JPS63281338A - Primary ion radiating device - Google Patents

Primary ion radiating device

Info

Publication number
JPS63281338A
JPS63281338A JP62114698A JP11469887A JPS63281338A JP S63281338 A JPS63281338 A JP S63281338A JP 62114698 A JP62114698 A JP 62114698A JP 11469887 A JP11469887 A JP 11469887A JP S63281338 A JPS63281338 A JP S63281338A
Authority
JP
Japan
Prior art keywords
magnetic field
primary ion
ions
primary
aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62114698A
Other languages
Japanese (ja)
Inventor
Eiichi Izumi
泉 栄一
Kazumasa Hida
飛田 一政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Naka Seiki Ltd
Original Assignee
Hitachi Ltd
Hitachi Naka Seiki Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Naka Seiki Ltd filed Critical Hitachi Ltd
Priority to JP62114698A priority Critical patent/JPS63281338A/en
Publication of JPS63281338A publication Critical patent/JPS63281338A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To improve the operability to set the magnetic field strength by providing two-stage apertures at the rear stage of the magnetic field, detecting the ion current after the primary ion separation, and feeding it back to an exciting circuit. CONSTITUTION:Only ions 6 with the specific mass number pass an aperture 4, and apertures 5A, 5B electrically insulated with an insulator 14 detect ions with a large opening angle respectively. When the magnetic field strength is slightly stronger than the optimum value, the orbit radius of an ion beam 2B becomes slightly small, and the detection current of the detector 5B is larger than that of the detector 5A. A subtractor 8 subtracts the detection current 7B from the detection current 7A, and the subtracted value 8A becomes negative. An adder 10 adds 8A to the preset value 9A, but when 9A is positive, 8A is negative, and the added result 10A becomes smaller. When an exciting circuit 11 is operated with this added result 10A, the magnetic field strength becomes slightly weak. As a result, the detection currents 7A, 7B of the detectors 5A, 5B become equal, and the primary ions 6 pass the center of the aperture.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本装置は二次イオン質量分析計などの一次イオン照射系
に係り、特に磁場形一次イオン分離装置を有しその設定
操作の容易な一次イオン照射系に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This device relates to a primary ion irradiation system such as a secondary ion mass spectrometer, and in particular has a magnetic field type primary ion separation device and is easy to set up and operate for primary ion irradiation. Regarding the irradiation system.

〔従来の技術〕[Conventional technology]

第3図に従来法の一次イオン照射系を示す。 Figure 3 shows a conventional primary ion irradiation system.

二つのイオン源IA、IBは各々一次イオン2、A、2
Bを発生する。磁場3は操作部9の信号により励磁回路
10によって極性および極性が設定される。この極性に
よって一次イオン2Aか2Bのいずれかが選択される。
The two ion sources IA and IB produce primary ions 2, A, and 2, respectively.
Generate B. The polarity of the magnetic field 3 is set by an excitation circuit 10 based on a signal from an operating section 9 . Depending on this polarity, either primary ion 2A or 2B is selected.

図では2Bが選択した場合について描いである。イオン
IBから発生したイオン2Bには、所望のイオン6の他
に不純物イオン12、中性粒子13が若干含まれている
。これらイオンまたは中性粒子が磁場3に入った時にア
パーチャ15をイオン6が通過する様に操作部9で励磁
回路11を動作させ磁場強度を設定する。この時、イオ
ン6よりも軽質量の不純物イオン12は小さい軌道半径
を通り、アパーチャ15で遮断される。また中性粒子1
3は磁場での軌道偏向を受けず直進しアパーチャ15で
遮断さく2) れる。高質量の不純物イオンも中性粒子13と同様の軌
道を通りやはリアパーチャ15で遮断される。
The figure depicts the case where 2B is selected. Ions 2B generated from ions IB contain impurity ions 12 and some neutral particles 13 in addition to desired ions 6. The magnetic field strength is set by operating the excitation circuit 11 using the operating section 9 so that when these ions or neutral particles enter the magnetic field 3, the ions 6 pass through the aperture 15. At this time, the impurity ions 12 having a lighter mass than the ions 6 pass through a smaller orbital radius and are blocked by the aperture 15. Also, neutral particles 1
3 travels straight without being deflected by the magnetic field and is intercepted by the aperture 152). High-mass impurity ions also pass through the same trajectory as the neutral particles 13 and are blocked by the rear aperture 15.

この様にしてアパーチャ15を通過した一次イオン6は
高純度一次イオンとなる。また磁場3の極性を変えるこ
とにより、イオン源IAからの一次イオンIAを選択で
きる。この一次イオンを二次イオン質量分析計や局所イ
オン注入に用いる時、中性粒子や不純物イオンによる妨
害がなくなり精度の良い分析、注入が達成できる。
The primary ions 6 that have passed through the aperture 15 in this manner become highly pure primary ions. Furthermore, by changing the polarity of the magnetic field 3, the primary ions IA from the ion source IA can be selected. When these primary ions are used in a secondary ion mass spectrometer or local ion implantation, there is no interference from neutral particles or impurity ions, and highly accurate analysis and implantation can be achieved.

しかし一次イオン2Bから所望のイオン6を選択する場
合、操作部9の操作により試料18に流入する一次イオ
ン6の電流強度を設定する。一次イオン2Bの中に一次
イオン6の質量数に近い不純物イオンが存在する場合、
設定を誤ることがある。このため操作部9の設定操作が
重要となる。
However, when selecting a desired ion 6 from the primary ions 2B, the current intensity of the primary ions 6 flowing into the sample 18 is set by operating the operating section 9. When an impurity ion with a mass number close to that of the primary ion 6 exists in the primary ion 2B,
Settings may be incorrect. For this reason, the setting operation of the operation unit 9 is important.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、磁場強度設定の操作性について配慮が
されておらず、誤った質量数に設定してしまったり、少
しずれて設定してしまうことかあつた。質量数を誤ると
この一次イオンビームによる分析または注入が使いもの
にならない、少しずれて設定すると安定度不良となる問
題があった。
In the above-mentioned conventional technology, no consideration was given to the operability of setting the magnetic field strength, and there were cases where the mass number was set to an incorrect mass number or the mass number was set slightly off. If the mass number is incorrect, the analysis or implantation using the primary ion beam becomes useless, and if the mass number is set slightly off, there is a problem of poor stability.

本発明の目的は、一次イオン分離後のイオン電流を検出
して、励磁回路に帰還することにより、正確な磁場強度
設定をし操作性を大幅に向上させることにある。
An object of the present invention is to detect the ion current after primary ion separation and feed it back to the excitation circuit, thereby setting accurate magnetic field strength and greatly improving operability.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、磁場後段に二段のアパーチャを設は第一段
のアパーチャにて一次イオンの低分解能分離を行い、第
二段のアパーチャにて高分解能分離を・行う。第二段の
アパーチャは、磁場分離方向に二、分割し各々イオン電
流を検出し励磁回路に帰還することにより二分割アパー
チャの各々の検出電流を等しくすることにより達成され
る。
The above purpose is to provide two stages of apertures after the magnetic field, the first stage aperture performs low resolution separation of primary ions, and the second stage aperture performs high resolution separation. The second stage aperture is achieved by dividing the aperture into two parts in the magnetic field separation direction, detecting the ion current in each part, and feeding it back to the excitation circuit to equalize the detection current of each of the two part apertures.

〔作用〕[Effect]

磁場は一次イオンビームを偏向させる。低分解能用アパ
ーチャは分離イオンビームを遮断し所定の質量数のイオ
ンビームのみ通過させる。第二のアパーチャは、イオン
源からの開き角を規制し高分解能分離を達成する。この
アパーチャは電気的に絶縁され二分割され各々大きな開
き角イオン電流を検出する。磁場強度が最適値に設定さ
れていない時各々の検出電流がアンバランスとなる。こ
の電流値の差および差の極性によって励磁回路を動作さ
せることにより最適値に設定できる。これにより誤設定
することがない。
The magnetic field deflects the primary ion beam. The low-resolution aperture blocks the separated ion beam and allows only the ion beam of a predetermined mass number to pass through. The second aperture regulates the opening angle from the ion source to achieve high resolution separation. This aperture is electrically insulated and divided into two parts, each of which detects an ion current with a large opening angle. When the magnetic field strength is not set to the optimum value, each detection current becomes unbalanced. The optimum value can be set by operating the excitation circuit depending on the difference in current value and the polarity of the difference. This prevents incorrect settings.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。イオ
ン源IA、IBは一次イオン照射軸に所定の角度で装着
されておりイオン2A、2Bを発生する。磁場3の極性
および強度を設定することにより一次イオンビーム2B
の内、特定質量イオン6を選択できる。一次イオンビー
ム2B中に含まれている軽質量イオン12は、小さい軌
道半径を通リアパーチャ4により遮断される。また二次
イオンビーム2B中に含まれている中性粒子13は磁場
中での偏向を受けず直進しアパーチャ4で遮断される。
An embodiment of the present invention will be described below with reference to FIG. The ion sources IA and IB are attached to the primary ion irradiation axis at a predetermined angle and generate ions 2A and 2B. By setting the polarity and strength of the magnetic field 3, the primary ion beam 2B
Among them, the specific mass ion 6 can be selected. The light mass ions 12 contained in the primary ion beam 2B are intercepted by the rear aperture 4 through a small orbital radius. Further, the neutral particles 13 contained in the secondary ion beam 2B are not deflected in the magnetic field and travel straight, and are blocked by the aperture 4.

イオンビーム6より高質量のイオンも大きい軌道半径を
通り、アパーチャ4に遮断さく5) れる。結局、特定質量数のイオン6のみがアパーチャ4
を通過する。アパーチャ4の後後には更にアパーチャ径
の小さいアパーチャがある。このアパーチャは第2図に
示す如く絶縁体14にて電気的に絶縁されたアパーチャ
5Aと5Bより構成する。アパーチャ5A、5Bはアパ
ーチャ4を通過したイオンの開き角の大きなイオンを、
各々検出する。今、磁場強度が最適値より若干強い時、
イオンビーム2Bの軌道半径は若干小さくなり検出器5
Bの方が検出器5Aより検出電流が多くなる。
Ions with a higher mass than the ion beam 6 also pass through a larger orbital radius and are intercepted by the aperture 4 5). In the end, only ions 6 with a specific mass number enter the aperture 4.
pass through. After the aperture 4, there is an aperture with a smaller aperture diameter. This aperture is composed of apertures 5A and 5B electrically insulated by an insulator 14, as shown in FIG. Apertures 5A and 5B collect ions with a large opening angle after passing through aperture 4.
Detect each. Now, when the magnetic field strength is slightly stronger than the optimal value,
The orbital radius of the ion beam 2B becomes slightly smaller and the detector 5
Detector B has a larger detection current than detector 5A.

減算器8は雨検出電流7A、7Bの減算をする。A subtracter 8 subtracts rain detection currents 7A and 7B.

7Aから7Bの減算をすると減算値8Aは負極性になる
とする。加算器10は設定器9からの設定値号9Aから
8Aを加算する。しかし9Aが正極性の時、8Aは負極
性であるため加算結果10Aは小さくなる。この加算結
果10Aで励磁回路11を動作させると磁場強度は若干
弱くなる。結局、極出器5Aと5Bの検出電流7A、7
Bは等しくなる。つまり一次イオン6はアパーチャの中
心を通ることになる。
It is assumed that when 7B is subtracted from 7A, the subtracted value 8A becomes negative polarity. Adder 10 adds set value numbers 9A to 8A from setter 9. However, when 9A has positive polarity, 8A has negative polarity, so the addition result 10A becomes small. When the excitation circuit 11 is operated with this addition result of 10A, the magnetic field strength becomes slightly weaker. In the end, the detection currents 7A and 7 of the pole extractors 5A and 5B
B will be equal. In other words, the primary ions 6 pass through the center of the aperture.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、磁場の設定操作は、特定質量数のイオ
ンが低分解能アパーチャ4を通るまでの粗設定で、あと
は自動的に高分解能アパーチャ5の中心を通る様設定し
てくれるため、 (1)磁場設定操作を誤ることなく正確に行える。
According to the present invention, the magnetic field is roughly set until ions of a specific mass number pass through the low-resolution aperture 4, and then the magnetic field is automatically set so that it passes through the center of the high-resolution aperture 5. (1) Magnetic field setting operations can be performed accurately without mistakes.

(2)操作が粗設定で良くなり容易となる。(2) Operation becomes easier with rough settings.

(3)磁場強度の変動も補正出来るので安定度が良くな
る。
(3) Stability is improved because fluctuations in magnetic field strength can also be corrected.

などの効果がある。There are effects such as

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図、第2図は本発明の
検出器を示す図、第3図は従来の実施例を示す図である
。 IA、IB・・・一次イオン源、2A、2B・・・一次
イオンビーム、3・・・磁場、4・・・低分解能アパー
チャ、5・・・高分解能アパーチャ、8・・・減算器、
10・・・加算器、11・・・励磁回路。
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing a detector of the present invention, and FIG. 3 is a diagram showing a conventional embodiment. IA, IB...Primary ion source, 2A, 2B...Primary ion beam, 3...Magnetic field, 4...Low resolution aperture, 5...High resolution aperture, 8...Subtractor,
10... Adder, 11... Excitation circuit.

Claims (1)

【特許請求の範囲】[Claims] 1、一次イオン発生手段と、磁場を有した一次イオン分
離手段と該磁場の強度を制御する手段と特定の一次イオ
ン種のみを通過させ他のイオン種を遮断する手段と、収
束手段とから構成する一次イオン照射装置において、一
次イオン分離手段の後段に、一次イオンの開き角に依存
する有効一次イオンビーム径よりも大きな穴径の遮断手
段と更にその後段に前記一次イオン分離方向に電気絶縁
した二分割の一次イオン検出手段と、各検出手段の検出
電流の差を求める減算手段と減算結果と操作信号とを加
算する手段と、加算信号により磁場を制御する手段とか
ら構成することを特徴とした一次イオン照射装置。
1. Consists of primary ion generation means, primary ion separation means having a magnetic field, means for controlling the strength of the magnetic field, means for allowing only specific primary ion species to pass through and blocking other ion species, and focusing means. In the primary ion irradiation device, a blocking means having a hole diameter larger than an effective primary ion beam diameter depending on the aperture angle of the primary ions is provided after the primary ion separation means, and further electrically insulated in the primary ion separation direction at the subsequent stage. It is characterized by comprising: a primary ion detecting means divided into two; a subtracting means for determining the difference in detection current of each detecting means; a means for adding the subtraction result and an operation signal; and a means for controlling the magnetic field by the added signal. Primary ion irradiation equipment.
JP62114698A 1987-05-13 1987-05-13 Primary ion radiating device Pending JPS63281338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62114698A JPS63281338A (en) 1987-05-13 1987-05-13 Primary ion radiating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62114698A JPS63281338A (en) 1987-05-13 1987-05-13 Primary ion radiating device

Publications (1)

Publication Number Publication Date
JPS63281338A true JPS63281338A (en) 1988-11-17

Family

ID=14644389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62114698A Pending JPS63281338A (en) 1987-05-13 1987-05-13 Primary ion radiating device

Country Status (1)

Country Link
JP (1) JPS63281338A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087972A (en) * 2007-01-05 2007-04-05 National Institute Of Advanced Industrial & Technology Molecular beam device
JP2007134346A (en) * 2007-01-10 2007-05-31 National Institute Of Advanced Industrial & Technology Molecular beam apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087972A (en) * 2007-01-05 2007-04-05 National Institute Of Advanced Industrial & Technology Molecular beam device
JP4534020B2 (en) * 2007-01-05 2010-09-01 独立行政法人産業技術総合研究所 Molecular beam equipment
JP2007134346A (en) * 2007-01-10 2007-05-31 National Institute Of Advanced Industrial & Technology Molecular beam apparatus
JP4538589B2 (en) * 2007-01-10 2010-09-08 独立行政法人産業技術総合研究所 Molecular beam equipment

Similar Documents

Publication Publication Date Title
Gillson et al. Nonspectroscopic interelement interferences in inductively coupled plasma mass spectrometry
JP2002517885A (en) Acceleration and analysis architecture for ion implanters
GB2182485A (en) Ion beam apparatus
GB1145107A (en) Ion beam microanalyser
JPH0286036A (en) Ion micro-analyzer
JPS5829578B2 (en) Sonoi ion Senbetsu Sochi
JPS63281338A (en) Primary ion radiating device
JPH10188878A (en) Ion detector
JPH02183960A (en) Post acceleration detector for mass spectrometer
Bertsche et al. Status of the Berkeley small cyclotron AMS project
JPH06318443A (en) Ion beam device
JP2538623B2 (en) Mass spectrometer
JP2759791B2 (en) Ion beam equipment
JP2607573B2 (en) Ion micro analyzer
JP2544034B2 (en) Secondary ion mass spectrometry and secondary ion mass spectrometer
JPH03201356A (en) Radiation method and device for ion beam
JPS59108255A (en) Mass spectrometer
JPH05251035A (en) Spatter neutral particle mass spectrometry device
JP2679026B2 (en) Mass spectrometer
JPS595551A (en) Charged corpuscular ray apparatus
JPH08273587A (en) High frequency induction coupling plasma mass spectrometer
Wu et al. Tracking studies and performance simulations of the NSCL A1900 fragment separator
JPS61263039A (en) Mass spectrometer
JPS62226551A (en) Mass spectrograph
SU842425A1 (en) Magnetic field stabilized arc light source