JPH03197693A - Very thin sn plated steel sheet for can and its production - Google Patents

Very thin sn plated steel sheet for can and its production

Info

Publication number
JPH03197693A
JPH03197693A JP33613289A JP33613289A JPH03197693A JP H03197693 A JPH03197693 A JP H03197693A JP 33613289 A JP33613289 A JP 33613289A JP 33613289 A JP33613289 A JP 33613289A JP H03197693 A JPH03197693 A JP H03197693A
Authority
JP
Japan
Prior art keywords
steel sheet
plated
layer
plating
cans
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33613289A
Other languages
Japanese (ja)
Other versions
JP2522074B2 (en
Inventor
Yoshinori Yomura
吉則 余村
Shinya Amami
真也 雨海
Tomoyoshi Okita
大北 智良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1336132A priority Critical patent/JP2522074B2/en
Publication of JPH03197693A publication Critical patent/JPH03197693A/en
Application granted granted Critical
Publication of JP2522074B2 publication Critical patent/JP2522074B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce an Sn plated steel sheet for cans having superior characteristics such as weldability as a steel sheet for cans with a small amt. of Sn at a low cost by successively forming a Cr thermal diffusion layer, an Sn plating layer and a chromate layer having fine protrusions on the surface of a steel sheet. CONSTITUTION:When an Sn plated steel sheet for producing cans such as food cans is produced, the surface of a cold-rolled steel sheet is plated with Cr or further plated with Fe or plated with a Cr-Fe alloy before heat treatment. The plated steel sheet is annealed by heat treatment and a Cr thermal diffusion layer contg. 0.02-0.2g/m<2> Cr per one side of the steel sheet is formed. The steel sheet is then temper-rolled, an Sn plating layer is formed by such a small amt. as 0.05-1.0 g/m<2> and anodic electrolysis, and cathodic electrolysis are carried out in the conventional chromating soln. contg. chromic acid or dichromate to form a chromate layer having >=10 fine protrusions per 1mum<2> by 3-30 mg/m<2> (expressed in terms of metallic Cr). A steel sheet for cans having superior weldability and superior corrosion resistance after coating and working can be produced with a small amt. of expensive Sn at a low cost.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、食缶など製缶に際して缶胴の継ぎ目を溶接
によってシームする缶用材で、Snめっき層が極めて薄
くても、塗装後耐食性や加工後の耐食性など缶用材とし
ての緒特性に加えて溶接性にも優れた缶用鋼板に関する
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a material for cans that uses welding to seam the joints of can bodies during the manufacturing of food cans, etc., and even if the Sn plating layer is extremely thin, it has good corrosion resistance after painting. This invention relates to a steel plate for cans that has excellent properties as a can material, such as corrosion resistance after processing, as well as excellent weldability.

[従来技術] 現在、缶用材として最も大量に用いられているものにS
nめっき鋼板とティンフリースチールとがある。Snめ
っき鋼板は前世紀から用いられて来たもので、缶用材と
してのSnめっき鋼板の持つ特性は極めて優れたもので
ある。しかしながら、よく知られているように、Snは
資源的に限られたものであることから、Snめっき鋼板
開発の歴史は’X S nを節約する技術の歴史でもあ
る。
[Prior art] Currently, the most widely used material for cans is S.
There are n-plated steel sheets and tin-free steel. Sn-plated steel sheets have been used since the last century, and the properties of Sn-plated steel sheets as a material for cans are extremely excellent. However, as is well known, since Sn is a limited resource, the history of the development of Sn-plated steel sheets is also the history of technology for saving 'X S n.

缶胴は、缶用材めっき鋼帯に耐食塗料を途布I、たのち
、その寸法に切断した四角形の缶用材を丸めてその両端
をシームして作られる。このシーム技術もSnめっき鋼
板のSnの節約に応じて開発され、半田付けに始まり現
在では溶接法、接着法等が実用されている。
The can body is made by applying anti-corrosion paint to a plated steel strip for can material, then cutting a rectangular can material to that size, rolling it up, and seaming both ends. This seam technology was also developed in response to saving Sn in Sn-plated steel sheets, and started with soldering, and now welding methods, adhesive methods, etc. are in practical use.

ティンフリースチールはCrめっき鋼板であり、全(S
nを用いないものであるが、残念ながら、有機材料を用
いた接着法によるシームしか行えず、溶接法が実用でき
ない、接着法では、接着剤に耐熱性の限界や接着時閏に
伴う生産性の低下等があり、使用上、工程上の制限を受
ける。溶接法では、継ぎ口部を重ねて銅線電極の間に挟
み、ロールによって加圧しながら電気抵抗加熱溶接を行
う、このとき、ティンフリースチールでは被膜表面に絶
縁体である酸化物が多く、溶接面同士の接触電気抵抗が
大き過ぎて高電圧を印加しなければならない。高電圧を
かけると局部的に過剰電流が流れチリと呼ばれるスプラ
ッシュが発生し良好な溶接が得られない。現在では、め
っき最表層に少量のSnを存在させることで、これが解
消されることが判り、このSnの最小量は0.05g/
m3であるといわれている。即ち、缶用極FISnめっ
き鋼板の開発では、缶用材としての耐食性や加工性等の
緒特性に加えて、溶接時に最小量のSnを残すことに力
が注がれている。
Tin-free steel is a Cr-plated steel plate, and has a total (S)
However, unfortunately, only adhesive methods using organic materials can be used for seaming, and welding methods are not practical. Adhesive methods have limitations in the heat resistance of the adhesive and productivity problems associated with bonding time. There may be a decrease in the temperature, etc., and there are restrictions on usage and process. In the welding method, the joints are overlapped and sandwiched between copper wire electrodes, and electrical resistance heat welding is performed while applying pressure with a roll. The contact electrical resistance between the surfaces is too large, so a high voltage must be applied. When high voltage is applied, excessive current flows locally and splashes called dust occur, making it impossible to obtain good welding. At present, it has been found that this problem can be resolved by adding a small amount of Sn to the outermost layer of the plating, and the minimum amount of Sn is 0.05g/
It is said to be m3. That is, in the development of ultra-FISn-plated steel sheets for cans, efforts are being focused on maintaining the minimum amount of Sn during welding, in addition to improving properties such as corrosion resistance and workability for can materials.

一般には、溶接前に缶内塗料が焼き付けられ、この際に
鋼板上にめっきされたSnは拡散するFeと合金化し金
属Snの特性を失う。Snのみをめっきしその上に化成
処理を施したSnめっき鋼板では、この点を考慮しSn
を1.1g/m”まで減じたいわゆる#10ぶりきまで
が実用されている。これに対して、更にSn量を減じて
も前記した他の緒特性とともに溶接性を損なわないめっ
き被膜構成として、Sn層の下にNiやCrのめっき層
を設けることが検討されている0例えば、特開昭63−
499では、鋼板表面にCr或はCr−Niを拡散させ
、この拡散層によって塗料焼き付は時の5n−Fe合金
の生成を抑制し、Snめっき量を0.1g/m”まで節
減することが提案されている。
Generally, the paint inside the can is baked before welding, and at this time the Sn plated on the steel plate becomes alloyed with the diffused Fe and loses the characteristics of metal Sn. Taking this point into consideration, Sn-plated steel sheets that are plated with only Sn and then chemically treated are
So-called #10 tin, which has been reduced to 1.1 g/m'', is in practical use.On the other hand, as a plating film structure that does not impair weldability as well as the other properties mentioned above even if the Sn content is further reduced. , it is being considered to provide a Ni or Cr plating layer under the Sn layer.
499, Cr or Cr-Ni is diffused on the surface of the steel plate, and this diffusion layer suppresses the formation of 5n-Fe alloy during paint baking, reducing the amount of Sn plating to 0.1 g/m''. is proposed.

[発明が解決しようとする課題] しかしながら、CrとFeとの拡散層或はCrとNiと
Feとの拡散層は、5n−Fe合金の生成を抑制するこ
とはできるが2抑制度合いに限界がありSn量の半分近
くは合金化されてしまう。
[Problems to be Solved by the Invention] However, although the diffusion layer of Cr and Fe or the diffusion layer of Cr, Ni, and Fe can suppress the formation of 5n-Fe alloy, there is a limit to the degree of suppression. Almost half of the Sn content is alloyed.

このため、溶接性を損なうことな(Sn量を更に節減す
ることが困難であった。
For this reason, it has been difficult to further reduce the amount of Sn without impairing weldability.

この発明はこの問題を解決するためになされたもので、
更にSn量を節約しても、溶接性その他の缶用材として
の緒特性を損なうことのない缶用極薄Snめっき鋼板の
提供を目的とするものである。
This invention was made to solve this problem.
Another object of the present invention is to provide an ultra-thin Sn-plated steel sheet for cans that does not impair weldability or other properties as a can material even if the amount of Sn is reduced.

[課題を解決するための手段] この目的を達成するための手段は、鋼板の表層がCr熱
拡散層で、その上に0.05g/ro”以上1゜Og 
/ rr?以下のSnめっき層を有し、最上層にμm”
当たり10個以上の突起あるクロメート層を有する缶用
極薄Snめっき鋼板であり、好ましくはCr熱拡散層が
0.02g/+1?以上0.2g/vn2以下である缶
用極薄Snめつき鋼板であり、又、好ましくはクロメー
ト層の金属Cr量が3 、g/ m2以上3 Q +g
/ m2以下である缶用極薄Snめっき鋼板であり、並
びに、このような缶用極薄Snめっき鋼板を製造する方
法であって、次の(い)からくに)の方法である。
[Means for solving the problem] The means for achieving this object is that the surface layer of the steel plate is a Cr thermal diffusion layer, and a Cr thermal diffusion layer of 0.05 g/ro" or more
/rr? It has the following Sn plating layer, and the top layer is μm”
It is an ultra-thin Sn-plated steel sheet for cans having a chromate layer with 10 or more protrusions per layer, preferably a Cr thermal diffusion layer of 0.02 g/+1? It is an ultra-thin Sn-plated steel sheet for cans having a chromate layer having a metal Cr content of 3, g/m2 or more, and preferably 3 Q + g/m2 or more.
/m2 or less, and a method for manufacturing such an ultra-thin Sn-plated steel sheet for cans, which is the following method (a).

くい)熱処理前の鋼板の表面にCrをめっきし、この鋼
板の熱処理時にCr熱散層を生成させ、調質圧延を行っ
た後、Snめっきを施し、更に、クロメート処理液中で
陽極電解を行った後引き続いて陰極電解を行う缶用極薄
Snめっき鋼板の製造方法。
1) Cr is plated on the surface of the steel sheet before heat treatment, a Cr heat dissipation layer is generated during heat treatment of the steel sheet, temper rolling is performed, Sn plating is applied, and further anodic electrolysis is performed in a chromate treatment solution. A method for manufacturing an ultra-thin Sn-plated steel sheet for cans, which is followed by cathodic electrolysis.

(ろ)熱処理前の鋼板の表面にCrをめっきしその上に
Feをめっきし、この鋼板の熱処理時にCr熱散層を生
成させ、調質圧延を行った後、Snめっきを施し、更に
、クロメート処理液中で陽極電解を行った後引き続いて
陰極電解を行う缶用極薄Snめっき鋼板の製造方法。
(B) Plating Cr on the surface of the steel plate before heat treatment, plating Fe on top of it, generating a Cr heat dissipation layer during heat treatment of the steel plate, performing temper rolling, and then applying Sn plating, A method for manufacturing an ultra-thin Sn-plated steel sheet for cans, which comprises performing anodic electrolysis in a chromate treatment solution and then cathodic electrolysis.

(は)熱処理前の鋼板の表面にCrFe合金をめっきを
施し、この鋼板の熱処理時にCr熱散層を生成させ、調
質圧延を行った後、Snめっきを施し、更に、クロメー
ト処理液中で陽極電解を行った後引き続いて陰極電解を
行う缶用極薄Snめっき鋼板の製造方法。
(A) CrFe alloy is plated on the surface of the steel sheet before heat treatment, a Cr heat dissipation layer is generated during heat treatment of the steel sheet, temper rolling is performed, Sn plating is applied, and further, CrFe alloy is plated on the surface of the steel sheet before heat treatment. A method for manufacturing an ultra-thin Sn-plated steel sheet for cans, which performs anodic electrolysis followed by cathodic electrolysis.

(に)熱処理前の鋼板の表面にCrをめっきしその上に
Cr−Fe合金をめっきし、この鋼板の熱処理時にCr
熱散層を生成させ、調質圧延を行った後、Snめっきを
施し、更に、クロメート処理液中で陽極電解を行った後
引き続いて陰極電解を行う缶用極薄Snめつき鋼板の製
造方法。
(2) Cr is plated on the surface of the steel plate before heat treatment, and then Cr-Fe alloy is plated on top of that, and Cr is plated on the surface of the steel plate before heat treatment.
A method for producing an ultra-thin Sn-plated steel sheet for cans, in which a heat dissipation layer is generated, temper rolling is performed, Sn plating is applied, and further, anodic electrolysis is performed in a chromate treatment solution, followed by cathodic electrolysis. .

[作用] 鋼素地とSnめっき層との間に、Crめつき層やCr熱
拡散層が存在すると、めっき鋼板に耐食性を与えると共
に塗装焼き付は時の5n−Fe合金化を抑制することは
、よく知れている。これらの作用に加えて、この熱拡散
層が存在すると、加工後も良好な耐食性を保つことが出
来る。厳しい加工を受けるとめっき被膜に亀裂が生じ、
拡散していないCrめっき層では、この亀裂の下では鋼
素地が露出してしまうが、熱拡散層では深部にまでCr
が拡散しており、層の上部に亀裂が生じても亀裂の下に
は未だCrが存在して鋼の露出を防ぐ、このため、製缶
時の巻き締め加工や絞り加工の後も被膜の連続性を保ち
耐食効果を維持する。
[Function] When a Cr plating layer or a Cr heat diffusion layer exists between the steel base and the Sn plating layer, it provides corrosion resistance to the plated steel sheet and suppresses 5n-Fe alloying during paint baking. , well known. In addition to these effects, the presence of this heat diffusion layer allows good corrosion resistance to be maintained even after processing. When subjected to severe processing, cracks occur in the plating film,
In a non-diffused Cr plating layer, the steel substrate is exposed under this crack, but in a thermal diffusion layer, Cr is deposited deep inside.
Cr is diffused, and even if a crack occurs in the upper part of the layer, Cr still exists under the crack and prevents the steel from being exposed.For this reason, even after the rolling and drawing processes during can manufacturing, the coating remains intact. Maintains continuity and corrosion resistance.

Snめつき層は、シーム溶接の際はSn特有の軟らかさ
と低い融点のために電気抵抗加熱溶接時の接触抵抗を減
じて良好な溶接を可能にする、又、缶内容物充填後は耐
食被膜として機能する。
During seam welding, the Sn plating layer reduces the contact resistance during electric resistance heating welding due to the softness and low melting point peculiar to Sn, allowing for good welding.It also forms a corrosion-resistant coating after filling the can. functions as

Snめっき量は溶接性を確保するだけは必要であり、こ
の必要Sn量を確保するために、Cr熱拡散層の合金化
抑制作用を利用する。しかし、このCr熱拡散層があっ
ても、缶用途料の焼き付は時にSnとFeとの拡散を十
分に防ぐことは困難である。第1表は、Cr熱拡散層と
5n−Fe拡散の関係を示すもので、Crめつき量を変
えて熱拡散層を形成し、その上にSnをめっきし、これ
を205°Cに10分間保って空焼きした後、合金化せ
ずに残っている金属錫の量を測定した結果である。
The amount of Sn plating is necessary only to ensure weldability, and in order to ensure this necessary amount of Sn, the alloying suppressing effect of the Cr thermal diffusion layer is utilized. However, even with this Cr thermal diffusion layer, it is sometimes difficult to sufficiently prevent the diffusion of Sn and Fe from seizing the can material. Table 1 shows the relationship between the Cr thermal diffusion layer and 5n-Fe diffusion.The thermal diffusion layer is formed by changing the amount of Cr plating, Sn is plated on top of the thermal diffusion layer, and this is heated to 205°C for 10 minutes. This is the result of measuring the amount of metallic tin remaining without alloying after dry firing for a minute.

第1表 Cr熱拡散層の合金化抑制効果は明瞭である。Table 1 The alloying suppressing effect of the Cr thermal diffusion layer is clear.

この効果はCr量が0.01g/m”でも十分に現れる
が、実用上加工条件のバラツキを考慮すると、巻き締め
加工後の耐食性を確実に維持するためには、0.02g
/m2以上のCr量が望ましい、又、耐食性に関しては
この熱拡散層は厚いほど良いが、この層の硬度は鋼やN
iに較べて高く、余りに厚すぎると溶接面を接触させた
とき柔軟性を欠き、溶接性にとって好ましくない。
This effect is sufficient even when the amount of Cr is 0.01 g/m'', but considering variations in processing conditions in practice, in order to reliably maintain corrosion resistance after tightening, 0.02 g
A Cr content of /m2 or more is desirable, and the thicker this heat diffusion layer is, the better in terms of corrosion resistance, but the hardness of this layer is higher than that of steel or N.
i, and if it is too thick, it will lack flexibility when the welding surfaces are brought into contact, which is unfavorable for weldability.

更に、0.2g/m”を超えて厚くしてもその効き方は
緩慢となるので、経済性を勘案すると、その量は0.2
g/m”以下であることが望ましい。
Furthermore, even if the thickness exceeds 0.2 g/m'', its effectiveness will be slow, so when considering economic efficiency, the amount should be 0.2 g/m.
g/m" or less is desirable.

しかしながら、このようなCr熱拡散層があっても、3
0〜40%のSnは空焼きにより合金化されてしまう。
However, even with such a Cr thermal diffusion layer, 3
0 to 40% Sn ends up being alloyed by dry firing.

Sn量を節減していくと、この合金化量は無視できなく
なり、特に、Snめっき量が0.1g/m”以下ともな
ると、Sn残量が溶接に必要であると言われている量即
ち0.05g/m1未満となるおそれもある。しかし、
この溶接に必要なSn量は、クロメート層の存在を前提
とする量であり、クロメート層を工夫することによって
更に低減することが可能である0缶用材では缶の内容物
に対応して塗装を施すことによって耐食性を確保するが
、これら塗料の付着性や塗膜下耐食性を確保するため、
クロメート層は欠かせないものとなっている。クロメー
ト層は金属Crとこれを覆うCrの酸化物或いは水酸化
物からなるが、酸化物或いは水酸化物は金属に較べ電気
抵抗の大きい絶縁材であり、又、酸化物は極めて硬くし
かも両者とも融点は極めて高く、これらが溶接面の接触
電気抵抗を大きくしている。このような、クロメート層
が一般にはCr換算で5〜30mg/m”存在し、溶接
時にこの存在を補う量として50 tsg/m2のSn
量が必要となる。しかしながら、μ♂当たり10個以上
の突起あるクロメート層であると、溶接時に圧下刃がか
かり、この突起の先端に局部的に大きな力を受けたとき
、この部分の酸化物或いは水酸化物の膜は破壊され、金
属Crが露出してくる。金属Cr同士が接触すれば、電
気抵抗は10−12倍以下にも下がるので、溶接面の接
触抵抗は低下する。又、突起部分と平坦部分の受ける応
力差は非常に大きいので、この間に亀裂が生じ易く金属
同士の接触機会が更に増加する。この効果は、下層がS
nめっき層のようにクロメート層より軟らかい場合、特
に諷著である。これらの作用が相まって接触抵抗は著し
く低下するので、Sn量は溶接時に0.02g/m2以
上あれば容易に溶接することが出来、そのためには、0
.05g/m2以上のめっき量でよい、Sn量は多い程
溶接性が向上することは当然であるが、増量の効果は徐
々に小さくなるので、Sn節約の観点からも、1.0g
/m”を上限とすることが妥当である。
As the amount of Sn is reduced, the amount of alloying becomes impossible to ignore, and especially when the amount of Sn plating becomes less than 0.1 g/m, the remaining amount of Sn decreases to the amount that is said to be necessary for welding. There is a possibility that it will be less than 0.05g/m1.However,
The amount of Sn required for this welding is based on the presence of a chromate layer, and can be further reduced by modifying the chromate layer. Corrosion resistance is ensured by coating, but in order to ensure the adhesion of these paints and corrosion resistance under the coating,
The chromate layer has become essential. The chromate layer consists of metal Cr and Cr oxide or hydroxide covering it. Oxide or hydroxide is an insulating material with higher electrical resistance than metal, and oxide is extremely hard and both are The melting point is extremely high, which increases the electrical contact resistance of the welding surface. Such a chromate layer generally exists in an amount of 5 to 30 mg/m2 in terms of Cr, and 50 tsg/m2 of Sn is added as an amount to compensate for this presence during welding.
quantity is required. However, if the chromate layer has 10 or more protrusions per μ♂, when a reduction blade is applied during welding and a large force is applied locally to the tips of these protrusions, the oxide or hydroxide film in this area will be destroyed. is destroyed, and metal Cr is exposed. If metal Cr comes into contact with each other, the electrical resistance decreases by a factor of 10-12 or less, so the contact resistance of the welding surface decreases. Furthermore, since the stress difference between the protruding portion and the flat portion is very large, cracks are likely to occur between the protruding portions and the flat portion, further increasing the chance of metal-to-metal contact. This effect is due to the fact that the lower layer is
This is especially true when the n-plated layer is softer than the chromate layer. These effects combine to significantly reduce the contact resistance, so if the amount of Sn is 0.02 g/m2 or more during welding, welding can be performed easily.
.. A plating amount of 0.05 g/m2 or more is sufficient.It goes without saying that weldability improves as the amount of Sn increases, but the effect of increasing the amount gradually decreases, so from the perspective of saving Sn, 1.0 g/m2 or more is sufficient.
It is appropriate to set the upper limit to "/m".

クロメート層の突起の数は多いほど接触抵抗が滅じ、μ
m1当たり10個以上存在すると確実にその効果が得ら
れる。第1図は、Cr熱拡散の上に0.05g/m”の
Snをめっきし、後に述べる方法で突起の形成されるク
ロメート処理を施した試料について、突起数と接触抵抗
値との関係を表わしたものである。縦軸は接触抵抗値、
横軸は突起数で数の平方根の間隔で目盛りある。応力勾
配は突起間の距離に反比例し応力差の生じる箇所は突起
数に比例すると考えられる1図は、突起数が少ないと接
触抵抗値が大きくなってくること、又、突起数が10個
/μm2以上では接触抵抗値は非常に小さいことを示し
ている。このように接触抵抗を低下させる突起を作るた
めにクロメート層は金属Cr量で3 mg/ m”以上
存在することが望ましい、金属Cr量が少なくl■g/
m2程度では、突起形成ばかりでなく塗膜下耐食性を維
持することも困難である。又、30醜g/m2を超えた
場合でも突起は形成されるが、酸化物等が増えることの
負の効果を考慮すると30 yag/ m”を超えない
ことが望ましい。
The larger the number of protrusions in the chromate layer, the lower the contact resistance, and the μ
If there are 10 or more of them per m1, the effect can be reliably obtained. Figure 1 shows the relationship between the number of protrusions and the contact resistance value for a sample in which 0.05 g/m'' of Sn was plated on Cr thermal diffusion and chromate treatment was performed to form protrusions using the method described later. The vertical axis is the contact resistance value,
The horizontal axis is the number of protrusions and is graduated at intervals of the square root of the number. It is thought that the stress gradient is inversely proportional to the distance between protrusions, and the location where the stress difference occurs is proportional to the number of protrusions.Figure 1 shows that the contact resistance value increases when the number of protrusions is small, and that the contact resistance value increases when the number of protrusions is 10/10. It is shown that the contact resistance value is extremely small above μm2. In order to create protrusions that reduce contact resistance in this way, it is desirable that the chromate layer has a metallic Cr content of 3 mg/m" or more.
When the thickness is about m2, it is difficult not only to form protrusions but also to maintain under-coating corrosion resistance. Although protrusions are formed even if the density exceeds 30 yag/m2, it is preferable not to exceed 30 yag/m2, considering the negative effect of an increase in oxides, etc.

上記の缶用極薄Snめっき鋼板を製造するためには、先
ず、Cr熱拡散層を形成する必要がある。これには、熱
処理前の鋼板の表面にCrを付着させておくと、この鋼
板を熱処理するときに、Crが熱拡散される。この方法
は、−mに行われているように、熱処理及び調質圧延を
施され機械的性質の調整された鋼板にめっきを施すより
も、工程が少なく且つ省エネルギー的であり、又、鋼板
は二度目の処理による材質への影響を受けないで済む、
熱処理が冷間圧延後に行う焼鈍処理の場合、缶用鋼板で
は一般に700℃付近に加熱され、又、過時効処理では
500℃前後に加熱される。何れの処理でも、Cr熱拡
散層が十分に形成されるので、どちらの熱処理を利用し
てもよい。
In order to manufacture the above ultra-thin Sn-plated steel sheet for cans, it is first necessary to form a Cr thermal diffusion layer. For this purpose, if Cr is attached to the surface of the steel plate before heat treatment, Cr will be thermally diffused when the steel plate is heat treated. This method requires fewer steps and is more energy efficient than plating a steel plate that has been heat-treated and temper-rolled to adjust its mechanical properties, as is done in -m. The material is not affected by the second treatment,
When the heat treatment is an annealing treatment performed after cold rolling, the steel plate for cans is generally heated to around 700°C, and in overaging treatment, it is heated to around 500°C. Since a Cr thermal diffusion layer is sufficiently formed by either treatment, either heat treatment may be used.

Crを鋼板に付着させる方法はここに述べる以外に何通
りもある。Crをめっきするのが最も簡単な方法である
が、拡散層の上層でCr濃度が高くなり、後に行うSn
めっきで付着効率が低下する傾向がある。これは、Cr
の酸素親和性に因し、濃度が高いと酸化物や水酸化物が
生成し易く、Snめっき中に還元電流が消費されるため
と考えられる。Crをめっきしその上にFeをめっきす
ると、工程は増えるが、熱拡散層の中層でCr濃度が最
も高く上層では稀釈されているので、Snめっきの付着
効率の向上に寄与し、又、亀裂の先端のCr濃度も確保
される。Cr−Feの合金めっきを施すと、熱処理温度
が低かったり或いは熱処理時間が短くても十分に拡散が
行われ、拡散層内のCr濃度も比較的一定である。Cr
をめっきしその上にCr −Fe合金をめっきすると、
Crめっきの上にFeをめっきした場合よりも拡散層内
のCr濃度勾配は緩和する。このようなCrの付着方法
は、用途や鋼板の厚さ、熱処理条件等によって選択され
るが、何れの方法で付着させても前記した加工後耐食性
に優れたCr熱拡散層が得られる。
There are many methods for attaching Cr to a steel sheet other than those described here. The simplest method is to plate Cr, but the Cr concentration increases in the upper layer of the diffusion layer, and the Sn plating performed later
Plating tends to reduce adhesion efficiency. This is Cr
This is thought to be because oxides and hydroxides are likely to be generated when the concentration is high due to the oxygen affinity of Sn, and reduction current is consumed during Sn plating. Plating Cr and then plating Fe on top of it increases the number of steps, but since the Cr concentration is highest in the middle layer of the heat diffusion layer and is diluted in the upper layer, it contributes to improving the adhesion efficiency of Sn plating and prevents cracks. The Cr concentration at the tip is also ensured. When Cr-Fe alloy plating is applied, sufficient diffusion occurs even if the heat treatment temperature is low or the heat treatment time is short, and the Cr concentration in the diffusion layer is also relatively constant. Cr
When plating Cr-Fe alloy on it,
The Cr concentration gradient within the diffusion layer is more relaxed than when Fe is plated on top of Cr. The method of depositing Cr is selected depending on the application, the thickness of the steel plate, the heat treatment conditions, etc., but whichever method is used, the above-mentioned Cr thermal diffusion layer with excellent post-processing corrosion resistance can be obtained.

クロメート処理液中で陽極電解を短時間行った後引き続
いて陰極電解を行うと、微細な突起が無数にできる。ク
ロメート処理液は周知のクロム酸或いは重クロム酸系の
ものでよい、短時間の陽極電解によって処理面を不均質
状態にし、その後陰極電解を行うことによってCrの不
均一析出を起こさせるものであり、陽極酸化の時間は極
く短くてよく0.5秒に至らなくても十分に効果が得ら
れる。
When anodic electrolysis is performed for a short time in a chromate treatment solution, followed by cathodic electrolysis, countless fine protrusions are formed. The chromate treatment solution may be a well-known chromic acid or dichromate-based solution.The treated surface is brought into a non-uniform state by short-time anodic electrolysis, and then cathodic electrolysis is performed to cause non-uniform precipitation of Cr. The anodic oxidation time may be extremely short, and even if it does not reach 0.5 seconds, a sufficient effect can be obtained.

[実施例] 冷延鋼板の表面にCr及びNiを付着してから熱処理を
施し、伸張率2%の調質圧延を行った後、Snをめっき
し、これにクロメート処理液中で陽極処理に引き続いて
陰極処理を施した。これらの試験片について、耐食性、
塗料付着性、溶接性を調べた。試験は、この発明の範囲
外の比較例及び従来の技術による従来例とについても行
い、これらを比較した。なお、従来例では実施例と同様
にCr−Niめっき、熱処理及びSnめっきを施し、又
、熱拡散層がCr−Ni熱拡散層の場合も含めたが、ク
ロメート処理では陽極電解を行わず陰極電解処理のみを
施した。
[Example] After attaching Cr and Ni to the surface of a cold-rolled steel sheet, heat treatment was performed, followed by temper rolling with an elongation rate of 2%, followed by plating with Sn, and anodizing in a chromate treatment solution. Subsequently, cathodic treatment was performed. For these test pieces, corrosion resistance,
Paint adhesion and weldability were investigated. The test was also conducted on a comparative example outside the scope of the present invention and a conventional example based on conventional technology, and these were compared. In addition, in the conventional example, Cr-Ni plating, heat treatment, and Sn plating were applied in the same way as in the example, and cases where the thermal diffusion layer was a Cr-Ni thermal diffusion layer were also included, but in the chromate treatment, anodic electrolysis was not performed and the cathode Only electrolytic treatment was performed.

試験片作製゛の処理条件は次のようであった。The processing conditions for preparing the test piece were as follows.

Crめっき: Cr O3200g / 1 (N H4)F      3 g / 41浴温  
     50℃ を流密度     40 A / d m”Cr Fe
合金めつき: CrO3200g/J F e Cl 2   150 g / j!浴温  
     50℃ pH1,7 電流密度     40 A / d m”Snめつき
: Sn”          30g/lフェノールスI
レフオン酸 70g/J光沢剤          5
g/l 浴温          50℃ 電流密度        20 A / d m”クロ
メート処理A: Cr Os            50 g / 4
1(NH4)F           1g/ρ浴温 
           40℃ 陰極処理電流密度   20〜50A 陽極処理電流密度    5〜30A 陽極処理時間   0.3〜0.4秒 りロメート処理B: Na2 Crz 07       50 g/ Jl
pH5,5 浴温            40℃ 陰極処理電流密度    5〜IOA 陽極処理電流密度    5〜30A 陽極処理時間   0.3〜0.4秒 耐食性試験としては、加工後耐食性、塗膜下耐食性、鉄
溶出試験を行ない、塗料付着性試験としてTビール試験
を、溶接性は接触電気抵抗を調べた。
Cr plating: CrO3200g/1 (NH4)F3g/41 bath temperature
50℃, flow density 40 A/d m”Cr Fe
Alloy plating: CrO3200g/J Fe Cl2 150g/j! bath temperature
50℃ pH 1,7 Current density 40 A/d m”Sn plating: Sn” 30g/l Phenols I
Lefonic acid 70g/J brightener 5
g/l Bath temperature 50°C Current density 20 A/d m” Chromate treatment A: CrOs 50 g/4
1(NH4)F 1g/ρ bath temperature
40°C Cathode treatment current density 20-50A Anodization current density 5-30A Anodization time 0.3-0.4 seconds Romate treatment B: Na2 Crz 07 50 g/Jl
pH 5.5 Bath temperature 40°C Cathode treatment current density 5-IOA Anodization current density 5-30A Anodization time 0.3-0.4 seconds Corrosion resistance tests include post-processing corrosion resistance, corrosion resistance under coating, and iron elution test. A T-beer test was carried out as a paint adhesion test, and contact electrical resistance was tested for weldability.

加工後耐食性は、製缶時の巻き締め加工後の耐食性を調
べるもので、試験片を二つに折り曲げ、これを食塩1.
5%、クエン酸1.5%を含む水溶液に38℃で96時
間浸漬した後、鉄の発錆を調べた。二つに折り曲げると
き、その間にスペーサーを全く挿まないいわゆる密着折
り曲げをOT、試験片と同じ厚さの板を挿んだ場合のI
T、以下5Tまでの折り曲げ方により、どの折り曲げ方
まで発錆がなっかすたかによりT値で判定する。ここで
は、試料30枚について試験し、全てがITより良かっ
た場合を012Tが混じた場合を△、3Tが混じた場合
を×で評価した。
Corrosion resistance after processing is to examine the corrosion resistance after the seaming process during can manufacturing, by folding the test piece in half and adding 1.
After immersing the steel in an aqueous solution containing 5% citric acid and 1.5% citric acid at 38°C for 96 hours, rusting of the iron was examined. When folding in two, so-called close folding without inserting any spacer in between is OT, and I is when a plate of the same thickness as the test piece is inserted.
Depending on the bending method up to 5T, the T value is determined based on the bending method up to which point no rust occurs. Here, 30 samples were tested, and when all were better than IT, the case where 012T was mixed was evaluated as Δ, and the case where 3T was mixed was evaluated as ×.

鉄溶出試験は、果実やジュースなどの缶内容物による腐
食の耐性を調べるもので、供試材にエポキシ系缶内塗料
を20μm塗り、205℃で10分間焼き付けた後、ク
エン酸1.5%と食塩1.5%含む水溶液に、38℃で
96時間浸漬し、この浸漬液に溶出した鉄の量を測定し
な。
The iron elution test examines the resistance to corrosion caused by the contents of cans such as fruits and juices.The test material is coated with 20 μm of epoxy paint inside the can, baked at 205°C for 10 minutes, and then exposed to 1.5% citric acid. Immerse it in an aqueous solution containing 1.5% salt and 1.5% common salt at 38°C for 96 hours, and measure the amount of iron eluted into the immersion solution.

塗膜下耐食性試験としては、UCC試験とブリスター試
験とを行い、再試験のうち悪い方の結果で塗膜下耐食性
を評価した。UCC試駿では、鉄溶出試験と同様に缶内
塗料を焼き付けたのち、塗膜にナイフで十字に下地に達
する傷を付け、これを鉄溶出試験と同じ条件で浸漬した
後、傷の周囲の劣化状況を観察した。劣化の状況は、塗
膜めくれ状況、素地の腐食状況を目視観察し、腐食が認
められない状態をO1腐食が若干認められるが実用に耐
える状態をΔ、−見して腐食が認められ状態をXで評価
しな。
As the under-coating corrosion resistance test, a UCC test and a blister test were conducted, and the under-coating corrosion resistance was evaluated based on the worse result of the re-test. In the UCC test, the paint inside the can is baked in the same way as the iron elution test, and then a cross-shaped scratch is made on the paint film that reaches the base layer with a knife.After immersing it under the same conditions as the iron elution test, The deterioration status was observed. The state of deterioration is determined by visually observing the peeling of the paint film and the corrosion of the substrate. Evaluate with X.

ブリスターでは、鉄溶出試験と同様に缶内塗膜を焼き付
けた試片を、先ず、0.1%食塩中で120℃に加温し
、2kg/C11lの加圧下に1.5時間曝す、この後
頁に、0.1%の食塩水に38℃で96時間浸漬し、塗
膜の劣化状況を観察する。
In the blister test, a test piece with a baked-in can coating was first heated in 0.1% salt to 120°C and exposed to a pressure of 2 kg/C11l for 1.5 hours in the same manner as in the iron elution test. On the next page, the coating film was immersed in 0.1% saline solution at 38° C. for 96 hours, and the deterioration status of the coating film was observed.

観察は、塗膜にふくれの発生している部分の面積が全体
に占める率を判定する。率が5%未満を015〜20%
をΔ、20%を超えた場合を×で評価した。
The observation determines the ratio of the area of the blistered portion of the paint film to the total area. Rate is less than 5% 015-20%
The value was evaluated as Δ, and the case where it exceeded 20% was evaluated as ×.

Tビール試験では、缶用のエポキシフェノール樹脂を5
01g/m”塗布し、205℃で10分間焼き付けた後
、51幅の試験片となし、この試験片2枚の塗装面をナ
イロンフィルムを接着媒体として熱圧着した後、20龍
/分の速度で引き剥がし、塗膜の付着強度を測定した。
In the T beer test, epoxy phenolic resin for cans was
After baking at 205℃ for 10 minutes, a test piece with a width of 51 mm was prepared, and the coated surfaces of the two test pieces were thermocompressed using nylon film as an adhesive medium, and then heated at a speed of 20 g/min. The adhesive strength of the coating film was measured.

溶接性は同種の材料同士の接触電気抵抗を測定すること
で評価した。試験片を二枚重ねて直径5龍の銅電極間に
挿み込み、4000 kg/−の圧力下で通電し、この
ときの通電電流と試験片間の電位差とから接触抵抗を求
めた。
Weldability was evaluated by measuring the electrical contact resistance between similar materials. Two test pieces were stacked and inserted between copper electrodes with a diameter of 5 mm, and current was applied under a pressure of 4000 kg/-, and the contact resistance was determined from the current applied at this time and the potential difference between the test pieces.

なお、Cr熱拡散層の形成については、試験点1.2で
はCrめっきを施して700℃で20秒間の熱9JS理
を行い、試@鬼3.4.10及びIXではCr−Fe合
金めっきを施して530℃で1時間の熱処理を行い、試
験点5.6.12及び13ではCrをめっきした後Fe
めっきを施して670℃で50秒間の熱処理を行い、並
びに、試験点7.8.9ではCrをめっきした後CrF
e合金めっきを施して430℃で10時間の熱処理を行
った。又、クロメート処理は試験NIL 1〜5.10
及び11についてはクロメート処理への条件で、試@隘
6〜9.12及び13についてはクロメート処理Bの条
件で行い、試$No、14〜16についてはクロメート
処FIAの陰極処理条件で行った。
Regarding the formation of the Cr thermal diffusion layer, at test point 1.2, Cr plating was applied and thermal 9JS treatment was performed at 700°C for 20 seconds, and at test point 3.4.10 and IX, Cr-Fe alloy plating was applied. At test points 5.6.12 and 13, Fe was plated after Cr plating.
After plating, heat treatment was performed at 670°C for 50 seconds, and at test point 7.8.9, CrF was applied after plating with Cr.
E-alloy plating was applied and heat treatment was performed at 430°C for 10 hours. In addition, chromate treatment has a test NIL of 1 to 5.10.
and 11 were conducted under the conditions for chromate treatment, trials @ 6-9. 12 and 13 were conducted under the conditions for chromate treatment B, and trials No. 14-16 were conducted under the cathode treatment conditions of chromate treatment FIA. .

なお、突起数については、20万倍の走査型電子顕微鏡
を用いて、−枚の試験片につき10箇所を測定しその平
均値を求めた。
The number of protrusions was measured at 10 locations on each test piece using a scanning electron microscope with a magnification of 200,000 times, and the average value was determined.

供試材及び試験の結果を第2表に示す。The sample materials and test results are shown in Table 2.

実施例では、Crの付着量が少なく且つSnめっき量も
下限である試験Na 6が、他の実施例に較べると、鉄
溶出量と接触抵抗がやや大きい。又、クロメート層中の
金属Cr量が少ない試@N&9で接触抵抗がやや大きい
が、これらを含めて全項目で満足な結果が得られた。
In the examples, test Na 6, which has a small amount of Cr adhesion and a lower limit of the amount of Sn plating, has a slightly larger amount of iron elution and contact resistance than other examples. In addition, although the contact resistance was somewhat large in sample @N&9 in which the amount of metal Cr in the chromate layer was small, satisfactory results were obtained in all items including these.

これに対して、比較例では、Snめっき量の少ない試験
NLIO及びCrめっき量の少ない試験隘11ではTピ
ール試験以外の項目で劣り、Crめっき量が極端に多い
試験隘12では、接触抵抗がやや多い、又、クロメート
層中の金属Crが少なく突起数の少ない試験N1L13
では、塗膜の付着性が悪く塗膜上耐食性に劣り、溶接性
については、クロメート層が薄く、これが突起数の少な
さを補っている。陽極電解を行わなかった試験磁13で
は、突起数が少なく溶接性に劣る。
On the other hand, in the comparative example, test NLIO with a small amount of Sn plating and test No. 11 with a small amount of Cr plating were inferior in items other than the T-peel test, and test No. 12 with an extremely large amount of Cr plating had poor contact resistance. Test N1L13 with slightly more metal Cr in the chromate layer and fewer protrusions
In this case, the adhesion of the coating film is poor and the corrosion resistance on the coating film is poor, and as for weldability, the chromate layer is thin, which compensates for the small number of protrusions. Test magnet 13, which was not subjected to anodic electrolysis, had a small number of protrusions and was inferior in weldability.

従来例では、熱拡散層がCrであっても、Cr・Niで
あっても、陽極電解を行っていないので、溶接性に劣る
In the conventional example, whether the heat diffusion layer is made of Cr or Cr/Ni, anodic electrolysis is not performed, so weldability is poor.

[発明の効果] 以上のように、この発明によればCr熱拡散層の上にS
nめっき層が存在し、その上を多数の突起を持つクロメ
ート層が覆う被膜構造となっている。このため、Snが
大幅に節減されているにもかかわらず、溶接性を始め缶
用鋼板としての諸特性を満たすことができた。このよう
に、性能に優れ且つ省資源を実現したこの発明の効果は
大きいと言わざるを得ない。
[Effects of the Invention] As described above, according to the present invention, S is formed on the Cr thermal diffusion layer.
It has a film structure in which an n-plated layer is present, and a chromate layer having many protrusions covers the n-plated layer. Therefore, despite the significant reduction in Sn, it was possible to satisfy various properties as a steel sheet for cans, including weldability. As described above, it must be said that the effects of this invention, which achieves excellent performance and resource saving, are significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の詳細な説明するための突起数と接触
抵抗との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the number of protrusions and contact resistance for explaining the present invention in detail.

Claims (7)

【特許請求の範囲】[Claims] (1)鋼板の表層がCr熱拡散層であって、その上に0
.05g/m^2以上1.0g/m^2以下のSnめっ
き層を有し、最上層にμm^2当たり10個以上突起の
あるクロメート層を有することを特徴とする缶用極薄S
nめっき鋼板。
(1) The surface layer of the steel plate is a Cr heat diffusion layer, and there is
.. Ultra-thin S for cans, characterized by having an Sn plating layer of 05 g/m^2 or more and 1.0 g/m^2 or less, and a chromate layer having 10 or more protrusions per μm^2 on the top layer.
n-plated steel plate.
(2)Cr熱拡散層中のCr量が片面当たり0.02g
/m^2以上0.2g/m^2以下である請求項1記載
の缶用極薄Snめつき鋼板。
(2) Cr amount in the Cr heat diffusion layer is 0.02g per side
2. The ultra-thin Sn-plated steel sheet for cans according to claim 1, which has a thickness of 0.2 g/m^2 or more and 0.2 g/m^2 or less.
(3)クロメート層の金属Cr量が3mg/m^2以上
30mg/m^2以下である請求項1又は2記載の缶用
極薄Snめっき鋼板。
(3) The ultra-thin Sn-plated steel sheet for cans according to claim 1 or 2, wherein the amount of metallic Cr in the chromate layer is 3 mg/m^2 or more and 30 mg/m^2 or less.
(4)熱処理前の鋼板の表面にCrめっきを施し、この
鋼板の熱処理時にCr熱散層を生成し、調質圧延を行っ
た後、Snめっきを施し、更に、クロメート処理液中で
陽極電解を行った後引き続いて陰極電解を行うことを特
徴とする缶用極薄Snめっき鋼板の製造方法。
(4) Apply Cr plating to the surface of the steel sheet before heat treatment, generate a Cr heat dissipation layer during heat treatment of this steel sheet, perform temper rolling, then apply Sn plating, and then apply anodic electrolysis in a chromate treatment solution. 1. A method for manufacturing an ultra-thin Sn-plated steel sheet for cans, which comprises performing cathodic electrolysis.
(5)熱処理前の鋼板の表面にCrをめつきしその上に
Feめっきを施し、この鋼板の熱処理時にCr熱散層を
生成させ、調質圧延を行った後、Snめっきを施し、更
に、クロメート処理液中で陽極電解を行った後引き続い
て陰極電解を行うことを特徴とする缶用極薄Snめっき
鋼板の製造方法。
(5) Cr is plated on the surface of the steel plate before heat treatment, Fe plating is applied thereon, a Cr heat dissipation layer is generated during heat treatment of this steel plate, after temper rolling, Sn plating is applied, and . A method for producing an ultra-thin Sn-plated steel sheet for cans, which comprises performing anodic electrolysis in a chromate treatment solution followed by cathodic electrolysis.
(6)熱処理前の鋼板の表面にCr・Fe合金をめつき
を施し、この鋼板の熱処理時にCr熱散層を生成させ、
調質圧延を行った後、Snめっきを施し、更に、クロメ
ート処理液中で陽極電解を行つた後引き続いて陰極電解
を行うことを特徴とする缶用極薄Snめっき鋼板の製造
方法。
(6) Plating Cr/Fe alloy on the surface of the steel plate before heat treatment, generating a Cr heat dissipation layer during heat treatment of the steel plate,
A method for producing an ultra-thin Sn-plated steel sheet for cans, which comprises skin-pass rolling, Sn plating, anodic electrolysis in a chromate treatment solution, and then cathodic electrolysis.
(7)熱処理前の鋼板の表面にCrをめっきしその上に
Cr・Fe合金をめつきし、この鋼板の熱処理時にCr
熱散層を生成させ、調質圧延を行った後、Snめっきを
施し、更に、クロメート処理液中で陽極電解を行った後
引き続いて陰極電解を行うことを特徴とする缶用極薄S
nめっき鋼板の製造方法。
(7) The surface of the steel plate before heat treatment is plated with Cr, and then a Cr/Fe alloy is plated on top of it, and when the steel plate is heat treated, Cr is plated.
Ultra-thin S for cans, characterized in that a heat dissipation layer is generated, temper rolling is performed, Sn plating is applied, and further, anodic electrolysis is performed in a chromate treatment solution, followed by cathodic electrolysis.
Method for manufacturing n-plated steel sheet.
JP1336132A 1989-12-25 1989-12-25 Ultra-thin Sn-plated steel sheet for can and method for producing the same Expired - Lifetime JP2522074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1336132A JP2522074B2 (en) 1989-12-25 1989-12-25 Ultra-thin Sn-plated steel sheet for can and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1336132A JP2522074B2 (en) 1989-12-25 1989-12-25 Ultra-thin Sn-plated steel sheet for can and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03197693A true JPH03197693A (en) 1991-08-29
JP2522074B2 JP2522074B2 (en) 1996-08-07

Family

ID=18296029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1336132A Expired - Lifetime JP2522074B2 (en) 1989-12-25 1989-12-25 Ultra-thin Sn-plated steel sheet for can and method for producing the same

Country Status (1)

Country Link
JP (1) JP2522074B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8557397B2 (en) * 2011-12-29 2013-10-15 Arcanum Alloy Design Inc. Metallurgically bonded stainless steel
US8628861B2 (en) * 2011-12-29 2014-01-14 Arcanum Alloy Design Inc. Metallurgically bonded stainless steel
US8790790B2 (en) * 2011-12-29 2014-07-29 Arcanum Alloy Design, Inc. Metallurgically bonded stainless steel
US10876198B2 (en) 2015-02-10 2020-12-29 Arcanum Alloys, Inc. Methods and systems for slurry coating
US11261516B2 (en) 2016-05-20 2022-03-01 Public Joint Stock Company “Severstal” Methods and systems for coating a steel substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033362A (en) * 1983-08-01 1985-02-20 Nippon Steel Corp Preparation of steel plate for can and container excellent in weldability
JPS62103390A (en) * 1985-10-31 1987-05-13 Nippon Steel Corp Production of thin sn-plated steel sheet for can making
JPS62274091A (en) * 1986-05-22 1987-11-28 Nippon Kokan Kk <Nkk> Thinly tinned steel sheet for welded can
JPS63499A (en) * 1986-06-20 1988-01-05 Nippon Steel Corp Surface treated steel sheet for vessel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033362A (en) * 1983-08-01 1985-02-20 Nippon Steel Corp Preparation of steel plate for can and container excellent in weldability
JPS62103390A (en) * 1985-10-31 1987-05-13 Nippon Steel Corp Production of thin sn-plated steel sheet for can making
JPS62274091A (en) * 1986-05-22 1987-11-28 Nippon Kokan Kk <Nkk> Thinly tinned steel sheet for welded can
JPS63499A (en) * 1986-06-20 1988-01-05 Nippon Steel Corp Surface treated steel sheet for vessel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8557397B2 (en) * 2011-12-29 2013-10-15 Arcanum Alloy Design Inc. Metallurgically bonded stainless steel
US8628861B2 (en) * 2011-12-29 2014-01-14 Arcanum Alloy Design Inc. Metallurgically bonded stainless steel
US8784997B2 (en) * 2011-12-29 2014-07-22 Arcanum Alloy Design, Inc. Metallurgically bonded stainless steel
US8790790B2 (en) * 2011-12-29 2014-07-29 Arcanum Alloy Design, Inc. Metallurgically bonded stainless steel
US10876198B2 (en) 2015-02-10 2020-12-29 Arcanum Alloys, Inc. Methods and systems for slurry coating
US11261516B2 (en) 2016-05-20 2022-03-01 Public Joint Stock Company “Severstal” Methods and systems for coating a steel substrate

Also Published As

Publication number Publication date
JP2522074B2 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
KR101108312B1 (en) Plated steel sheet for can and process for producing the same
JP5760355B2 (en) Steel plate for containers
EP0291983B1 (en) Thinly tin coated steel sheets having excellent rust resistance and weldability
JP6146541B2 (en) Plated steel sheet and manufacturing method thereof
US4487663A (en) Steel sheets for preparing welded and coated cans and method for manufacturing the same
JP5186816B2 (en) Steel plate for containers and manufacturing method thereof
JP2009001854A (en) Steel sheet for vessel
JP3399729B2 (en) Manufacturing method of rustproof steel plate for fuel tank with excellent press workability and corrosion resistance
JPH03197693A (en) Very thin sn plated steel sheet for can and its production
US4790913A (en) Method for producing an Sn-based multilayer coated steel strip having improved corrosion resistance, weldability and lacquerability
JP2578532B2 (en) Phosphate treated Sn plated steel sheet
JPS63186860A (en) Manufacture of surface-treated steel sheet excellent in rust resistance and weldability
JPH0472091A (en) Surface-treated steel sheet for two-piece can and production thereof
JP2959025B2 (en) Ni-plated steel sheet for can and method for producing the same
JP2959024B2 (en) Ni-plated steel sheet for can and method for producing the same
JPS61195989A (en) Manufacture of surface treated steel sheet excellent in corrosion resistance and weldability
JP2522075B2 (en) Ultra-thin Sn-plated steel sheet for can and method for producing the same
JPS6330998B2 (en)
JP2820990B2 (en) Surface treated steel sheet excellent in weldability and method for producing the same
JP3270318B2 (en) Steel plate for welded cans with excellent weldability, corrosion resistance, appearance and adhesion
JPH0536516B2 (en)
JP2959026B2 (en) Ultra-thin Sn-plated steel sheet for welding can and method for producing the same
JPH03197695A (en) Very thin sn plated steel sheet for can and its production
JP2737813B2 (en) Tin-plated steel sheet with excellent paint adhesion and seam weldability
JPS60145380A (en) Ni plated steel sheet having excellent corrosion resistance