JP4534020B2 - Molecular beam equipment - Google Patents

Molecular beam equipment Download PDF

Info

Publication number
JP4534020B2
JP4534020B2 JP2007000416A JP2007000416A JP4534020B2 JP 4534020 B2 JP4534020 B2 JP 4534020B2 JP 2007000416 A JP2007000416 A JP 2007000416A JP 2007000416 A JP2007000416 A JP 2007000416A JP 4534020 B2 JP4534020 B2 JP 4534020B2
Authority
JP
Japan
Prior art keywords
polynuclear metal
ionized
molecule
polynuclear
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007000416A
Other languages
Japanese (ja)
Other versions
JP2007087972A (en
Inventor
俊幸 藤本
信吾 一村
秀彦 野中
明 黒河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007000416A priority Critical patent/JP4534020B2/en
Publication of JP2007087972A publication Critical patent/JP2007087972A/en
Application granted granted Critical
Publication of JP4534020B2 publication Critical patent/JP4534020B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electron Sources, Ion Sources (AREA)

Description

本発明は、化学的に安定な金属クラスター錯体等の多核金属分子を用いることにより、基板の超精密加工や修飾に利用できる多核金属分子ビーム装置に関する。   The present invention relates to a polynuclear metal molecular beam apparatus that can be used for ultraprecision processing and modification of a substrate by using a polynuclear metal molecule such as a chemically stable metal cluster complex.

横方向エッチング等、クラスターの優れた特性を利用して、基板を超精密に加工するためにクラスターイオンビーム装置が用いられるが、従来の公知のクラスタービーム源では、例えば、特開2002−38257号公報、特開2001−158956号公報に記載されているように、化学的に不安定な希ガスクラスターを用いているために、安定したビームを得るのが困難であった。
また、クラスターを基板上に堆積させ薄膜を調製する目的で用いられる従来のクラスターイオンビーム装置では不活性ガス雰囲気下で気化した原子の衝突会合を利用するため、クラスターのサイズを揃えるのが困難であった。
更に、クラスターを生成させるための装置が大がかりになるといった問題があった。
特開2002−38257号公報 特開2001−158956号公報
A cluster ion beam apparatus is used to process a substrate with high precision by utilizing excellent characteristics of the cluster such as lateral etching, but a conventional known cluster beam source is disclosed in, for example, Japanese Patent Application Laid-Open No. 2002-38257. As described in Japanese Laid-Open Patent Publication No. 2001-158956, it is difficult to obtain a stable beam because of the use of a chemically unstable noble gas cluster.
In addition, the conventional cluster ion beam apparatus used for the purpose of depositing clusters on a substrate and preparing a thin film uses collisional association of atoms vaporized in an inert gas atmosphere, so it is difficult to make the sizes of the clusters uniform. there were.
Furthermore, there is a problem that an apparatus for generating a cluster becomes large.
JP 2002-38257 A JP 2001-158956 A

本発明は、化学的に安定な金属クラスター錯体等の多核金属分子を使うことによって、サイズの揃ったクラスターのビームを安定に得るとともに、装置の小型化を実現することを目的とする。   It is an object of the present invention to stably obtain a cluster beam having a uniform size and to reduce the size of the apparatus by using a polynuclear metal molecule such as a chemically stable metal cluster complex.

(1)本発明の多核金属分子ビーム装置は、多核金属分子を用いてイオンビームを生成する装置において、多核金属分子を気化させると同時にイオン化することを特徴としている。
(2)また、本発明の多核金属分子ビーム装置は、上記(1)において、多核金属分子をレーザーアブレーションによりイオン化することを特徴としている。
(1) The polynuclear metal molecular beam apparatus of the present invention is characterized in that, in an apparatus for generating an ion beam using polynuclear metal molecules, the polynuclear metal molecules are vaporized and ionized at the same time.
(2) Further, the polynuclear metal molecular beam apparatus of the present invention is characterized in that, in the above (1), the polynuclear metal molecule is ionized by laser ablation.

本発明は、化学的に安定な金属クラスター錯体等の多核金属分子を使うことによって、サイズの揃ったクラスターのビームを安定に得るとともに、装置の小型化を実現することができる。   In the present invention, by using a polynuclear metal molecule such as a chemically stable metal cluster complex, a cluster beam having a uniform size can be stably obtained, and the apparatus can be downsized.

以下、本発明による実施の形態を図面に基づき説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明による実施の形態1を示したものであり、Rh(CO)12等の蒸気圧を有する多核金属分子に適応した例である。
Rh(CO)12等の多核金属分子1は、小型ルツボ2の中に充填されている。小型ルツボ2の温度を高精度に制御することによって、均一な多核金属分子蒸気3を得ることができる。蒸気となった多核金属分子は、小型ルツボ2の上部から上昇してイオン化室4の部分で電子衝撃、光照射、放電,電界,電荷移動等によってイオン化される。
FIG. 1 shows Embodiment 1 according to the present invention, which is an example applied to a polynuclear metal molecule having a vapor pressure such as Rh 4 (CO) 12 .
A polynuclear metal molecule 1 such as Rh 4 (CO) 12 is packed in a small crucible 2. By controlling the temperature of the small crucible 2 with high accuracy, a uniform polynuclear metal molecular vapor 3 can be obtained. Vaporized polynuclear metal molecules rise from the top of the small crucible 2 and are ionized in the ionization chamber 4 by electron impact, light irradiation, discharge, electric field, charge transfer, and the like.

図2は、電子衝撃により多核金属分子がイオン化される状態を示したものであり、イオン化室4には、通電されると熱電子が生じるタングステン等からなるフィラメント5およびタンタル等からなる対向電極6が備えられている。
フィラメント5に通電することにより生じた熱電子は対向電極6に印加される電圧(数十〜100V程度)によって矢印8の方向に加速され、矢印7方向に上昇してくる多核金属分子蒸気3と衝突する。エネルギーを持った電子の衝突により、多核金属分子はイオン化される。
FIG. 2 shows a state in which polynuclear metal molecules are ionized by electron impact. In the ionization chamber 4, a filament 5 made of tungsten or the like that generates thermal electrons when energized, and a counter electrode 6 made of tantalum or the like. Is provided.
The thermoelectrons generated by energizing the filament 5 are accelerated in the direction of the arrow 8 by the voltage (about several tens to 100 V) applied to the counter electrode 6, and rise in the direction of the arrow 7. collide. Polynuclear metal molecules are ionized by the collision of energetic electrons.

図3は、光照射により多核金属分子がイオン化される状態を示したものであり、イオン化室4には、合成石英製等の窓9から集束レンズ10で集束されたエキシマレーザー等の光11が照射されるようになっている。矢印7方向に上昇してくる多核金属分子蒸気3はレーザー等の光11を照射されて単光子あるいは多光子イオン化によって、イオン化される。   FIG. 3 shows a state in which polynuclear metal molecules are ionized by light irradiation. In the ionization chamber 4, light 11 such as excimer laser focused by a focusing lens 10 from a window 9 made of synthetic quartz or the like is shown. Irradiated. The multinuclear metal molecular vapor 3 rising in the direction of arrow 7 is irradiated with light 11 such as a laser and ionized by single photon or multiphoton ionization.

図4、5は、[NEt[Pt12(CO)24]等の蒸気圧を持たない多核金属分子をイオン化するところの別の実施の形態を示したものであり、高励起電子(Rydberg電子)の電荷交換を用いてイオン化される状態を示している。
多核金属分子をテトラヒドロフラン(THF)等の適当な溶媒に溶解後、キャピラリー12に導入し、スキマー13から差動排気すると、キャピラリー出口14から多核金属分子溶液のミスト15が発生する。
一方、小型ルツボ2を用いてセシウム16の蒸気17を発生させる。
図5に示すように、色素レーザー等の光11を集束レンズ10により集束して窓9を通してセシウム蒸気17に照射すると、セシウム蒸気17は高励起状態18となる。 多核金属分子3のミスト15は、イオン化室4において高励起状態のセシウム原子18と衝突し、電荷を受け取ることによって、イオン化される。
4 and 5 show another embodiment in which a polynuclear metal molecule having no vapor pressure such as [NEt 4 ] 2 [Pt 12 (CO) 24 ] is ionized, and highly excited electrons ( Rydberg electrons) are ionized using charge exchange.
After the polynuclear metal molecule is dissolved in a suitable solvent such as tetrahydrofuran (THF), introduced into the capillary 12 and differentially evacuated from the skimmer 13, a mist 15 of the polynuclear metal molecule solution is generated from the capillary outlet 14.
On the other hand, vapor 17 of cesium 16 is generated using a small crucible 2.
As shown in FIG. 5, when light 11 such as a dye laser is focused by the focusing lens 10 and irradiated to the cesium vapor 17 through the window 9, the cesium vapor 17 is in a highly excited state 18. The mist 15 of the polynuclear metal molecule 3 is ionized by colliding with a highly excited cesium atom 18 in the ionization chamber 4 and receiving a charge.

イオン化された多核金属分子19は、図6(a)に示すように、イオン化された多核金属分子19と逆電荷で数百〜数キロボルトの電圧を印加されたタンタル等からなる加速電極20の作る電場によって矢印の方向に加速され、出口25の方向に向かう。
加速された多核金属分子イオン19は、図6(b)に示すように、多核金属分子イオンと同電荷の電圧を印加された収束電極21の作る電場によって軌道を曲げられ、収束される。収束電極21に印加する電圧が高いほど強く曲がるので、印加する電圧を制御することによってビームのサイズ,形を制御することができる。
加速・収束された多核金属分子イオン19のビームは、図6(c)に示すように、該多核金属分子イオンと同電荷の電圧を印加された走査電極22および多核金属分子イオンと逆電荷の電圧を印加された走査電極23の作る電場によって軌道を曲げられる。その際、電場の強さを制御することによって、多核金属分子イオンビームの走査を制御することができる。。
多核金属分子イオン19に高い運動エネルギーを与えると、エッチングによる基板の加工の可能なビームとなる。
また、金属クラスター錯体イオン19に与える運動エネルギーを小さくすると、基板表面への堆積が可能なビームとなる。
As shown in FIG. 6A, the ionized polynuclear metal molecule 19 is made into an accelerating electrode 20 made of tantalum or the like to which a voltage of several hundred to several kilovolts is applied with a charge opposite to that of the ionized polynuclear metal molecule 19. The electric field accelerates in the direction of the arrow and heads in the direction of the exit 25.
As shown in FIG. 6B, the accelerated multinuclear metal molecular ions 19 are converged by being orbited by an electric field formed by the focusing electrode 21 to which a voltage having the same charge as that of the polynuclear metal molecular ions is applied. Since the higher the voltage applied to the focusing electrode 21, the stronger the bending, the beam size and shape can be controlled by controlling the applied voltage.
As shown in FIG. 6C, the beam of the accelerated and converged polynuclear metal molecular ion 19 has a scanning electrode 22 to which the same charge voltage as that of the polynuclear metal molecular ion is applied and a reverse charge of the polynuclear metal molecular ion. The trajectory is bent by the electric field generated by the scan electrode 23 to which a voltage is applied. At that time, the scanning of the polynuclear metal molecular ion beam can be controlled by controlling the strength of the electric field. .
When a high kinetic energy is given to the polynuclear metal molecular ion 19, a beam capable of processing the substrate by etching is obtained.
Further, when the kinetic energy given to the metal cluster complex ions 19 is reduced, the beam can be deposited on the substrate surface.

図7は、本発明による実施の形態3を示したものであり、[NEt[Pt12(CO)24]等の蒸気圧を持たない多核金属分子に適応した例である。
多核金属分子はテトラヒドロフラン(THF)等の適当な溶媒に溶解後、キャピラリー12に導入される。キャピラリー12の周囲に形成された外周通路26から窒素等の不活性ガスを放出することによって、キャピラリー出口14から多核金属分子を含む溶液のミスト15を発生させる。キャピラリー出口14の前方には少し離れてミスト15の軸方向のみの並進速度をもつ流れを取り出すためのスキマー13が設けられている。そして、キャピラリー出口14とスキマー13との間に数kVの高電圧を印加することにより多核金属分子のミスト15に電荷を持たせることができる。
一方、スキマー13に設けられた円周通路28の外周から乾燥した窒素ガスを吹き付けて溶媒を蒸発させると、気相の多核金属分子イオン19を得ることができる。イオンとなった多核金属分子は実施の形態1および2と同様に加速、収束されビームとして放出される。
FIG. 7 shows Embodiment 3 according to the present invention, which is an example applied to a polynuclear metal molecule having no vapor pressure such as [NEt 4 ] 2 [Pt 12 (CO) 24 ].
The polynuclear metal molecule is dissolved in a suitable solvent such as tetrahydrofuran (THF) and then introduced into the capillary 12. By releasing an inert gas such as nitrogen from an outer peripheral passage 26 formed around the capillary 12, a mist 15 of a solution containing polynuclear metal molecules is generated from the capillary outlet 14. A skimmer 13 is provided in front of the capillary outlet 14 to take out a flow having a translation speed only in the axial direction of the mist 15 at a distance. Then, by applying a high voltage of several kV between the capillary outlet 14 and the skimmer 13, the mist 15 of the polynuclear metal molecule can be charged.
On the other hand, when the dried nitrogen gas is blown from the outer periphery of the circumferential passage 28 provided in the skimmer 13 to evaporate the solvent, the gas phase polynuclear metal molecular ions 19 can be obtained. The polynuclear metal molecules that have become ions are accelerated and converged as in the first and second embodiments, and emitted as a beam.

難溶性でかつ、蒸気圧を持たないあるいは蒸気圧が小さい多核金属分子では、MALDI(Matrix Assisted Laser Desorption Ionization)と呼ばれる手法を利用して実施する。
図8に示すように、この手法では、多核金属分子の粉末を流動パラフィン等のマトリックス29に分散させ、セットしておく。YAGレーザー等、強力なレーザー光11を集束レンズ10で集束し、窓9を通して多核金属分子の粉末の分散された流動パラフィン等のマトリックス29に照射する。この照射により、マトリックス共々アブレーションを起こさせ、多核金属分子を気化させると同時にイオン化する。ヘリウムガス30をパルスバルブ31によりタイミングを同期させて出射し、スキマー13を通して、真空系に導入する。その後、多核金属分子イオンは、加速、収束されビームとして放出される。
For polynuclear metal molecules that are sparingly soluble and have no vapor pressure or low vapor pressure, a method called MALDI (Matrix Assisted Laser Desorption Ionization) is used.
As shown in FIG. 8, in this method, a powder of polynuclear metal molecules is dispersed in a matrix 29 such as liquid paraffin and set. A powerful laser beam 11 such as a YAG laser is focused by a focusing lens 10 and irradiated through a window 9 onto a matrix 29 such as liquid paraffin in which powders of polynuclear metal molecules are dispersed. By this irradiation, the matrix and the matrix are ablated, and the polynuclear metal molecules are vaporized and simultaneously ionized. The helium gas 30 is emitted by the pulse valve 31 in synchronism with the timing, and is introduced into the vacuum system through the skimmer 13. Thereafter, the polynuclear metal molecular ions are accelerated and converged and emitted as a beam.

図9に難溶性でかつ蒸気圧の小さいRh6(CO)16を流動パラフィンに分散させ、355nmのレーザー光を照射して気化させた蒸気の質量分析結果を示す。質量数1066のRh6(CO)16 から配位子であるCOに対応する28毎にピークが観察されており、多核金属分子が金属骨格を保ったままイオンビームとして得られることが証明された。 FIG. 9 shows the results of mass spectrometry of the vapor obtained by dispersing Rh 6 (CO) 16, which is poorly soluble and having a low vapor pressure, in liquid paraffin and irradiating it with a 355 nm laser beam. From Rh 6 (CO) 16 having a mass number of 1066, a peak was observed every 28 corresponding to the ligand CO, and it was proved that a polynuclear metal molecule was obtained as an ion beam while maintaining the metal skeleton. .

本発明の実施の形態1に係る蒸気圧を有する多核金属分子をイオン化する状態を示す正面図である。It is a front view which shows the state which ionizes the polynuclear metal molecule which has the vapor pressure which concerns on Embodiment 1 of this invention. 電子衝撃により多核金属分子がイオン化される状態を示す正面図である。It is a front view which shows the state by which a polynuclear metal molecule is ionized by electron impact. 光照射により多核金属分子がイオン化される状態を示す正面図である。It is a front view which shows the state in which a polynuclear metal molecule is ionized by light irradiation. 本発明の実施の形態2に係る蒸気圧を持たない多核金属分子をイオン化する状態を示す正面図である。It is a front view which shows the state which ionizes the polynuclear metal molecule which does not have the vapor pressure which concerns on Embodiment 2 of this invention. 図4のイオン化室の詳細を示した図である。It is the figure which showed the detail of the ionization chamber of FIG. イオン化された多核金属分子の加速、収束、走査の状態を示す説明図である。It is explanatory drawing which shows the state of the acceleration of the ionized polynuclear metal molecule, convergence, and scanning. 本発明の実施の形態3に係る蒸気圧を持たない多核金属分子のミストに電荷を与えてイオン化する状態を示す正面図である。It is a front view which shows the state which gives an electric charge to the mist of the polynuclear metal molecule which does not have the vapor pressure which concerns on Embodiment 3 of this invention, and is ionized. 本発明の実施の形態4に係る難溶性でかつ、蒸気圧を持たないあるいは蒸気圧が小さい多核金属分子を気化させると同時にイオン化する状態を示す正面図である。It is a front view which shows the state which ionizes at the same time vaporizing the low-solubility and the multi-nuclear metal molecule which does not have a vapor pressure or has a small vapor pressure which concerns on Embodiment 4 of this invention. 難溶性でかつ蒸気圧の小さいRh6(CO)16を流動パラフィンに分散させ、355nmのレーザー光を照射して気化させた蒸気の質量分析結果を示したものである。The results of mass spectrometry of vapor obtained by dispersing Rh 6 (CO) 16, which is poorly soluble and having a low vapor pressure, in liquid paraffin and being vaporized by irradiation with 355 nm laser light.

符号の説明Explanation of symbols

1 多核金属分子
2 小型ルツボ
3 多核金属分子蒸気
4 イオン化室
5 フィラメント
6 対向電極
9 窓
10 集束レンズ
11 レーザー
12 キャピラリー
13 スキマー
14 キャピラリー出口
15 ミスト
16 セシウム
17 セシウム蒸気
18 高励起状態のセシウム原子
19 多核金属分子イオン
20 加速電極
21 収束電極
22、23 走査電極
25 出口
26 外周通路
28 円周通路
29 マトリックス
30 ヘリウムガス
31 パルスバルブ






















DESCRIPTION OF SYMBOLS 1 Multinuclear metal molecule 2 Small crucible 3 Multinuclear metal molecule vapor 4 Ionization chamber 5 Filament 6 Counter electrode 9 Window 10 Focusing lens 11 Laser 12 Capillary 13 Skimmer 14 Capillary exit 15 Mist 16 Cesium 17 Cesium vapor 18 Cesium atom of high excitation state 19 Multinuclear Metal molecular ion 20 Accelerating electrode 21 Focusing electrode 22, 23 Scanning electrode 25 Outlet 26 Outer peripheral passage 28 Circumferential passage 29 Matrix 30 Helium gas 31 Pulse valve






















Claims (1)

金属クラスター錯体を用いてクラスターイオンビームを生成する装置において、金属クラスター錯体の粉末をマトリックスに分散させ、金属クラスター錯体の粉末が分散されたマトリックスにレーザー光を照射してレーザーアブレーションにより金属クラスター錯体を気化させると同時にイオン化し、該イオン化された金属クラスター錯体は、加速、収束されてクラスターイオンビームを生成することを特徴とするクラスターイオンビーム装置。 In an apparatus that generates a cluster ion beam using a metal cluster complex, the metal cluster complex powder is dispersed in a matrix, the matrix in which the metal cluster complex powder is dispersed is irradiated with laser light, and the metal cluster complex is formed by laser ablation. A cluster ion beam apparatus characterized by being ionized at the same time as being vaporized , and the ionized metal cluster complex is accelerated and converged to generate a cluster ion beam.
JP2007000416A 2007-01-05 2007-01-05 Molecular beam equipment Expired - Fee Related JP4534020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007000416A JP4534020B2 (en) 2007-01-05 2007-01-05 Molecular beam equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007000416A JP4534020B2 (en) 2007-01-05 2007-01-05 Molecular beam equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002120091A Division JP4134312B2 (en) 2002-04-23 2002-04-23 Molecular beam equipment

Publications (2)

Publication Number Publication Date
JP2007087972A JP2007087972A (en) 2007-04-05
JP4534020B2 true JP4534020B2 (en) 2010-09-01

Family

ID=37974699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007000416A Expired - Fee Related JP4534020B2 (en) 2007-01-05 2007-01-05 Molecular beam equipment

Country Status (1)

Country Link
JP (1) JP4534020B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63281338A (en) * 1987-05-13 1988-11-17 Hitachi Ltd Primary ion radiating device
JPH07316175A (en) * 1994-05-25 1995-12-05 Nippon Paint Co Ltd Ruthenium carbonyl metallic cluster complex
JPH09106780A (en) * 1995-05-26 1997-04-22 Thermo Instr Syst Inc Apparatus and method for surface analysis
JPH11285644A (en) * 1998-02-04 1999-10-19 Mazda Motor Corp Production of catalyst
JPH11307002A (en) * 1998-04-27 1999-11-05 Tsukuba Cluster Kenkyusho:Kk Method and device for generating cluster
JP2000002688A (en) * 1998-06-15 2000-01-07 Sumitomo Chem Co Ltd Mass spectrometry for platinum complex
JP2000268741A (en) * 1999-03-18 2000-09-29 Japan Science & Technology Corp Carbon atom cluster ion generating device and carbon atom cluster ion generating method
JP2001226193A (en) * 2000-02-18 2001-08-21 Natl Inst Of Advanced Industrial Science & Technology Meti Method and device for depositing crystalline film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63281338A (en) * 1987-05-13 1988-11-17 Hitachi Ltd Primary ion radiating device
JPH07316175A (en) * 1994-05-25 1995-12-05 Nippon Paint Co Ltd Ruthenium carbonyl metallic cluster complex
JPH09106780A (en) * 1995-05-26 1997-04-22 Thermo Instr Syst Inc Apparatus and method for surface analysis
JPH11285644A (en) * 1998-02-04 1999-10-19 Mazda Motor Corp Production of catalyst
JPH11307002A (en) * 1998-04-27 1999-11-05 Tsukuba Cluster Kenkyusho:Kk Method and device for generating cluster
JP2000002688A (en) * 1998-06-15 2000-01-07 Sumitomo Chem Co Ltd Mass spectrometry for platinum complex
JP2000268741A (en) * 1999-03-18 2000-09-29 Japan Science & Technology Corp Carbon atom cluster ion generating device and carbon atom cluster ion generating method
JP2001226193A (en) * 2000-02-18 2001-08-21 Natl Inst Of Advanced Industrial Science & Technology Meti Method and device for depositing crystalline film

Also Published As

Publication number Publication date
JP2007087972A (en) 2007-04-05

Similar Documents

Publication Publication Date Title
JP4734628B2 (en) Collision-induced ionization method and apparatus
US8007871B2 (en) Electrospray deposition: devices and methods thereof
US20220404298A1 (en) Nanoparticulate assisted nanoscale molecular imaging by mass spectrometry
JP3379485B2 (en) Mass spectrometer
JP2008177154A (en) Charged particle beam treatment using cluster source
JPH11507702A (en) Parallel ion optical element and high current low energy ion beam device
JP2007165116A (en) Mass spectrometer
JP4069169B2 (en) Method and apparatus for ionization by cluster ion bombardment
JP4639341B2 (en) Etching method by cluster ion bombardment and mass spectrometric method using the same
JP4534020B2 (en) Molecular beam equipment
JP4538589B2 (en) Molecular beam equipment
JP5801390B2 (en) Method and apparatus for coating a surface
JP4134312B2 (en) Molecular beam equipment
JPH089774B2 (en) Thin film forming equipment
JP4998614B2 (en) Ionization method and ionization apparatus
US20070023678A1 (en) Method and apparatus for ionization by cluster-ion impact
WO2006089449A2 (en) Device and method for highly localized mass spectrometric analysis and imaging
JP2637948B2 (en) Beam plasma type ion gun
JPWO2004107425A1 (en) Surface treatment method and surface treatment apparatus using ion beam
JP3318595B2 (en) Laser ion plating equipment
JPH07312190A (en) Electric field ionized ion source
JP2637947B2 (en) Beam plasma type ion gun
JPH1025564A (en) Coating method and coating device
WO2023150866A1 (en) A solid-target collision cell for mass spectrometry
JPS60124932A (en) Device for vapor deposition of thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees