JP4535984B2 - Method for manufacturing concavo-convex structure - Google Patents

Method for manufacturing concavo-convex structure Download PDF

Info

Publication number
JP4535984B2
JP4535984B2 JP2005323657A JP2005323657A JP4535984B2 JP 4535984 B2 JP4535984 B2 JP 4535984B2 JP 2005323657 A JP2005323657 A JP 2005323657A JP 2005323657 A JP2005323657 A JP 2005323657A JP 4535984 B2 JP4535984 B2 JP 4535984B2
Authority
JP
Japan
Prior art keywords
heat
fiber
extensible
concavo
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005323657A
Other languages
Japanese (ja)
Other versions
JP2007130800A (en
Inventor
学 金田
学 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2005323657A priority Critical patent/JP4535984B2/en
Publication of JP2007130800A publication Critical patent/JP2007130800A/en
Application granted granted Critical
Publication of JP4535984B2 publication Critical patent/JP4535984B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Absorbent Articles And Supports Therefor (AREA)
  • Laminated Bodies (AREA)
  • Multicomponent Fibers (AREA)

Description

本発明は、凹凸構造体の製造方法に関する。   The present invention relates to a method for manufacturing a concavo-convex structure.

従来、通常平面的である不織布の表面を立体的な形状にした立体賦形不織布を例えば吸収性物品に組み込んで、着用者の肌と不繊布の接触を少なくして蒸れやかぶれを防止したり、厚み方向の変形量を大きくして柔らかく肌にフィットさせるなどの提案がなされている。例えば、多皺性不織布を吸収性物品の表面材として用いることが提案されている(特許文献1及び2参照)。また、潜在収縮性不織シートと、該シートよりも熱収縮性の小さいシート状物とを重ね、互いの面において部分結合した後に、熱処理によって収縮を発現させることで凹凸構造を有する複合不織布を得ることも提案されている(特許文献3参照)。これらの不織布においては、高収縮性シートと収縮しにくいシートとを組み合せ、それらの熱収縮の差を利用して皺や凹凸を形成している。   Conventionally, a three-dimensional shaped non-woven fabric with a three-dimensional shape of the surface of a non-woven fabric, which is usually flat, is incorporated into an absorbent article, for example, to reduce the contact between the wearer's skin and the non-woven fabric to prevent stuffiness and rash. There have been proposals such as increasing the amount of deformation in the thickness direction to make the skin fit softly. For example, it has been proposed to use a multi-layered nonwoven fabric as a surface material of an absorbent article (see Patent Documents 1 and 2). In addition, a composite non-woven fabric having a concavo-convex structure is obtained by overlapping a latent shrinkable nonwoven sheet and a sheet-like material having a heat shrinkability smaller than that of the sheet, partially bonding each other, and then causing shrinkage by heat treatment. It has also been proposed to obtain (see Patent Document 3). In these nonwoven fabrics, a highly shrinkable sheet and a sheet that does not easily shrink are combined, and wrinkles and irregularities are formed by utilizing the difference in heat shrinkage between them.

このように、これまでに提案されている立体的なシートは、収縮率が異なる2層以上の構成を有し、熱収縮処理を行って得られるものである。従って、その構成や製法に起因して、目付が低いものが得られにくい。また、製造方法が複雑になるため、生産性が低くコスト的に高いものとなってしまう。   Thus, the three-dimensional sheet proposed so far has a configuration of two or more layers having different shrinkage rates, and is obtained by performing heat shrinkage treatment. Therefore, it is difficult to obtain a product with a low basis weight due to its configuration and manufacturing method. Further, since the manufacturing method is complicated, the productivity is low and the cost is high.

また、吸収性物品の表面層として、液透過性の基材と、前記基材の表面に設けられた連続フィラメントの層とから構成されており、前記連続フィラメントの層により、表面側に隆起する連続フィラメントのループ部を形成したものが提案されている(特許文献4参照)。しかしこの表面層は、基材に熱収縮処理させるか、あるいは表面層に伸長状態で固定した弾性部材を収縮させることにより得られるため、目付が低いものが得られにくいか、あるいは製造方法が複雑になり、生産性が低くコスト的に高いものとなってしまう。   Further, the surface layer of the absorbent article is composed of a liquid-permeable base material and a continuous filament layer provided on the surface of the base material, and the continuous filament layer is raised on the surface side. The thing which formed the loop part of the continuous filament is proposed (refer patent document 4). However, since this surface layer is obtained by subjecting the base material to heat shrink treatment or shrinking an elastic member fixed to the surface layer in an expanded state, it is difficult to obtain a material with a low basis weight, or the manufacturing method is complicated. Therefore, the productivity is low and the cost is high.

特開平6−128853号公報Japanese Patent Laid-Open No. 6-128553 特開平9−111631号公報Japanese Patent Laid-Open No. 9-111631 特開昭62−141167号公報Japanese Patent Laid-Open No. 62-141167 特開2002−65736号公報JP 2002-65736 A

従って本発明の目的は、前述した従来技術が有する種々の欠点を解消し得る凹凸構造体の製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing a concavo-convex structure that can eliminate the various drawbacks of the above-described prior art.

本発明は、加熱によってその長さが伸びる熱伸長性長繊維を含み、該熱伸長性長繊維が一方向に配向している繊維層を、基材層と部分的に接合した後、前記熱伸長性長繊維を加熱して伸長させることにより、該熱伸長性長繊維が、前記基材層との接合部以外の部分において凸部を形成すると共に前記接合部が凹部となっている凹凸構造体を得る、凹凸構造体の製造方法を提供することにより前記目的を達成したものである。   The present invention includes a heat-extensible long fiber whose length is extended by heating, and after the fiber layer in which the heat-extensible long fiber is oriented in one direction is partially joined to a base material layer, An uneven structure in which the heat-extensible long fibers are heated and stretched so that the heat-extensible long fibers form convex portions in portions other than the joint portions with the base material layer and the joint portions are concave portions. The object is achieved by providing a method for producing a concavo-convex structure, which obtains a body.

また本発明は、前記凹凸構造体、及び該凹凸構造体を、表面材、吸収体又は外装材の少なくとも一部として含有する吸収性物品を提供するものである。   Moreover, this invention provides the absorbent article which contains the said uneven structure body and this uneven structure body as at least one part of a surface material, an absorber, or an exterior material.

本発明の凹凸構造体の製造方法によれば、三次元的な凹凸形状を有し、低密度な凹凸構造体を、特殊な製造設備を用いずに安価に製造することができる。本発明の凹凸構造体及び吸収性物品によれば、三次元的な凹凸形状を有し低密度である凹凸構造体の特性に由来する優れた性能が発現される。   According to the method for manufacturing a concavo-convex structure of the present invention, a low-density concavo-convex structure having a three-dimensional concavo-convex shape can be manufactured at low cost without using special manufacturing equipment. According to the concavo-convex structure and absorbent article of the present invention, excellent performance derived from the characteristics of the concavo-convex structure having a three-dimensional concavo-convex shape and low density is exhibited.

以下本発明を、その好ましい実施形態に基づき図面を参照しながら説明する。
図1には、本発明の凹凸構造体の製造方法の一実施形態における製造工程の概略が示されている。本実施形態においては、図1に示すように、熱伸長性長繊維を含むトウ11を、開繊装置1で開繊してその幅を拡げた開繊トウ2を、熱伸長性長繊維21を含み且つ該熱伸長性長繊維21が一方向(機械方向)に配向している繊維層として用いている。
The present invention will be described below based on preferred embodiments with reference to the drawings.
The outline of the manufacturing process in one Embodiment of the manufacturing method of the uneven structure of this invention is shown by FIG. In the present embodiment, as shown in FIG. 1, the tow 11 containing the heat-extensible long fibers is opened by the opening device 1 and the spread tow 2 is expanded, and the heat-extensible long fibers 21. And the heat-extensible long fiber 21 is used as a fiber layer oriented in one direction (machine direction).

図1に示す開繊装置1は、積層され圧縮された状態のトウ原反10からトウ11を連続的に引き出し、引き出したトウ11に、複数の開繊機(バンディングジェット)12〜14で順次開繊処理を施すものであり、それによって、トウ11を構成する繊維を幅方向に略均一に分散させ得るものである。開繊機12と13との間には、トウ11を一旦上方に送った後、降下させるガイド15を備え、開繊機13と14との間には、プレテンショニングロール16及びブルミングロール17を備え、開繊機14の下流にはデリバリーロール18を備えている。
開繊機12〜14は、エアーを吹き付けて搬送中のトウを開繊させその幅を拡げる装置である。プレテンショニングロール16は、開繊機12,13で開繊されたトウ11をニップして所定の速度で繰り出す一対のロールを備えている。ブルミングロール17は、溝ロール17aと、周面がゴムで形成されたアンビルロール17bとを備えており、プレテンショニングロール16との間に速度差を設けて、トウ11の開繊をし易くしている。デリバリーロール18は、開繊を終えた開繊トウ2を所定の張力を維持して下流に供給する一対のロールを備えている。
The fiber opening device 1 shown in FIG. 1 continuously pulls out the tow 11 from the tow raw fabric 10 in a stacked and compressed state, and sequentially opens the drawn tow 11 with a plurality of fiber opening machines (banding jets) 12 to 14. A fiber treatment is performed, whereby the fibers constituting the tow 11 can be dispersed substantially uniformly in the width direction. A guide 15 is provided between the spreaders 12 and 13 and the tow 11 is once sent upward and then lowered. A pretensioning roll 16 and a blooming roll 17 are provided between the spreaders 13 and 14. A delivery roll 18 is provided downstream of the spreader 14.
The spreaders 12 to 14 are devices that spread air by blowing air to open the tow being conveyed. The pretensioning roll 16 includes a pair of rolls that nip the tow 11 opened by the spreaders 12 and 13 and feed the tow 11 at a predetermined speed. The blooming roll 17 includes a groove roll 17a and an anvil roll 17b whose peripheral surface is made of rubber. A speed difference is provided between the pre-tensioning roll 16 and the tow 11 can be easily opened. is doing. The delivery roll 18 includes a pair of rolls that supply the downstream side of the spread tow 2 that has finished opening while maintaining a predetermined tension.

本実施形態においては、開繊装置1による開繊処理により、構成繊維が幅方向に略均一に分散した開繊トウ2を、図1に示すように、公知の搬送機構により連続搬送されてきた帯状の基材層3と積層し、積層状態の開繊トウ2と基材層3とを、ヒートエンボス装置4に送り、そこでヒートエンボス加工を施している。ヒートエンボス装置4は、一対のロール41,42を備えている。ロール41は周面が平滑となっている平滑ロールである。一方、ロール42は、その周面に接合部形成用の凸部と非接合部形成用の凹部とが形成された彫刻ロールである。各ロール41,42は所定温度に加熱可能になっている。   In the present embodiment, the fiber opening tow 2 in which the constituent fibers are dispersed substantially uniformly in the width direction by the fiber opening process by the fiber opening device 1 has been continuously conveyed by a known conveyance mechanism as shown in FIG. Laminated with the belt-like base material layer 3, the spread fiber tow 2 and the base material layer 3 are sent to the heat embossing device 4, where heat embossing is performed. The heat embossing device 4 includes a pair of rolls 41 and 42. The roll 41 is a smooth roll having a smooth peripheral surface. On the other hand, the roll 42 is a sculpture roll in which a convex portion for forming a joint portion and a concave portion for forming a non-joint portion are formed on the peripheral surface thereof. Each roll 41, 42 can be heated to a predetermined temperature.

本実施形態における開繊トウ(繊維層)2は、その構成繊維として、加熱によってその長さが伸びる熱伸長性の長繊維(以下、この繊維を熱伸長性長繊維という)を含んでいる。熱伸長性長繊維を含むという表現には、熱伸長性長繊維100重量%からなる場合も含まれる。熱伸長性長繊維としては、例えば加熱により樹脂の結晶状態が変化して伸びたり、あるいは捲縮加工が施された繊維であって捲縮が解除されて見かけの長さが伸びる繊維が挙げられる。本発明において、特に好ましく用いられる熱伸長性長繊維としては、配向指数が40%以上の第1樹脂成分と、該第1樹脂成分の融点より低い融点又は軟化点を有し且つ配向指数が25%以下の第2樹脂成分とからなり、第2樹脂成分が繊維表面の少なくとも一部を長さ方向に連続して存在している複合繊維(以下、この繊維を熱伸長性複合繊維という)が挙げられる。   The opening tow (fiber layer) 2 in the present embodiment includes a heat-extensible long fiber whose length is increased by heating (hereinafter, this fiber is referred to as a heat-extensible long fiber) as its constituent fibers. The expression “including heat-extensible long fibers” includes a case of 100% by weight of heat-extensible long fibers. Examples of the heat-extensible long fibers include fibers that are changed by changing the crystalline state of the resin by heating, or fibers that have been crimped and have an apparent length that is released by crimping. . In the present invention, the heat-extensible long fiber particularly preferably used has a first resin component having an orientation index of 40% or more, a melting point or softening point lower than the melting point of the first resin component, and an orientation index of 25. % Of the second resin component, and the second resin component is a composite fiber in which at least a part of the fiber surface is continuously present in the length direction (hereinafter, this fiber is referred to as a heat-extensible composite fiber). Can be mentioned.

ヒートエンボス加工は、開繊トウ(繊維層)2に含まれる熱伸長性長繊維の伸長開始温度未満の温度で行うことが好ましく、また、開繊トウ(繊維層)2が、前記熱伸長性複合繊維を含む場合(熱伸長性複合繊維100%からなる場合も含む)、ヒートエンボス加工は、熱伸長性複合繊維における低融点成分の融点以上で且つ高融点成分の融点未満の温度で行われることが好ましい。
このヒートエンボス加工によって、開繊トウ2と基材層3とが部分的に圧着又は熱融着されて、接合部51が形成される。
The heat embossing is preferably performed at a temperature lower than the elongation start temperature of the heat-extensible long fiber contained in the spread tow (fiber layer) 2, and the spread tow (fiber layer) 2 has the heat stretchability. When the composite fiber is included (including a case where the heat-extensible composite fiber is 100%), the heat embossing is performed at a temperature higher than the melting point of the low-melting component and lower than the melting point of the high-melting component. It is preferable.
By this heat embossing, the spread tow 2 and the base material layer 3 are partially crimped or heat-sealed to form the joint portion 51.

開繊トウ2と基材層3との接合は、例えば図2に示す接合パターンのように、開繊トウ2と基材層3との複合体5の面に垂直な方向から見たときに、接合部51に周囲を囲まれた非接合部52が多数生じるような接合パターンで行うことが、熱伸長性長繊維21が非接合部52の前後で確実に固定され、該熱伸長性長繊維により形成される凸部71が、球面状あるいはドーム型の形状となり、外観、いろいろな方向からの耐擦れ性、肌触りに優れた凹凸構造体が得られることから好ましい。図2に示す接合パターンにおいては、面積3〜350mm2程度の略円形の非接合部52が千鳥状に多数形成されており、それ以外の部分が接合部51となっている。 Joining of the spread tow 2 and the base material layer 3 is, for example, as seen from a direction perpendicular to the surface of the composite 5 of the spread tow 2 and the base material layer 3 as in the joining pattern shown in FIG. The heat-extensible long fibers 21 are reliably fixed before and after the non-joining portion 52, so that a large number of non-joining portions 52 surrounded by the joining portion 51 are generated. The convex portions 71 formed of fibers are preferably spherical or dome-shaped, and an uneven structure having excellent appearance, abrasion resistance from various directions, and touch is obtained. In the joining pattern shown in FIG. 2, a large number of substantially circular non-joining portions 52 having an area of about 3 to 350 mm 2 are formed in a staggered manner, and the other portions are joining portions 51.

図3(a)〜(c)は、開繊トウ2と基材層3とを、接合部51に周囲を囲まれた非接合部52が多数生じるように接合する接合パターンの他の例を示す図である。
尚、開繊トウ2と基材層3との接合は、図2や図3に示すような、接合部に周囲を囲まれた非接合部を生じさせるような接合パターンに代えて、面積が1〜400mm2程度の円形、三角形、矩形、その他の形状等の接合部が、分散して形成されるような接合パターンで行うこともできる。尚、開繊トウ(繊維層)2の面積に対する接合部51の面積の割合は1〜20%、更に好ましくは2〜10%であることが立体的な凹凸形状を効果的に形成し得る点から好ましい。
3 (a) to 3 (c) show another example of a joining pattern for joining the spread tow 2 and the base material layer 3 so that a large number of non-joining parts 52 surrounded by the joining part 51 are generated. FIG.
In addition, the bonding of the fiber opening tow 2 and the base material layer 3 has an area instead of a bonding pattern such as shown in FIG. 2 or FIG. It can also be performed with a bonding pattern in which bonding portions such as circles, triangles, rectangles, and other shapes of about 1 to 400 mm 2 are formed in a dispersed manner. In addition, the ratio of the area of the joint portion 51 to the area of the opened tow (fiber layer) 2 is 1 to 20%, and more preferably 2 to 10%, so that a three-dimensional uneven shape can be effectively formed. To preferred.

開繊トウ2と基材層3とが部分的に接合されて生じた複合体5は、熱風吹き付け装置6に搬送される。熱風吹き付け装置6においては、複合体5にエアスルー加工が施される。即ち熱風吹き付け装置6は、所定温度に加熱された熱風が複合体5を厚み方向に貫通するように構成されている。   The composite 5 produced by partially bonding the opened tow 2 and the base material layer 3 is conveyed to a hot air spraying device 6. In the hot air spraying device 6, the composite 5 is subjected to air through processing. That is, the hot air blowing device 6 is configured such that hot air heated to a predetermined temperature penetrates the composite 5 in the thickness direction.

エアスルー加工は、複合体5中の熱伸長性長繊維が加熱によって伸長する温度で行われる。また、熱伸長性長繊維の融点未満の温度で行う必要がある。熱伸長性長繊維が、高融点成分と低融点成分とからなる複合繊維の場合(例えば上述した熱伸長性複合繊維の場合)、該複合繊維を構成する成分のうちの高融点成分の融点未満の温度で行う必要がある。   The air-through process is performed at a temperature at which the heat-extensible long fibers in the composite 5 are elongated by heating. Moreover, it is necessary to carry out at the temperature below melting | fusing point of a heat | fever extensible long fiber. When the heat-extensible long fiber is a composite fiber composed of a high-melting component and a low-melting component (for example, in the case of the above-described heat-extensible composite fiber), the melting point of the component constituting the composite fiber is less than the melting point of the high-melting component It is necessary to carry out at the temperature.

このエアスルー加工によって、接合部51以外の部分に存する熱伸長性長繊維が伸長する。熱伸長性長繊維21は、接合部51において基材層3に固定されているので、伸長するのは接合部51間の部分である。そして、熱伸長性長繊維21はその一部が接合部51に固定されていることによって、伸長した熱伸長性長繊維の伸び分は、複合体5の平面方向への行き場を失い、該複合体5の厚み方向へ移動する。これによって、接合部51間に凸部71が形成される。そして、接合部51は相対的に凹部となる。このようにして目的とする凹凸構造体7が得られる。
得られた凹凸構造体7においては、図4及び図5に示すように、伸長した熱伸長性長繊維21が基材層3から離れる方向に膨らんで凸部71を形成しており、該凸部71の内部においては、熱伸長性長繊維21と基材層3との間に空洞が生じている。
開繊トウ(繊維層)2中には、非熱伸長性繊維を混合してもよく、また、開繊トウ(繊維層)2に非熱伸長性繊維からなる層を積層した後、開繊トウ(繊維層)2と基材層3とを、両者間に非熱伸長性繊維からなる層を介在させた状態で部分的に接合しても良い。このようにすることで、凸部71の内部に湾曲の程度の異なる繊維が生じさせることができ、凸部の内部に空隙又は繊維密度のグラデーションを形成させたり、空洞のない凸部71を形成させることもできる。
By this air-through process, the heat-extensible long fibers existing in the portion other than the joint portion 51 are elongated. Since the heat-extensible long fiber 21 is fixed to the base material layer 3 at the joint portion 51, it is the portion between the joint portions 51 that extends. And since the part of the heat-extensible long fiber 21 is being fixed to the joining part 51, the elongation of the extended heat-extensible long fiber loses its place in the plane direction of the composite 5, and the composite It moves in the thickness direction of the body 5. As a result, convex portions 71 are formed between the joint portions 51. And the junction part 51 becomes a recessed part relatively. In this way, the intended concavo-convex structure 7 is obtained.
In the obtained concavo-convex structure 7, as shown in FIGS. 4 and 5, the elongated heat-extensible long fibers 21 swell in the direction away from the base material layer 3 to form a convex portion 71. Inside the portion 71, a cavity is formed between the heat-extensible long fibers 21 and the base material layer 3.
Non-heat-extensible fibers may be mixed in the opened tow (fiber layer) 2, and a layer made of non-heat-extensible fibers is laminated on the opened tow (fiber layer) 2 and then opened. The tow (fiber layer) 2 and the base material layer 3 may be partially joined in a state where a layer made of non-heat-extensible fibers is interposed therebetween. By doing so, fibers with different degrees of curvature can be generated inside the convex portion 71, and a void or fiber density gradation can be formed inside the convex portion, or a convex portion 71 without a cavity can be formed. It can also be made.

以上の説明から明らかなように、本実施形態の製造方法で製造される凹凸構造体7は、熱伸長性長繊維が、接合部以外の部分で伸長して生じた凸部71と、凸部71が生じた結果、相対的に凹部となった接合部51とを有している。そのため、凹凸構造体7は、三次元的な凹凸形状を有しており、また、凸部71の形成に基材層3を収縮させる必要がないため、低密度(低坪量)であり、液透過性や通気性が良好である。また、上記の製造方法は、不織布の製造方法において極めて一般的な手法であるヒートエンボスとエアスルー法とを組み合わせただけのものであり、特殊な工程を含んでいない。従って製造工程が簡便であり、しかも製造効率が高い。
また、開繊トウ(繊維層)2を構成する熱伸長性長繊維が、製造時の機械方向(MD)方向に配向しているため、凸部71を形成する熱伸長性長繊維同士が接着しにくく、凸部71を形成している熱伸長性長繊維が比較的自由に動きやすい。そのため、吸収性物品の表面材やセカンドシート、吸収体の一部等として用いたときに、軟便等の高粘性の液の吸収に優れており、清掃用シート等として用いたときに、大きなゴミの捕集能力に優れている。尚、高融点成分と低融点成分とを含む複合繊維、特に上述した熱伸長性複合繊維を用いた場合には、熱伸長性長繊維同士の交点が比較的熱融着しやすくなるが、その場合には、反発力に富む凸部71が得られ、クッション性(厚み回復性)等が良好となる。
As is apparent from the above description, the concavo-convex structure 7 manufactured by the manufacturing method of the present embodiment includes the convex portion 71 formed by extending the heat-extensible long fiber at a portion other than the joint portion, and the convex portion. As a result of the occurrence of 71, it has a joint 51 that is relatively concave. Therefore, the concavo-convex structure 7 has a three-dimensional concavo-convex shape, and since it is not necessary to shrink the base material layer 3 to form the convex portion 71, it has a low density (low basis weight). Good liquid permeability and air permeability. Moreover, said manufacturing method is only what combined the heat embossing and the air through method which are very general methods in the manufacturing method of a nonwoven fabric, and does not include a special process. Therefore, the manufacturing process is simple and the manufacturing efficiency is high.
Further, since the heat-extensible long fibers constituting the fiber opening tow (fiber layer) 2 are oriented in the machine direction (MD) direction during production, the heat-extensible long fibers forming the convex portion 71 are bonded to each other. The heat-extensible continuous fibers forming the convex portions 71 are relatively easy to move. Therefore, it is excellent in absorbing highly viscous liquids such as soft stool when used as a surface material, a second sheet, a part of an absorbent body, etc., and large dust when used as a cleaning sheet. It has excellent collection ability. In the case of using a composite fiber containing a high-melting component and a low-melting component, particularly the above-described heat-extensible composite fiber, the intersection between the heat-extensible long fibers becomes relatively easy to be heat-sealed. In this case, the convex portion 71 rich in repulsive force is obtained, and cushioning properties (thickness recovery properties) and the like are improved.

先に述べた通り、凹凸構造体7の製造に用いた開繊トウ(繊維層)2は、熱伸長性長繊維を含むもの(熱伸長性長繊維100重量%からなる場合も含む)である。開繊トウ(繊維層)2が熱伸長性長繊維及び他の繊維を含む場合、開繊トウ(繊維層)2に含まれる他の繊維としては、熱伸長性長繊維の熱伸長発現温度よりも高い融点を有する熱可塑性樹脂からなる繊維や、本来的に熱融着性を有さない繊維(例えばコットンやパルプ等の天然繊維、レーヨンやアセテート繊維など)が挙げられる。当該他の繊維は、開繊トウ(繊維層)2中に好ましくは5〜50重量%、更に好ましくは20〜30重量%含まれる。一方、熱伸長性長繊維は、開繊トウ(繊維層)2中に50〜95重量%、特に70〜95重量%含まれることが、立体的な凹凸形状を効果的に形成し得る点から好ましい。立体的な凹凸形状を更に効果的に形成し得る点から、特に好ましくは、開繊トウ(繊維層)2は、熱伸長性複合繊維からなる。   As described above, the open tow (fiber layer) 2 used for manufacturing the concavo-convex structure 7 includes a heat-extensible long fiber (including a case where the heat-extensible long fiber is composed of 100% by weight). . When the spread tow (fiber layer) 2 includes a heat-extensible long fiber and other fibers, the other fibers contained in the spread tow (fiber layer) 2 are based on the thermal elongation expression temperature of the heat-extensible long fiber. Examples thereof include fibers made of a thermoplastic resin having a high melting point, and fibers that do not inherently have heat fusibility (for example, natural fibers such as cotton and pulp, rayon and acetate fibers). The other fibers are preferably contained in the spread tow (fiber layer) 2 by 5 to 50% by weight, more preferably 20 to 30% by weight. On the other hand, the heat-extensible long fiber is contained in the spread tow (fiber layer) 2 in an amount of 50 to 95% by weight, particularly 70 to 95% by weight, from which a three-dimensional uneven shape can be effectively formed. preferable. Particularly preferably, the spread tow (fiber layer) 2 is made of a heat-extensible composite fiber from the viewpoint that a three-dimensional uneven shape can be more effectively formed.

上述した熱伸長性複合繊維の詳細について説明すると、該熱伸長性複合繊維は、高速溶融紡糸法によって製造されたものであることが好ましい。高速溶融紡糸法は、図6に示すように、押出機101A,102Aとギアポンプ101B,102Bとからなる二系統の押出装置101,102、及び紡糸口金103を備えた紡糸装置を用いて行われる。押出機101A,102A及びギアポンプ101B,102Bによって溶融され且つ計量された各樹脂成分は、紡糸口金103内で合流しノズルから吐出される。紡糸口金103の形状は、目的とする複合繊維の形態に応じて適切なものが選択される。紡糸口金103の直下には巻取装置104が設置されており、ノズルから吐出された溶融樹脂が所定速度下に引き取られる。高速溶融紡糸法における紡出糸の引き取り速度は一般に2000m/分以上である。引き取り速度の上限値には特に制限はなく、現在では10000m/分を超える速度で引き取ることが可能になっている。   The details of the above-described heat-extensible composite fiber will be described. The heat-extensible composite fiber is preferably produced by a high-speed melt spinning method. As shown in FIG. 6, the high-speed melt spinning method is performed by using a spinning device provided with two systems of extrusion devices 101 and 102 including extruders 101 </ b> A and 102 </ b> A and gear pumps 101 </ b> B and 102 </ b> B, and a spinneret 103. The resin components melted and measured by the extruders 101A and 102A and the gear pumps 101B and 102B are merged in the spinneret 103 and discharged from the nozzle. As the shape of the spinneret 103, an appropriate shape is selected according to the shape of the target composite fiber. A winding device 104 is installed immediately below the spinneret 103, and the molten resin discharged from the nozzle is taken down at a predetermined speed. The take-up speed of the spun yarn in the high speed melt spinning method is generally 2000 m / min or more. The upper limit value of the take-up speed is not particularly limited, and it is now possible to take up at a speed exceeding 10,000 m / min.

熱伸長性複合繊維における第1樹脂成分は該複合繊維の強度を維持する成分であり、第2樹脂成分は熱融着性を発現する成分である。第1樹脂成分はその配向指数が好ましくは40%以上、更に好ましくは50%以上である。一方、第2樹脂成分はその配向指数が好ましくは25%以下、更に好ましくは20%以下となっている。配向指数は、繊維を構成する樹脂の高分子鎖の配向の程度の指標となるものである。そして、第1樹脂成分及び第2樹脂成分の配向指数がそれぞれ前記の値であることによって、熱伸長性複合繊維は、加熱によって伸長するようになる。また、低熱量で高強度の融着点を形成することが可能となる。熱伸長性複合繊維における各樹脂成分が前記のような配向指数を達成するためには、例えば融点の異なる2種類の樹脂を用い、前記高速溶融紡糸法により繊維を形成すればよい。   The first resin component in the heat-extensible conjugate fiber is a component that maintains the strength of the conjugate fiber, and the second resin component is a component that exhibits heat-fusibility. The first resin component preferably has an orientation index of 40% or more, more preferably 50% or more. On the other hand, the second resin component has an orientation index of preferably 25% or less, more preferably 20% or less. The orientation index is an index of the degree of orientation of the polymer chain of the resin constituting the fiber. And when the orientation index of a 1st resin component and a 2nd resin component is each said value, a heat | fever extensible composite fiber comes to expand | extend by heating. In addition, it is possible to form a fusion point with high heat and low strength. In order to achieve the orientation index as described above for each resin component in the heat-extensible conjugate fiber, for example, two types of resins having different melting points may be used, and the fiber may be formed by the high-speed melt spinning method.

第1樹脂成分の配向指数の上限値に特に制限はなく、高ければ高いほど好ましいが、70%程度であれば、十分に満足すべき効果が得られる。一方、第2樹脂成分の配向指数の下限値にも特に制限はなく、低ければ低いほど好ましいが、15%程度であれば、十分に満足すべき効果が得られる。   There is no particular limitation on the upper limit of the orientation index of the first resin component, and the higher the value, the better. However, if it is about 70%, a sufficiently satisfactory effect can be obtained. On the other hand, the lower limit of the orientation index of the second resin component is not particularly limited, and the lower the better, the better. However, if it is about 15%, a sufficiently satisfactory effect can be obtained.

第1樹脂成分及び第2樹脂成分の配向指数は、熱伸長性複合繊維における樹脂の複屈折の値をAとし、樹脂の固有複屈折の値をBとしたとき、以下の式(1)で表される。
配向指数(%)=A/B×100 (1)
The orientation index of the first resin component and the second resin component is expressed by the following formula (1), where A is the birefringence value of the resin in the heat-extensible conjugate fiber, and B is the intrinsic birefringence value of the resin. expressed.
Orientation index (%) = A / B × 100 (1)

固有複屈折とは、樹脂の高分子鎖が完全に配向した状態での複屈折をいい、その値は例えば「成形加工におけるプラスチック材料」初版、付表 成形加工に用いられる代表的なプラスチック材料(プラスチック成形加工学会編、シグマ出版、1998年2月10日発行)に記載されている。   Intrinsic birefringence refers to birefringence in the state where the polymer polymer chains are perfectly oriented. The value is, for example, the first edition of “Plastic Materials in Molding”. Edited by Japan Society for Molding and Processing, Sigma Publishing, published on February 10, 1998).

熱伸長性複合繊維における複屈折は、干渉顕微鏡に偏光板を装着し、繊維軸に対して平行方向及び垂直方向の偏光下で測定する。浸漬液としてはCargille社製の標準屈折液を使用する。浸漬液の屈折率はアッベ屈折計によって測定する。干渉顕微鏡により得られる複合繊維の干渉縞像から、以下の文献に記載の算出方法で繊維軸に対し平行及び垂直方向の屈折率を求め、両者の差である複屈折を算出する。
「芯鞘型複合繊維の高速紡糸における繊維構造形成」第408頁(繊維学会誌、Vol.51、No.9、1995年)
The birefringence in the heat-extensible composite fiber is measured under polarization in a direction parallel to and perpendicular to the fiber axis by attaching a polarizing plate to an interference microscope. As the immersion liquid, a standard refraction liquid manufactured by Cargille is used. The refractive index of the immersion liquid is measured with an Abbe refractometer. From the interference fringe image of the composite fiber obtained by the interference microscope, the refractive index in the direction parallel and perpendicular to the fiber axis is obtained by the calculation method described in the following document, and the birefringence that is the difference between the two is calculated.
“Fiber structure formation in high-speed spinning of core-sheath type composite fiber”, page 408 (Journal of the Fiber Society, Vol. 51, No. 9, 1995)

熱伸長性複合繊維は、第2樹脂成分の融点又は軟化点より10℃高い温度での伸長率が0.5〜20、特に3〜10%であることが、凹凸形状が顕著な不織布10が得られる点から好ましい。   The heat-stretchable conjugate fiber has a stretch ratio of 0.5 to 20, particularly 3 to 10% at a temperature 10 ° C. higher than the melting point or softening point of the second resin component. It is preferable from the point obtained.

このような熱伸長率を有する熱伸長性複合繊維を得るためには、熱伸長性複合繊維の紡糸後に、該複合繊維に対して加熱処理又は捲縮処理を行い且つ延伸処理を行わないようにすればよい。尚、熱伸長率を前記の温度で測定する理由は、繊維の交点を熱融着させて不織布を製造する場合には、第2樹脂成分の融点又は軟化点以上で且つそれらより10℃程度高い温度までの範囲で製造するのが通常だからである。   In order to obtain a heat-extensible composite fiber having such a heat extension rate, after spinning the heat-extensible composite fiber, the composite fiber is subjected to heat treatment or crimping treatment and not subjected to drawing treatment. do it. The reason for measuring the thermal elongation rate at the above-mentioned temperature is that when the nonwoven fabric is manufactured by thermally fusing the intersections of the fibers, it is higher than the melting point or softening point of the second resin component and higher by about 10 ° C. It is because it is normal to manufacture in the range up to temperature.

熱伸長率は次の方法で測定される。熱機械分析装置TMA−50(島津製作所製)を用い、平行に並べた繊維をチャック間距離10mmで装着し、0.025mN/texの一定荷重を負荷した状態で10℃/minの昇温速度で昇温させる。その際の繊維の伸長率変化を測定し、第2樹脂成分の融点又は軟化点より10℃高い温度での伸長率を読み取って熱収縮率とする。   The thermal elongation rate is measured by the following method. Using a thermomechanical analyzer TMA-50 (manufactured by Shimadzu Corp.), parallel fibers are mounted at a distance between chucks of 10 mm, and a constant load of 0.025 mN / tex is applied, and a temperature increase rate of 10 ° C./min. Raise the temperature at. The change in the elongation rate of the fiber at that time is measured, and the elongation rate at a temperature 10 ° C. higher than the melting point or softening point of the second resin component is read to obtain the heat shrinkage rate.

紡糸後に行われる加熱処理の条件は、本発明の複合繊維を構成する第1及び第2樹脂成分の種類に応じて適切な条件が選択される。例えば、本発明の複合繊維が芯鞘型であり、芯成分がポリプロピレンで鞘成分が高密度ポリエチレンである場合、加熱温度は50〜120℃、特に70〜100℃であることが好ましく、加熱時間は10〜500秒、特に20〜200秒であることが好ましい。加熱方法としては、熱風の吹き付け、赤外線の照射などが挙げられる。   Appropriate conditions for the heat treatment performed after spinning are selected according to the types of the first and second resin components constituting the conjugate fiber of the present invention. For example, when the conjugate fiber of the present invention is a core-sheath type, the core component is polypropylene and the sheath component is high-density polyethylene, the heating temperature is preferably 50 to 120 ° C., particularly preferably 70 to 100 ° C., and the heating time Is preferably 10 to 500 seconds, more preferably 20 to 200 seconds. Examples of the heating method include hot air blowing and infrared irradiation.

紡糸後に行われる捲縮処理としては、機械捲縮を行うことが簡便である。機械捲縮には二次元状及び三次元状の態様があり、また、偏芯タイプの芯鞘型複合繊維やサイドバイサイド型複合繊維に見られる三次元の顕在捲縮などがある。本発明においては何れの態様の捲縮を行ってもよい。機械捲縮には熱を伴う場合がある。その場合には、加熱処理と捲縮処理とが同時に施されることになる。   As the crimping process performed after spinning, it is convenient to perform mechanical crimping. There are two-dimensional and three-dimensional forms of mechanical crimps, and there are three-dimensional manifested crimps found in eccentric core-sheath composite fibers and side-by-side composite fibers. In the present invention, any type of crimping may be performed. Mechanical crimp can be accompanied by heat. In that case, the heat treatment and the crimping treatment are performed simultaneously.

捲縮処理に際しては繊維が多少引き伸ばされる場合があるが、そのような引き延ばしは本明細書にいう延伸処理には含まれない。本明細書にいう延伸処理とは、未延伸糸に対して通常行われる延伸倍率2〜6倍程度の延伸操作をいう。   In the crimping process, the fiber may be slightly stretched, but such stretching is not included in the stretching process referred to in this specification. The drawing treatment referred to in this specification refers to a drawing operation with a draw ratio of about 2 to 6 times that is usually performed on undrawn yarn.

開繊トウ(繊維層)2が熱伸長性複合繊維を含むことで、凹凸形状が顕著なものになることに加えて、得られる凹凸構造体7の強度も高くなる。   When the opening tow (fiber layer) 2 includes the heat-extensible composite fiber, the uneven shape becomes remarkable and the strength of the obtained uneven structure 7 is also increased.

熱伸長性複合繊維としては芯鞘型のものやサイド・バイ・サイド型のものを用いることができる。芯鞘型の熱伸長性複合繊維としては、同芯タイプや偏芯タイプのものを用いることができる。特に同芯タイプの芯鞘型であることが好ましい。この場合、第1樹脂成分が芯を構成し且つ第2樹脂成分が鞘を構成していることが、熱伸長性複合繊維の熱伸長率を高くし得る点から好ましい。第1樹脂成分及び第2樹脂成分の種類に特に制限はなく、繊維形成能のある樹脂であればよい。特に、両樹脂成分の融点差、又は第1樹脂成分の融点と第2樹脂成分の軟化点との差が10℃以上、特に20℃以上であることが、熱融着による不織布製造を容易に行い得る点から好ましい。熱伸長性複合繊維が芯鞘型である場合には、鞘成分の融点又は軟化点よりも芯成分の融点の方が高い樹脂を用いる。第1樹脂成分と第2樹脂成分との好ましい組み合わせとしては、第1樹脂成分をポリプロピレン(PP)とした場合の第2樹脂成分としては、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、エチレンプロピレン共重合体、ポリスチレンなどが挙げられる。また、第1樹脂成分としてポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)などのポリエステル系樹脂を用いた場合は、第2成分として、前述した第2樹脂成分の例に加え、ポリプロピレン(PP)、共重合ポリエステルなどが挙げられる。更に、第1樹脂成分としては、ポリアミド系重合体や前述した第1樹脂成分の2種以上の共重合体も挙げられ、また第2樹脂成分としては前述した第2樹脂成分の2種以上の共重合体なども挙げられる。これらは適宜組み合わされる。これらの組み合わせのうち、ポリプロピレン(PP)/高密度ポリエチレン(HDPE)を用いることが好ましい。この理由は、両樹脂成分の融点差が20〜40℃の範囲内であるため、不織布を容易に製造できるからである。また繊維の比重が低いため、軽量で且つコストに優れ、低熱量で焼却廃棄できる不織布が得られるからである。   As the heat-extensible composite fiber, a core-sheath type or a side-by-side type can be used. As the core-sheath type heat-extensible composite fiber, a concentric type or an eccentric type can be used. In particular, the core-sheath type is preferable. In this case, it is preferable that the first resin component constitutes a core and the second resin component constitutes a sheath from the viewpoint of increasing the thermal elongation rate of the thermally extensible composite fiber. There is no restriction | limiting in particular in the kind of 1st resin component and 2nd resin component, What is necessary is just resin with fiber formation ability. In particular, the difference between the melting points of the two resin components, or the difference between the melting point of the first resin component and the softening point of the second resin component is 10 ° C. or more, particularly 20 ° C. or more. This is preferable because it can be performed. When the heat-extensible conjugate fiber is a core-sheath type, a resin having a melting point of the core component higher than the melting point or softening point of the sheath component is used. As a preferable combination of the first resin component and the second resin component, as the second resin component when the first resin component is polypropylene (PP), high-density polyethylene (HDPE), low-density polyethylene (LDPE), Examples include linear low density polyethylene (LLDPE), ethylene propylene copolymer, and polystyrene. When a polyester resin such as polyethylene terephthalate (PET) or polybutylene terephthalate (PBT) is used as the first resin component, polypropylene (PP) is added as the second component in addition to the above-described example of the second resin component. And copolyester. Furthermore, examples of the first resin component include polyamide-based polymers and two or more types of copolymers of the first resin component described above, and examples of the second resin component include two or more types of the second resin component described above. Copolymers are also included. These are appropriately combined. Of these combinations, it is preferable to use polypropylene (PP) / high density polyethylene (HDPE). This is because the non-woven fabric can be easily manufactured because the difference in melting point between both resin components is in the range of 20 to 40 ° C. In addition, since the specific gravity of the fiber is low, a nonwoven fabric that is lightweight and excellent in cost and can be incinerated and discarded with a low heat quantity is obtained.

第1樹脂成分及び第2樹脂成分の融点は、示差走査型熱分析装置DSC−50(島津社製)を用い、細かく裁断した繊維試料(サンプル質量2mg)の熱分析を昇温速度10℃/minで行い、各樹脂の融解ピーク温度を測定し、その融解ピーク温度で定義される。第2樹脂成分の融点がこの方法で明確に測定できない場合は、第2樹脂成分の分子の流動が始まる温度として、繊維の融着点強度が計測できる程度に第2樹脂成分が融着する温度を軟化点とする。   The melting point of the first resin component and the second resin component was determined by using a differential scanning thermal analyzer DSC-50 (manufactured by Shimadzu Corporation) and performing thermal analysis of a finely cut fiber sample (sample mass 2 mg) at a heating rate of 10 ° C. / The melting peak temperature of each resin is measured and defined by the melting peak temperature. When the melting point of the second resin component cannot be clearly measured by this method, the temperature at which the second resin component is fused to such an extent that the fiber fusion point strength can be measured as the temperature at which the second resin component begins to flow. Is the softening point.

熱伸長性複合繊維における第1樹脂成分と第2樹脂成分との比率(重量比)は10:90〜90:10%、特に30:70〜70:30%であることが好ましい。この範囲内であれば繊維の力学特性が十分となり、実用に耐え得る繊維となる。また融着成分の量が十分となり、繊維どうしの融着が十分となる。   The ratio (weight ratio) between the first resin component and the second resin component in the heat-extensible composite fiber is preferably 10:90 to 90: 10%, particularly 30:70 to 70: 30%. Within this range, the mechanical properties of the fiber are sufficient, and the fiber can withstand practical use. Further, the amount of the fusion component is sufficient, and the fibers are sufficiently fused.

熱伸長性複合繊維の太さは、複合繊維の具体的用途に応じて適切な値が選択される。一般的な範囲として1.0〜10dtex、特に1.7〜8.0dtexであることが、繊維の紡糸性やコスト、カード機通過性、生産性、コスト等の点から好ましい。   An appropriate value is selected as the thickness of the heat-extensible conjugate fiber depending on the specific use of the conjugate fiber. A general range is 1.0 to 10 dtex, particularly 1.7 to 8.0 dtex, from the viewpoints of fiber spinnability and cost, card machine passability, productivity, cost, and the like.

開繊トウ(繊維層)2と接合させる基材層3は、熱伸長性長繊維が伸長を開始する温度では、伸長しないものである。基材層3として用い得る材料としては、凹凸構造体の用途に応じて適宜に選択することができ、例えば、使い捨ておむつや生理用ナプキン、パンティライナー、失禁パッド等の使い捨て衛生物品の分野における表面シート、セカンドシート(表面シートと吸収体との間に配されるシート)、吸収体の一部等として用いられる場合には、液透過性の材料(単層又は多層の繊維シート)が好ましく用いられ、例えば各種製法による不織布や紙、織物、これらの複合体等を挙げることができる。繊維材料を積繊して吸収性コアを製造する際に使用する台紙やそれに代わる不織布を基材層として用いることもできる。
また、使い捨て衛生物品の分野における裏面シートを基材層として用いることができるが、その場合には、樹脂フィルムや、樹脂フィルムと不織布、紙、織物等の複合シート等を用いることができる。基材層が樹脂フィルム等の通気性に乏しい材料である場合、上述したエアスルー法に代えて、開繊トウ(繊維層)2側から遠赤外線など放射型加熱によるものや熱風の吹きつけなど、加熱空間を通過させる等の他の方法によって熱伸長性長繊維を伸長させる。また、樹脂フィルムを構成する樹脂は、熱伸長性長繊維の伸長開始温度未満の融点であることが好ましい。
The base material layer 3 to be bonded to the opened tow (fiber layer) 2 does not expand at a temperature at which the heat-extensible long fibers start to expand. The material that can be used as the base material layer 3 can be appropriately selected according to the use of the concavo-convex structure, for example, the surface in the field of disposable hygiene articles such as disposable diapers, sanitary napkins, panty liners, incontinence pads, etc. When used as a sheet, a second sheet (sheet disposed between the top sheet and the absorber), a part of the absorber, etc., a liquid-permeable material (single layer or multilayer fiber sheet) is preferably used. For example, non-woven fabrics, papers, woven fabrics, composites thereof, and the like by various production methods can be mentioned. A baseboard used when a fiber material is piled to manufacture an absorbent core or a non-woven fabric to replace it can be used as the base material layer.
Moreover, although the back surface sheet | seat in the field | area of a disposable hygiene article can be used as a base material layer, the composite sheet etc., such as a resin film and a resin film, a nonwoven fabric, paper, a textile fabric, etc. can be used. When the base material layer is a poorly breathable material such as a resin film, instead of the air-through method described above, from the open tow (fiber layer) 2 side by far-infrared radiation or hot air blowing, The heat-extensible long fibers are stretched by other methods such as passing through a heating space. Moreover, it is preferable that resin which comprises a resin film is melting | fusing point below the elongation start temperature of a heat | fever extensible long fiber.

また、基材層としては、熱可塑性繊維からなるか又は熱可塑性繊維を主体とする繊維シートを用いることが、開繊トウ(繊維層)との接合をヒートエンボス、超音波シール等により容易に行えるので好ましく、熱可塑性繊維としては、ポリエチレン、ポリプロピレン、ポリエステル(PET等)、αオレフィン共重合体、又はこれらの組み合わせによる複合繊維等が挙げられる。
基材層としては、熱収縮性繊維を含有するものを用いることもできる。基材層に熱収縮性繊維を含む熱収縮性繊維層を用い、熱伸長性長繊維を加熱して伸長させると同時又はその前後に、該熱収縮性繊維層を熱収縮させることにより、より立体的な凸部7を形成させることができる。熱収縮性繊維としては、所定温度の熱処理によって収縮を発現する各種公知の熱収縮性繊維を用いることができ、例えば、特許文献1や2に記載のものを用いることができる。
Further, as the base material layer, it is possible to use a fiber sheet made of thermoplastic fibers or mainly composed of thermoplastic fibers, which can be easily joined to the opened tow (fiber layer) by heat embossing, ultrasonic sealing, or the like. Preferably, the thermoplastic fiber includes polyethylene, polypropylene, polyester (such as PET), α-olefin copolymer, or a composite fiber of a combination thereof.
As a base material layer, what contains a heat-shrinkable fiber can also be used. By using a heat-shrinkable fiber layer containing heat-shrinkable fibers in the base material layer and heating and stretching the heat-extensible long fibers, the heat-shrinkable fiber layer is heat-shrinked at the same time or before and after, The three-dimensional convex part 7 can be formed. As the heat-shrinkable fiber, various known heat-shrinkable fibers that develop shrinkage by heat treatment at a predetermined temperature can be used. For example, those described in Patent Documents 1 and 2 can be used.

本発明で製造される凹凸構造体7は、その凹凸形状、嵩高さ等を生かした種々の分野に適用できる。例えば、上述したように、使い捨て衛生物品の分野における表面シート、セカンドシート(表面シートと吸収体との間に配されるシート)、吸収体の一部、裏面シート等として使用できる他、パンツ型おむつやパンツ型ナプキンの外装体(外包材)として用いることもできる。更には、対人用清拭シート、スキンケア用シート、さらには対物用のワイパーなどとしても好適に用いられる。   The concavo-convex structure 7 produced in the present invention can be applied to various fields utilizing its concavo-convex shape, bulkiness and the like. For example, as described above, it can be used as a surface sheet, a second sheet (a sheet disposed between the surface sheet and the absorbent body), a part of the absorbent body, a back sheet, etc. in the field of disposable hygiene articles. It can also be used as an outer package (outer packaging material) for diapers and pants-type napkins. Furthermore, it is also suitably used as a personal wipe sheet, a skin care sheet, and an objective wiper.

前記のような用途に用いられる場合、本発明に係る凹凸構造体は、その坪量が10〜300g/m2、特に25〜100g/m2であることが好ましい。またその厚みが0.7〜10mm、特に1.5〜5mmであることが好ましい。但し、用途により適切な厚みは異なるため、目的に合わせ適宜調整される。 When used for such applications, the concavo-convex structure according to the present invention preferably has a basis weight of 10 to 300 g / m 2 , particularly 25 to 100 g / m 2 . Moreover, it is preferable that the thickness is 0.7-10 mm, especially 1.5-5 mm. However, since the appropriate thickness varies depending on the application, it is appropriately adjusted according to the purpose.

以上、本発明をその好ましい実施形態に基づき説明したが、本発明は前記実施形態に制限されない。例えば、前記実施形態においては、接合部51の形成に、熱を伴うエンボス加工であるヒートエンボス加工を用いたが、これに代えて熱を伴わないエンボス加工や、超音波エンボス加工を用いることもできる。また、接着剤によって接合部を形成することもできる。   As mentioned above, although this invention was demonstrated based on the preferable embodiment, this invention is not restrict | limited to the said embodiment. For example, in the above-described embodiment, heat embossing that is embossing with heat is used to form the joint portion 51, but embossing without heat or ultrasonic embossing may be used instead. it can. Moreover, a junction part can also be formed with an adhesive agent.

本発明の凹凸構造体の製造方法の一実施形態に製造工程の概略を示す斜視図である。It is a perspective view which shows the outline of a manufacturing process in one Embodiment of the manufacturing method of the uneven structure of this invention. 繊維層と基材層との接合パターンの一例を示す平面図である。It is a top view which shows an example of the joining pattern of a fiber layer and a base material layer. 繊維層と基材層との接合パターンの他の例を示す平面図である。It is a top view which shows the other example of the joining pattern of a fiber layer and a base material layer. 凹凸構造体の製造時の機械方向(MD)に沿う方向の断面を示す断面図である。It is sectional drawing which shows the cross section of the direction in alignment with the machine direction (MD) at the time of manufacture of an uneven structure. 凹凸構造体の製造時の機械方向と直交する方向(CD)に沿う方向の断面を示す断面図である。It is sectional drawing which shows the cross section of the direction in alignment with the direction (CD) orthogonal to the machine direction at the time of manufacture of an uneven structure. 高速溶融紡糸法に用いられる装置を示す模式図である。It is a schematic diagram which shows the apparatus used for a high speed melt spinning method.

符号の説明Explanation of symbols

1 トウの開繊装置
2 開繊トウ(繊維層)
3 基材層
4 ヒートエンボス装置
5 繊維層と基材層との複合体
51 接合部
52 非接合部
6 熱風吹き付け装置
7 凹凸構造体
71 凸部
1 Tow opening device 2 Opening tow (fiber layer)
DESCRIPTION OF SYMBOLS 3 Base material layer 4 Heat embossing apparatus 5 The composite of a fiber layer and a base material layer 51 Joining part 52 Non-joining part 6 Hot-air spraying apparatus 7 Uneven structure 71 Convex part

Claims (7)

加熱によってその長さが伸びる熱伸長性長繊維を含み、該熱伸長性長繊維が一方向に配向している繊維層を、基材層と部分的に接合した後、前記熱伸長性長繊維を加熱して伸長させることにより、該熱伸長性長繊維が、前記基材層との接合部以外の部分において凸部を形成すると共に前記接合部が凹部となっている凹凸構造体を得る、凹凸構造体の製造方法。   A heat-extensible long fiber comprising a heat-extensible long fiber whose length is extended by heating, the fiber layer in which the heat-extensible long fiber is oriented in one direction is partially joined to the base material layer, and then the heat-extensible long fiber. By heating and stretching the heat-extensible long fiber, a concavo-convex structure in which the convex portion is formed in a portion other than the joint portion with the base material layer and the joint portion is a concave portion is obtained. Manufacturing method of uneven structure. 前記繊維層として、前記熱伸長性長繊維を含むトウを所定幅に広げたものを用いる請求項1記載の凹凸構造体の製造方法。   The method for producing a concavo-convex structure according to claim 1, wherein a tow containing the heat-extensible long fibers is expanded to a predetermined width as the fiber layer. 前記熱伸長性長繊維が、複合繊維である請求項1又は2記載の凹凸構造体の製造方法。   The method for producing a concavo-convex structure according to claim 1 or 2, wherein the heat-extensible long fibers are composite fibers. 前記基材層として、熱収縮性繊維を含む熱収縮性繊維層を用い、前記熱伸長性長繊維を加熱して伸長させると同時又はその前後に、該熱収縮性繊維層を熱収縮させる請求項1〜3の何れかに記載の凹凸構造体の製造方法。   A heat-shrinkable fiber layer containing heat-shrinkable fibers is used as the substrate layer, and the heat-shrinkable fiber layer is heat-shrinked simultaneously with or before and after the heat-extensible long fibers are heated and stretched. Item 4. A method for producing an uneven structure according to any one of Items 1 to 3. 前記繊維層と前記基材層との前記接合を、接合部に周囲を囲まれた非接合部が多数生じるように行い、該非接合部における前記熱伸長性長繊維に凸部を形成させる請求項1〜4の何れかに記載の凹凸構造体の製造方法。   The joining of the fiber layer and the base material layer is performed so that a large number of non-joining portions surrounded by a joining portion are formed, and convex portions are formed on the heat-extensible long fibers in the non-joining portions. The manufacturing method of the uneven structure in any one of 1-4. 請求項1〜5の何れかに記載の凹凸構造体の製造方法により製造された凹凸構造体。   6. A concavo-convex structure produced by the method for producing a concavo-convex structure according to any one of claims 1 to 5. 請求項1〜5の何れかに記載の凹凸構造体の製造方法により製造された凹凸構造体を、表面材、吸収体又は外装材の少なくとも一部として含有する吸収性物品。

An absorbent article comprising the concavo-convex structure produced by the method for producing a concavo-convex structure according to any one of claims 1 to 5 as at least a part of a surface material, an absorber or an exterior material.

JP2005323657A 2005-11-08 2005-11-08 Method for manufacturing concavo-convex structure Expired - Fee Related JP4535984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005323657A JP4535984B2 (en) 2005-11-08 2005-11-08 Method for manufacturing concavo-convex structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005323657A JP4535984B2 (en) 2005-11-08 2005-11-08 Method for manufacturing concavo-convex structure

Publications (2)

Publication Number Publication Date
JP2007130800A JP2007130800A (en) 2007-05-31
JP4535984B2 true JP4535984B2 (en) 2010-09-01

Family

ID=38152857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005323657A Expired - Fee Related JP4535984B2 (en) 2005-11-08 2005-11-08 Method for manufacturing concavo-convex structure

Country Status (1)

Country Link
JP (1) JP4535984B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5507193B2 (en) * 2008-10-15 2014-05-28 花王株式会社 Absorbent article surface sheet
JP2010148730A (en) * 2008-12-25 2010-07-08 Kao Corp Surface sheet of absorbent article
JP5411663B2 (en) * 2009-11-17 2014-02-12 花王株式会社 Absorbent articles
JP5374345B2 (en) * 2009-12-09 2013-12-25 花王株式会社 Sanitary napkin
JP5432823B2 (en) * 2010-06-01 2014-03-05 花王株式会社 Non-woven
JP5513267B2 (en) * 2010-06-10 2014-06-04 花王株式会社 Absorbent articles
JP2012017534A (en) * 2010-07-07 2012-01-26 Long Fang Co Ltd Functional fabric having both high breathability and protective performance
JP5572043B2 (en) * 2010-09-06 2014-08-13 花王株式会社 Absorbent article surface sheet
JP5688265B2 (en) * 2010-10-25 2015-03-25 花王株式会社 Absorbent articles
JP2012239531A (en) * 2011-05-17 2012-12-10 Kao Corp Surface sheet for absorbent article
JP5989988B2 (en) * 2011-12-16 2016-09-07 花王株式会社 Absorbent articles
JP5961477B2 (en) * 2012-08-08 2016-08-02 花王株式会社 Manufacturing method of composite sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953388B2 (en) * 1976-11-05 1984-12-25 三菱レイヨン株式会社 Method for manufacturing nonwoven sheet
JPS63309657A (en) * 1987-06-04 1988-12-16 シンワ株式会社 Crepe like nonwoven fabric excellent in shape stability
JPH06128853A (en) * 1992-10-21 1994-05-10 Kuraray Co Ltd Nonwoven fabric for sanitary material
JPH09111631A (en) * 1995-10-19 1997-04-28 Daiwabo Co Ltd Nonwoven fabric having many wrinkles and its production
JP2002065736A (en) * 2000-09-01 2002-03-05 Uni Charm Corp Absorptive article used with surface layer having continuous filament and method of manufacturing for the same
JP2005350836A (en) * 2004-06-14 2005-12-22 Kao Corp Three-dimensionally shaped nonwoven fabric

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953388B2 (en) * 1976-11-05 1984-12-25 三菱レイヨン株式会社 Method for manufacturing nonwoven sheet
JPS63309657A (en) * 1987-06-04 1988-12-16 シンワ株式会社 Crepe like nonwoven fabric excellent in shape stability
JPH06128853A (en) * 1992-10-21 1994-05-10 Kuraray Co Ltd Nonwoven fabric for sanitary material
JPH09111631A (en) * 1995-10-19 1997-04-28 Daiwabo Co Ltd Nonwoven fabric having many wrinkles and its production
JP2002065736A (en) * 2000-09-01 2002-03-05 Uni Charm Corp Absorptive article used with surface layer having continuous filament and method of manufacturing for the same
JP2005350836A (en) * 2004-06-14 2005-12-22 Kao Corp Three-dimensionally shaped nonwoven fabric

Also Published As

Publication number Publication date
JP2007130800A (en) 2007-05-31

Similar Documents

Publication Publication Date Title
JP4535984B2 (en) Method for manufacturing concavo-convex structure
JP3989468B2 (en) Three-dimensional shaped non-woven fabric
JP4785700B2 (en) Nonwoven manufacturing method
JP3625804B2 (en) Three-dimensional sheet material
JP4948127B2 (en) Heat extensible fiber
US7008685B2 (en) Laminated material and method for its production
WO2004059050A1 (en) Hot-melt conjugate fiber
JP3760599B2 (en) Laminated nonwoven fabric and absorbent article using the same
JP4975091B2 (en) Non-woven
JP5386341B2 (en) Disposable diapers
JP5449056B2 (en) Absorbent article surface sheet
JP5514536B2 (en) Disposable diapers
JP5948214B2 (en) Thermally extensible fiber and non-woven fabric using the same
JP2010138529A (en) Method for producing nonwoven fabric
JP6080323B2 (en) Absorbent articles
JP4131852B2 (en) Heat-sealable composite fiber
JP5548041B2 (en) Non-woven
JP2008144321A (en) Nonwoven fabric
WO2010074208A1 (en) Non-woven fabric
JP4318594B2 (en) Non-woven
JP5203349B2 (en) Non-woven
JP5211032B2 (en) A method for producing a three-dimensional shaped nonwoven fabric.
JP2011137249A (en) Method for producing nonwoven fabric
JP6630085B2 (en) Absorbent articles
JP5593124B2 (en) Disposable diapers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4535984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees