JP4530241B2 - Air conditioning duct for vehicles - Google Patents

Air conditioning duct for vehicles Download PDF

Info

Publication number
JP4530241B2
JP4530241B2 JP2001037925A JP2001037925A JP4530241B2 JP 4530241 B2 JP4530241 B2 JP 4530241B2 JP 2001037925 A JP2001037925 A JP 2001037925A JP 2001037925 A JP2001037925 A JP 2001037925A JP 4530241 B2 JP4530241 B2 JP 4530241B2
Authority
JP
Japan
Prior art keywords
duct
resonator
duct body
sound
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001037925A
Other languages
Japanese (ja)
Other versions
JP2002240534A (en
Inventor
勝博 丹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoac Corp filed Critical Inoac Corp
Priority to JP2001037925A priority Critical patent/JP4530241B2/en
Publication of JP2002240534A publication Critical patent/JP2002240534A/en
Application granted granted Critical
Publication of JP4530241B2 publication Critical patent/JP4530241B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00507Details, e.g. mounting arrangements, desaeration devices
    • B60H1/00557Details of ducts or cables
    • B60H1/00564Details of ducts or cables of air ducts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00507Details, e.g. mounting arrangements, desaeration devices
    • B60H2001/006Noise reduction

Description

【0001】
【発明の属する技術分野】
本発明は、乗用車などで装備している空調ダクトに適用される車両用空調ダクトに関する。
【0002】
【従来の技術】
近年、自動車の快適性向上のため車室内の騒音低減対策がなされ、かなり静かになってきた。ところが、空気騒音については風向板で発生する風切り音等が主な原因になっていることから、なかなか有効な手立てを講じることができなかった。空気騒音では風向板によるエオルス音(カルマン渦音)や乱流音などがある。特に、エオルス音は特定の周波数帯成分(卓越成分)の音だけが大きく、卓越音となって非常に耳障りなものとなり、不快感を与えてきた。図5に示すごとく、円柱7や柱状体の周りを流れる流体u(空気など)は円柱7から渦8を発生し、それが引き起こす周期的な圧力変動が音を発生させている。カルマン渦音と呼ばれるものである。
特定の周波数だけの音を下げる対策としては、エンジンの吸気ダクトに用いられているレゾネータがある。
【0003】
【発明が解決しようとする課題】
しかるに、レゾネータを空調ダクトに適用した場合、風uが乗員側(出口側)に流れてくるため、レゾネータの連通管部のくぼみGで発生したキャビティ音が乗員側に伝わりやすく、狙いの周波数とは別の周波数成分の音が発生してしまい、十分な効果を得ることができなかった(図6)。キャビティ音の発生メカニズムは空洞Gの入口部が剪断流により渦流れと音波のフィードバックループができ、音が発生するといわれている。
他に、ウレタン等の吸音材をダクト内側に貼る方法があるが、その吸音特性は広帯域であり、特定の周波数成分だけの音を吸音するというわけにいかなかった。その結果、やはり特定周波数成分の音だけが耳障りになり、十分な効果が得られなかった。また、吸水等による経時変化で吸音特性が低下し、空調騒音が悪化する虞れがあった。
【0004】
本発明は上記問題点を解決するもので、卓越音の発生を抑えて、レゾネータの性能をいかんなく発揮できる車両用空調ダクトを提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成すべく、請求項1に記載の発明の要旨は、レゾネータ付きの車両用空調ダクトにおいて、ダクト本体(1)の上流域からレゾネータ(2)に通じるダクト本体(1)の開口(c)に近づくにしたがってダクト本体(1)内へ徐々に入り込み、且つ該レゾネータ(2)の連通口(f)に到達した地点(T)で最も深くダクト本体内(O)へ入り込む突出部(15)を形成し、さらに該突出部(15)の斜面(151)がダクト本体内(O)へ入り込むその上昇角度(θ )を1.5°〜5°の範囲とする一方、該突出部(15)の頂点(T)と前記開口(c)の最下流に位置する周縁地点(12)とを結ぶ直線(m )が、ダクト本体(1)の中心軸(n)に対し1.5°〜5°の角度(θ )の範囲でダクト下流側外方に広がることを特徴とする車両用空調ダクトにある。
【0006】
請求項の発明のごとく、ダクト本体(1)の上流域からレゾネータ(2)に通じるダクト本体(1)の開口(c)に近づくにしたがってダクト本体(1)内へ徐々に入り込み、且つ該レゾネータ(2)の連通口(f)に到達した地点(T)で最も深くダクト本体内(O)へ入り込んで突出部(15)を形成すると、ダクト本体の開口縁を含む面が流体の下流側に向けてダクト本体の外方へ広がる格好になるので、ダクト内を流れる流体が連通管内に流れ込み難くなりキャビティ音が発生しなくなる。突出部(15)の斜面(151)がダクト本体内(O)へ入り込むその上昇角度(θ )を1.5°〜5°の範囲とするのは、角度(θ )が5°を越えると、ダクト壁面から剥離流れを発生させ、またそれに伴う通風面積の減少によるダクトの流れ抵抗増加や乱流が発生し、風切り音の悪化という不具合を招くからである。
また、突出部(15)の頂点(T)と前記開口(c)の最下流に位置する周縁地点(12)とを結ぶ直線(m )が、ダクト本体(1)の中心軸(n)に対し1.5°〜5°の角度(θ )の範囲でダクト下流側外方に広がると、ダクト壁面からの剥離流や乱流も発生しないようになり、レゾネータ設置で派生する騒音(卓越音等)が抑えられ、レゾネータのもつ騒音低減威力が十分に発揮される。直線(m )がダクト本体(1)の中心軸(n)に対しダクト本体(1)の下流側に向け角度5°以下に設定されると、ダクト壁面からの剥離流れの発生を抑えることができるので、レゾネータの取着で誘発される新たな騒音を一切排除できる。
【0007】
【発明の実施の形態】
以下、本発明に係る車両用空調ダクトについて詳述する。
図1〜図4は車両用空調ダクトの一形態で、図1はヘルムホルツ型レゾネータを用いた車両用空調ダクトの一部分を示す参考縦断面図、図2は本発明の車両用空調ダクトの一部分を示す縦断面図、図3は図1の車両用空調ダクトと従来品との性能比較グラフ、図4は(イ)がヘルムホルツ型レゾネータを用いた車両用空調ダクトの一部分を示す断面説明図、(ロ)がサイドブランチ型レゾネータを用いた車両用空調ダクトの一部分を示す断面説明図を示す。
【0008】
図1の車両用空調ダクトはヘルムホルツ型のレゾネータ付きダクトである。ダクト本体1は、エアコンユニットで発生する冷風,温風を所定のインストルメントパネルに設けられたベント吹き出し口まで導くダクトである。図1はレゾネータ2と連結するダクト本体1の一部を図示し、ダクト本体内Oを空調エア(流体)が右方向へ流れるものとする。すなわち、図1のダクト本体1の左方を上流側、右方を下流側とする。
【0009】
レゾネータ2は所定大きさのボックス状のレゾネータ本体2aとこれをダクト本体1につなぐ連通管2bとからなる。レゾネータ空洞部21が連通管空洞部22を介してダクト本体内Oに導通し、ヘルムホルツの共鳴原理を応用してダクト本体内Oの特定周波数の音を低減させる。
【0010】
しかして、レゾネータ2に通じるダクト本体1の開口cの周縁10が上流側開口縁部分より下流側開口縁部分の方を外方へ張り出すようにして、ダクト本体1が形成されている。より詳しくは、連通管2bに通じるダクト本体1の開口cの周縁10に関し、流体の上流側にあたる開口縁部分より流体の下流側にあたる開口縁部分の方をダクト本体1の外方へ張り出すようにして連通管2bと連結させている。少なくとも、連通管2bと接続する付近では、ダクト本体1が横断面同形で進むのでなく、下流側ダクト部分が上流側ダクト部分よりダクト本体1の外方へ膨出する格好になっている。
【0011】
そして、前記開口cの最上流に位置する周縁地点11と最下流に位置する周縁地点12とを結ぶ直線mが、ダクト本体1の中心軸nに対し角度θでダクト本体1の下流側に広がるようにしている。最下流開口周縁地点12は最上流開口周縁地点11よりダクト本体1の外方へ長さαだけ膨出する。見方を変え、図1のごとくレゾネータ2を縦割りニ分割し且つダクト中心軸nを含む縦断面にすると、ダクト本体1につながる連通管2bの連結部分は、ダクト上流側接合点23とダクト下流側接合点24を結んだ直線mが、ダクト本体1の中心軸n(流体の流れ方向V)に対し角度θでダクト下流側外方に広がる形になっている。連通管2bの横断面が円形の場合、ダクト上流側接合点23とダクト下流側接合点24を含む連通管2bの空洞端面(すなわちレゾネータ2の連通口fにつながるダクト本体1の開口縁10)の形は楕円形となる。該楕円形がつくる面はダクト本体内Oを流れる流体の流れ方向Vに対し角度θでダクト下流側外方へ広がる。
【0012】
前記角度θは1.5°〜5°の範囲に設定するのが好ましいとされる。角度θが1.5°未満になると、ダクト本体内Oを流れるエア(流体)が連通管空洞部22内へ流れ込み、キャビティ音を発生させるからである。一方、角度θが5°を越えるようになると、ダクト本体1の壁面から剥離流れが発生し、それに伴う通風有効面積の減少による流れ抵抗の増加で空調性能を低下させたり、また乱流が発生し、それが風向板での風切り音の悪化要因になったりする不具合が生じるからである。
【0013】
図2は本発明の車両用空調ダクトを表したものである。該車両用空調ダクトは、ダクト本体1の上流域からレゾネータ2に通じるダクト本体1の開口cに近づくにしたがってダクト本体内Oへ徐々に入り込む突出部15を形成している。
流体上流側から下流側へ向かうダクト本体1は、レゾネータ2の連通口fにつながる手前付近で、緩やかな傾斜面151を描いてダクト本体内Oへ入り込み、レゾネータ2の連通口fに到達した地点Tで最も深くダクト本体内Oへ入り込んで突出部15を形成する。ダクト本体1の開口cの最上流に位置する周縁地点11で最も深くダクト本体内Oへ入り込んでいる。
【0014】
突出部15は縦断面が図2のごとく右肩上がりの斜面151を形成する。突出部15の高さは連通管2bの大きさによって異なるが、該突出部15の頂点Tと前記開口cの最下流に位置する周縁地点12とを結ぶ直線mが、ダクト本体1の中心軸n(流体の流れ方向V)に対し角度θでダクト下流側外方に広がる形になっている。突出部15の頂点Tは開口cの最上流に位置する周縁地点11でもある。角度θはθと同様の理由から1.5°〜5°の範囲に設定するのが好ましい。
前記突出部15の斜面151がダクト本体内Oへ入り込むその上昇角度θはダクト直管部長さ,製作のし易さ等を鑑みれば約5°(範囲としては1.5°〜5°)が望ましい。角度θが5°を越えると、ダクト壁面から剥離流れを発生させ、またそれに伴う通風面積の減少によるダクトの流れ抵抗増加や乱流が発生し、風切り音の悪化という不具合を招く。
【0015】
次に、図1のレゾネータ付きの車両用空調ダクトについて、単にレゾネータ2をダクト本体1に取り付けた従来例およびレゾネータ2なしの従来例とを比較した性能試験結果を図3に示す。同図によれば、レゾネータ付きの従来品は1030Hz付近のところでレゾネータ2を取着したことによるキャビティ音が発生するが、図1の車両用空調ダクトはその騒音悪化を解消する。そして、図1の車両用空調ダクトがほぼ1000Hzの箇所でレゾネータ2を設けた効果を十二分に発揮しているのが読み取れる。
【0016】
ところで、図1,図2ではヘルムホルツ型レゾネータ2について言及したが、サイドブランチ型レゾネータ2についても、同様の構成を採ることにより同じ作用,効果を得る。
例えば、図4(イ)は従来のヘルムホルツ型レゾネータ付き車両用空調ダクトを矢印下方のヘルムホルツ型の図1相当品にした概略断面図であるが、図4(ロ)のごとく従来のサイドブランチ型レゾネータ付き車両用空調ダクトを矢印下方の図1相当品たるサイドブランチ型レゾネータ付き車両用空調ダクトにすることができる。図4で図1に示す同一符号は同一部分又は相当部分を示し、その詳述を省く。また、図示を省略するが、図2に対応するサイドブランチ型レゾネータ付き車両用空調ダクトにすることも可能である。
【0017】
このように構成した車両用空調ダクトは、レゾネータ2に通じる開口cを形成するダクト本体1の開口縁10が風下方向に対しダクト外方へ広がっているので、ダクトを流れる流体がレゾネータ2(連通管2b)内へ入り難くなり、キャビティ音の発生を抑えることができる。開口cの最上流に位置する周縁地点11と最下流に位置する周縁地点12とを結ぶ直線m,mが、ダクト本体1の中心軸nに対しダクト本体1の下流側に向け角度1.5°以上でダクト外方へ広がるようにすると、ダクト内Oを流れる流体が連通管空洞部22,レゾネータ空洞部21に入り込むのをほぼ完璧に防げるので、キャビティ音の発生はなくなる。さらに前記直線m,mがダクト本体1の中心軸nに対しダクト本体1の下流側に向け角度5°以下に設定されると、ダクト壁面からの剥離流れの発生を抑えることができるので、レゾネータ2の取着で誘発される新たな騒音を一切排除できる。
従って、レゾネータ本来の性能を発揮でき、空調騒音を低減できる車両用空調ダクトを提供できる。そして、レゾネータ2の設定周波数はレゾネータ2の連通管2b長さ,直径,レゾネータ本体2aのタンク容量等を変更することにより自在に設定可能であり、様々な車両に対応できるようになる。また、ウレタン等の吸音材と異なり、狙いとする周波数成分の音だけを低減でき、耳障りな空調騒音の発生を抑えることができる。経時変化による性能低下も全くなく、長期間に亘って性能を維持することができる。
【0018】
尚、本発明においては、前記実施形態に示すものに限られず、目的,用途に応じて本発明の範囲で種々変更できる。ダクト本体1,レゾネータ2等の形状,大きさ,それらの材質等は用途に合わせて適宜選択できる。
【0019】
【発明の効果】
以上のごとく、本発明の車両用空調ダクトは、卓越音等の発生を抑えて、レゾネータの性能を存分に生かすことができ優れた効果を発揮する。
【図面の簡単な説明】
【図1】 参考形態で、ヘルムホルツ型レゾネータを用いた車両用空調ダクトの一部縦断面図である。
【図2】 本発明の車両用空調ダクトの一部縦断面図である。
【図3】 図1の車両用空調ダクトと従来品との性能比較図である。
【図4】 (イ)がヘルムホルツ型レゾネータを用いた車両用空調ダクトの一部断面説明図、(ロ)がサイドブランチ型レゾネータを用いた車両用空調ダクトの一部断面説明図である。
【図5】 円柱の後方で渦ができる模様を示す説明図である。
【図6】 くぼみで発生するキャビティ音の様子を示す説明図である。
【符号の説明】
1 ダクト本体
10 開口周縁
11 最上流に位置する周縁地点
12 最下流に位置する周縁地点
15 突出部
151 斜面
2 レゾネータ
c 開口
f 連通口
直線
n ダクト本体の中心軸
O ダクト本体内
T 突出部の頂点(ダクト本体の上流域から連通口に到達した地点)
θ 直線m がダクト本体の中心軸に対しダクト下流側外方に広がる角度
θ 突出部の斜面がダクト本体内へ入り込むその上昇角度
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle air-conditioning duct applied to an air-conditioning duct equipped in a passenger car or the like.
[0002]
[Prior art]
In recent years, noise reduction measures have been taken in the passenger compartment to improve the comfort of automobiles, and it has become quite quiet. However, since air noise is mainly caused by wind noise generated by the wind direction plate, it has been difficult to take effective measures. Air noise includes Aeolian sound (Karman vortex sound) and turbulent sound caused by wind direction plates. In particular, the Aeolian sound is loud only in a specific frequency band component (excellent component), and it has become an unpleasant harsh and unpleasant. As shown in FIG. 5, the fluid u (air or the like) flowing around the cylinder 7 or the columnar body generates a vortex 8 from the cylinder 7, and periodic pressure fluctuation caused by the vortex 8 generates sound. This is called Karman vortex sound.
As a countermeasure for lowering the sound of a specific frequency, there is a resonator used in the intake duct of the engine.
[0003]
[Problems to be solved by the invention]
However, when the resonator is applied to the air conditioning duct, the wind u flows to the occupant side (exit side), so that the cavity sound generated in the recess G in the communicating pipe of the resonator is easily transmitted to the occupant side, and the target frequency The sound of another frequency component was generated, and a sufficient effect could not be obtained (FIG. 6). The cavity sound generation mechanism is said to generate sound by generating a feedback loop of vortex flow and sound waves at the entrance of the cavity G due to shear flow.
In addition, there is a method of attaching a sound absorbing material such as urethane to the inside of the duct, but its sound absorption characteristic is a wide band, and it has not been possible to absorb only a specific frequency component. As a result, only the sound of the specific frequency component becomes harsh, and a sufficient effect cannot be obtained. In addition, there is a possibility that the sound absorption characteristics are deteriorated due to a change with time due to water absorption or the like, and the air conditioning noise is deteriorated.
[0004]
The present invention solves the above-described problems, and an object of the present invention is to provide a vehicle air-conditioning duct that can suppress the generation of the prevailing sound and exhibit the performance of the resonator.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the gist of the invention described in claim 1 is that in a vehicle air-conditioning duct with a resonator, the opening of the duct body (1) leading from the upstream area of the duct body (1) to the resonator (2) ( seen gradually enters write to the duct body (1) in accordance with approaching c), entering and deepest duct body at the point it reaches the communication port of the resonator (2) (f) (T) to (O) projecting Forming the portion (15), and further, the rising angle (θ 3 ) of the inclined surface (151) of the projecting portion (15) entering the duct body (O) is in the range of 1.5 ° to 5 °, A straight line (m 2 ) connecting the apex (T) of the protrusion (15) and the peripheral point (12) located on the most downstream side of the opening (c ) is formed on the central axis (n) of the duct body (1). in a vehicle air-conditioning duct, wherein a spreading duct downstream outside the range of 1.5 ° to 5 ° angle against (theta 2).
[0006]
Rather each of the invention of claim 1, gradually enters into the duct body (1) inside toward the opening (c) of the duct body (1) leading to resonator (2) from the upstream region of Da transfected body (1), When the protrusion (15) is formed by entering the inside of the duct body (O) deepest at the point (T) reaching the communication port (f) of the resonator (2), the surface including the opening edge of the duct body is fluid. Therefore, the fluid flowing in the duct is less likely to flow into the communication pipe and no cavity noise is generated. The rising angle (θ 3 ) of the inclined surface (151) of the protrusion (15) entering the duct body (O) is in the range of 1.5 ° to 5 ° because the angle (θ 3 ) is 5 °. If it exceeds, a separation flow is generated from the duct wall surface, and the flow resistance increase and turbulence of the duct are generated due to the decrease in the ventilation area, resulting in a problem of deterioration of wind noise.
A straight line (m 2 ) connecting the apex (T) of the protrusion (15) and the peripheral point (12) located on the most downstream side of the opening (c) is the central axis (n) of the duct body (1). In contrast , if it spreads outward from the duct downstream in the range of an angle (θ 2 ) of 1.5 ° to 5 °, separation flow and turbulence from the duct wall surface will not occur, and noise derived from the installation of the resonator ( And the noise reduction power of the resonator is fully demonstrated. When a straight line (m 2) is set below an angle 5 ° toward the downstream side of the duct body (1) with respect to the center axis of the duct body (1) (n), suppress the occurrence of delamination flow from the duct wall Therefore, any new noise induced by the attachment of the resonator can be eliminated.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the vehicle air-conditioning duct according to the present invention will be described in detail.
1 to 4 in a form of auto dual air-conditioning duct, FIG. 1 is a reference longitudinal sectional view of a portion of a vehicle air-conditioning duct with a Helmholtz resonator, a portion of the vehicle air-conditioning duct 2 is the invention FIG. 3 is a performance comparison graph between the vehicle air-conditioning duct of FIG. 1 and the conventional product, and FIG. 4 is a cross-sectional explanatory view showing a part of the vehicle air-conditioning duct using a Helmholtz type resonator. B) is a sectional explanatory view showing a part of a vehicle air-conditioning duct using a side branch type resonator.
[0008]
The vehicle air-conditioning duct shown in FIG. 1 is a Helmholtz type duct with a resonator. The duct body 1 is a duct that guides cold air and hot air generated in the air conditioner unit to a vent outlet provided in a predetermined instrument panel. FIG. 1 illustrates a part of a duct main body 1 connected to a resonator 2, and air-conditioning air (fluid) flows in the duct main body O in the right direction . That is, the upstream side to the left side of the duct body 1 of FIG. 1, a right and a downstream side.
[0009]
The resonator 2 includes a box-shaped resonator main body 2 a having a predetermined size and a communication pipe 2 b that connects the main body 2 a to the duct main body 1. The resonator cavity 21 is electrically connected to the duct body O via the communication pipe cavity 22, and the sound of a specific frequency in the duct body O is reduced by applying the Helmholtz resonance principle.
[0010]
But, as the peripheral edge 10 of the opening c of the duct body 1 leading to Resolution discriminator 2 overhangs toward the downstream side opening edge portion of the upstream opening edge portion outwardly, the duct main body 1 is formed. More specifically, with respect to the peripheral edge 10 of the opening c of the duct body 1 leading to the communication pipe 2b, the opening edge portion corresponding to the downstream side of the fluid is projected outward from the duct body 1 from the opening edge portion corresponding to the upstream side of the fluid. Thus, it is connected to the communication pipe 2b. At least in the vicinity of the connection with the communication pipe 2b, the duct body 1 does not travel in the same cross-sectional shape, but the downstream duct portion is shaped to bulge outward from the upstream duct portion.
[0011]
A straight line m 1 connecting the peripheral point 11 located at the most upstream of the opening c and the peripheral point 12 located at the most downstream is at the downstream side of the duct main body 1 at an angle θ 1 with respect to the central axis n of the duct main body 1. To spread. The most downstream opening peripheral point 12 bulges outward from the duct main body 1 by a length α from the most upstream opening peripheral point 11. If the view is changed and the resonator 2 is divided into two vertically and has a longitudinal section including the duct center axis n as shown in FIG. 1, the connecting portion of the communication pipe 2b connected to the duct body 1 is connected to the duct upstream junction 23 and the duct downstream. A straight line m 1 connecting the side joints 24 is shaped to spread outward on the downstream side of the duct at an angle θ 1 with respect to the central axis n (fluid flow direction V) of the duct body 1. When the cross section of the communication pipe 2b is circular, the cavity end face of the communication pipe 2b including the duct upstream side junction 23 and the duct downstream side junction 24 (that is, the opening edge 10 of the duct body 1 connected to the communication port f of the resonator 2). The shape of becomes oval. The surface formed by the ellipse spreads outward on the downstream side of the duct at an angle θ 1 with respect to the flow direction V of the fluid flowing in the duct body O.
[0012]
The angle θ 1 is preferably set in a range of 1.5 ° to 5 °. This is because when the angle θ 1 is less than 1.5 °, the air (fluid) flowing through the duct body O flows into the communication pipe cavity 22 and generates a cavity sound. On the other hand, when the angle θ 1 exceeds 5 °, a separation flow is generated from the wall surface of the duct body 1, and the air flow performance is reduced due to the increase in the flow resistance due to the decrease in the effective ventilation area, and the turbulence is generated. This is because there arises a problem that it occurs, which causes deterioration of wind noise on the wind direction plate.
[0013]
FIG. 2 shows a vehicular air conditioning duct according to the present invention . The vehicle air-conditioning duct forms a protrusion 15 that gradually enters the duct body O as it approaches the opening c of the duct body 1 leading from the upstream area of the duct body 1 to the resonator 2.
The duct body 1 heading from the upstream side to the downstream side of the fluid enters the inside of the duct body O with a gentle inclined surface 151 in the vicinity of the front side connected to the communication port f of the resonator 2 and reaches the communication port f of the resonator 2. The protrusion 15 is formed by deeply entering the duct body O at T. It enters the duct body O deepest at a peripheral point 11 located at the uppermost stream of the opening c of the duct body 1.
[0014]
The protrusion 15 forms a slope 151 whose vertical cross section rises to the right as shown in FIG. The height of the protrusion 15 depends on the size of the communicating tube 2b, the straight line m 2 connecting the peripheral point 12 located downstream of the vertex T and the opening c of the projecting portion 15, the center of the duct body 1 It is in the form extending duct downstream outward relative to the axis n (flow direction V of the fluid) at an angle theta 2. The apex T of the protrusion 15 is also the peripheral point 11 located at the uppermost stream of the opening c. The angle θ 2 is preferably set in the range of 1.5 ° to 5 ° for the same reason as θ 1 .
The rising angle θ 3 at which the inclined surface 151 of the protrusion 15 enters the duct body O is about 5 ° (the range is 1.5 ° to 5 °) in view of the length of the straight pipe portion, ease of manufacture, etc. Is desirable. If the angle θ 3 exceeds 5 °, a separation flow is generated from the duct wall surface, and the flow resistance increases and turbulence occurs due to a decrease in the ventilation area, resulting in a problem of deterioration of wind noise.
[0015]
Next, with respect to the vehicle air conditioning duct with the resonator shown in FIG. 1, FIG. 3 shows a performance test result comparing a conventional example in which the resonator 2 is simply attached to the duct body 1 and a conventional example without the resonator 2. According to the figure, the conventional product with a resonator generates a cavity sound due to the attachment of the resonator 2 near 1030 Hz, but the vehicle air conditioning duct of FIG. 1 eliminates the deterioration of the noise. It can be seen that the vehicle air-conditioning duct shown in FIG. 1 sufficiently exhibits the effect of providing the resonator 2 at a location of approximately 1000 Hz.
[0016]
1 and 2 refer to the Helmholtz type resonator 2, but the side branch type resonator 2 can obtain the same operation and effect by adopting the same configuration.
For example, FIG. 4 (a) is a schematic cross-sectional view of a conventional air conditioning duct for a vehicle with a Helmholtz type resonator that is equivalent to the Helmholtz type shown in FIG. 1 below the arrow, but as shown in FIG. The vehicle air-conditioning duct with a resonator can be a vehicle air-conditioning duct with a side branch type resonator that is equivalent to FIG. 1 below the arrow. In FIG. 4, the same reference numerals shown in FIG. 1 denote the same or corresponding parts, and the detailed description thereof is omitted. Although not shown, it is possible to provide a vehicle air conditioning duct with a side branch type resonator corresponding to FIG.
[0017]
In the vehicular air conditioning duct configured as described above, the opening edge 10 of the duct body 1 that forms the opening c leading to the resonator 2 extends outward from the duct in the leeward direction, so that the fluid flowing through the duct is coupled to the resonator 2 (communication). It becomes difficult to enter the tube 2b), and generation of cavity sound can be suppressed. A straight line m 1 , m 2 connecting a peripheral point 11 located at the most upstream of the opening c and a peripheral point 12 located at the most downstream is at an angle 1 toward the downstream side of the duct body 1 with respect to the central axis n of the duct body 1. When it spreads outward from the duct at an angle of 5 ° or more, the fluid flowing in the duct O can be prevented almost completely from entering the communication pipe cavity 22 and the resonator cavity 21, so that no cavity sound is generated. Furthermore, when the straight lines m 1 and m 2 are set at an angle of 5 ° or less toward the downstream side of the duct body 1 with respect to the central axis n of the duct body 1, generation of a separation flow from the duct wall surface can be suppressed. Any new noise induced by the attachment of the resonator 2 can be eliminated.
Therefore, it is possible to provide an air conditioning duct for a vehicle that can exhibit the original performance of the resonator and reduce the air conditioning noise. The set frequency of the resonator 2 can be freely set by changing the length and diameter of the communication pipe 2b of the resonator 2, the tank capacity of the resonator main body 2a, and the like, and can be used for various vehicles. In addition, unlike a sound absorbing material such as urethane, it is possible to reduce only the sound of a target frequency component, and to suppress generation of annoying air conditioning noise. There is no performance degradation due to changes over time, and the performance can be maintained over a long period of time.
[0018]
In addition, in this invention, it is not restricted to what is shown to the said embodiment, According to the objective and a use, it can change variously in the range of this invention. The shape, size, material, and the like of the duct body 1 and the resonator 2 can be appropriately selected according to the application.
[0019]
【The invention's effect】
As described above, the vehicular air conditioning duct of the present invention suppresses the generation of prevailing sound and the like, and can fully utilize the performance of the resonator, and exhibits an excellent effect.
[Brief description of the drawings]
[1] In reference embodiment, which is a part longitudinal sectional view of a vehicular air-conditioning duct with a Helmholtz resonator.
FIG. 2 is a partial longitudinal sectional view of a vehicle air conditioning duct according to the present invention .
FIG. 3 is a performance comparison diagram between the vehicle air conditioning duct of FIG . 1 and a conventional product.
4A is a partial cross-sectional explanatory diagram of a vehicle air-conditioning duct using a Helmholtz resonator, and FIG. 4B is a partial cross-sectional explanatory diagram of a vehicle air-conditioning duct using a side branch type resonator.
FIG. 5 is an explanatory diagram showing a pattern in which a vortex is formed behind a cylinder.
FIG. 6 is an explanatory diagram showing a state of a cavity sound generated by a dent.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Duct body 10 Opening periphery 11 Peripheral point located in the most upstream 12 Peripheral point located in the most downstream 15 Protrusion part
151 Slope 2 Resonator c Opening
f Communication port
m 2 straight line
n Center axis of the duct body
O Inside the duct body
T The top of the protrusion (the point where it reached the communication port from the upstream area of the duct body)
angle theta 2 linear m 2 spreads duct downstream outside the center axis of duct body
its raised angle slope of theta 3 protruding portion enters into the duct body

Claims (1)

レゾネータ付きの車両用空調ダクトにおいて、ダクト本体(1)の上流域からレゾネータ(2)に通じるダクト本体(1)の開口(c)に近づくにしたがってダクト本体(1)内へ徐々に入り込み、且つ該レゾネータ(2)の連通口(f)に到達した地点(T)で最も深くダクト本体内(O)へ入り込む突出部(15)を形成し、さらに該突出部(15)の斜面(151)がダクト本体内(O)へ入り込むその上昇角度(θ )を1.5°〜5°の範囲とする一方、該突出部(15)の頂点(T)と前記開口(c)の最下流に位置する周縁地点(12)とを結ぶ直線(m )が、ダクト本体(1)の中心軸(n)に対し1.5°〜5°の角度(θ )の範囲でダクト下流側外方に広がることを特徴とする車両用空調ダクト。In resonator with the air-conditioning duct for vehicles, viewed progressively enters write to the duct body (1) in accordance with approaching from the upstream region of the duct body (1) in the opening (c) of the resonator duct body leading to (2) (1) And a projecting portion (15) that enters the inside of the duct body (O) deepest at a point (T) that reaches the communication port (f) of the resonator (2), and further, a slope of the projecting portion (15) ( 151) The rising angle (θ 3 ) entering the duct body (O) is in the range of 1.5 ° to 5 °, while the apex (T) of the protrusion (15) and the opening (c) The straight line (m 2 ) connecting the peripheral point (12) located on the most downstream side is in the range of an angle (θ 2 ) of 1.5 ° to 5 ° with respect to the central axis (n) of the duct body (1). An air conditioning duct for a vehicle that spreads outward on the downstream side .
JP2001037925A 2001-02-15 2001-02-15 Air conditioning duct for vehicles Expired - Fee Related JP4530241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001037925A JP4530241B2 (en) 2001-02-15 2001-02-15 Air conditioning duct for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001037925A JP4530241B2 (en) 2001-02-15 2001-02-15 Air conditioning duct for vehicles

Publications (2)

Publication Number Publication Date
JP2002240534A JP2002240534A (en) 2002-08-28
JP4530241B2 true JP4530241B2 (en) 2010-08-25

Family

ID=18900992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001037925A Expired - Fee Related JP4530241B2 (en) 2001-02-15 2001-02-15 Air conditioning duct for vehicles

Country Status (1)

Country Link
JP (1) JP4530241B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2862577B1 (en) * 2003-11-25 2006-05-05 Peugeot Citroen Automobiles Sa DASHBOARD FOR MOTOR VEHICLES
US20050194207A1 (en) * 2004-03-04 2005-09-08 York International Corporation Apparatus and method of sound attenuation in a system employing a VSD and a quarter-wave resonator
JP5859371B2 (en) * 2012-04-23 2016-02-10 タイガースポリマー株式会社 Air intake duct with silencer
JP6414447B2 (en) * 2014-11-07 2018-10-31 三菱自動車工業株式会社 Intake pipe structure
FR3140936A1 (en) * 2022-10-12 2024-04-19 Valeo Systemes Thermiques Acoustic treatment device for ventilation system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088331A (en) * 1998-09-18 2000-03-31 Suzuki Motor Corp Structure of duct

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2760122B2 (en) * 1990-02-08 1998-05-28 松下電器産業株式会社 Cross flow blower
JPH07251628A (en) * 1994-03-16 1995-10-03 Toyoda Spinning & Weaving Co Ltd Resin duct
JP2944552B2 (en) * 1997-01-21 1999-09-06 株式会社大氣社 Silencer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088331A (en) * 1998-09-18 2000-03-31 Suzuki Motor Corp Structure of duct

Also Published As

Publication number Publication date
JP2002240534A (en) 2002-08-28

Similar Documents

Publication Publication Date Title
US8668254B2 (en) Vehicle underfloor structure
US20080032618A1 (en) Air duct for vehicle air conditioning and air conditioner for vehicle
JP6307048B2 (en) Vehicle structure
US20210001927A1 (en) Apparatus for improving the aerodynamics on a commercial vehicle
US11660928B2 (en) Air conditioner
JP4935240B2 (en) Body front structure
JP2002307930A (en) Air duct
JP4530241B2 (en) Air conditioning duct for vehicles
US9581353B2 (en) HVAC system including a noise-reducing feature
JP5129047B2 (en) Vehicle defroster device
US5588301A (en) Air scoop and method of use with roof mounted vehicle air conditioner
JP2008062815A (en) Front structure of vehicle body
JP3462147B2 (en) Arrangement structure of air-conditioning duct in railway vehicles
JP3747816B2 (en) Air conditioning duct for vehicles
JP2002308154A (en) Front lower structure for vehicle
JP3911208B2 (en) Skirt body for vehicles
JP3385993B2 (en) Car air outlet
CN215621275U (en) Air conditioner pipeline subassembly and vehicle
JP5995170B2 (en) Air conditioning unit for vehicles
JPH11141965A (en) Air guide structure for bent part of air duct
Sinha et al. A high performance airfoil-profile deflector for open sunroof wind noise
JP5604944B2 (en) Air conditioner
JPH03279018A (en) Cooling air introduction device for vehicle
JPH0285011A (en) Car airconditioner
CN208010491U (en) A kind of vehicle and its drainage tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees