動部の
潤滑性が良好で信頼性の高い冷凍サイクル装置が得られ
る。
A refrigeration cycle apparatus according to a seventh aspect of the present invention has a compressor having an oil sump inside the container and holding refrigerating machine oil in the oil sump, and a condenser for condensing the refrigerant discharged from the compressor. And a throttling device that decompresses the condensed refrigerant, and an evaporator that evaporates the depressurized refrigerant, constitutes a refrigeration cycle, uses an HFC-based refrigerant as the refrigerant, and has a higher density of the refrigerating machine oil than the liquid density of the refrigerant. The compressor is operated so that the temperature of the oil sump of the compressor becomes higher with respect to the density reversal temperature, which is larger than that of the case where the liquid refrigerant is sucked and supplied to the bearing. The lubrication performance is greatly improved, and a refrigeration cycle apparatus having high reliability and good lubrication of sliding parts such as bearings of a compressor can be obtained.

【0083】本発明の第8の発明に係る冷凍サイクル装
置は、内部に冷凍機油を有する圧縮機の油溜めを加熱す
る加熱手段を設けたので、低コストで加熱手段の取りつ
け時間の短縮できる信頼性の高い圧縮機や冷凍サイクル
装置が得られる。
In the refrigeration cycle apparatus according to the eighth aspect of the present invention, since the heating means for heating the oil sump of the compressor having the refrigerating machine oil therein is provided, the refrigeration cycle apparatus can be installed at low cost and the installation time of the heating means can be shortened. A highly efficient compressor and refrigeration cycle device can be obtained.

【0084】本発明の第9の発明に係る冷凍サイクル装
置は、圧縮機として高圧シェルタイプの圧縮機を使用し
たので、密閉容器内が高温の吐出ガス雰囲気であり起動
後すぐに油溜め内の温度が凝縮温度下限を超えるため、
常に冷媒による希釈が少ない冷凍機油で軸受等摺動部が
潤滑され、低圧シェルタイプの圧縮機にくらべて圧縮機
の軸受等の摺動部の信頼性が向上し、信頼性の高い圧縮
機や冷凍サイクル装置を得ることができる。
The refrigeration cycle apparatus according to the ninth aspect of the present invention uses a high-pressure shell type compressor as the compressor. Since the temperature exceeds the lower limit of condensation temperature,
Sliding parts such as bearings are always lubricated with refrigerating machine oil with little dilution by refrigerant, and the reliability of sliding parts such as bearings of compressors is improved compared to compressors of low-pressure shell type. A refrigeration cycle device can be obtained.

【0085】本発明の第10の発明に係る冷凍サイクル
装置は、圧縮機、凝縮器、高圧側絞り装置、レシーバ、
低圧側絞り装置、蒸発器とを順次接続して冷凍サイクル
を構成し、冷媒としてHFC系冷媒を使用し、冷媒の液
密度よりも冷凍機油の密度の方が大きくなる密度逆転温
度が凝縮器の凝縮温度下限以下である冷凍機油を使用し
たので、キャピラリーチューブ等絞り開度が一定の絞り
機構へのスラッジの付着も少なくなり、絞り機構の閉塞
が生じないため、絞り開度が一定のキャピラリーチュー
ブでも使用することができ、電子制御膨張弁等の高コス
トな絞り機構を使用する必要が無く、低コストで高信頼
性の冷凍サイクル装置を得ることができる。
The refrigeration cycle apparatus according to the tenth aspect of the present invention comprises a compressor, a condenser, a high-pressure side throttle device, a receiver,
A low-pressure side expansion device and an evaporator are sequentially connected to form a refrigeration cycle, an HFC-based refrigerant is used as a refrigerant, and the density reversal temperature at which the density of the refrigerating machine oil is larger than the liquid density of the refrigerant is higher than that of the condenser. The use of refrigerating machine oil with a condensing temperature below the lower limit reduces the amount of sludge adhering to the throttle mechanism with a fixed throttle opening such as a capillary tube, and does not cause blockage of the throttle mechanism. However, there is no need to use a costly throttle mechanism such as an electronically controlled expansion valve, and a low-cost and highly reliable refrigeration cycle apparatus can be obtained.

【0086】本発明の第11の発明に係る冷凍サイクル
装置は、冷媒としてHFC32を使用したので、同じ温
度条件であれば、混合冷媒を使用した場合に比べて圧力
損失が小さく冷凍サイクルの性能が良くなる高性能な冷
凍サイクル装置を得ることができる。
Since the refrigeration cycle apparatus according to the eleventh aspect of the present invention uses HFC32 as the refrigerant, the pressure loss is smaller and the performance of the refrigeration cycle is lower than in the case of using the mixed refrigerant under the same temperature condition. An improved high-performance refrigeration cycle device can be obtained.

【0087】本発明の第12の発明に係る冷凍サイクル
装置は、冷凍機油としてハードアルキルベンゼン系冷凍
機油あるいはエステル系冷凍機油あるいはエーテル系冷
凍機油を使用したので、非相溶油的特性を示す冷凍機油
であっても寝込み起動時の軸受等の摺動部の信頼性がさ
らに高い圧縮機や冷凍サイクル装置を得ることができ
る。
The refrigeration cycle apparatus according to the twelfth aspect of the present invention uses a hard alkylbenzene-based refrigeration oil, an ester-based refrigeration oil, or an ether-based refrigeration oil as the refrigeration oil. Even with this, it is possible to obtain a compressor and a refrigeration cycle device with even higher reliability of sliding parts such as bearings at the time of start-up.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態1に係る冷凍サイクルを
構成する冷凍サイクル装置の一例を示す図である。
FIG. 1 is a diagram showing an example of a refrigeration cycle device constituting a refrigeration cycle according to Embodiment 1 of the present invention.

【図2】 本発明の実施の形態1に係る使用する冷媒と
冷凍機油のそれぞれの温度に対する密度の関係を表した
図である。
FIG. 2 is a diagram illustrating a relationship between a density and a temperature of a refrigerant and a refrigerating machine oil used according to Embodiment 1 of the present invention.

【図3】 本発明の実施の形態1に係る一般的な冷凍サ
イクル装置の運転範囲を表す図である。
FIG. 3 is a diagram illustrating an operation range of a general refrigeration cycle device according to Embodiment 1 of the present invention.

【図4】 本発明の実施の形態1に係るレシーバの構造
と冷凍機油の状態を表す図である。
FIG. 4 is a diagram illustrating a structure of a receiver and a state of refrigerating machine oil according to Embodiment 1 of the present invention.

【図5】 本発明の実施の形態1に係る凝縮器が2つに
分割されている場合の冷凍サイクルの構成を表した図で
ある。
FIG. 5 is a diagram illustrating a configuration of a refrigeration cycle when the condenser according to Embodiment 1 of the present invention is divided into two.

【図6】 本発明の実施の形態2を表す冷凍サイクル装
置の実施を示す図である。。
FIG. 6 is a diagram showing an embodiment of a refrigeration cycle apparatus according to Embodiment 2 of the present invention. .

【図7】 本発明の実施の形態3を表す冷凍サイクル装
置の実施を示す図である。。
FIG. 7 is a diagram showing an embodiment of a refrigeration cycle apparatus according to Embodiment 3 of the present invention. .

【図8】 本発明の実施の形態3を表す液冷媒と冷凍機
油の温度に対する密度変化を表した図である。
FIG. 8 is a diagram illustrating a density change with respect to a temperature of a liquid refrigerant and a refrigerating machine oil according to a third embodiment of the present invention.

【図9】 本発明の実施の形態3を表す液冷媒と冷凍機
油の温度に対する密度変化を表した図である。
FIG. 9 is a diagram illustrating a density change with respect to the temperature of the liquid refrigerant and the refrigerating machine oil according to the third embodiment of the present invention.

【図10】 本発明の実施の形態3を表すアキュムレー
タ5内の液冷媒と冷凍機油の状態を表した図である。
FIG. 10 is a diagram illustrating a state of a liquid refrigerant and refrigerating machine oil in an accumulator 5 according to a third embodiment of the present invention.

【図11】 本発明の実施の形態3を表すアキュムレー
タ5内の液冷媒と冷凍機油の状態を表した図である。
FIG. 11 is a diagram illustrating a state of a liquid refrigerant and refrigerating machine oil in an accumulator 5 according to a third embodiment of the present invention.

【図12】 本発明の実施の形態3を表すレシーバ6内
の冷凍機油と液冷媒の状態を表した図である。
FIG. 12 is a diagram illustrating states of refrigeration oil and liquid refrigerant in a receiver 6 according to the third embodiment of the present invention.

【図13】 本発明の実施の形態3を表す使用する冷媒
と冷凍機油の温度に対する密度の関係を表した図であ
る。
FIG. 13 is a diagram illustrating the relationship between the density of the refrigerant used and the temperature of the refrigerating machine oil according to the third embodiment of the present invention.

【図14】 従来の冷凍サイクルの一例を表した図であ
る。
FIG. 14 is a diagram illustrating an example of a conventional refrigeration cycle.

【符号の説明】[Explanation of symbols]

1 圧縮機、1a 油溜め、1b 油ポンプ、1c 圧
縮機構部、1d ロータ、1e クランク軸、1f 吐
出管、1g 吸入管、1h ステータ、1m吸入マフラ
ー、2 第一熱交換器、3a 絞り機構、3b、3c
絞り機構、4第二熱交換器、5 アキュムレータ、5a
油戻し穴、6 レシーバ、6a入口パイプ、6b 出
口パイプ、6c 出口パイプ先端、7 クランクケース
ヒータ、8 四方弁、10 冷凍機油。
1 compressor, 1a oil sump, 1b oil pump, 1c compression mechanism, 1d rotor, 1e crankshaft, 1f discharge pipe, 1g suction pipe, 1h stator, 1m suction muffler, 2nd heat exchanger, 3a throttle mechanism, 3b, 3c
Restrictor, 4th heat exchanger, 5 accumulator, 5a
Oil return hole, 6 receiver, 6a inlet pipe, 6b outlet pipe, 6c outlet pipe tip, 7 crankcase heater, 8 four-way valve, 10 refrigeration oil.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 容器内部に油溜めを有し、前記油溜めに
冷凍機油を保有する圧縮機と、前記圧縮機から吐出され
た冷媒を凝縮する凝縮器と、凝縮された冷媒を膨張させ
る膨張装置と、膨張した冷媒を蒸発させる蒸発器とによ
って冷凍サイクルを構成するとともに、前記冷媒として
HFC系冷媒を使用し、前記冷媒の液密度よりも冷凍機
油の密度の方が大きくなる密度逆転温度が前記冷凍サイ
クルで運転される凝縮温度の下限温度よりも低い温度の
冷凍機油を使用したことを特徴とする冷凍サイクル装
置。
1. A compressor having an oil reservoir inside a container and having refrigerating machine oil in the oil reservoir, a condenser for condensing a refrigerant discharged from the compressor, and an expansion for expanding the condensed refrigerant. A device and an evaporator for evaporating the expanded refrigerant constitute a refrigeration cycle, and an HFC-based refrigerant is used as the refrigerant. A refrigeration cycle apparatus using refrigeration oil having a temperature lower than a lower limit temperature of a condensing temperature operated in the refrigeration cycle.
【請求項2】 凝縮温度下限を30℃としたことを特徴
とする請求項1に記載の冷凍サイクル装置。
2. The refrigeration cycle apparatus according to claim 1, wherein the lower limit of the condensing temperature is 30 ° C.
【請求項3】 密度逆転温度が30℃より小さい冷凍機
油を使用するようにしたことを特徴とする請求項1乃至
請求項2のうちの1項に記載の冷凍サイクル装置。
3. The refrigeration cycle apparatus according to claim 1, wherein a refrigerating machine oil having a density reversal temperature of less than 30 ° C. is used.
【請求項4】 容器内部に油溜めを有し、前記油溜めに
冷凍機油を保有する圧縮機と、前記圧縮機から吐出され
た冷媒を凝縮する凝縮器と、凝縮された冷媒を膨張させ
る膨張装置と、膨張した冷媒を蒸発させる蒸発器とによ
って冷凍サイクルを構成するとともに、前記冷媒として
HFC系冷媒を使用し、前記冷媒の液密度よりも冷凍機
油の密度の方が大きくなる密度逆転温度が前記冷凍サイ
クルで運転される蒸発温度の下限温度よりも低い温度の
冷凍機油を使用したことを特徴とする冷凍サイクル装
置。
4. A compressor having an oil sump inside the container and holding refrigerating machine oil in the oil sump, a condenser for condensing a refrigerant discharged from the compressor, and an expansion for expanding the condensed refrigerant. A device and an evaporator for evaporating the expanded refrigerant constitute a refrigeration cycle, and an HFC-based refrigerant is used as the refrigerant. A refrigeration cycle apparatus using refrigeration oil having a temperature lower than a lower limit temperature of an evaporation temperature operated in the refrigeration cycle.
【請求項5】 蒸発温度下限を−20℃としたことを特
徴とする請求項4に記載の冷凍サイクル装置。
5. The refrigeration cycle apparatus according to claim 4, wherein the lower limit of the evaporation temperature is −20 ° C.
【請求項6】 密度逆転温度が−20℃より小さい冷凍
機油を使用するようにしたことを特徴とする請求項4乃
至請求項5のうちの1項に記載の冷凍サイクル装置。
6. The refrigeration cycle apparatus according to claim 4, wherein a refrigerating machine oil having a density reversal temperature lower than −20 ° C. is used.
【請求項7】 容器内部に油溜めを有し、前記油溜めに
冷凍機油を保有する圧縮機と、前記圧縮機から吐出され
た冷媒を凝縮する凝縮器と、凝縮された冷媒を減圧させ
る絞り装置と、減圧された冷媒を蒸発させる蒸発器とに
よって冷凍サイクルを構成するとともに、前記冷媒とし
てHFC系冷媒を使用し、前記冷媒の液密度よりも前記
冷凍機油の密度の方が大きくなる密度逆転温度に対して
前記圧縮機の油溜めの温度が高くなるように前記圧縮機
を運転させるようにしたことを特徴とする冷凍サイクル
装置。
7. A compressor having an oil sump inside the container and holding refrigerating machine oil in the oil sump, a condenser for condensing the refrigerant discharged from the compressor, and a restrictor for decompressing the condensed refrigerant. A refrigeration cycle is constituted by the apparatus and an evaporator for evaporating the depressurized refrigerant, and the HFC-based refrigerant is used as the refrigerant, and the density of the refrigeration oil is higher than the liquid density of the refrigerant. A refrigeration cycle apparatus wherein the compressor is operated such that the temperature of the oil reservoir of the compressor becomes higher than the temperature.
【請求項8】 内部に冷凍機油を有する圧縮機の前記油
溜めを加熱する加熱手段を設けたことを特徴とする請求
項1乃至請求項7のうちの1項に記載の冷凍サイクル装
置。
8. The refrigeration cycle apparatus according to claim 1, further comprising heating means for heating the oil reservoir of the compressor having refrigeration oil therein.
【請求項9】 圧縮機として高圧シェルタイプの圧縮機
を使用したことを特徴とする請求項1乃至請求項8のう
ちの1項に記載の冷凍サイクル装置。
9. The refrigeration cycle apparatus according to claim 1, wherein a high-pressure shell type compressor is used as the compressor.
【請求項10】 圧縮機、凝縮器、高圧側絞り装置、レ
シーバ、低圧側絞り装置、蒸発器とを順次接続して冷凍
サイクルを構成し、冷媒としてHFC系冷媒を使用し、
前記冷媒の液密度よりも冷凍機油の密度の方が大きくな
る密度逆転温度が前記凝縮器の凝縮温度下限以下である
冷凍機油を使用したことを特徴とする冷凍サイクル装
置。
10. A refrigeration cycle is configured by sequentially connecting a compressor, a condenser, a high-pressure side expansion device, a receiver, a low-pressure side expansion device, and an evaporator, and using an HFC-based refrigerant as a refrigerant,
A refrigeration cycle apparatus using a refrigerating machine oil having a density reversal temperature at which the density of the refrigerating machine oil is higher than the liquid density of the refrigerant is equal to or lower than a lower limit of the condensation temperature of the condenser.
【請求項11】 冷媒としてHFC32を使用したこと
を特徴とする請求項1乃至請求項10のうちの1項に記
載の冷凍サイクル装置。
11. The refrigeration cycle apparatus according to claim 1, wherein HFC32 is used as a refrigerant.
【請求項12】 冷凍機油としてハードアルキルベンゼ
ン系冷凍機油あるいはエステル系冷凍機油あるいはエー
テル系冷凍機油を使用したことを特徴とする請求項1乃
至請求項11のうちの1項に記載の冷凍サイクル装置。
12. The refrigeration cycle apparatus according to claim 1, wherein a hard alkylbenzene-based refrigerating machine oil, an ester-based refrigerating machine oil, or an ether-based refrigerating machine oil is used as the refrigerating machine oil.
JP2000334433A 2000-11-01 2000-11-01 Refrigeration cycle apparatus Pending JP2002139261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000334433A JP2002139261A (en) 2000-11-01 2000-11-01 Refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000334433A JP2002139261A (en) 2000-11-01 2000-11-01 Refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
JP2002139261A true JP2002139261A (en) 2002-05-17

Family

ID=18810351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000334433A Pending JP2002139261A (en) 2000-11-01 2000-11-01 Refrigeration cycle apparatus

Country Status (1)

Country Link
JP (1) JP2002139261A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239506A (en) * 2003-02-05 2004-08-26 Denso Corp Heat pump unit
JP2006275440A (en) * 2005-03-30 2006-10-12 Mitsubishi Electric Corp Refrigerating device
JP2012097638A (en) * 2010-11-01 2012-05-24 Daikin Industries Ltd Compressor and refrigerating apparatus
WO2015136703A1 (en) * 2014-03-14 2015-09-17 三菱電機株式会社 Refrigerating cycle device
JP2016102641A (en) * 2014-11-28 2016-06-02 ダイキン工業株式会社 Compressor and air conditioner using the same
KR20170102987A (en) * 2015-02-26 2017-09-12 미츠비시 쥬코 서멀 시스템즈 가부시키가이샤 Oil return circuit of refrigeration cycle and oil return method
CN109458747A (en) * 2018-10-23 2019-03-12 珠海格力电器股份有限公司 Outdoor machine of air-conditioner, air conditioner and the method for adjusting refrigerant in air conditioner

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239506A (en) * 2003-02-05 2004-08-26 Denso Corp Heat pump unit
JP2006275440A (en) * 2005-03-30 2006-10-12 Mitsubishi Electric Corp Refrigerating device
JP4537242B2 (en) * 2005-03-30 2010-09-01 三菱電機株式会社 Refrigeration equipment
JP2012097638A (en) * 2010-11-01 2012-05-24 Daikin Industries Ltd Compressor and refrigerating apparatus
WO2015136703A1 (en) * 2014-03-14 2015-09-17 三菱電機株式会社 Refrigerating cycle device
US10508848B2 (en) 2014-03-14 2019-12-17 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP2016102641A (en) * 2014-11-28 2016-06-02 ダイキン工業株式会社 Compressor and air conditioner using the same
WO2016084794A1 (en) * 2014-11-28 2016-06-02 ダイキン工業株式会社 Compressor and air conditioner using same
KR20170102987A (en) * 2015-02-26 2017-09-12 미츠비시 쥬코 서멀 시스템즈 가부시키가이샤 Oil return circuit of refrigeration cycle and oil return method
KR102099665B1 (en) * 2015-02-26 2020-04-10 미츠비시 쥬코 서멀 시스템즈 가부시키가이샤 Refrigeration cycle oil return circuit and oil return method
CN109458747A (en) * 2018-10-23 2019-03-12 珠海格力电器股份有限公司 Outdoor machine of air-conditioner, air conditioner and the method for adjusting refrigerant in air conditioner
CN109458747B (en) * 2018-10-23 2023-09-05 珠海格力电器股份有限公司 Air conditioner external unit, air conditioner and method for adjusting refrigerant in air conditioner

Similar Documents

Publication Publication Date Title
US7234310B2 (en) Very low temperature refrigeration system having a scroll compressor with liquid injection
JP3594981B2 (en) Two-cylinder rotary hermetic compressor
EP0743496B1 (en) Refrigeration system using hydrofluorocarbon refrigerant
AU2016225575B2 (en) Oil return circuit and oil return method for refrigerating cycle
JP2803451B2 (en) Refrigerant compressor, refrigerator, refrigerating air conditioner, and method of assembling refrigerant compressor
EP2578880B1 (en) Air conditioner
JP5339788B2 (en) Compressor and refrigeration cycle equipment
JP2020051662A (en) Refrigeration air conditioner and hermetic electric compressor used in the same
EP1170506A1 (en) Hermetic compressor
JP2002139261A (en) Refrigeration cycle apparatus
KR102103225B1 (en) Refrigeration unit
JP3654702B2 (en) Refrigeration cycle equipment
JP4874466B2 (en) Hermetic compressor
US5419144A (en) Refrigeration device using hydrofluorocarbon refrigerant
JPH08151587A (en) Refrigerating apparatus for hfc-based refrigerant
JPH09221693A (en) Refrigerating machine oil for hfc refrigerant
JPH10246521A (en) Freezer, air conditioner and method for assembling refrigerant circuit
JP2001255030A (en) Freezing apparatus
JPH109139A (en) Closed compressor and refrigerating cycle using the same
JP2000320912A (en) Refrigerant circulating system
JPH08210712A (en) Refrigerator
JPH11159896A (en) Refrigerant circulation system
Sekiya et al. Alkylbenzenes for Split Air-Conditioners with R-410A Part 1: Reliability Evaluation of Compressors
JP2001124423A (en) Multi-stage compression refrigerating device
JP2982970B2 (en) Refrigeration cycle

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040701