JP4532310B2 - Manufacturing method of glass-coated bolt and electrolytic corrosion prevention structure of metal member - Google Patents

Manufacturing method of glass-coated bolt and electrolytic corrosion prevention structure of metal member Download PDF

Info

Publication number
JP4532310B2
JP4532310B2 JP2005054772A JP2005054772A JP4532310B2 JP 4532310 B2 JP4532310 B2 JP 4532310B2 JP 2005054772 A JP2005054772 A JP 2005054772A JP 2005054772 A JP2005054772 A JP 2005054772A JP 4532310 B2 JP4532310 B2 JP 4532310B2
Authority
JP
Japan
Prior art keywords
bolt
glass
layer
fastened
electrolytic corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005054772A
Other languages
Japanese (ja)
Other versions
JP2006242213A (en
Inventor
博 林
定晴 松村
和男 木皮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Noritake Co Ltd
Original Assignee
Honda Motor Co Ltd
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Noritake Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005054772A priority Critical patent/JP4532310B2/en
Publication of JP2006242213A publication Critical patent/JP2006242213A/en
Application granted granted Critical
Publication of JP4532310B2 publication Critical patent/JP4532310B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Connection Of Plates (AREA)

Description

本発明は、マグネシウムやアルミニウム等の合金部材を、この合金部材とは異種の金属からなる締結部材(ボルト)で締結する構造において、締結部分における電気的腐食(電食)の発生を未然に防止する技術に関する。   The present invention prevents the occurrence of electrical corrosion (electrolytic corrosion) in the fastening portion in a structure in which an alloy member such as magnesium or aluminum is fastened with a fastening member (bolt) made of a metal different from the alloy member. Related to technology.

近年、自動車産業においては、環境問題への関心が高まるにつれてさらなる燃費向上が要望されるようになってきている。このような要望に対応するために、自動車産業では、自動車車体の軽量化の検討が必要となり、実用金属の中で軽量なマグネシウム合金やアルミニウム合金を部品として使用することが多くなってきている。特に最近では、外装や構造部品のように非常に高い耐食性が求められる部位への適用が進められようとしている。   In recent years, in the automobile industry, further improvement in fuel consumption has been demanded as interest in environmental issues has increased. In order to meet such a demand, the automobile industry needs to consider reducing the weight of the automobile body, and light magnesium alloys and aluminum alloys are frequently used as parts among practical metals. In particular, recently, application to a part requiring extremely high corrosion resistance, such as an exterior or a structural part, is being promoted.

しかしながら、マグネシウム合金は最も卑な実用合金であるため、鉄やアルミニウムといった異種金属と締結する場合に、電解質を含む水分の存在下において電食が発生し易いという問題がある。特に自動車のエンジンルーム内や足廻り部分においては、雨水や融雪塩等に含まれる電解質の働きによって電食が著しく促進され、締結部分に不具合すなわち緩みを招くおそれがある。そこで、このような問題に対して、アルミニウム製のワッシャに陽極酸化を施して絶縁したり(例えば、特許文献1参照)、ボルトに樹脂を被覆したりする対策が提案されている(例えば、特許文献2および3参照)。   However, since a magnesium alloy is the most basic practical alloy, there is a problem that when it is fastened with a dissimilar metal such as iron or aluminum, electrolytic corrosion is likely to occur in the presence of moisture containing an electrolyte. In particular, in an engine room of an automobile or in a suspension area, electrolytic corrosion is remarkably accelerated by the action of an electrolyte contained in rainwater, snowmelt salt, or the like, and there is a risk of causing a failure, that is, loosening in a fastening portion. Therefore, measures against such problems have been proposed (for example, patents) in which an aluminum washer is anodized to insulate it (see, for example, Patent Document 1) or a bolt is coated with a resin. Reference 2 and 3).

しかしながら、アルミニウム製のワッシャに陽極酸化を施すには、コストが著しくかかってしまうといった欠点があり、ワッシャを組み込む工程が必要となり効率が悪いという問題がある。さらに、陽極酸化皮膜は、アルカリに弱いという欠点がある。また、ボルトに樹脂を被覆した場合には、ボルトに対する樹脂塗膜の密着性およびそれに伴う耐久性が要求されるが、上記従来技術においては密着性および耐久性が十分とは言えず、塗膜が剥離して電食が起こることが懸念され、密着性を向上させることが課題となっている。   However, anodization of an aluminum washer has the disadvantage that it is extremely costly, and there is a problem that a step for incorporating the washer is required and the efficiency is poor. Furthermore, the anodic oxide film has a drawback of being vulnerable to alkali. In addition, when the resin is coated on the bolt, the adhesion of the resin coating to the bolt and the durability associated therewith are required. However, in the above prior art, it cannot be said that the adhesion and durability are sufficient. It is feared that the galvanic oxide peels and galvanic corrosion occurs, and improving adhesion is a problem.

耐食性皮膜を形成する他の方法として、100℃以上に加熱した被塗物にガラスを溶射して、ガラス皮膜を形成する方法が提案されている(例えば、特許文献4参照)。   As another method for forming a corrosion-resistant film, a method has been proposed in which glass is sprayed on an object heated to 100 ° C. or more to form a glass film (for example, see Patent Document 4).

特許第2715758号Japanese Patent No. 2715758 特公昭58−40045号公報Japanese Patent Publication No.58-40045 特開2003−64492号公報JP 2003-64492 A 特許第2937369号Japanese Patent No. 2937369

しかしながら、本発明者らがボルトの表面を特許文献4に開示の方法によって被覆することを試みた結果、通常の焼入れおよび焼戻しを行ったボルトにガラス溶射を行うと、ボルトがなまり、強度が低下するという問題点があった。   However, as a result of the present inventors trying to coat the surface of the bolt by the method disclosed in Patent Document 4, when the glass is thermally sprayed on a bolt that has been subjected to normal quenching and tempering, the bolt becomes dull and the strength decreases. There was a problem of doing.

したがって本発明は、例えば鋼製のボルトやワッシャ等の締結部材とマグネシウム合金部材とを絶縁して電食を防止するにあたり、コストを増大させることなく、両者の密着性および耐久性を十分に確保することができる電食防止方法および電食防止構造を提供することを目的としている。   Therefore, in the present invention, for example, in order to prevent electrolytic corrosion by insulating a fastening member such as a steel bolt or washer from a magnesium alloy member, the adhesion and durability of both are sufficiently secured without increasing the cost. It is an object of the present invention to provide an electrolytic corrosion prevention method and an electrolytic corrosion prevention structure that can be performed.

本発明の金属部材の電食防止方法は、異なる金属からなる金属部材を締結するためのガラス被覆ボルトの製造方法であって、C:0.37〜0.53重量%、Si:0.10〜0.35重量%、Mn:0.30〜0.60重量%、残部がFeからなるボルトを転造する工程と、ボルトを850〜900℃で10〜60分間加熱した後に急冷する工程と、ボルトを脱脂・洗浄する工程と、ボルト表面に単体金属または合金からなる層を被覆した後に350℃以下で熱処理を行うことによって厚さ10〜100μmの下地被覆を形成する下地処理工程と、ボルトの少なくともフランジ面の下地処理層表面に850〜1000℃でSiOを主成分とするガラス溶射材料を溶射することにより厚さ10〜100μmのガラス層を形成する工程と、ボルトを溶射後100℃以下に一度急冷する工程と、ボルトを400〜550℃で20〜120分間加熱処理した後に急冷を行う工程とを有することを特徴としている。 The method for preventing electrolytic corrosion of a metal member of the present invention is a method for producing a glass-coated bolt for fastening metal members made of different metals, and C: 0.37 to 0.53 wt%, Si: 0.10 -0.35 wt%, Mn: 0.30-0.60 wt%, a step of rolling a bolt made of Fe, and a step of rapidly cooling the bolt after heating it at 850-900 ° C for 10-60 minutes; A step of degreasing and cleaning the bolt, a base treatment step of forming a base coating having a thickness of 10 to 100 μm by performing a heat treatment at 350 ° C. or lower after coating the bolt surface with a layer made of a single metal or an alloy, and a bolt forming a glass layer having a thickness of 10~100μm by spraying the glass spraying material mainly containing SiO 2 at least 850 to 1000 ° C. in surface treatment layer surface of the flange surface of ball It is characterized by comprising the steps of: once quench the door below 100 ° C. After spraying, and performing rapid cooling after heat treatment of 20 to 120 minutes at 400 to 550 ° C. The bolts.

本発明の電食防止方法においては、締結部材に焼入れを行い、この締結部材の表面に前記下地処理層を構成する単体金属または合金成分を設け、加熱して締結部材と下地処理層との界面において界面拡散処理を行い、下地処理層の表面にガラスを溶射・急冷し、最後に焼戻し加熱しているので、締結部材と下地処理層の界面において両成分が相互に拡散しているとともに、下地処理層とガラス層の界面においても両成分が相互に拡散している。したがって、下地処理層は締結部材の表面から剥離しにくく、電食が効果的に防止され、また、ガラス層も下地処理層表面から剥離しにくく、耐久性が格段に高い。従来は締結部材の表面処理の前に焼入れおよび焼戻しを行っていたので、表面処理における再度の加熱で締結部材の強度が低下していた。本発明のよう締結部材の焼戻しを最後に行うことで、締結部材の強度を確保することができる。   In the electrolytic corrosion preventing method of the present invention, the fastening member is quenched, the single metal or alloy component constituting the base treatment layer is provided on the surface of the fastening member, and heated to interface between the fastening member and the base treatment layer. Interfacial diffusion treatment is performed on the surface of the ground treatment layer, and the glass is sprayed and rapidly cooled, and finally tempered and heated, so that both components diffuse to each other at the interface between the fastening member and the ground treatment layer. Both components are also diffused at the interface between the treatment layer and the glass layer. Therefore, the base treatment layer is hardly peeled off from the surface of the fastening member, and electrolytic corrosion is effectively prevented. The glass layer is also difficult to peel off from the surface of the base treatment layer, and the durability is remarkably high. Conventionally, quenching and tempering were performed before the surface treatment of the fastening member, so that the strength of the fastening member was reduced by reheating in the surface treatment. The strength of the fastening member can be ensured by tempering the fastening member last as in the present invention.

以下、本発明の金属部材の電食防止構造および電食防止方法について詳細に説明する。
図1は、本発明の電食防止構造を有する金属部材の一例であるボルトを示す。図1(A)において、符号1は例えば鋼製のボルト本体であり、その表面のうち、少なくとも異種金属からなる被締結部材と接触する箇所には、単体金属または合金からなる下地処理層2が設けられている。さらに、下地処理層2の表面には、ガラス層3が設けられている。なお、図1(B)に示すように、ボルト1の全表面に下地処理層2およびガラス層3を設けることも可能である。
Hereinafter, the electrolytic corrosion preventing structure and electrolytic corrosion preventing method for metal members of the present invention will be described in detail.
FIG. 1 shows a bolt which is an example of a metal member having the electrolytic corrosion preventing structure of the present invention. In FIG. 1 (A), the code | symbol 1 is a bolt body made from steel, for example, and the ground-treatment layer 2 which consists of a single metal or an alloy is in the location which contacts the to-be-fastened member which consists of a dissimilar metal among the surfaces. Is provided. Further, a glass layer 3 is provided on the surface of the base treatment layer 2. In addition, as shown in FIG. 1 (B), it is also possible to provide the base treatment layer 2 and the glass layer 3 on the entire surface of the bolt 1.

本発明に用いるボルトの材質は、S40C〜S50C(JIS G4051)のような調質材(焼入れ・焼戻しを調質する鋼材)とする。熱処理を施すことにより強度を出したものでない場合、ガラス溶射の熱処理により好ましくない組織変化を起こし、ボルトの強度低下につながるためである。また、このような鋼材には、不純物としてリンや硫黄を含んでいてもよい。   The material of the bolt used in the present invention is a tempered material (steel material tempered for quenching and tempering) such as S40C to S50C (JIS G4051). This is because if the strength is not increased by heat treatment, an undesirable structural change is caused by the thermal treatment of glass spraying, leading to a decrease in the strength of the bolt. Moreover, such steel materials may contain phosphorus or sulfur as impurities.

このような電食防止構造を有するボルトは、次のような方法で作製することができる。まず、上述の鋼材を鍛造してボルト形状とし、円柱部分を転造してネジ溝を切り、続いて、このボルトに焼入れ(加熱後急冷する工程)を行う。このときの温度は、850〜900℃であることが好ましい。焼入れ温度が850℃以下の場合、鋼材のフェライト層が完全にオーステナイト変態することができず、ボルト強度に問題を有し、900℃以上の場合は、それ以上の効果の増大が認められないので、エネルギーコストが増大してしまう。また、焼入れ時間は、10〜60分間が好ましい。10分未満の場合、ボルトに熱が均一に伝わらず、必要な組織に変態することができず、一方、60分を超えると、同様に効果の増大が認められないので、エネルギー効率が悪化してしまう。   The bolt having such an electrolytic corrosion prevention structure can be manufactured by the following method. First, the steel material described above is forged into a bolt shape, the cylindrical portion is rolled to cut a thread groove, and then the bolt is quenched (step of quenching after heating). The temperature at this time is preferably 850 to 900 ° C. When the quenching temperature is 850 ° C. or less, the ferrite layer of the steel material cannot completely austenite, and there is a problem with the bolt strength. When the quenching temperature is 900 ° C. or more, no further increase in effect is observed. The energy cost will increase. The quenching time is preferably 10 to 60 minutes. If it is less than 10 minutes, heat is not transmitted uniformly to the bolt, and it cannot be transformed into the required structure. On the other hand, if it exceeds 60 minutes, the increase in the effect is not recognized, and the energy efficiency deteriorates. End up.

なお、焼入れ工程と後述のガラス溶射工程を兼ねることによって焼入れを省略することはできない。ガラス溶射工程では、加熱温度に関しては焼入れを行うのに十分な温度で加熱されるが、溶射時間が数秒〜1分程度であるため、上述したように、ボルト全体の組織がオーステナイト組織になることができず、先に焼入れを十分行う必要がある。   In addition, quenching cannot be omitted by combining the quenching process and the glass spraying process described later. In the glass spraying process, the heating temperature is heated at a temperature sufficient for quenching, but since the spraying time is several seconds to 1 minute, the structure of the entire bolt becomes an austenitic structure as described above. It is necessary to perform quenching first.

焼入れ工程に続いて、脱脂および洗浄を行う。従来技術では、焼入れの直後に焼戻しを行うが、本発明では、850℃以上での溶射工程を有するため、焼入れの直後に焼戻しを行わず、次工程に進む。   Following the quenching process, degreasing and cleaning are performed. In the prior art, tempering is performed immediately after quenching, but in the present invention, since the thermal spraying process is performed at 850 ° C. or higher, tempering is not performed immediately after quenching and the process proceeds to the next process.

次に、下地処理層を形成する材料をボルト表面に形成する。下地処理層に用いられる金属は、特に限定されず任意のものを使用することができるが、密着性や耐久性の観点から、アルミニウム、鉄、クロム等を用いることが好ましい。また、合金を用いる場合は、ステンレス合金や、アルミニウム合金が好適に用いられる。下地処理層をボルト表面に設ける方法としては、下地処理層成分を溶融状態で溶射することが挙げられる。   Next, a material for forming the base treatment layer is formed on the bolt surface. The metal used for the base treatment layer is not particularly limited and any metal can be used, but aluminum, iron, chromium, and the like are preferably used from the viewpoints of adhesion and durability. Moreover, when using an alloy, a stainless alloy and an aluminum alloy are used suitably. As a method of providing the base treatment layer on the bolt surface, it is possible to spray the base treatment layer component in a molten state.

ボルト表面の一部あるいは全体に下地処理層を形成した後に、約350℃に加熱して界面拡散処理を行う。この処理を行うことで、ボルトの構成成分および下地処理層の構成成分が界面を越えて相互に拡散し、界面近傍にいわゆる金属間化合物を形成する。これにより、ボルト本体と下地処理層の密着がより強固なものになる。下地処理層の厚さは10〜100μmであることが好ましく、10μm未満の場合は、下地処理層とボルト間の拡散が不足し、密着性が悪化する。100μmを超える場合は、均一な厚さが得られないと共に、密着性向上の効果がそれ以上増大しないので、エネルギー効率が悪化する。より好ましくは、25〜50μmである。   After the base treatment layer is formed on a part or the whole of the bolt surface, the interface diffusion treatment is performed by heating to about 350 ° C. By performing this treatment, the constituent components of the bolt and the constituent components of the base treatment layer diffuse to each other beyond the interface, and a so-called intermetallic compound is formed in the vicinity of the interface. Thereby, the adhesion between the bolt main body and the base treatment layer becomes stronger. The thickness of the base treatment layer is preferably 10 to 100 μm, and if it is less than 10 μm, the diffusion between the base treatment layer and the bolt is insufficient and the adhesion is deteriorated. When the thickness exceeds 100 μm, a uniform thickness cannot be obtained, and the effect of improving the adhesion does not increase any more, so that the energy efficiency is deteriorated. More preferably, it is 25-50 micrometers.

続いて、下地処理層の表面にガラス層を設ける。ガラス層を構成する成分は、SiOを主成分として85%以上含むものが好ましい。ガラス層の形成方法としては、溶融状態のガラスを溶射することが挙げられるほか、溶融状態のガラスを塗布または浸漬したり、固体状態の粒子を噴霧する等の方法が挙げられる。ガラス層を溶射によって形成する場合は、850〜1000℃の範囲で行うことが好ましい。850℃未満の場合は、ボルト表面温度が850℃以上とならず、ボルト表面組織にフェライト層が析出し、強度低下を起こす。一方、1000℃を超える場合、効果の増大がそれ以上見込めず、エネルギー効率が悪化する。 Subsequently, a glass layer is provided on the surface of the base treatment layer. The component constituting the glass layer preferably contains 85% or more of SiO 2 as a main component. Examples of the method for forming the glass layer include spraying molten glass, and methods such as applying or immersing molten glass or spraying solid particles. When forming a glass layer by thermal spraying, it is preferable to carry out in the range of 850-1000 degreeC. When it is less than 850 ° C., the bolt surface temperature does not become 850 ° C. or more, and a ferrite layer is deposited on the bolt surface structure, causing a decrease in strength. On the other hand, when it exceeds 1000 ° C., the effect cannot be expected any further, and the energy efficiency deteriorates.

ガラス層の厚さは、10〜100μmが好ましく、10〜30μmであるとより好ましい。この範囲に満たない場合は、均一に膜が形成されず、絶縁機能が低下する。一方、この範囲を超えた場合は、接触面積が大きくなるため、輸送時等にボルト同士が接触した際に、欠けが発生しやすくなる。   10-100 micrometers is preferable and, as for the thickness of a glass layer, it is more preferable in it being 10-30 micrometers. When it is less than this range, a film is not formed uniformly and the insulating function is lowered. On the other hand, when this range is exceeded, the contact area becomes large, so that when the bolts come into contact with each other during transportation, chipping is likely to occur.

ガラスを溶射した後は、急冷して焼戻しを行う。急冷せずに焼戻しを行うと、ボルト表面組織にフェライト層が析出し、強度低下を起こすからである。焼戻しは、400〜550℃で60〜120分間行う。焼戻し温度が400℃未満の場合、フェライト層が多く出るため、低温焼戻し脆性を起こし、一方、550℃を超えると、フェライトが減少しマルテンサイトが多くなるため、高温焼戻し脆性を起こし、いずれもボルトの靭性が低下してしまう。焼戻し時間が20分未満の場合、ボルトに熱が均一に伝わらず、必要な組織に変態することができず、一方、60分を超えると、同様に効果の増大が認められないので、エネルギー効率が悪化してしまう。   After spraying the glass, quench and temper. This is because if tempering is performed without rapid cooling, a ferrite layer is deposited on the surface structure of the bolt, causing a decrease in strength. Tempering is performed at 400 to 550 ° C. for 60 to 120 minutes. When the tempering temperature is less than 400 ° C, many ferrite layers appear, causing low temperature tempering brittleness. On the other hand, when it exceeds 550 ° C, ferrite decreases and martensite increases, causing high temperature tempering brittleness. The toughness of the steel will decrease. If the tempering time is less than 20 minutes, heat is not transmitted uniformly to the bolt and the transformation to the required structure is not possible. On the other hand, if the tempering time exceeds 60 minutes, no increase in the effect is similarly recognized. Will get worse.

ガラス層の表面のうち、被締結部材と接触する面の面粗度は、6.3〜25Sであると好ましい。この範囲にすることで、トルク係数のバラツキが少なくなり、的確なトルク管理が可能となる。面粗度が6.3S未満の場合は、被締結部材との摩擦が低すぎて、所定のトルクで締結した場合に過大な軸力が発生して、被締結部材あるいはボルトの破断・変形の原因となる可能性がある。一方、面粗度が25Sを超える場合は、同じく所定のトルクで締結した場合に、必要な軸力が発生しない。   Of the surface of the glass layer, the surface roughness of the surface in contact with the member to be fastened is preferably 6.3 to 25S. By setting it within this range, variation in torque coefficient is reduced, and accurate torque management is possible. When the surface roughness is less than 6.3S, the friction with the fastened member is too low, and an excessive axial force is generated when fastened with a predetermined torque, and the fastened member or bolt is broken or deformed. It can be a cause. On the other hand, when the surface roughness exceeds 25S, the necessary axial force is not generated when the surface is similarly fastened with a predetermined torque.

以上のようにして作製した本発明のボルトによれば、被締結部材はガラス層を介して接触するので、ボルトと被締結部材は絶縁され、異種金属間で問題となっていた電食を防止することができる。また、ボルト本体と下地処理層との密着性および下地処理層とガラス層との密着性が向上しているので、輸送時や使用時において絶縁性および耐久性が向上している。さらに、面粗度を本発明の範囲に規定することで、所定のトルクに対して適切な範囲の軸力が発生するので、好適である。   According to the bolt of the present invention manufactured as described above, the member to be fastened comes into contact with the glass layer, so that the bolt and the member to be fastened are insulated and prevent electrolytic corrosion that has been a problem between different metals. can do. Further, since the adhesion between the bolt body and the base treatment layer and the adhesion between the base treatment layer and the glass layer are improved, the insulation and durability are improved during transportation and use. Furthermore, by defining the surface roughness within the range of the present invention, an appropriate range of axial force is generated for a predetermined torque, which is preferable.

次に、実施例によって本発明の作用効果をより詳細に説明する。
(1)製造方法の比較
<実施例1>(ガラス溶射ボルト)
組成比がC:0.45重量%、Si:0.20重量%、Mn:0.45重量%、および残部:Feのボルトを鍛造し、続いて転造してネジ溝を切った。このボルトに850℃で30分間焼入れを行い、脱脂・洗浄した後、溶融ステンレス(SUS−316L)を溶射して下地処理層を形成し、350℃に加熱してボルト母材および下地処理層間の界面拡散処理を行った。続いて、下地処理層の表面に、SiO:90重量%、B:3重量%、Al:2重量%、LiO:5重量%の組成を有するガラス材料を850℃で30秒間溶射し、その後、室温まで急冷した。続いて、425℃で60分間熱処理(焼戻し)を行った。
このボルトの下地処理層の厚さは45μm、ガラス層の厚さは65μm、面粗度は12.5S、ボルト硬度はHv277〜283であった。
Next, the effects of the present invention will be described in more detail by way of examples.
(1) Comparison of production methods <Example 1> (Glass sprayed bolt)
Bolts having a composition ratio of C: 0.45% by weight, Si: 0.20% by weight, Mn: 0.45% by weight, and the balance: Fe were forged, followed by rolling to cut screw grooves. This bolt was quenched at 850 ° C. for 30 minutes, degreased and washed, then sprayed with molten stainless steel (SUS-316L) to form a base treatment layer, and heated to 350 ° C. between the bolt base material and the base treatment layer. Interfacial diffusion treatment was performed. Subsequently, a glass material having a composition of SiO 2 : 90 wt%, B 2 O 3 : 3 wt%, Al 2 O 3 : 2 wt%, LiO 2 : 5 wt% is applied to the surface of the base treatment layer at 850 ° C. For 30 seconds and then cooled rapidly to room temperature. Subsequently, heat treatment (tempering) was performed at 425 ° C. for 60 minutes.
The thickness of the base treatment layer of this bolt was 45 μm, the thickness of the glass layer was 65 μm, the surface roughness was 12.5 S, and the bolt hardness was Hv 277 to 283.

<比較例1>(ガラス溶射ボルト)
鋼製のボルトを鍛造し、転造してネジ溝を切った。このボルトに850℃で焼入れを行い、続いて450℃で焼戻しを行い、脱脂・洗浄した後、溶融ステンレス(SUS−316L)を溶射して下地処理層を形成し、350℃に加熱してボルト母材および下地処理層間の界面拡散処理を行った。続いて、下地処理層の表面に、実施例1と同一組成のガラス粒子を溶射し、700℃で焼成を行った。
<Comparative example 1> (Glass sprayed bolt)
Steel bolts were forged and rolled to cut thread grooves. This bolt was quenched at 850 ° C., subsequently tempered at 450 ° C., degreased and washed, then sprayed with molten stainless steel (SUS-316L) to form a base treatment layer, heated to 350 ° C. Interfacial diffusion treatment was performed between the base material and the base treatment layer. Subsequently, glass particles having the same composition as in Example 1 were thermally sprayed on the surface of the base treatment layer and baked at 700 ° C.

<比較例2>(亜鉛メッキボルト)
鋼製のボルトを鍛造し、転造してネジ溝を切った。このボルトに850℃で焼入れを行い、続いて450℃で焼戻しを行い、脱脂・洗浄した後、亜鉛メッキおよびクロメート処理を行った。
<Comparative Example 2> (Zinc plated bolt)
Steel bolts were forged and rolled to cut thread grooves. This bolt was quenched at 850 ° C., subsequently tempered at 450 ° C., degreased and washed, and then galvanized and chromated.

実施例1のボルトは、ガラス被覆処理前には焼入れのみを行い、ガラス被覆処理後に焼戻しを行っているので、ボルトの強度(硬度)が確保できた。また、ガラス被覆が施されているので、異種金属との接触においても絶縁性が保たれて電食は生じなかった。一方、比較例1のボルトは、従来のボルトの製造方法に基づいてガラス被覆処理前に焼入れおよび焼戻しを行っているので、ガラス被覆処理後の焼成によってボルトの強度(硬度)が低下していた。また、亜鉛メッキボルトは、強度(硬度)には問題がないものの、ガラス被覆層を有していないため、異種金属との接触によって電食を起こしてしまい、耐久性に問題があった。   Since the bolt of Example 1 was only quenched before the glass coating treatment and tempered after the glass coating treatment, the bolt strength (hardness) could be secured. Further, since the glass coating is applied, the insulating property is maintained even in contact with different metals, and no electrolytic corrosion occurs. On the other hand, since the bolt of Comparative Example 1 was quenched and tempered before the glass coating treatment based on the conventional bolt manufacturing method, the strength (hardness) of the bolt was reduced by firing after the glass coating treatment. . In addition, although the galvanized bolt has no problem in strength (hardness), it does not have a glass coating layer, and therefore it has galvanic corrosion due to contact with a different metal, resulting in a problem in durability.

(2)輸送時のガラス皮膜耐久性試験
本発明の実施例1の方法によって、サイズ(M6×30)のボルトを100本ずつ作製し、輸送容器(330×230×120mm)に緩衝材を用いずに梱包した。また、比較例3の樹脂被覆ボルト(同サイズ)を100本作製し、同様に梱包した。これら輸送容器を往復摺動試験機にセットし、振幅15cm、振動数1Hzの振動を10時間加えて輸送時の振動環境を再現し、耐久試験とした。
(2) Glass film durability test during transportation 100 bolts of size (M6 × 30) were produced by the method of Example 1 of the present invention, and a buffer material was used for the transportation container (330 × 230 × 120 mm). Packed without. Further, 100 resin-coated bolts (the same size) of Comparative Example 3 were produced and packed in the same manner. These transport containers were set in a reciprocating sliding tester, and vibrations at the time of transportation were reproduced by applying vibrations having an amplitude of 15 cm and a vibration frequency of 1 Hz for 10 hours, and the durability test was performed.

耐久試験後、各ボルトの外観を観察した結果、比較例3のボルトでは100本中23本にガラス皮膜の破損が観察されたが、実施例1のボルトでは、破損は全く生じていなかった。このように、本発明のボルトは従来のボルトと比較して耐久性が格段に向上していることが分かる。   As a result of observing the appearance of each bolt after the endurance test, the glass film was observed to be damaged in 23 out of 100 bolts of Comparative Example 3, but the bolt of Example 1 was not damaged at all. Thus, it can be seen that the durability of the bolt of the present invention is significantly improved as compared with the conventional bolt.

(3)耐塩水噴霧およびアルカリ浸漬による樹脂の耐久性試験
本耐久試験には、上記実施例1、比較例1および2のボルトを用いたほか、上記特許文献1に記載のアルマイト加工を行ったボルトおよび上記特許文献3に記載の樹脂被覆を行ったボルトをそれぞれ比較例3および4として用いた。被締結部材としてはマグネシウム合金AZ91D材を用い、上記各ボルトを用いて、図2(A)の模式図に示すように締結した。各試験片に対してJIS K2731に準じた試験方法で、塩水を240時間噴霧した後、マグネシウム合金の錆びの発生を調べた。これらの結果を、表1の絶縁性(初期)の欄に示す。また、実施例および比較例の各ボルトに対して上記(2)に記載の輸送時ガラス皮膜耐久試験と同様の条件で振動を加えて衝突させた後のボルトを用意し、塩水噴霧試験を同様に行った。これらの結果を、表1の絶縁性(輸送後)の欄に示す。さらに、実施例および比較例の各ボルトに対してアルカリ浸漬試験を行った。具体的には、0.1mol/Lの水酸化ナトリウム水溶液に各ボルトを100時間浸漬した。その結果を表1に併記した。なお、表1では、◎:錆びの発生なし、○:点状の錆びがわずかに発生、△:錆びの流れ跡が確認できたが実用上問題ない範囲、×:錆が著しく発生して実用不可能、として評価した。また、◎、△、×に対応する塩水噴霧試験後のマグネシウム合金板の外観を図2(B)に示した。
(3) Durability test of resin by salt water spray and alkali immersion
In this durability test, the bolts of Example 1 and Comparative Examples 1 and 2 were used, a bolt subjected to anodizing described in Patent Document 1 and a bolt subjected to resin coating described in Patent Document 3 Were used as Comparative Examples 3 and 4, respectively. A magnesium alloy AZ91D material was used as a member to be fastened, and the bolts were fastened as shown in the schematic diagram of FIG. Each test piece was sprayed with salt water for 240 hours by a test method according to JIS K2731, and then the occurrence of rust in the magnesium alloy was examined. These results are shown in the column of insulation (initial) in Table 1. In addition, for each bolt of the example and the comparative example, a bolt is prepared after being struck by applying a vibration under the same conditions as the glass film durability test during transportation described in (2) above, and the salt spray test is the same. Went to. These results are shown in the column of insulation (after transportation) in Table 1. Furthermore, an alkaline immersion test was performed on each bolt of the example and the comparative example. Specifically, each bolt was immersed in a 0.1 mol / L sodium hydroxide aqueous solution for 100 hours. The results are also shown in Table 1. In Table 1, ◎: No rust, ○: Slight spot rust, △: A trace of rust was confirmed, but no problem in practical use, ×: Practical use with significant rust Rated as impossible. Moreover, the external appearance of the magnesium alloy plate after the salt spray test corresponding to ◎, Δ, and × is shown in FIG.

Figure 0004532310
Figure 0004532310

表1に示すように、従来のボルトは、初期絶縁性、輸送後絶縁性、アルカリ浸漬後絶縁性を全てにおいて満足することはできなかったが、本発明のボルトは、いずれも満足しており、高い耐久性を有していることが分かる。   As shown in Table 1, the conventional bolts could not satisfy the initial insulation, the post-transport insulation, and the insulation after alkali immersion, but all of the bolts of the present invention were satisfied. It can be seen that it has high durability.

(4)軸力安定性評価
実施例1および比較例2の亜鉛メッキボルト(サイズ:M6×30)を用いて、図4に示すように、被締結部材のマグネシウム合金AZ91D材を締結した。ボルトの頭部にトルクを加え、被締結部材とボルトのフランジとの間に発生する軸力を測定し、これらの相関関係をプロットした。なお、被締結部材と接触する実施例のボルトのフランジ面(座面)の面粗度は、12.5Sであった。これら締結および軸力測定を、実施例および比較例ともに10回ずつ行った結果、図3に示すように、実施例のボルトは実線で挟まれる範囲に相関関係を示し、比較例のボルトは破線で挟まれる範囲に相関関係を示した。
(4) Evaluation of axial force stability Using the galvanized bolts of Example 1 and Comparative Example 2 (size: M6 × 30), a magnesium alloy AZ91D material to be fastened was fastened as shown in FIG. Torque was applied to the head of the bolt, the axial force generated between the fastened member and the flange of the bolt was measured, and their correlation was plotted. In addition, the surface roughness of the flange surface (seat surface) of the bolt of the Example which contacts a to-be-fastened member was 12.5S. As a result of performing these fastening and axial force measurements 10 times for each of the example and the comparative example, as shown in FIG. 3, the bolt of the example shows a correlation in the range sandwiched by the solid line, and the bolt of the comparative example is a broken line Correlation was shown in the range between.

図3から明らかなように、実施例のボルトのトルク係数は0.20〜0.25であり、亜鉛メッキボルトのトルク係数0.17〜0.25と同等レベルであり、しかも上限と下限のバラツキは亜鉛メッキボルトよりも小さく、軸力安定性が向上している。これにより的確なトルク管理が可能になることが分かる。   As is clear from FIG. 3, the torque coefficient of the bolt of the example is 0.20 to 0.25, which is the same level as the torque coefficient of the galvanized bolt 0.17 to 0.25, and the upper limit and the lower limit The variation is smaller than that of galvanized bolts and the axial force stability is improved. This shows that accurate torque management is possible.

(5)高温時におけるボルト軸力保持特性
実施例1および比較例2の亜鉛メッキボルト(サイズ:M6×30)を用いて、図4に示すように被締結部材のマグネシウム合金AZ91D材を締結した。ボルトの頭部に所定のトルクを加え、被締結部材とボルトのフランジとの間に発生する軸力を600kgfにした。これら各試験片を150℃に加熱して100時間保持した。100時間経過後、残存軸力を測定した結果、実施例の軸力低下率は31%、比較例の軸力低下率は30%であり、実施例のボルトは比較例とほぼ同等レベルの軸力低下率を有している。
(5) Bolt axial force retention characteristics at high temperature Using the galvanized bolts (size: M6 × 30) of Example 1 and Comparative Example 2, the magnesium alloy AZ91D material to be fastened was fastened as shown in FIG. . A predetermined torque was applied to the bolt head, and the axial force generated between the fastened member and the bolt flange was 600 kgf. Each of these test pieces was heated to 150 ° C. and held for 100 hours. As a result of measuring the remaining axial force after 100 hours, the axial force decrease rate of the example was 31%, the axial force decrease rate of the comparative example was 30%, and the bolts of the example were shafts at the same level as the comparative example. Has a power decline rate.

(6)ボルト硬度
実施例に供したボルト本体の強度区分は8.8級であり、8.8級ボルトの規格としては、ビッカース硬度:Hv250〜320が要求されるので、図1(A)および図5(A)に示すa〜dの各位置において、それぞれビッカース硬度を測定した。その結果、被覆部a〜cにおいてはHv277〜283であり、未被覆部dにおいてはHv280〜283であった。この結果を図5(B)のグラフに示した。図5(B)から明らかなように、本発明のガラス被覆ボルトは、要求される範囲のボルト硬度が十分に確保されている。
(6) Bolt hardness Since the strength classification of the bolt body used in the examples is 8.8 grade, Vickers hardness: Hv 250 to 320 is required as the standard for 8.8 grade bolts. And Vickers hardness was measured in each position of ad shown in Drawing 5 (A), respectively. As a result, it was Hv277-283 in covering part ac, and it was Hv280-283 in uncovered part d. The results are shown in the graph of FIG. As apparent from FIG. 5 (B), the glass-coated bolt of the present invention has a sufficient bolt hardness in the required range.

本発明によれば、マグネシウム合金部材と異種材料からなる締結部材とを絶縁して電食を防止するにあたり、安価で、かつ耐久性および絶縁性を十分に確保することができ、さらに、締結トルクと軸力の関係が安定した的確なトルク管理が可能なボルトを提供することができる。   According to the present invention, in order to insulate a magnesium alloy member and a fastening member made of a different material and prevent electrolytic corrosion, it is possible to ensure low cost and sufficient durability and insulation, and further, fastening torque. It is possible to provide a bolt capable of accurate torque management in which the relationship between the torque and the axial force is stable.

本発明の電食防止構造の概念を示す模式断面図であり、(A)は被締結部材との接触部のみに電食防止処理を施したボルトの断面図であり、(B)は全体に電食防止処理を施したボルトの断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic cross section which shows the concept of the electrolytic corrosion prevention structure of this invention, (A) is sectional drawing of the volt | bolt which gave the electrolytic corrosion prevention process only to the contact part with a to-be-fastened member, (B) is the whole It is sectional drawing of the volt | bolt which performed the electrolytic corrosion prevention process. (A)は、塩水噴霧試験の模式図であり、(B)は、塩水噴霧試験後の被締結部材の状態を示す写真図である。(A) is a schematic diagram of the salt spray test, (B) is a photographic diagram showing the state of the fastened member after the salt spray test. 本発明および従来のボルトにおけるトルクと軸力の関係を示すグラフである。It is a graph which shows the relationship between the torque and axial force in this invention and the conventional volt | bolt. ボルトの締結状態を示す模式断面図である。It is a schematic cross section which shows the fastening state of a volt | bolt. (A)は、ボルト硬度の測定箇所を示す写真図であり、(B)は、ボルト硬度の測定結果を示すグラフである。(A) is a photograph figure which shows the measurement location of bolt hardness, (B) is a graph which shows the measurement result of bolt hardness.

符号の説明Explanation of symbols

1 ボルト本体
2 下地処理層
3 ガラス層
4 マグネシウム合金
5 フランジ
6 座面
7 雌ネジ
1 Bolt body 2 Ground treatment layer 3 Glass layer 4 Magnesium alloy 5 Flange 6 Seat surface 7 Female thread

Claims (2)

異なる金属からなる金属部材を締結するためのガラス被覆ボルトの製造方法であって、
C:0.37〜0.53重量%、Si:0.10〜0.35重量%、Mn:0.30〜0.60重量%、残部がFeからなるボルトを転造する工程と、
上記ボルトを850〜900℃で10〜60分間加熱した後に急冷する工程と、
上記ボルトを脱脂・洗浄する工程と、
上記ボルト表面に単体金属または合金からなる層を被覆した後に350℃以下で熱処理を行うことによって厚さ10〜100μmの下地被覆を形成する下地処理工程と、
上記ボルトの少なくともフランジ面(被締結部材との接触面)の上記下地処理層表面に850〜1000℃でSiOを主成分とするガラス溶射材料を溶射することにより厚さ10〜100μmのガラス層を形成する工程と、
上記ボルトを溶射後100℃以下に一度急冷する工程と、
上記ボルトを400〜550℃で20〜120分間加熱処理した後に急冷を行う工程とを有することを特徴とするガラス被覆ボルトの製造方法。
A method of manufacturing a glass-coated bolt for fastening metal members made of different metals,
C: 0.37 to 0.53% by weight, Si: 0.10 to 0.35% by weight, Mn: 0.30 to 0.60% by weight, a step of rolling a bolt made of Fe,
A step of rapidly cooling the bolt after heating at 850 to 900 ° C. for 10 to 60 minutes;
Degreasing and washing the bolts;
A base treatment step of forming a base coating having a thickness of 10 to 100 μm by performing a heat treatment at 350 ° C. or less after coating the bolt surface with a layer made of a single metal or an alloy;
A glass layer having a thickness of 10 to 100 μm is formed by spraying a glass sprayed material mainly composed of SiO 2 at 850 to 1000 ° C. on the surface of the base treatment layer on at least the flange surface (contact surface with a member to be fastened) of the bolt. Forming a step;
A step of rapidly cooling the bolt once to 100 ° C. or less after spraying;
And a step of rapid cooling after heat-treating the bolt at 400 to 550 ° C. for 20 to 120 minutes.
マグネシウム、アルミニウム、またはこれらの合金からなる金属部材を被締結部材として用い、請求項1に記載の方法によって製造したガラス被覆ボルトを締結部材として用いたことを特徴とする金属部材の電食防止構造。
A metal member made of magnesium, aluminum, or an alloy thereof is used as a member to be fastened, and a glass-coated bolt manufactured by the method according to claim 1 is used as a fastening member. .
JP2005054772A 2005-02-28 2005-02-28 Manufacturing method of glass-coated bolt and electrolytic corrosion prevention structure of metal member Expired - Fee Related JP4532310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005054772A JP4532310B2 (en) 2005-02-28 2005-02-28 Manufacturing method of glass-coated bolt and electrolytic corrosion prevention structure of metal member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005054772A JP4532310B2 (en) 2005-02-28 2005-02-28 Manufacturing method of glass-coated bolt and electrolytic corrosion prevention structure of metal member

Publications (2)

Publication Number Publication Date
JP2006242213A JP2006242213A (en) 2006-09-14
JP4532310B2 true JP4532310B2 (en) 2010-08-25

Family

ID=37048839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005054772A Expired - Fee Related JP4532310B2 (en) 2005-02-28 2005-02-28 Manufacturing method of glass-coated bolt and electrolytic corrosion prevention structure of metal member

Country Status (1)

Country Link
JP (1) JP4532310B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10775224B2 (en) 2017-04-07 2020-09-15 Wipotec Gmbh Weighing systems, methods, and installations for weighing selected products transported in multiple lanes and/or sequentally

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5730155B2 (en) * 2011-08-09 2015-06-03 シャープ株式会社 CONNECTION MEMBER, SOLAR CELL MODULE USING THE CONNECTION MEMBER, AND ITS MANUFACTURING METHOD

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711332U (en) * 1980-06-25 1982-01-21
JPS5881999A (en) * 1981-11-05 1983-05-17 Mitsubishi Metal Corp Anode bolt coated with resin
JPS6351913U (en) * 1986-09-22 1988-04-07
JPH05126122A (en) * 1991-10-30 1993-05-21 Nisshin Steel Co Ltd Fastener excellent in electrolytic corrosion resistance
JPH1162932A (en) * 1997-08-28 1999-03-05 Manbin:Kk Tapping screw and manufacture thereof
JP2000303833A (en) * 1999-04-19 2000-10-31 Yamaha Motor Co Ltd Surface decorative structure for exhaust system part
JP2002241898A (en) * 2001-02-09 2002-08-28 Kobe Steel Ltd Wire rod or steel wire having excellent cold-warm forgeability and production method for the steel wire
JP2004137560A (en) * 2002-10-17 2004-05-13 National Institute For Materials Science Screw or tapping screw
JP2004253793A (en) * 2003-01-28 2004-09-09 Tosoh Corp Corrosion-resistant material and method for producing same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711332U (en) * 1980-06-25 1982-01-21
JPS5881999A (en) * 1981-11-05 1983-05-17 Mitsubishi Metal Corp Anode bolt coated with resin
JPS6351913U (en) * 1986-09-22 1988-04-07
JPH05126122A (en) * 1991-10-30 1993-05-21 Nisshin Steel Co Ltd Fastener excellent in electrolytic corrosion resistance
JPH1162932A (en) * 1997-08-28 1999-03-05 Manbin:Kk Tapping screw and manufacture thereof
JP2000303833A (en) * 1999-04-19 2000-10-31 Yamaha Motor Co Ltd Surface decorative structure for exhaust system part
JP2002241898A (en) * 2001-02-09 2002-08-28 Kobe Steel Ltd Wire rod or steel wire having excellent cold-warm forgeability and production method for the steel wire
JP2004137560A (en) * 2002-10-17 2004-05-13 National Institute For Materials Science Screw or tapping screw
JP2004253793A (en) * 2003-01-28 2004-09-09 Tosoh Corp Corrosion-resistant material and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10775224B2 (en) 2017-04-07 2020-09-15 Wipotec Gmbh Weighing systems, methods, and installations for weighing selected products transported in multiple lanes and/or sequentally

Also Published As

Publication number Publication date
JP2006242213A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
JP6376140B2 (en) Automobile parts and method of manufacturing auto parts
JP6836600B2 (en) Hot stamping material
US7938949B2 (en) Method for producing a hardened profiled structural part
KR102015200B1 (en) Plated steel sheet for hot pressing, process for hot-pressing plated steel sheet and automobile part
EP2224034B1 (en) Method for manufacturing a body featuring very high mechanical properties, formed by drawing from a rolled steel sheet, in particular hot rolled and coated sheet
JP4695459B2 (en) Hot pressed steel with zinc-based plating with excellent corrosion resistance after painting
US8741075B2 (en) Method for manufacturing a hot press-formed member
JP4571546B2 (en) Wear resistant parts and power transmission parts
JP4410718B2 (en) Al-based plated steel sheet having excellent paint adhesion and post-coating corrosion resistance, automobile member using the same, and method for producing Al-based plated steel sheet
KR20130087593A (en) Al-zn-based hot-dip plated steel sheet
WO2006006696A1 (en) Quenched formed article having high strength and being excellent in corrosion resistance and method for production thereof
JP5157487B2 (en) Steel plate for containers and manufacturing method thereof
JP2009120919A (en) Steel sheet for container and method for manufacturing the same
JP4532310B2 (en) Manufacturing method of glass-coated bolt and electrolytic corrosion prevention structure of metal member
CN112011752B (en) High-corrosion-resistance hot-formed steel part and manufacturing method thereof
JP2004124208A (en) Surface-treated steel sheet with high strength superior in corrosion resistance after being painted, and car components with high strength
JP5320899B2 (en) Alloyed hot-dip galvanized steel sheet with excellent plating adhesion
CN105887145A (en) Production method of composite plating steel belt for transmission machinery parts
JP2011208247A (en) HIGH-STRENGTH STEEL SHEET HAVING TENSILE STRENGTH 1,180 MPa OR MORE EXCELLENT IN DELAYED FRACTURE RESISTANCE
JPH03197693A (en) Very thin sn plated steel sheet for can and its production
JP6089895B2 (en) Alloyed hot-dip galvanized steel sheet with excellent chipping resistance
JP5124928B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP2006176875A (en) Aluminum hot forged article, and method for producing the same
JPH0551657B2 (en)
JP2004107754A (en) Steel sheet for enameling, its manufacturing method, enameled product and its manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100604

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees